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Introduction.

The quasiconformal mapping is an im portant object of the m odern function
theory. Specifically, it is very useful not only for the Teichm illler space theory
but also fo r the  theory of open Riem ann surfaces (cf. [1], [3], [9], [17]).

In  this paper, we shall study the variations of fundamental quantities on an
open Riemann surface as it  varies quasiconform ally. Especially, we shall con-
sider th e  v a ria tio n  o f th e  v a lu e  at each point of the solution of D irichlet pro-
blem (§ II). Further we shall give its variational formula under a  certa in  condi-
tion. It should be remarked that these investigations are applicable to harmonic
functions which have not necessarily finite Dirichlet integral.

In § III, we shall consider th e  squeezing deformation o f  bordered Riemann
surfaces and the variations of harmonic functions.

Finally, in § IV  w e shall s h o w  th e  continuity o f  a  c e r ta in  pseudo-metric
related to harm onic functions w ith finite D irichlet integral (For the  detailed
discussion of this pseudo-metric, see [1 3 ] ) . Then we shall prove that this result
implies th e  continuity of D irichlet integrals of certa in  reproducing kernel func-
tions under quasiconformal deformations.

As for the basic terminologies and notations (e. g. Dirichlet potential, maximal
dilatation, and spaces r, r„ etc.), we follow Ahlfors-Sario [5], Constantinescu-
Cornea [6], Lehto-Virtanen [10], and Sario-Nakai [17].

Finally, th e  author thanks deeply to Professors S. Mori (Kyoto Sangyo Univ.)
and Y. Kusunoki (Kyoto Univ.) for their valuable suggestions and encouragements
during th e  preparation o f this paper.

§ I. Basic definitions a n d  results.

1. Let R o , R I  b e  open Riemann surfaces and f :  R,,—R,, be a quasiconformal
mapping. f  induces a n  isomorphism Pt : F(R i ) —, r (R o ). That is, for a(C)c/C
-Fb(C)dCcr(Ri) f 5 (w) is defined by

f  ( w ) -  Ca (f)f,+b(f)(Aldz+[a(f)f -kb(f)(1)-,--1d2 ,
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w here the mapping f  is written as C = f(z ) in terms of local parameters C and
z  on R 1 and R o respectively, and f ,  f„  (h z , (1 ) a re  distributional derivatives
of f  and f .  We put fli' = P h o f, where P h, is  the orthogonal projection from I"
onto r h . Then we know the following :

Proposition 1 . ( [1 4 ] )  ( i)  For any  (DEF(Ri),

Kr 1"11(011R,511f((0)11R,-5-K.P11(011R„
w here K f  is  the m ax im al dilatation of f  and 11•1!R i (j=0 ,1 ) denote the norms on

(ii) Ph' g iv es an isom orphism  from  rh(R,) onto rn(Ro), and for any oiRErh(Ri)

2. For an arbitrary open Riemann surface R  we denote by R* the Royden's
compactification o f  R  and b y  A (R ) th e harm onic boundary  o f R * .  (For the
Royden's compactification see [6 ]  or [1 7 ] .)  Then

Proposition 2 . ( [1 7 D  Let f :  R 0—>R1 be a quasiconformal mapping, then there
ex ists a homeomorphism f*:  R ''— Rt such that f*=- f  on Ro and  f*(A(Ro))=–A(Ri).
Especially , i f  vo i s  a  Dirichlet potential on R 1, then vo of is also a Dirichlet poten-
tial on R o .

3. Let R  be a Riemann surface which does not belong to class OHD•
2 1, 2 2 E R  w e set

z 2 )  =  s u p
u (zi) — u (z2)I ;  u  

H D (  R ) ,  D R ( u ) > 0 1 ..VDR (u)

I f  RE OH D ,  w e  se t  d7/ (z1 , z 2 )= 0 .  T hen it is know n (e. g. see [ 13]) that 0-
z 2)< co , a/ i s  a  pseudometric on R  and c17/ (• , •) is  a  continuous function

w ith respect to each variable. Furthermore,

Proposition 3. ([13] or [18])

z2)=(27) - Y Du(Po — pi) ,

w here  p o a n d  p i  a r e  harm onic o n  R — {z1 , z,} , p 0 + ( -1 ) i  log 122).5 1 and pi+
( - 1 )i log w I  a re  harm onic at z;  f o r th e  lo c al param eters w ; with w (z 5) =0
(j= 1 , 2), and p i  an d  p i  have respectively  L o behav ior and I (L ) 1 behavior near the
ideal boundary  o f  R.

Next, we note the relation between a/ a n d  th e  reduced extremal distance
on R.

For two distinct points z i , z 2 on R  and for sufficiently small numbers ri, r2
>0, we take the local disks D ,(r ,)= {w ,:iw ,l< r„ } ( j= 1 ,  2 ) .  We denote by
a  curve fam ily consisting o f all curves which connect aD i (r i )  and aD2 (r 2 )  on
R—D 1(r 1)UD 2 (r 2). Then the reduced extremal distance 2(z1, z2)  is defined by the
following :

For
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2(z1 , z2 ) =  lim {;(7.,,,,)+(27r) - ' log (r 1 r 2 )}
(1-1,r2)-.0

w here 2( ri ,7.2)  means the extremal length of r,, r2 .
We define another reduced  extrem a! distance. We consider the family i'fr 1 ,r 2 .

consisting of all curves w hich connect aDi (r i ) and aD2 (r 2 )  o n  P—D2(r1)UD2(r2)
w here R.' is  the  Alexandroff compactification of R .  Just as in the case of 2(z1 , 22)
we define the  reduced extremal distance ;i(z2 , z 2 ) :

z2 ) =  lim  {2( -k ,  r.,H - (271") - 1  log (r 1r 2 )} .
( r i ,  r 2 ) - • 0

Proposition 3 . 0 3 1

z2)2=2(z1, z2)—(z 1, z2) .

