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Introduction.

The quasiconformal mapping is an important object of the modern function
theory. Specifically, it is very useful not only for the Teichmiiller space theory
but also for the theory of open Riemann surfaces (cf. [17, [3], [9], [170).

In this paper, we shall study the variations of fundamental quantities on an
open Riemann surface as it varies quasiconformally. Especially, we shall con-
sider the variation of the value at each point of the solution of Dirichlet pro-
blem (§ II). Further we shall give its variational formula under a certain condi-
tion. It should be remarked that these investigations are applicable to harmonic
functions which have not necessarily finite Dirichlet integral.

In §1II, we shall consider the squeezing deformation of bordered Riemann
surfaces and the variations of harmonic functions.

Finally, in § IV we shall show the continuity of a certain pseudo-metric
related to harmonic functions with finite Dirichlet integral (For the detailed
discussion of this pseudo-metric, see [13]). Then we shall prove that this result
implies the continuity of Dirichlet integrals of certain reproducing kernel func-
tions under quasiconformal deformations.

As for the basic terminologies and notations (e. g. Dirichlet potential, maximal
dilatation, and spaces I, I, etc.), we follow Ahlfors-Sario [5], Constantinescu-
Cornea [6], Lehto-Virtanen [10], and Sario-Nakai [17].

Finally, the author thanks deeply to Professors S. Mori (Kyoto Sangyo Univ.)
and Y. Kusunoki (Kyoto Univ.) for their valuable suggestions and encouragements
during the preparation of this paper.

§ 1. Basic definitions and results.

1. Let R,, R, be open Riemann surfaces and f: R,— R, be a quasiconformal
mapping. f induces an isomorphism f*:I'(R,)—I'(R,). That is, for w=a({)d{
+b()dle'(R,) f*(w) is defined by

fH@)=[a(Nf.+b)NF).Jdz+La(Nfs+b()(f):1dz,
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where the mapping f is written as {=f(z) in terms of local parameters { and
z on R, and R, respectively, and f,, f;, (f)., (f). are distributional derivatives
of f and f. We put f§=P,f¥, where P, is the orthogonal projection from I
onto I,. Then we know the following:

Proposition 1. ([14]) (i) For any wl'(R)),
Kol Sl /(@) r, = Kol gz, ,

where K; is the maximal dilatation of [ and ||-|le(]'=0, 1) denote the norms on R;.
(i) f# gives an isomorphism from I4(Ry) onto I'n(R), and for any wye(R,)

K7 | onllr, =l i@ r, = K *|wwllr, -

2. For an arbitrary open Riemann surface R we denote by R* the Royden’s
compactification of R and by A(R) the harmonic boundary of R*. (For the
Royden’s compactification see [6] or [17].) Then

Proposition 2. ([17[) Let f: R,— R, be a quasiconformal mapping, then there
exists a homeomorphism f*: R§—R* such that f*=f on R, and [f*(A(R,))=A(R)).
Especially, if v is a Dirichlet potential on R,, then veef is also a Dirichlet poten-
tial on R,.

3. Let R be a Riemann surface which does not belong to class Oyp. For
21, 22 R we set

lu(z))—u(z.)|
~/Dp(u)
If ReOyp, we set df(z;, z,)=0. Then it is known (e.g. see [13]) that 0=

d8(z,, z,) <o, d% is a pseudometric on R and d%(-, -) is a continuous function
with respect to each variable. Furthermore,

a5 (2, z)=sup{ ue HD(R), Dalu)>0}.

Proposition 3. ([13] or [18])
dﬁ(zly 22):(277-')_1\/]7}2(]5};1)1) s

where p, and p, are harmonic on R —{z, z}, po+(—1) log lw;| and p,+
(—1) log |w;| are harmonic at z; for the local parameters w; with wj;(z;)=0
(7=1, 2), and p, and p, have respectively L, behavior and I(L), behavior near the
ideal boundary of R.

Next, we note the relation between d¥ and the reduced extremal distance
on R.

For two distinct points z;, z, on R and for sufficiently small numbers 7y, 7,
>0, we take the local disks D;(r;)={w;: lw;| <rj} (j=1, 2). We denote by Fr,.~,
a curve family consisting of all curves which connect 8D,(r;) and 0D,(r2) on
R—D,(r)\UD,(r,). Then the reduced extremal distance A(z;, z;) is defined by the
following :
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Azy, 22)=( lirrg 0{1(%}11.r2)+(27r)'1 log (ryra)},
T, TR~

where A(%.,..,) means the extremal length of T, n,.

