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1. Introduction.

In the field of population dynamics, since Fisher’s model had been presented,
there have been extensive studies of reaction-diffusion equations of the form

o

5 =Dda+ @), (1.1)

where it and f are n dimensional vectors and D is an nXn constant matrix. It
is widely known that (1.1) exhibits a variety of interesting phenomena, in spite
of its simplicity. One of them is the appearance of traveling wave fronts. This
type of solution is represented by the form

Uz)=ua(x—ct),

where ¢ is a velocity vector. This function U necessarily satisfies the follow-
ing system of ordinary differential equations

DU"+cU'+f(U)=0, (1.2)

subject to appropriate boundary conditions imposed at z=4oo, where '=d/dz.
When n=1, the existence of U(z, ¢) and its stability were almost completely
discussed by many authors. For n=2~4, there are some results on biological
models such as Nagumo’s equation, Hodgikin-Huxley’s equation, and Field-Noyes’s
equation (see, for instance, [1, 5, 12]). However, there has not been as yet any
powerful general theory for any n, except topological methods developed by
Conley [3].

In the framework of (1.1), we discuss here a model of two competing and
diffusing species described by

% —d,—g}%— =folu, v)u

ov o ' 49
W—deZgo(u, Vv

where u and v are the population densities of the two species. It is assumed
from the competitive interaction that f, and g, satisfy
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160, 0)>0, g0, 0)>0, %<0 and 08 <0.
v ou
Under further additional conditions on f, and g, Tang and Fife [16] proved
the existence of solutions (U(z), V(2)) of (1.3) joining the stable rest state
(u*, v*) (>0) satisfying fo(u*, v*)=go(u*, v*)=0 at z=-+oco with the unstable one
(0, 0) at z=—o0, and Gardner [10], Conley and Gardner [4] have recently found
a traveling wave solutions joining two stable rest states (u,, 0) and (0, v,)
where u, and v, satisfy fo(u,, 0)=g0(0, v,)=0. The latter solution is of interest
from an ecological point of view. Suppose that (U(z), V(z)) satisfy

U(+oo):u0: V(+OO):0,

(1.4)
U(—o0)=0, V(—o0)=v,.

This specifies the habitats of two species at infinity z—4-oco. If ¢ >0 (resp. <0),
both diffusing and competing species move in the right (resp. left) direction and
then one of the species, [v] (resp. [u]) is dominant asymptotically and if ¢=0,
they coexist. Thus, it is of ecological importance to know the sign of c.

In this paper we restrict the nonlinearities (f,, go) to

_ o o klv
Solu, v)=a,—bu [teu
, (L.5)
(u, v)=a,—b v——Ak—zu
golu, 2 2 14ew

where a;, b;, k; and e; (=1, 2) are all positive constants, and seek the sign of
the velocity ¢ of traveling wave solutions. In the absence of ¢; (=1, 2), f, and
go are the classical competitive interaction term proposed by Volterra. The
presence of e; states that the intracompetition rate of each species decreases as
the population number increases. If e;=-oo, (1.3) with (1.5) is formally reduced
to Fisher’s equation of the form

w,=dw..+(a—bw)w (1.6)

with positive constants e and b. Then in this case, it is well known that u
(resp. v) moves in the right (resp. left) direction with any fixed velocity
¢>2+/da; (resp. <—2+/d,a,) under the conditions (1.4). This situation also
occurs in the case where v=0 (resp. u=0), i.e., only one species exists in the
entire line. Murray [15], Gibbs [11] and Troy [17] discussed the system similar
to (1.5) with a,=b,—e,—=e,=0 derived from the Belousov-Zhabotinskii reaction
and showed traveling wave solutions with some velocity ¢>0.
To make the discussion simple only, let us consider here a simplified model
of (1.5)
ou 0%u

0 . kv
ot

14+eu

=(a—bu— )uEf(u, v)

¢ ox
v o%

S Bt =(a—bv—ku=g(u, v).

(L7)
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Unfortunately we must make the following assumption
(A1) 0=e%<1,

though this restriction was not needed in [4], to reduce the difficulty of the
problem so that the singular perturbation technique developed by Fife [8] can
be applied to (1.7). Following his asymptotic analysis, we can succeed in proving
the existence of an e-family of solutions (U(z, c¢(¢)), V(z, c(¢))) and finding the
sign of ¢(¢) under some conditions on the coefficients a, b, £ and e.