Finally, w hen R = D = {1 z i< 1 } , w e note the following:

Proposition 4 .  ([13])

dD(z i , z2) ,

w here  O M  is the hyperbolic (Poincaré) distance on D, and equality  holds i f  and
only i f  z1 =z 2 .

§ II. The variation of Dirichlet solutions.

4. L e t  R n (n=0, 1, 2, b e  open Riem ann surfaces and f n : R o —q2n  b e
quasiconformal m appings w ith  maximal dilatations K„=-K f .—*1 a s  n—>co. For
each uEHD(R 0 ), uoi-

77,1 i s  a Dirichlet function o n  R n ,  th e re fo re  w e  have the
Royden's decomposition on R n :

(1) u of,V=un, - Evo,.

w h e re  un eH D(R n ) and vo ,„  is  a  Dirichlet potential on R n . Then w e define a
mapping Pfn : HD(R o )—>HD(R n )  as Pfn(u)=u„.

Lem m a I. P f n  is linear and isomorphic. Further,

(2) dPf n(u)=(f 77.1)g,(du) . ( u  HD(R0))

Pro o f . Since the  linearity and (2) are seen immediately from the definitions
w e shall show only  tha t P f n  is isomorphic.

For P f n(u)°fn, w e consider the  Royden's decomposition on R 0 :

P ( u ) ° / .. P '  o p f  n(u)+v o ,

where yo, is  a Dirichlet potential on Ro.
Hence by (1)

u  = P f  o P  f  . (u )+ (v 0 + v o ,  f  n) •

Since  vo+vo,°fn  i s  a  D irich le t potential o n  R o f r o m  Proposition 2, w e have
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Pi' V oRfn(u),,n from th e  uniqueness of the Royden's decomposition, that is, Pf
is isomorphic.

Theorem 1 .  Let R n (n=0, 1, 2, •••) be open Riemann surfaces and f :  R0->R
be quasiconformal mappings with K= K 1 - 1  a s  n -o o . Then fo r  any ueHD(R o)
and for any zER 0,

lirn (Pfn(u)).f„(z) -= u(z) .

P ro o f. From Lemma 1 and Proposition 1-(ii)

lim DR (Pf n(u))= --- Dn o (u ).

O n the  other hand,

DRn ( u . II( f u)11%.= II d DRo(u) .
—, 00

Therefore, in  the  decomposition (1)

Um D E ,(V o  0 = 1 in ' ID R , (U 'l DRn(Pf n (U ))} = 0  •
- n-•00 -

It follows that from Proposition 1-( i)

lim DRo (vo..°f .)=Iim Ilfg(dno,n)5 0 = 0 .

That is ,  {v0,...f. } 7 is  a  sequence of D irichlet potentials on R o with Dirichlet
norms converging to z e r o .  Hence from [6] H ilfssatz 7. 8, there exists a B orel
s e t  E „  such that E „ is  polar on R o and lim  v o , . . . f n ( a ) = 0  f o r  each a E Ro - E ..

n—.co

Thus our conclusion is valid o n  Ro- E,,.
I f  aEE n , we can take a  p o in t a,ER 0 - E n  f o r  each s > 0  such that a, is in

a  lo c a l  d isk  D (a ) a b o u t a, C1D ( a ) (a  a ,)< 6  a n d  dfn ( I ) ( a ) )  ( fn ( a), fn (a .))<  6  for

sufficiently la rge  n  (cf. [10] Chapter II).
Then from Proposition 4 and the definition o f a n

(3) u (a )-u (as)1 : DRo(u)" ,

(4) l(P fn (u ))°.f.(a )-(P fn (u )).f.(aJi - DR (P f n (U )) 112

—  / n

< z
 K v2D  R 0 (0112

—  /
We can take sufficiently large n such that

(5) u(a,)-(Pf n(u)). f n (a s)I <

because a,E R 0 - E„.
Hence from (3), (4), and (5), we have

u(a) - (P f n(u))°fn(a)1 n(a )-u (as)1± 1u(aJ - (P f  n(u))0f.(aM

+1(Pf n(u))..f.(a,,) - (P f  n(u)). fn(a)I
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11 D
°

R  (u)" 2 + K7Y2DRo(u)112+1),

and the proof is complete.

Rem ark. W e can show th a t Pfn(u) is  the Dirichlet solution on R;', with the
boundary value uo(f;t) - '  on ,A(Rn )  (cf. [6 ]  Satz 7. 6 and H ilfssatz 8 . 2). Hence
T heorem  1  im plies th e  continuity  of the D irichlet solutions on the Royden's
compactifications under the quasiconformal deformation.