We define another reduced extremal distance. We consider the family %,,,-,
consisting of all curves which connect D(r;) and 8D,(r;) on R—Dy(r)\UDs(rs)
where B is the Alexandroff compactification of R. Just as in the case of A(z;, z»)
we define the reduced extremal distance A(z., z5):

Az, 2= lim {7 )+20)7" log (rira)} .
T1,T2)

Proposition 3. ([13])

df(z1, 2. =221, 22)— (21, 2o) .
Finally, when R=D={|z| <1}, we note the following:

Proposition 4. ([13])
dP(z,, ZZ)Z_N/EC]?I(Z:, zs),

where dP(,) is the hyperbolic (Poincaré) distance on D, and equality holds if and
only if z,=z,.

§II. The variation of Dirichlet solutions.

4. Let Rn,(n=0,1,2, ---) be open Riemann surfaces and f,: R,—R, be
quasiconformal mappings with maximal dilatations K,=K, —1 as n—o. For
each uc HD(R,), u~f;* is a Dirichlet function on R,, therefore we have the
Royden’s decomposition on R, :

1) e fal=un+vo5,
where u,€HD(R,) and v, , is a Dirichlet potential on R,. Then we define a
mapping P/»: HD(R\)—HD(R,) as P/n(u)=u,.

Lemma 1. P/n js linear and isomorphic. Further,

) dP/n(u)=(fa0i(dw).  (u€HD(RY)

Proof. Since the linearity and (2) are seen immediately from the definitions.
we shall show only that P/» is isomorphic.
For P/»(u)-f,, we consider the Royden’s decomposition on R,:

P/n(u)efr=P/n" «P’n(u)+v,,

where v, is a Dirichlet potential on R,.
Hence by (1)

u=P72 o PIu(u)+ o+ nofn) .

Since vo+vo,nof, is a Dirichlet potential on R, from Proposition 2, we have



466 Hiroshige Shiga

P/z'oP/n(u)=u from the uniqueness of the Royden’s decomposition, that is, P/»
is isomorphic.

Theorem 1. Let R,(n=0,1, 2, ---) be open Riemann surfaces and f,: Ry—Ry
be quasiconformal mappings with Kn=K; —1 as n—oo. Then for any ueHD(R,)
and for any z€R,,

lim (P/n(u))e fn(z)=u(2) .

Proof. From Lemma 1 and Proposition 1-(ii)

lim Dg (P/n(u))=Dg,(u) .
On the other hand,

lim D, (ue /) =1im [(f2)*(dw)lz, =] dulzy=Dr(u) .

n-o00

Therefore, in the decomposition (1)

lim D, (vo, n)=1im {Dg,(u=f7")—Dg,(P/»(u))} =0.

It follows that from Proposition 1-(i)
lim Di(ws, nef2)=1im 1/4(dva. ) 3,0

That is, {ve..°fa}T is a sequence of Dirichlet potentials on R, with Dirichlet
norms converging to zero. Hence from [6] Hilfssatz 7. 8, there exists a Borel
set E, such that E, is polar on R, and lim v, »°fn(a)=0 for each a€R,—E.,.

n—>o0

Thus our conclusion is valid on R,—E,.

If aeE,, we can take a point a.€ R,—E, for each ¢>0 such that a. isin
a local disk D(a) about a, d’®(a, a.)<e and d/nP(f (a), fula.)<e for
sufficiently large n (cf. [10] Chapter II).

Then from Proposition 4 and the definition of df,

®) lu(a)—ula)| < jﬁ D)2,

4) [(PIn(u))e frla)— (P n(u))o fala) | = jﬁ. Dpg, (PIn(u))'’*
= K Dr )

We can take sufficiently large n such that

(5) |u(a)— P r(u))efala)] <e

because a.€R,—E,.
Hence from (3), (4), and (5), we have

lu(a)—P7(u))efola)| < |u(a)—ula) |+ u(a)—P n(u))efr(a.)]
4P r(u))efala)—(PTn(u))efnla)|
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1 1
- / 1/2 1/2
<e(— D" - KA *Dau) +1),
and the proof is complete.

Remark. We can show that P/»(u) is the Dirichlet solution on R¥ with the
boundary value u-(f¥)-* on A(R,) (cf. [6] Satz 7. 6 and Hilfssatz 8. 2). Hence

Theorem 1 implies the continuity of the Dirichlet solutions on the Royden’s
compactifications under the quasiconformal deformation.

Corollary 1. Let R,, f, (n=0,1, 2, ---) be the same as ones in Theorem 1.
Then for any bounded continuous function g on R§—R, and for any a€R,,

lim H2 sy f (@) =HEo(a),
where H¥ is the one defined in [6] p. 86.