2. Formulation.

We are concerned with traveling wave solutions of (1.7), that is, (U(z), V(z2))
where z=x—c(e)t of

eU"+c(e)U’'+ f(U, V)=0

, zER, (2.1)
V7+c(e)V'+gU, V)=0
subject to the boundary conditions
a
U(—00)=3, U(+00)=0,
(2.2)
V(—00)=0, V(toeo)= 1.

We make essential assumptions as follows:
(A.2) b<k,

which indicates that two rest states P.=(a/b, 0) and P,=(0, a/b) of the cor-
responding kinetic equations to (1.7) are asymptotically stable.

(A.3) c(e)=0(e) .

This restriction is required from the situation that, when e is large enough, the
velocity of [u] is expected to be of order e. Then we regard c(e) as ec(e)

where ¢(e)=0(1). The resulting system from (2.1) is
etU"+ec(e)U'+f(U, V)=0

, ZER. (2.3)

V"+ec(e)V'+gU, V)=0

Since solutions have translation invariance, we normalize U by

a
UO=as(0, 3)
for fixed « and furthermore we put

vO)=p=(0, %)

for some B which will be determined later as a function of . Our aim is to show
the existence of slowly traveling wave solutions (U(z), V(2)) joining P_ to P,.
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Throughout this paper, we use the following function spaces:
() X, (D={u() lullx o =sup e?™ |u(2)| <+oo, weC(D}

(;;)lu ‘Xﬂ(l)
@ Xp={u@|lulxp, 0=} H(E 'gfz-)[u

@ Xrh={u@|ueXrU), u0)=0}
G) XrpDh={u@|ueXpr.), u0)=0}

@ Xp={u@lulxpcr= 5

=0

<+4oo, u ecm(l)}

<+oo0, ueC"‘(I)}

Xﬂ(l)

©) YED={u@llulep = ﬁ super-

({E)iu(c)\ <too, weCm(Dn)

M YrD=w®lueYp, u0)=0},
where I denotes R,, R_ or R.

3. Reduced problem.

First we consider the reduced problem by putting =0 in (2.3). The result-
ing system is
F, v)=0
, zER, 3.1

V7+gU, V)=0
subject to (2.2). From the first of (3.1), we define U=hg(V) by
ho(V)=0 for V>p
U=haV)= (3.2)
ho(Vy={ae—b+[(ae+b)>*—4bkeV]'?} /(2be)
for 0<V<B.

Here fel,=I.NI. is arbitrarily fixed where [,=(0, a/b) and I-=(0, v,)
(vc=max(a/k, (ae+b)?/(4bke))) (see Fig. 1).

Vv

=2
+—
<

o =




Competing and diffusing species models 439

Then, (3.1) is reduced to
V74 gs(V)=0, zeR, (3.3)

where gs(V)=g(hg(V), V). The boundary conditions are

V(—00)=0, V(+oo)=—Z—. (3.4)

We normalize V(z) by putting
V(0)=8. (3.5)
Now we consider the problems

{ V'+g.(V)=0, zeR.

(3.6).
V)=38, V(too)=v,,
where g.(V)=g(h.(V)V), v,=a/b and v_=0.

Lemma 3.1. Consider the problems (3.6). under (A.2). There exist uniquely
monotone increasing solutions Vi(z, B) (z€R.) satisfying

Vi(z, B)E X% (R.) and (% —Vi(z, ﬁ))e X2, (R.),
where p.=~—g.v.).

The proof is seen in Fife [Lemma 2.1, 7].
(A3 J®="gss)ds has a unique isolated zero ac p=p<l,.
Vo

Remark. If (ae+b)?/(4dbke)>a/b, (A.3) is satisfied.

Lemma 3.2. Consider the problem (3.3)~(3.5). When B=p*, there exists a
unique monotone increasing solution V°(z, B*)€CY(R) which is constructed by

?l-(z) .B*): Z€R+ ’

Vi, .13*)={
Vi(z, B*), zeR..

Moreover, V°(z, B*) satisfies
Vo(z, BEX4R.) and (%—Vf’(z, B*))EXUR.),
where p=min (¢4, p-).
The proof is the direct consequence of Lemma 3.1.

From the function V°(z, 8*), we define Uz, $*) by
h(V(z, B%), ZER,,

U'(z, B*)=
h-(V'(z, B*), zeR._.