Corollary 1. Let R ., f .  (n=-0, 1, 2, •••) be the same as ones in  Theorem 1.
Then fo r  any bounded continuous function g on R '— R 0 and for any  aER o,

lim H R
g ": ( f .n ) -1(f n (a))=-  HP(a) ,

where H r  is the one defined in  [6 ]  p. 86.

Pro o f . For an y  s >0 there  exists a  continuous function g ,  o n  A(R o)  such
that m ax { g(z)— g (z)I : z E A(R0)} < E and H T °  H B D (R 0 ) . F ro m  the maximal
principle,

sup { I H R
g l' ( p n ) -1(f.(a))— H .  (pn )-1(f ,,(a)) I: a E < s ,

sup II H R
g °(a)— H R, 12(a)1: a E <s .

Hence for each aŒR 0 and  fo r each s >0, w e have

j - Rg ;°' ( f ; )  _1(f 7,(a))— HR
g

.°(a)1

• {I H Rg ik rn ) - i( f n(a)) - 1-11; ;:,,(f;,)-1(f n(a))In--
+  H Rg le,. f .n) f  n ( a ) ) _ _ _  H Rg :0 ( 0 1  +  l eg *:  ( a ) . _  H T° ( 0 1 }

• . q. e. d.

If S n (n =0, 1, are compact bordered Riemann surfaces, th e n  Kn -quasicon-
formal mapping f n : S 0 -6 7 , c a n  b e  e x te n d e d  to  a  homeomorphism o f  sovaso
into S n v aS n . W e denote it by f .  again.

Corollary 2. Let S n , f n (n=0,1 , •••) be ones as above with lim  K n = 1 .  Then
fo r any bounded continuous function g on aso,

lim f - -1( f „(a))=IIP(a) , fo r  an y  a e So .n

I f  k  is bounded and upper semi-continuous on aso,
Um go., 7i

Pro o f . If g is a boundary value of some HD-function on S o , =Pf n(HP)
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from Bemerkung o f Satz 7. 6 and  Hilfssatz 8. 2[6]. Therefore t h e  first state-
ment is shown by th e  same proof a s  that o f Corollary 1.

A s fo r  g', we can prove easily th e  statement by considering the  decreasing
sequence o f continuous functions converging to k. q. e. d.

From a n  example such a s  in  [4], we know that the  B ore l se t on  as, with
harm onic m easure zero is not always preserved by a  quasiconformal mapping.
Therefore, a resolutive function on aso is not always preserved by a  quasicon-
formal mapping. That is , there exist compact bordered Riemann surfaces So , s,
a n d  a  quasiconformal mapping f : S o —>Si , a n d  a  resolutive function g  on aso
such that gof - 1  is  n o t a  resolutive function on  as,. So, in  order that th e  re-
solutiveness is preserved we have to assum e a certain condition about { f.}

To this end we shall recall here some results ab o u t fuchian groups and
Poincaré series.

L et S o be a com pact bordered Riemann surface and G  be a  fuchsian group
acting  on  the  upper half plane U  such that S o = U IG . Then for a function F on
U  we consider the Poincaré series o f F:

e(F, G )(z)= ; G F(Az)A'(z) (z c U ).

Proposition 4 . ( [8 ] )  Let F  be a rational function w ith no poles on the set
o f  lim it points of G . T hen  the Poincaré series e(F, G )(z) converges uniformly
on every compact subset on ( s 0 v a 0 )— e q u iva len t points of poles of F , where S o is
a (certain) fundamental region of G on U.

L et B i (G ) be the set of Beltram i coefficient p  compatible with G  (cf, [2],
[16]) a n d  11p11-<1. F o r each p L 3 ,(G ) there is a  quasiconformal automorphism
fP  o f U  which fixes 0, 1, and  00, and satisfies ( f P ) z = p ( z ) ( P ) z  a. e.. T h e  group
G P = IP .G .(fP ) - 1 - is also a  fuchsian group.

L et W be a  relatively compact open subset in  S,. W e assum e that I f n l
satisfy th e  following condition (A) for W.

(A )  There ex ist vi , , v n ,  in B i (G ) such that
(i) vi  is infinitely  dif ferentiable in the real sense for i=1, •-• , m.
(ii) 7({support of v 1})C147 for i=1, ••• , in, where 7  is the natural pro-

jection from  U  onto UIG-=- So .
(iii) For p n , the complex dilatation of the lift of f n , there are uniquely

determined real numbers cei,n, ••• , cïn,,n such that p n = - i4  a,,„v,, and
1/2

a '  = --4) as n—>00.
j= 1

L et g  be a  real valued resolutive function on aso, and V be a neighbourhood
o f aso in  so such that Vn WV=0. If the  cond ition  (A ) f o r  W  is satisfied for
f m :  (n=1 , 2, • -•), then it is easy to show  that gofT,' is a  resolutive func-
tion on as. S e t  it =- I-110, u n =H f T, 1, a n d  E n clC-=112(du+i*du)-112(d(un.f.)

-1-i*d(unofn)), where the local parameter is obtained by projecting the coordinate
function o f U.
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Lemma 2. Suppose that IS.1̀ 6' and If.17 are satisfying the condition (A ) for
W(CS 0). Then there exists a constant M>0 not depending on g and n such that

(6) lEnh.MIla(n)MasolglIdzI o n  ciL=r - i(V )(1S o .