Proof. For any ¢>0 there exists a continuous function g. on A(R,) such

that max {] g(2)—g.(2)| : zEA(R,)} <¢ and H3°€HBD(R,). From the maximal
principle,

sup {| Hyepsp-1(f a(@)—Hg o crpp-1(fn(@))| : aER} <,
sup {|H30(a)—H3(a)|: a€ Ry} <e.
Hence for each a€ R, and for each ¢>0, we have
T | H g2 ppa(fala))—H{(@)]
<Im {| Hyesp-1(f (@)= Hi rpp-a(f (@)
FIHE, (-1 fu(@)— Hgd(a) |+ | He(a)— Hg(a) |}
<Ze. g.e.d.

If Sp(n=0, 1, ---) are compact bordered Riemann surfaces, then K,-quasicon-
formal mapping f,: S¢—S, can be extended to a homeomorphism of S,\UaS,
into S,w0S,. We denote it by f, again.

Corollary 2. Let S,, fo(n=0,1, ---) be ones as above with lim K,=1. Then
for any bounded continuous function g on 9S,,

Li_tp Hin=1(fn(a))=Hg(a), for any a€S,.
If g is bounded and upper semi-continuous on 0S,,

m Hr o/ w(@) S H ).

Proof. 1f g isaboundary value of some HD-function on S,, H§z,-1=P/n(H0)
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from Bemerkung of Satz 7. 6 and Hilfssatz 8. 2[6]. Therefore the first state-
ment is shown by the same proof as that of Corollary 1.

As for g, we can prove easily the statement by considering the decreasing
sequence of continuous functions converging to g. g.e.d.

From an example such as in [4], we know that the Borel set on 9S, with
harmonic measure zero is not always preserved by a quasiconformal mapping.
Therefore, a resolutive function on 8S, is not always preserved by a quasicon-
formal mapping. That is, there exist compact bordered Riemann surfaces S,, S,
and a quasiconformal mapping f: S,—S;, and a resolutive function g on S,
such that geof~! is not a resolutive function on 8S;. So, in order that the re-
solutiveness is preserved we have to assume a certain condition about {f,}%.

To this end we shall recall here some results about fuchian groups and
Poincaré series.

Let S, be a compact bordered Riemann surface and G be a fuchsian group
acting on the upper half plane U such that S,=U/G. Then for a function F on
U we consider the Poincaré series of F:

O(F, G)(z):%_‘,aF(Az)A’(z) (zel).

Proposition 4. ([8]) Let F be a rational function with no poles on the set
of limit points of G. Then the Poincaré series O(F, G)(z) converges uniformly
on every compact subset on (&,\J0&,)—equivalent points of poles of F, where &, is
a (certain) fundamental region of G on U.

Let B,(G) be the set of Beltrami coefficient g compatible with G (cf, [2],
[16]) and |plle<1l. For each pe By(G) there is a quasiconformal automorphism
f* of U which fixes 0, 1, and oo, and satisfies (f*),=u(z)(f*), a.e.. The group
Gt=froGo(f*)"* is also a fuchsian group.

Let W be a relatively compact open subset in S,. We assume that {f,}7
satisfy the following condition (A) for W.

(A) There exist v,, -+, vm in By(G) such that

(i) v; is infinitely differentiable in the real sense for i=1, ---, m.

(ii) w({support of vi})CTW for i=1, .-, m, where w is the natural pro-
jection from U onto U/G=S,.

(iii) For pn, the complex dilatation of the lift of fn, there are uniquely

m
determined real numbers &y, n, =+, Qm, o Such that p,= 3 a; v; and
m 1/2 J=t
lla‘”’H:(E as, n) —0 as n—oo.

=1

Let g be a real valued resolutive function on S, and V be a neighbourhood
of 3S, in S, such that VN\W=0. If the condition (A) for W is satisfied for
fn: So—S, (n=1, 2, ---), then it is easy to show that gef;' is a resolutive func-
tion on 8S,. Set u=H3°, up=Hjz;71, and E,d{=1/2(du+i*du)—1/2(d(un°fr)
4-7*d(unefr)), where the local parameter is obtained by projecting the coordinate
function of U.
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Lemma 2. Suppose that {S.}5 and {fz}T are satisfying the condition (A) for
W(CS,). Then there exists a constant M >0 not depending on g and n such that

©®) EnlsMla | lglldzl  on @=z7)N&,.