Since U°(z, B*) is discontinuous at z=0 only, one may expect that (U'(z, §%),
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V°z, B*)) play a nice approximation to a solution of (2.3) and (2.2) outside the
neighborhood of z=0 (Fig. 2).

ﬁm
U (z.8%) VO(Z,B*)

/B*
= 0 Z
Fig. 2

;

4. Boundary layer solutions.

Since U°(z, B*) has a discontinuity of the first kind at z=0, we must modify
U°(z, B*) to become an approximation to a solution in the neighborhood of z=0.
For this purpose, we introduce the stretched variable {=z/¢ in this neighborhood
and define boundary layer corrections W.((, ¢, §) by solutions of the problems

W.otcW.+f(h(p+W., B)=0, (=R.,

W.(0)=a—h.(§),
Wi(ioo):o ’

(4.1

=d/d{ and « is a fixed constant satisfying ac(h.(B), h-(B8)). Here we

where -
For any Be(a/k, &), there exists some

assume that a/k<& (=(ae+b)?/(4bke)).
ho(B)s(h(B), h-(B)) such that

f(ho(ﬁ)’ B):Oy
flu, <0 for hi(B)<u<ho(p), w2

flu, >0 for ho(B)<u<h_(8),
fulho(B), P)<O.

Lemma 4.1. Consider the problem
{W+CW+f(W, B)=0, C(eR, w3
W(xoo)=h.(B) and W()=a,
Then there exists c¢o(fB) such that (4.3) has a wunique

for any fixed B<(a/k, £).
strictly monotone decreasing solution W(C, co(B), B) satisfying

(W, eolB), H—h(Bl€XE,, ,,  for (ER.,
where

To:(ﬂ):%[%(ﬁ)i {co( By —4fu(h(B), BI}*]

and

sign(co(‘B))zsignG:f(s, B)ds) .



Competing and diffusing species models 441

The proof is seen in, for example, Fife and McLeod [9].
a
x=( 2
(A4) 8 e(k,é).
Remark. (A.4) is satisfied if £/b>3 and e>1.

Lemma 4.2. Let ¢* and 7.(c, B) be

c*=co(B*) and rt.(c, ‘B):%’[Ci{c2_4fu(hi(‘8)r el

Under (A.l)~(A.4), there exists 6>0 such that for any fixed (c, P)ed;

={(c, B)lle—c*|+|B—pB*I =0}, (41). have unique strictly monotone decreasing
solutions W.(, ¢, B) satisfying

[W.&, ¢, B)y—h(B) € X2 (R),
where "i+:(c,}91)1£/152'+(c, B) and i:(c:sbl)g/’ar_(c, B). Furthemore, W.(, c, B) are
continuous with respect to (¢, B)E A5 in the X2 -topology and

B=8
The proof is delegated to Appendices.
5. The existence of solutions in half lines R..
In this section, we consider the following problems
eUl+ecUl+fU., V.)=0
VidecVitgU., V.)=0
U.0)=a, V.(0)=8,

U.(£0)=h.(v.), V.(too)=v..

, ZER,, (51):

(5.2).

Here we assume that (c, B) is close to (c¢*, B*). We seek solutions (U.(z), V.(2))
of (5.1). and (5.2). in the form

Uuz, e, ¢, )=U%, B)+W.LE, ¢, B)Frelz, &, ¢, B)

, zeR.. (5.3)
Viulz e ¢, B=Vilz, B+eY.(( ¢, ¢, B)+s.(z, e, ¢, B)
Here Y. are defined by
Y:(C, g, C, B):Yli(C; c, ‘@)—Yli(oy ¢, ﬁ)e;'z'ﬁc » (5'4)

where
Vi, ¢, ==\ Tath B+ W. s . ). H—g(ho(B), B)dnsdy

for arbitrarily fixed g (=p.). It is noted that
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Y.0,¢,¢ p)=0 and Y.€X: (R.).

In the following, we discuss the case of (U, V) only, because (U_, V_) can be
treated in the almost same way. Therefore we omit the subindex + without
confusion.