Proof. (cf. [ 1 6 1  From the theory of the Dirichlet problem we have
5 2

—
2  

(du+i*du )=—
i

g (z ) Go(z C)dz)dC,Ir as, azaC
5 2

—
2  

(du n d-i*du,i ) =—
i

g'fV(zn) aznaCn G n(Zn y COCl2 n )dC n7r asi i

where G0(•, C) and G n ( '  CO are the Green's functions of So and S n with poles
at and respectively.

On the other hand, by a simple calculation we have
5 2

e(K, G)(z)dzdC= Go(z, C)dzdC
azaC

1where K c (z)=K(z, C)=---f (z—C) - 2 .

Therefore, for CE V,

—
2  

(d(u n of„)±i*d(u 7,.f . ))

—
i

g(z)0(K f  n c:), G n )(f n(z))df n(z))df n(C)
7C \ JO S °

where Gn-=GPn.
A direct computation (cf. [16]-(9)) gives

e (K f n <c), Gn )(f n(z))df.(z)=e(Kc G)(z)(dz+ pe n dz),

where K c,n (z )=K (fn (z ))(fn )z (z ). Since [i n -- 0  on cV,

E n d g(z)e(Kc,n—K, G)(z)dz)dC,
7C a E o

where Ifc,n (z)=Kc, (z)( f ) ) .
Generally, when we se t  K e '(z )=  K (f"(z ), f" (C ))(f" ),(z )(f" )(C ) fo r vE131 (G)

and 04, z, 0 = 9 ( K e ,  G )(z) (-1 - t_1 ), it is known that 0(t, z, C) is differentiable
about t  and

a
(7) we(t, z, C)It=o= —7j e 0 0(K„ G)(w )e(K c , G)(w)).)(w)dwdiT

(cf. [16] Proposition 7.).
Further, we may show that 0(t, z, C)-0(0, z, C) is analytic for (z, C)EcT)xcV.

Hence when we set
aO(t, z, c)—eco, z, 0 =t •   at (t, z, C)1 t =1 +e(t, z, C),

le(t, z, fo r  a  certain constant ./C60 and for any (t, z, C)E[-1,1]X
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17 X N . H e n c e  w e  have

I En(C) I .faso g ( z )  & (K — K , c)(z)1 I dzI

< (ia + s u p  ,
a
3 t  e(t, z , C)I t-o )1 I g(z ) I Idz H— aeo

q. e. d.

Theorem 2 .  L et S n (n =0 , 1, 2, ••.) be compact bordered R iem ann surfaces.
Suppose that K n -quasiconformal mappings f n : S o —>Sn  satisfy the condition (A) f or
some W(CS0)•

T hen, f or any aE S o  an d  f o r any resolutive function g  on aso,
lim f  - 1( f n (a))=1P0(a) .n

P ro o f. W e m ay assume th a t  g  is  r e a l  v a lu e d . F r o m  condition (A) and
Lemma 2, w e have

lirn Dv(u—unof„)=0,
n

w here V  is  the same one as in Lemma 2, u =H P  and un --InTolf77 , 1

Since u— u n . f n  is  harm onic  on V  and vanishes identically  o n  avnaso, it
can be extended a s  a  harmonic function to 12, the double of V  w ith  respect to
aV naS o . Hence (u—unofn)—>0 as n—>00 uniformly on every compact subset on 12.

To prove this theorem  on S o —V, we consider a  (relatively compact) regular
subregion W ' on So s u c h  th a t  W c W ' and aW 'CV .

From  the above argument, for any  r >0  and  for sufficiently large number n,

luoftV — u„l<  6 o n  a(fn(v')).
Hence, I H.''' . noT7

77,7 — Ig7,1(1"  <  s  on fn (W ').
On the other hand, from Corollary 1 w e have

1Hr (a)—  H furò'.;vT:1(f  n(a))I<s

for sufficiently large n  and for an y  a EW'.
Noting In 0 =-H r on W ' and H g

s 'o f v =1/ite ' ' )  on f n (W /), w e can prove our
conclusion from the  above inequalities.

Theorem 3. Let u be in B i (G) whose support is contained in 7r - i(W )  where
W  is  a  relatively compact open subset on So such that S o — W  is connected. For
t  ( - 1 - _t_.1) we denote by f t ,  the quasiconform al mapping from S o o n to  S t,=
U lf " .G .( f " ) - '  such that 7rof t ,= f " .7 .

Then f o r any aG S 0 — W  and any .resolutive function g,

a s 2
T -Ilg t:f T 'l( f 0 (a))1 `=°=--  

R e g ( z ) 0 a  F ( ( ,  z ) c l ) d z  ,

7r a so ao

where F(C, z) -l u K(w, C)9(K,, G)(w)v(w)dwdO, a 0 EaS 0 a n d  a n  integral path
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from a o to  a is taken in  So —W.

P ro o f. Set u =In ° , a n d  u „ = Since u , ut ,, are  real valued and
lirn (u(z)—u 2 „(N z)))=0 ,

SoDZ-.a0

ut,(f t ,(a))—u(a)=- Re a  {d(ut:. f d(u t,'N — (du+i* du)} ,a.
Hence from (7) and the definition of E ., we can easily show the statement.

§ III. The squeezing deformation and the Dirichlet problem.