Proof. (cf. [16]) From the theory of the Dirichlet problem we have

i(ga@o g(2) é’;—c Gz, C)dz)dc ,

T

%(du—kz'*du):

L(Sa@ng°f;1(z")5%6"(z"’ C,,)dzn)dcn ,

T

D (duptitdu)=

where Go(-, {) and G,(-, {,) are the Green’s functions of S, and S, with poles
at { and {, respectively.
On the other hand, by a simple calculation we have

O(K, G)(2)dzd{= Go(z, 0)dzdC,

az
0z0(
where K(z)=K(z, C)=—%(2—C)‘2.
Therefore, for €V,

2 (e fo)ki*dune )

= (], 8@OU 0, G NS n(2)) SO,

where G*=G#n,
A direct computation (cf. [16]-(9)) gives

OK s, G a(2)dfu(2)=O(K¢, n, G)(2)d2+ptadz),
where K¢ (2)=K(fa(2))(fa).(2). Since p,=0 on v,

Endt=—L1([_ 20Kz~ K, G)adz)dt,

where K, 1(2)=Kz, o(2)(f2):(0).

Generally, when we set K (2)=K(f"(z), f*O)f™).(2)(f*)(L) for ve By(G)
and 6@, z, {)=0O(K§, G)(z) (—1<t<1), it is known that (¢, z, £) is differentiable
about ¢t and

5 .
™ 500, 2, 0lieo=— ([ 0K, GXwOUK:, GYwpw)dwdp
(cf. [16] Proposition 7.).

Further, we may show that 8(¢, z, {)—6(0, z, {) is analytic for (z, {)eCUXD.
Hence when we set

04, 2 000, 2, O=t- 2, 2 Olirbelt, 2,0,

le(t, z, C)]§1\71|t| for a certain constant M>0 and for any (¢, z, H)e[—1, 11X
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X . Hence we have

B0 161 18UG— Kz ) Ide]

(n) ~ T
< 102 (itsup | 206, 2, 01a] )| 181 121
' q.e.d.

Theorem 2. Let S,(n=0,1, 2, --) be compact bordered Riemann surfaces.
Suppose that K,-quasiconformal mappings fn: So—S, satisfy the condition (A) for
some W(CS,).

Then, for any a<S, and for any resolutive function g on 0S,,

lim Hiz 71 (fa(a)=H{o(a).

Proof. We may assume that g is real valued. From condition (A) and
Lemma 2, we have

lim Dy(u_‘un°fn):0 y

where V is the same one as in Lemma 2, u=H3° and u,=Hgz51

Since u—un<f, is harmonic on V and vanishes identically on 0VNaS,, it
can be extended as a harmonic function to V, the double of V with respect to
oV NoS,. Hence (u—unyof,)—0 as n—oo uniformly on every compact subset on V.

To prove this theorem on S,—V, we consider a (relatively compact) regular
subregion W’ on S, such that WCW’ and oW’'CV.

From the above argument, for any ¢>0 and for sufficiently large number #,

luefa'—ual<e  on a(fo(W").

Hence, |Hy"y=1—HLz"" | <e on fu(W’).
On the other hand, from Corollary 1 we have

|HY (@)= Hy2 31 (fa(a)) | <e

for sufficiently large n and for any asW’.
Noting H5°=HY" on W’ and Hi?,;l:Hﬁg‘"’” on f,(W’), we can prove our
conclusion from the above inequalities.

Theorem 3. Let v be in B,(G) whose support is contained in n~*(W) where
W is a relatively compact open subset on S, such that S,—W is connected. For
t (—1=t=1) we denote by f,;, the quasiconformal mapping from S, onto S, =
U/fGe(f™*)"! such that mof,,=f"om.

Then for any a€S,—W and any resolutive function g,

0 ,/s¢y 2 e
SrH U a) == Re{ g@)([] A, 2dc)dz,

where F(C, z)=SSUK(w, 0OOK,, G w)(w)dwdiv, a,€3S, and an integral path
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from a, to a is taken in Sy—W.

Proof. Set u=H$, and u“:Hgﬁ”,L—vl. Since u, u,, are real valued and
limao(u(Z)—u;»(fu(Z)))=0,

8oz~

ualfula)—u(@=Re(’ {deofu)ti*dunefu)—(du+itdu),

Hence from (7) and the definition of E,, we can easily show the statement.

§III. The squeezing deformation and the Dirichlet problem.

5. Let S be a bordered Riemann surface with nodes. We denote by N(S)
the set of nodes of S and S—N(S) by S’, and a component of S’ is called a part
of S. In this section we assume that S has at most finite number of parts and
each part is a compact bordered or compact Riemann surface with finite num-
ber of punctures. The one is called a bordered part and the other is called a
non-bordered part.

A deformation <S;, S,, f> of marked bordered Riemann surfaces S; and S,
(cf. [1], [13]) is a continuous surjection f from S;\UdS; to S,\UdS,, which pre-
serves the marking, such that

(i) f'ls is a homeomorphism into S;, where f~!|s, is the restriction of

f~ton Sj,

(ii) flas, is 2 homeomorphism onto 9S., and

(ili) for every peN(S,), the set of f~!(p) is either a node of S; or a simple

closed curve on S;.

A deformation ¢S, S;, f> of marked bordered surfaces S; and S, with nodes
is called factored throngh S if there exist deformations <S;, S, f,> and <S, S;, f2>
such that f=f,f..

Let a bordered Riemann surface S, with nodes be given, and a neighbourhood
K of the nodes of S, and a positive constant ¢ be arbitrarily fixed, then a K, e-
conformal fundamental neighbourhood Ng,. of S, is defined by the set of S, a
bordered Riemann surface with nodes such that there exists a deformation
(S, So, f> and f'|cs,-x> is a (1+e)-quasiconformal mapping into S. Taking
{Ng..: K is a neighbourhood of N(S,) and ¢>0} as a fundamental neighbourhood
system at S,, we can define the convergence of {S,}T, a sequence of bordered
Riemann surfaces with nodes, to S,, and then we call it the convergence in the
conformal topology.

Let S¥*(;=1, ---, k) be bordered parts of S,, and g be a bounded continuous
function on 8S,. Then we define HS°, a Dirichlet solution with boundary value
g, as follows:

Hpo=H§0,  on S®G=L, -, k)

HSo=0 on Si—\Js*,
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where S* is a compact bordered Riemann surface filled in the punctures.
Theorem 4. Let g be a bounded continuous function on 0S,. Suppose that

{Sa}T converges to S, in the conformal topology, and fn: S,—So (n=1, 2, ---) are

mappings corresponding to the convergence as above. Then for any asS®i=
1, -, k)

(8 lim Hiz,,(f3'(a)=Hga) .

Proof. Set M=max|g|. For given >0, we can take a neighbourhood
K, of N(S,) sufficiently small such that
9 0<xo(a)<n/M,

where x, is the harmonic measure of S*N0K, with respect to S*—K,. Set
Sin=£;1(S%%) and denote by x, the harmonic measure of SN f7(0K,) with re-
spect to Sin— fa'(K,). Since f, are (14-¢,)-quasiconformal mappings on Sin_
fa'(K,) and Liﬂ e,=0, we have from Corollary 2

(10) [xo(@)—xa(f7 @) <7y for sufficiently large n.

Let v, be a Dirichlet solution on S*—K, whose boundary value is g on
3S™ and zero on S*N3K,. and v, is harmonic on §"—f;'(K,) whose boundary
value is gof, on f;%(0S*) and zero on f;‘(aK,,)/\§“. Then from the maximum
principle,

an {IH§°(a)—vo(a)I§Mxo(a),
|Hgz2 s, (f2 (@) —valfaHa) | EMxW(f24(a)) .
By using Corollary 2 again, we have
(12) [ve(@)—va(fz'(a))| <y  for sufficiently large n.
Thus from (9)-(12), we conclude
|H§(a)—Hign, (f2'(a))| = | H§(a)—vo(a)|
+lvo(@)—va(f2 (@) |+ [valfa (@) — HEz s, (f2'(a))]
L2p+Mxo(f7(a) =27+ M+ xa))
<@B+M)y,
for sufficiently large n. This implies (8). q.e.d.

If aeS, is in a non-bordered part of S,, (8) is not true. Furthermore, we
can give an example such that a€S, is in non-bordered part of S, and f;'(a)
is in bordered part of S, for each n(>0) but lim H§z, (f3'(a)) does not exist.

In fact, let So={w,:0<|w,| <1} U{w,:0< |w.| <o} U{ws:1<|ws| <o} be
a bordered Riemann surface with nodes {w,=0=w,} and {w,=co=w,}. We
take S,={z:1<|z|<8n%, and define f,:S,—S, as follows;
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falicincuren s {1< 2] <1420} —> {0< |w,| <1},
falirencisicnGranrret {L4+2n< |21 <n(5+7n)/2} — {0<|w;| <o},
falneriminciacsns: {n(6+7n)/2< 2| <8n'} —> {1<|n,| <oo},
and
frUlzl=142n})={w,=0=ws}, fu{lz]| =n(+Tn)/2})={w.=c0=w4},

and the resticted maps are all surjective. Furthermore, f,|i<izi<» a0d fr|1n2<izicans
are 1/z onto {w,:n"'<|w,|<1} and 8n*/z onto {ws:1<|ws|<(8/7)n} respec-
tively. When n=2m(m=1, 2, -++), falsn<izicenz (2)=n"32z onto {w,:3n"2<|w,| <
2n'?, When n=2m-+1(m=1, 2, --+), fnlsn<izicenz (2)=n"*2z onto {w,:3n*<|w,|
<2n%*%}. Then we can easily verify that {S,}T converges to S, in the con-
formal topology.