5. Let S be a  bordered Riemann surface with nodes. We denote by N(S)
the set of nodes of S and S—N(S) by S', and a component of S' is called a part
of S .  In this section we assume that S has at most finite number of parts and
each part is  a compact bordered or compact Riemann surface with finite num-
ber of punctures. The one is called a  bordered part and the other is called a
non-bordered part.

A  deformation <S1, S27 f> of marked bordered Riemann surfaces S i  a n d  Si
(cf. [1], [131  is a  continuous surjection f  from s,vasi to  s2ua,s2, which pre-
serves the marking, such that

( i ) f 1 is i s  a homeomorphism into S i , where f - '1,q  i s  the restriction of
f - 1  on

( ii)  fl a s i  is  a homeomorphism onto as„ and
(iii) for every P EM S.), th e  s e t  o f  f (p )  is either a  node of Si  or a simple

closed curve on Si .
A  deformation <S 1 , 5 2, f> of marked bordered surfaces Si  and S, with nodes

is called factored throngh S if there exist deformations <S1 , S, f i > and < S , S 2 , f2 >

such that f = f 2 . f 1.
Let a bordered Riemann surface S, with nodes be given, and a neighbourhood

K  of the nodes of So and a positive constant e be arbitrarily fixed, then a K, E—

conformal fundamental neighbourhood N K ,e  O f  S o  is defined by the set of S, a
bordered Riemann surface with nodes such that there exists a  deformation
<S, So, f > and fe i  c s .- x )  i s  a (1+s)-quasiconformal mapping into S .  Taking
{NK ,, : K is a neighbourhood of N(S 0 ) a n d  > 0 }  a s  a  fundamental neighbourhood
system  at So , we can define the convergence of { S } ,  a  sequence of bordered
Riemann surfaces with nodes, to So , and then we call it the convergence in the
conformal topology.

Let S "(i=1, , k) be bordered parts of S ., and g  be a  bounded continuous
function on aso.  Then we define HP, a Dirichlet solution with boundary value
g , as follows :

In0=H:Va's00 o n  S 2 0 (i=1 , ••• , k)

on S — U S °,i=i
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w here  S " is  a compact bordered Riemann surface filled in  the  punctures.

Theorem 4 .  L et g  be a bounded continuous function on  aso.  Suppose that
{Sn } 7 converges to S o in  th e  conformal topology, and f n : S . - 6 0 (n=1, 2, • •-) are
mappings corresponding to the convergence as above. Then f o r  a n y  a S " ( i=
1, ••• k )

(8) lim H'L'i n (fV (a))= 14 0 (a).

Pro o f . Set M=max g I . For given  )7> 0, w e  c a n  ta k e  a  neighbourhood
K n o f  N(S 0)  sufficiently small such that

(9) 0 < x o(a)<721M,

w h e re  x o i s  th e  harmonic measure of S"naK v w ith  respect to  S " — K . Set
g i n=f ,V (S") and denote by x „ the harmonic measure of S0nnf,-,1(aKv ) w ith re-
s p e c t  to  gin—f,V(K n ). Since f n are  (1 + E ) -quasiconformal mappings on
f 1 (K )  and fim sn =0, w e have from Corollary 2

(10) I x 0(a)— x n ( f  . 1(a))I < 72 for sufficiently large n.

Let vo b e  a Dirichlet solution on S 10 — K , w hose boundary  value i s  g  on
aS'° and zero on sionax- 72 .  and v. is harm onic on g'n— fV (K n )  whose boundary
value is  g .f n o n  fv(as") and zero on f 1(aK n )n . -5' 3 . T hen from  the maximum
principle,

I 14 0 (a)—v o(a)1 Mx 0(a),
(11)

1 I In?, .rn ( f V(a)) — v n(f V(a))I -.-M x .(fV (a))

By using Corollary 2 again, w e have

(12) vo(a)—vn(fV(a))I <77 for sufficiently large n.

Thus from  (9)-(12), we conclude

HP(a)— HP.V.(f ,V(a))I I  H p ( a ) — v  o(a)I

- Fivo(a) — vn(fV(a))1+1v.(fTi l (a)) - 11Pc:f„(fna))1

<272+-Mx.(fTi 1(a))-2)7+M(7)±x0(a))

<(3+M)7) ,

for sufficiently large n .  This implies (8). q. e. d.

If  aE S 0 i s  in  a  non-bordered part of So,  (8) is  no t true. Furtherm ore, we
c a n  g iv e  an  exam ple such that aE S o i s  in  non-bordered part of S o and  f 1(a)
is  in bordered part of S n f o r  each n( >0) but lim H V n (fV (a)) does not exist.

In fact, let So =  {wi : 0< wil< 1 } U {tv2: 0‹ w2I < 0 0} {w 3  : l<  I w3 l< 00} be
a  bordered Riemann surface w ith  n o d e s  {w 1 =0= w 2}  and  {71;2 = 00= w3}. We
tak e  Sn =  {z  I <  z < 811'}, and define f .: S n --*So a s  follows ;
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fn I : I Z  <1±2n1 --> {0< I w i  I <1},

f  n I1 + 2 n < lz1 < n (5 + 7 n ) /  2  :  11±2n <14 <n(5+7n)/21 —>10.< I w2I < 0 0 1 ,

fn I n ( 5 + 7 0 / 2 < l z i < 8 n 3 :  {n(5+7n)/2<  I z  < 8 0  - - >  I l<  I col ,

and

f n(Il z I =1+2711)= 1w i=0= w 21 , f n({lz I = n(5+7 n)/2})= 1w2=œ=w31

and the resticted maps are all surjective. Furthermore, f , I1< lz1< n  and f  In . 7 7 0 < I Z I < 8 7 1
3

are 1/z onto {w1 : rt - ' <  I w11 <1 } an d  8 n 3 / z  onto {w3 : 1< 1w3  <(8/7)n} respec
tive ly . When n=2m(m=1, 2,

-
3 1 2 Z  onto {w2 : 3n - 1 /2 < I w2I <f  I3 n < z < 2 n 2 (.• n l l 4= n-

(z)=71 - 4 1 3 z  onto {w2 : 3n" 3 < I w2I27231 1 .  When n = 2 m + 1 (m = 1 , 2 , )  f  I 2.<121<2n2•-•,, n. 
<2n 2 1 0 }. Then we can easily verify that {SOT converges to  So i n  t h e  con-
formal topology.

We take a  continuous function g  on aso such that g = 0  on {w 1 : I wi I =1}
and =1 on {w 3 : w a I = 1}  and a point a corresponding to w2 = 1 .  Then

1 ,,(f ,V(a))=(log u)(2 log 2n) - ' ; n =2m

1„(f 1(a))--(4 log n)(9 log 2n) - 1 ; n=2m-F1 .

Thus, a  desired example is obtained.

§ IV . The continuity o f 0 .

6. The aim of this section is to show the following theorem.

Theorem 5. Let R o be an arbitrary open Riemann surface and f n : R 0—R,,
be quasiconformal mappings (n=1, 2, •-•) such that lim  K,,=1. Then fo r  any ao,

n - , Do

boER0,

(13) lim d7p(an, bn)=d7 0 (a0, b 0 ) ,

where a n — f .(ao) and bn— f n (b o )•

To prove this theorem we need some lemmas.

Lemma 3. Let Sn (n-=0, 1, 2, ••.) be compact bordered Riemann surfaces and
W be a relatively compact open set on So such that So —W is connected. Suppose
that quasiconformal mappings f n : So—>S. (n=1, 2, satisfy the condition (A)
fo r  W .  Then fo r  any ao , boESo—W, (13) is valid.

P ro o f. In general, we consider a Hilbert space

HD n (R)-= lu E  HD(R): u(a)=- 01

for a  fixed point a E R . We denote by u(R; a, b) the reproducing kernel func-
tion in  HD a (R ) such that for any uEHD a (R)

(du, du(R; a, b))R=u(b).
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Then we can easily show that c171 (a b)=Ildu(R ; a ,  b)11R•
And we define a  mapping P 1 : a0(S0)— >HD a n (S . )  a s  Pf n (u)=Pfn(u)—

P i n(u)(a n ) for each  n. Then as Lemma 1 it is shown that Pf n  is linear and
isomrphic, furthermore, dP f n (u )= (f r

-,1 ) (du).
From Lemma 2 and Schwarz's inequality, we have

Ildu — d(Pi n (u).f 7)1113

where V is a  connected neighbourhood of aso in  So —W, and M n >0 (n=1, 2, --.)
are constants with lim M=O.

7i - 0 0

Since we know that there exists a constant >0 such that .u l ' I d z  1aso

du I% (cf. [11]), IId u — d(Pi n (n).fn) OM.11 d u l l ° . Hence we have

(14) I u(b0) — P f n (u)(b.)1 2 =1u(b0) — P f (u)..f n(bo) 12

b0)211 d u—  d(P f n (u).. f n)11i3

M n a i (a o , bo) 2 lidulli o •

On the other hand, for any oh, oherh(Sn) from [12] Lemma 3,

(* (f.)(oi), (fn),I( * (02))s,=((01, (V2)sn

Thus we have

P f  n (u)(b n )=-(dP du(Sn; a n , b12))5 n

=((fV)g(du), du(S n ; a n , bn )) s .

-=(du, —*(f n )g(*du(S n ; a n , bn ))) s o

Hence if we denote by dh(S 0 ; bn)(h(So; b n ) EHD n 0 (S 0 ) )  the [ 'h e -projectionlof
— *(f n )g(*du(So; a n , bn )),

u(bo )—P f n (u)(b n ) -=(du, du(S o ; a o , b0) —dh(So; b.))5 0 •

Hence from (14) we have

(15) lim  du(S o ; a o , b 0)—dh(So; bO1150 =0
n

On the other hand, since P i n  is  ismorphic, there is vnEHD a 0 (S0)
Pf n (vn )=u(S n ; an , bn ). Then

Ildh(So; b.)1150 =suP HPf n (n)(b01/11dullso : u HDn o (S0)}

a: IP f n (v n)(b n) I/Il dv s 0

i(dP f n (v„), du(S n ; bn))5nilltdvds,

-=lidu(Sn; a r„ bn)ils n IldP f n (vn)IIsn lildvnlis o •

Since IldPf n (vn)IIsn illdvnils0
- 4  a s  n , 0 0 ,  from (15) we have

(16) du(So ; a o , b011so =limIldh(So; b011s o

such that
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Ïiiii lidu(S n ; a . ,  b.)118. •

But from the definition of h(So ; b .)  and Proposition 1,

(17) lim Ildh(S o ; b.)1130 .1irn 11(f0)g(*du(Sn; a., b0)11s0

-=lim Ildu(S.; a . ,  b.)ils. •

Thus from (16) and (17) we conclude that

Um a i n(an, b0)=-1im Ildu(Sn ; a7„ b011sn

= - Iidu(So; ao, bo)11s 0 =ain(ao, bo) • q. e. d.