We take a continuous function g on 0S, such that g=0 on {w;: |w,|=1}
and =1 on {w,: |ws]=1} and a point a corresponding to w,=1. Then

H3zyp, (f2'(a)=(log u)(2 log 2n)~'; n=2m
HSn, (fal(a)=(4 log n)(O log 2n)™'; n=2m+1.

Thus, a desired example is obtained.

§IV. The continuity of d%.
6. The aim of this section is to show the following theorem.
Theorem 5. Let R, be an arbitrary open Riemann surface and f,: R\—R,

be quasiconformal mappings (n=1, 2, -++) such that lim K,=1. Then for any a,,
byeR,,

(13) lim dfn(ax, bn)=dE(aq, bo),

n—+00

where a,=fn(a,) and b,=1(bo).
To prove this theorem we need some lemmas.

Lemma 3. Let S,(n=0, 1, 2, --+) be compact bordered Riemann surfaces and
W be a relatively compact open set on S, such that S,—W is connected. Suppose
that quasiconformal mappings frn: Se—Sa (n=1, 2, ) satisfy the condition (A)
for W. Then for any a, byeS,—W, (13) is valid.

Proof. In general, we consider a Hilbert space

HD (R)={ueHD(R): u(a)=0}

for a fixed point a= R. We denote by u(R; a, b) the reproducing kernel func-
tion in HD,(R) such that for any u€ HD,(R)

(du, du(R; a, b))r=u(d).
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Then we can easily show that d§(a, b)=|du(R; a, b)|z.

And we define a mapping P, : HD,(S))~HD,,(S.) as Py (u)=P/n(u)—
P;n(u)(a,) for each n. Then as Lemma 1 it is shown that Py, is linear and
isomrphic, furthermore, dP, (u)=(fz)#(dw).

From Lemma 2 and Schwarz's inequality, we have

ldu—d(P (el P<Ma|_ ul*ldz,

where V is a connected neighbourhood of 4S, in S,—W, and M, >0 (n=1, 2, --+)
are constants with lim M,=0.

n->00

Since we know that there exists a constant C >0 such thatSaSolulzldzl <C
ldullg, (cf. [11D), Idu—d(P; (w)of)lp<CM,|dul3, Hence we have
(14) [ u(bo)—P s, (u)(ba) |*= (b)) =P, (u)efn(bo)|*
<df(as, bo)*|du—d(P; (w)efa)l#
< CM.di(ao, bo*lduly,.
On the other hand, for any w,, w,=1%(S,) from [12] Lemma 3,

F(i(ww), (fai(Feo)s,= (@i, @2)s,, -

Thus we have
P, (u)ba)=(dP;,(u), du(Ss; an, bn)s,
=((fa)i(du), du(Sr; an, ba))s,
=(du, —*(f)r(*du(Sys; an, ba))s, -

Hence if we denote by dh(S,; ba) (h(Se; ba)EHD, (S,) the I .-projectionof
—*(f)h(*du(So; an, ba)),

u(boe) =Py, (u)ba)=(du, du(So; ao, b)—dh(Ss; bn))s, .
Hence from (14) we have
(15) li_{n [du(So; ao, be)—dh(Ss; ba)lls,=0.

On the other hand, since Py, is ismorphic, there is v,€HD,(S,) such that
P;,wa)=u(Sn; an, bs). Then

[dR(So; bu)lls,=sup {|Ps,(w)(ba)|/lldulls,: u€HDq\(So)}
=|P; wa)ba) |/l dvalls,
=1(dP;,Wa), du(Sa; an, ba)s,|/1dvalls,
=[du(Sa; an, ba)ls,l1dPs,wnlls,/Idvals, -
Since |dPy, (wa)ls,/lldvalls,—~1 as n—oo, from (15) we have

(16) 1du(So; ao, bollls,=lim [d1(So; ba)lls,
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=0im || du(Sn; an, ba)lls, -

But from the definition of h(S,; b,) and Proposition 1,

a7 lim | dR(So; bl s,SLim [(FDACAu(Sa; an, b5,

=lim [|[du(Sa; an, ba)ls, -

i add

Thus from (16) and (17) we conclude that
lim dfln(an) bn):h_[;n “du(sn: an, bn)”Sn

n—0

=[du(Sv; as, bo)lls,=di(ao, bo) . g.e.d

Lemma 4. Let S,(n=0, 1, 2, --)be compact bordered Riemann surfaces and
fn: So—Sy, be K,-quasiconformal mappings with li{n K,=1. Then (13) is valid for
any a,, by S,.