Lemma 4. Let S 0 (n=0, 1, 2, ---)be compact bordered Riemann surfaces and

So —>S. be K.-quasiconformal m appings w ith lim K 0 = -1 . Then (13) is valid for
n - , o3

any  (20, boESo•

P ro o f .  At first, we assume that S o is conformal equivalent to neither an
annulus or the unit disk. Then we can consider T"(S 0), the reduced Teichmiiller
space of S o a s  follows.

Consider all pairs (S , f ) where S  is  a compact bordered Riemann surface
and f  is  a  quasiconformal mapping from S o onto S .  W e call (S , f ) and (S ', f')
equiv alent i f  f  o f '  is  homotopic to a  conformal mapping of S  on S ' .  The re-
duced Teichmtiller space T (S 0)  is  the set of eqivalent classes.

It is known (cf. [1 6 ] Proposition 6) that for sufficiently large n ,  there are
compact bordered Riemann surfaces S .  and K 0 -quasiconformal mappings such
th at {(S., f n . ) )  satisfies the condition (A) for a regular subregion W  a s  Lemma
3 and (S ., f . )  is equivalent to (S ., f . )  in V(S0).

Hence there exist conformal mappings O.: such that O n  is homotopic
to f .o fV  for sufficiently la rge  n. T hus F 0 =fV095 0 . f 0 : S o —*So a r e  quasicon-
formal mappings homotopic to  th e identity and KF 0

- 1  as n—+00 .  Therefore
{Fn } converges to the identity uniformly on every compact subset on So.

When S o i s  an annulus or the unit disk, we can take a conformal mappings
: S.-->S . and  quasiconform al mappings So—>S, (n= 1 , 2 , •••) such that

{fm}  satisfies the condition (A) for a regular subregion W  w ith  W13 ao , bo and
F 0 = f 1 0 0 e f 0  S0—>S0 converges to  th e identity uniform ly on every  compact
subset on S o a s  n-K>9.

Any way, w e take quasiconformal mappings {F0 } a s  above.
For any r > 0 , by using Proposition 4  as the proof of Theorem 1 , w e  have

for sufficiently large n

IdiP(ao, bo)—cl 0 (F0(a0), F.(bo))I<E

Gqin ( f  rt(a f0(b0)) — d.-Ln(0..f0(a0), 95.-fn(a0))1 <s,

where S n = S n  i f  S o i s  an annulus or the unit disk.
From Lemma 3, we have
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b0)— *(fn(a0), fn(b0))1 <6

for sufficiently la rg e  n . Since 0 7,  is conformal,

qt(çbn.f.(a0), q5...1`n(bo))=Oin(an, b n ) .

Therefore, we conclude

e ( a o ,  b0)— dn(an, b n )I <2e

for sufficiently large n. q. e. d.

Lemma 5 .  Let R o  be an orbit  rary  open R iem ann surface and f n : R 0 –>R,, be
quasiconformal mappings (n=1 , 2, ••.) w ith lim K f  = 1 .  Then fo r  any  a o , b 0  RO

71-.Co

Urn (171.(an, bn) clii°(ao, b 0),

where a , ,=- f ( a 0)  and bn=fn(bo).

Pro o f . A s in the proof of Lemma 3 we have

P f n
(u)(bn)=(du, dh(R o ; 6 0)80 ,

where uEHD a 0 (R 0 )  and dh(R o ; b n ) (h(R 0 ; b n )EHI)„ 0(R 0)) is the Th e -projection of
— * ( f 7 ) ( * dn(R n; an, bn )). From Theorem 1 and the definition of P f ,

lim (du, dh(R o ; bn))uo = P f  7,(u)(b.)= n(bo)
- . . " 0

=(du, du(R o ; ao, bo) ) uo

That is, {h(Ro ; b.)}7 converges to u(R 0 ; a0, b o ) weakly in HD a o (R 0). Therefore,

lim bn)=-1im Ildu(Rn; an, b71)11Rn
Tk- 6 . 0 7 L - K o

=lim (*du(R n; a n , bn))11R071-.00

iIrn dh(R 0 ; bn)I180 >=Ildu(R 0 ; a0, b0)1180

=d 0 (a o , bo ). q. e. d.

7. Proof  of  Theorem  5. There exists a Borel set E  on R o  with mes E-=0
such that f i n (a) Kn for all f n  and for a ll a E  R o — E, where H n (a)  is  the circular
dilatation of f n  a t  a (cf. [81).

A t first, we assume that a o , b0 ER 0 — E . Let z i , z 2 b e  local parameters of
a o , b o respective ly . F o r  any sequences {r,,,„}7,1_, (j=1, 2) of positive numbers
with lim r,,„,=0, we set

dll,„,= min {if„(z i )1:Iz i l= r i ,,,} ,
and 

d7,.= max {1 f  n (z ; )I : I z i l =r i , (j=1, 2) ,

where local parameters o f a n , bn  a re  fixed for each n.
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Considering the  curve families a s  in  § I-3, we set

(m)= - r1 m r 2 . n i o n  1?,

(n, m )= - ,
and

o n  R.,

Then obviously

2 ( ( n ,  m ))—  2((n , in)) 2( f  .((m ))) —  2(f ,i( (m)))

710)— 2( - - (n, in)) .

From th e  quasiconformality of f ,„ there exist constants A , s u c h  t h a t  KT,'
AZ, AT, a n d  2(f n ((nz ))=A 2((in )), 2 (f  ( (m )))= 2 ( - (7n )) f o r  m, n=

1, 2, ••• . Therefore

(18) 2 ( ( n ,  m ) ) - 2 ( ( n ,  in))

A77 {2 ((m )) - 2( -a(m))1 + (A  — AT) 2( - (771))

• in ) ) - 2 ( ( n ,  in)) .

O n the other hand, from Proposition 3 w e have

lim {2(a'(n, in))-2((n, in))}

=lim  {2((n , m ))-2( -q'(n, m ))+-2((n , in))
nt-.00

1 
log (d7, 7„d 7L . ) - 2 ( (n ,  in))— —

1

log ((I; 77,d7
2i27r 27r ' '

1 1— log (d?, m /d7
'

,,) — — log (d1
2
1 ,,,/d1

2', 70127r 2 7 r

1 
=d fi n(a n , b n )2l o g  lin(a0)1/n(b0),27r_

and
lim  {2((n, m ))-2( - (n, 7n))/

1
=ds5n(an, 1)0 2 + 

2

-7 r  log 117,(a o )Hgb o ).

Hence from (18) w e have

(19) dfin(a
1

, 0 2 — log 1-1(a0)Hn(b0)27r

▪ And°(ao, bo) 2 - 1- en. -71ndl
i

0 (no, b0)2 +en

n ,  60 2 + -2
1t r  log Hn(ao)Hn(bo),

where A n =lim
 A g i

, A n =lim A ,  c n =lim — :11'41 )2((in)), and  Jn =lim (AT—An
- 771 -00.
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2 ( ( m ) ) .  Since lim 11„(a 0)=1im 11.(b 0)=-1im A„.= An=1, w e have

(20) lirn O n (a., bn)2 -<01° (a0, b0)2-Flim

b0)2±lim dik(an, b.) 2

I f  lim J„>0, then there is a certain  constant )2 0  a n d  a  subsequenci
n—os

{ j . ,}
such that lim >2)2. Eor sufficiently large 71,, c„9 — (1/27) log H ( a 0)H ( b 0)>i7.np .00 P
It is known (cf. [181) that II dP0— dPfilffr - 4 0, IldP1— dA 4 - ->0 a s  1717 / R o ,  where
W is  a  regular subregion o f  R o  a n d  yo''' , e  are principal functions on W defined
a s  i n  1-3. Hence we conclude from Proposition 3 that dfi °(ao, 1)0= lim  d a

H
T (a 0, bo).Trw o

So, we m ay take a  regular subregion W,7 such that W,i Bao, bo ,  and

diuP2(a0 , b o )2- 7 ) 1 4 5 n 0(a o , b 0)2 _ciliP2(a 0 , b 0) 2 .

From th e  definition o f dZ, dik(an, b .) - d -fil`w '2) (a .,  b.). Hence we have

(21) q inp (anp , bn p )2-71.,W IP(ao, b0) 2

<cifi np ( w o(a„ p , b„,) 2— A . p d 0(ao, b0)2 d- 2z2

Since W,7 i s  a com pact bordered R iem ann surface, w e  m a y  assum e from
Lemma 4 fo r sufficiently la rge  n ,

d i
rinp ( w v) (an D , b. p )2 -7 1 . p av(ao, b0) 2 <72/ 4 .

So, by (21)

(22) f f inp(a„p, b. p )2 —j4. 2,0,0(a o , b0)2 < / (1 + -And

W e can easily show  that (19) a n d  (22) contradict each other. Therefore,
lim Then from (20)

Ïii 0(a,,,
7Z.

Hence it follows from Lemma 5 that i f  a o , b0ER0— E, (13) is  valid.
I f  a o  o r  NEE, then by using th e  method o f th e  proof o f  Theorem 1, we

can conclude that (13) is  v a lid . Hence th e  proof is complete.

Corollary 3. L e t R , and {R,,, f }  satisfy the same condition as Theorem 5,
then

lim 11(f„) 47(*d u „)—*d uo  R o =--0
71,

where u o an d  u . are  u (R o ; (20, bo )  an d  u (R ; a„, b „)  respectively which are  th e
same as ones defined in  the  proof o f  Lemma 3.

P ro o f. We can write

(23) —*(f n)g(*du„)-=d1i(Ro;
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((On  E . rh o ( R o » .  Then obviously,

(24) II—*(f 0( * du 0— duo II o = Ildh(Ro ; bn) — du0lli?0 +11(0.11A0 -

From Theorem 5 and its proof, w e have

duollR0=!,in2 (f.)g ( * d u )llEoi l d h ( R o  ; duoilRo •

Hence from (23) w e have 11(0. -->0 as n-->co. Since {h(R o ; b . ) } 7  converges to
uo  w e a k ly  in  HD„ o (Ro), dh(Ro; b.) — duorR0

- 30 a s  n--400. T hus from  (24) the
statement follows.
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