Proof. At first, we assume that S, is conformal equivalent to neither an
annulus or the unit disk. Then we can consider T#(S,), the reduced Teichmiiller
space of S, as follows.

Consider all pairs (S, f) where S is a compact bordered Riemann surface
and f is a quasiconformal mapping from S, onto S. We call (S, f) and (S, )
equivalent if f’of~! is homotopic to a conformal mapping of S on S’. The re-
duced Teichmiiller space T#(S,) is the set of egivalent classes.

It is known (cf. [16] Proposition 6) that for sufficiently large n, there are
compact bordered Riemann surfaces S, and K,-quasiconformal mappings such
that {(Sa, f)} satisfies the condition (A) for a regular subregion W as Lemma
3 and (Sa, fa) is equivalent to (Sn, fa) in T#(S,).

Hence there exist conformal mappings ¢,: S,—S, such that ¢, is homotopic
to fnofz' for sufficiently large n. Thus F,=f7'e¢nfn: Sy—S, are quasicon-
formal mappings homotopic to the identity and Kp,—1 as n—oco. Therefore
{F,} converges to the identity uniformly on every compact subset on S,.

When S, is an annulus or the unit disk, we can take a conformal mappings
¢n: Sn—S, and quasiconformal mappings fn:S—S. (n=1,2, ) such that
{fa}T satisfies the condition (A) for a regular subregion W with W= a,, b, and
Fo=f7'e¢nefa: Se—S, converges to the identity uniformly on every compact
subset on S, as n—oo.

Any way, we take quasiconformal mappings {F,} as above.

For any ¢>0, by using Proposition 4 as the proof of Theorem 1, we have
for sufficiently large n

[d7(ao, bo)—dF(Fulao), Fulbo))| <e,
|3 (fa(ao), [albo)—d5(@nefulao), Paofalan)| <e,

where S,=S, if S, is an annulus or the unit disk.
From Lemma 3, we have
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|d§%(ao, b)—dSn(falas), falbo))] <e,
for sufficiently large n. Since ¢, is conformal,
A5 (@neful@0), Gucfa(be)=dF(an, by).
Therefore, we conclude

|d§lo(00y bO)_dfln(an’ bn)] <2€ ’

for sufficiently large n. q.e.d.

Lemma 5. Let R, be an orbitrary open Riemann surface and f,: Ry—R, be
quasiconformal mappings (n=1, 2, ---) with lim K, =1. Then for any a,, by R,

n

where a,=f.(a,) and b,=f,(b,).

lim dfn(a,, ba)=dE%(a,, by,

Proof. As in the proof of Lemma 3 we have
P, (u)bn)=(du, dh(Ry; ba))r, ,

where u€HD,(R,) and dh(R,; bs) (h(Ry; br)EHD, (R,)) is the I',.-projection of
—*(fa)i(*du(Rn; a@n, ba)). From Theorem 1 and the definition of P, ,

lim (du, dh(Ry; bn))ry=1im Py (u)(0r)=1u(by)

n—+00

=(du, du(R,; a,, bo))Ro .
That is, {h(R,; bs)}T converges to u(R,; ao, by) weakly in HD, (R,). Therefore,

lim dffn(@n, bn)=lm [|[du(R,; an, bn)”Rn

Il

Um [(f)EC*du(Rns an, bu)llr,

>l

n-co

[dh(Ry; bu)llr, =l du(Ro; ao, bo)lr,
=d&(a,, by). q.e.d.

7. Proof of Theorem 5. There exists a Borel set £ on R, with mes E=0
such that H,(a)< K, for all f, and for all ae R,—E, where H,(a) is the circular
dilatation of f, at a (cf. [8]).

At first, we assume that a,, b€ R,—E. Let z,, z, be local parameters of
a,, b, respectively. For any sequences {rj m»}m-1 (=1, 2) of positive numbers
with limr;, ,=0, we set

Mm-oco

d? n=min {|f2(2)]: |z;] =1} n},
and

d} m=max {|fn(z)| : |2z;| =1} m} (=1, 2),

where local parameters of a,, b, are fixed for each n.
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Considering the curve families as in §1-3, we set
F=Fr) mrom » SODV=Tr, prom 00 Ry

%(n! m):%gql'mg’}’mv %(nr m):%g" dr ’

1,m=2,m

and
T(n, m)=Far ,an ., T, m=Far  az on R,.

1,m>2,m

Then obviously
AF(n, m)—AF(n, m) S AL o(F0n))— A fo(F(m)))
SAF(n, m)—AF(n, m)).

From the quasiconformality of f,, there exist constants A7, Am such that K;t
<Ap, AT<K, and 2(fa(§m)=A7AFm)), A foFn))=AFAGF0m)) for m, n=
1,2, ---. Therefore

(18) AF(n, m)—AF(n, m))
< AT A ) = AG )} (AR — A AF ()
A& (n, m)—AF(n, m)).
On the other hand, from Proposition 3 we have

lim {2(%(n, m)—AF(n, m)}

lim {AF(n, m)—AF(n, m)+AF(n, m))

—00

1 = 1
+E log (d%, nd?, m)—A(F(n, m))—g; log (d%, nd%. m)

1 1
“on log (d1. m/d}. m)— o log (d%. m/d%, m)}

=df(an, b= log Hyla)Hulbo),

and
TTm {25 (n, m)— 2§, m)}
=dfr(an, b+ 5 108 Hula)Hu(bo).
Hence from (18) we have
(19) dfn(an, bn)*— % log Ho(ao)H(bo)
< 4,050, b+ cn= And5i(ag, b2,
Sdfr(an, b+ o log Hu(anHalbo),

where A,=lim A}, A,=lim AT, ¢c,=lim (AT —AMAF(n)), and é,=lim (A7 — AR

Mm—>o0 m-—co Mm-sc0
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AFm)). Since lim Hy(ao)=1im Hy(bs)=lim A,=lim A,=1, we have

(20) lim dfr(an, by)*=df(a,, bo)*+lim ¢,
Mn—00 T —co
<dBo(a,, by)?+1im ¢, Zlim d&n(a,, ba)?.
n-—sco n—*00

If iim ¢,>0, then there is a certain constant >0 and a subsequenci {C.,}
n—oo

such that lim ¢, ,>27. Eor sufficiently large n,, cnp—(l/Zn) log Ha(ao)Hn (b)) > 7.
np—wo

It is known (cf. [18]) that |dpo—dp¥ |w—0, |dp,—dp¥llw—0 as W, "R, where

W is a regular subregion of R, and p¥, »% are principal functions on W defined

as in § I-3. Hence we conclude from Proposition 3 that df*(a,, by)= lim d¥%(a,, by).
W/Ry

So, we may take a regular subregion W, such that W, > a,, b, and
dfn(ao, bo)*—n/4=df(a,, bo)*=d™(ao, bo)*.

From the definition of d&, d&»(a,, b,)<d{»?(a,, b,). Hence we have

@ dBnp(@ny, bay)*—An,dfa0, bo)?

S Ao (an,y, b An, A0, b0+ A

Since W, is a compact bordered Riemann surface, we may assume from
Lemma 4 for sufficiently large n,

A5 P (@ny, bay)'— An,dF7ao, b <7p/4.
So, by (21)

22) A5 5(an,, D)= An,df @, b < T (1+A,)

We can easily show that (19) and (22) contradict each other. Therefore,
lim ¢,<0. Then from (20)

N-c0

ﬁ dﬁn(am bn)gdfé}“(ao, bO) .

n-—00

Hence it follows from Lemma 5 that if a,, bye R,—E, (13) is valid.
If a, or b, E, then by using the method of the proof of Theorem 1, we
can conclude that (13) is valid. Hence the proof is complete.

Corollary 3. Let R, and {R,, f.}¥ satisfy the same condition as Theorem 5,
then
lnifll I )EFdun)—*dusllr,=0,

where uy, and u, are u(Ry; ao, by) and w(R; an, by) respectively which are the
same as ones defined in the proof of Lemimna 3.

Proof. We can write

/23\‘ —*(fn)g(*dun):dh(Ro; bn)"i"wn
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(W, €*I0(R,)). Then obviously,
29 [=*(fA(*dun)—duol 2=l dh(Ry; ba)—duol 2+ wa &, -
From Theorem 5 and its proof, we have

Iduoll ry=lim [(f)i(*dun)lr,Zlim [dh(Ro; ba)llry 2l dito] r, -

Hence from (23) we have [lw,|lr,—0 as n—oo. Since {h(R,; b,)}T converges to
u, weakly in HD,(R,), [dh(R,; ba)—duelr,—0 as n—oo. Thus from (24) the
statement follows.
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