Put t=(r, s) and rewrite (5.1), and (5.2). as

etr”+cer’+fur+fos+Ni(r, s)+F,
T, ¢, D= ):0, zeR,, (55)
s"+ces’+ gur+gos+No(r, s)+F,
and
t0, ¢, H)=t(4o0, ¢, 1)=0, (5.6)

where A=(8, ¢), fu=0f/0u(U+W, V,+e?Y), f,, gu and g, are defined similarly,
N, and N, are higher order terms with respect to ¢t and F; and F, are repre-
sented by

Fi=cU" 4ceU” +W4cW+ f(U+W, Vote?Y)
.. . zeR,. (6.7)
Fo=V" 4 ceVY+Y 4ce?Y +g(U'+W, V+etY)
Lemma 5.1. There exist some &,>0 and d,>0 such that for any e<(0, &)
and 2€ 4, it holds that

1Fillxp, = Kielloge| (=1, 2), (5.8)

where K; is a constant independent of ¢ and A (i=1, 2).

For the study of (5.5) and (5.6), we introduce two Banach spaces
X(R)=X3 (ROXXYR,) and Y(R)=X,(R,)XX,(R:).

Here p is an arbitrarily fixed constant satisfying 0< p<p (=min(gs, p-)).
We define T'(t, ¢, ) by a mapping from )e(s(R+) into Y(R,).

Lemma 5.2. Define a linear operator M. by

d* d
pHee T gUHW, ViterY).

M.=7=

Suppose that M. is a mapping from X,%(RQ into X,(R,). Then there exist
ex>0 and 6, >0 such that M. has an inverse bounded uniformly in e€(0, ey)
and 2€ 4;,,.

Lemma 5.3. Define a linear operator L. by

2

2 &
dz*

L.=¢ +cegd;+fu(U°+W, Vo4-e2Y).

Suppose that L. is a mapping from Xf,,E(R+) into X,(R,). Then under (A.l)~
(A4), there exist e, >0 and 6.,>0 such that L. has an inverse bounded uniformly
in e€(0, e1) and 1€ ;.
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The proofs of Lemmas 5.1~5.3 are delegated to Appendices. From Lemmas
5.2 and 5.3, it follows that

Lemma 5.4. There exists ez >0 such that for any e<(0, er) (ep=min(ey, 1))
and A€ A5, (6r=min(dy, 01)), T(, ¢, A) has the following properties:
(i) There exists K;>0 independent of ¢ and A such that

T, e, A—T.(ts, ¢, 2)||A°’5»Y§K1"t1_‘t2“§’5

for any t,, tze)ofs, where T, is the Frechét derivative of T with respect to t.
(ii) For sufficiently small o,.= sup g,(U%z, B*), Vz, p*), T.0, ¢, A) has an
2€R,

inverse bounded uniformly in € and A.
(iii) There exists K;>0 independent of ¢ and A such that

1T, ¢, Dly=K.e|log¢|,
where X.=X.(R,) and Y =Y (R,).
Proof. (i) is obvious and (iii) is a direct consequence of Lemma 5.1. We

show (ii) in the similar way to the proof in [Lemma 15, 14]. Let us consider
the linear problem

T.0, ¢, Dt=

( L. fU+W, V°—I—52Y))( r
s

)=F (5.9)
gu(U'+W, V°+e'Y) M.

for F=4F,, F)eY(R,). By the invertibilities of M, and L. (Lemmas 5.2 and
5.3), (56.9) is reduced to
{ r=—L:"(fos—F,) (5.10)

s=—M7Ng,r—F;). (5.11)
Substituting (5.10) into (5.11), we have the integral equation for s:
s=M7'gu L fos+ M (Fo—guL7'Fy) . (5.12)
Now we examine the operator £2.=M;'g,L;f, which is written as
Qis=M7'g U, VL fos+ M g L7 fos
=0,.5+82,.5,
where dg, =g, (U'+W, V'+¢&*Y)—g,(U° V°). ltis easily found that £,,s satisfies
125l x, < Ku 0 KoK sl x, (5.13)
where Ky and K, are bounds of M;! and L;! respectively and

Ky= sup | fulU+W, Vo+2Y)].

z€Ry

We next estimate 2,.s with the aid of the representation of M;! as

M;‘sz:wGs(z, BwE)de, 6.1
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since Lemma 5.2 implies the existence of such Green’s kernel G.(z, &) satisfying
cier O (0=SE<2)
Ge(z2, &)=

cre# $7P (zZE< +o0),

where ¢, and ¢, are some positive constants and
+ 1 ("N (h (1) 1)
i =7‘—csi«/(66) —golh+(vs), v4)|,
(see Appendix 8.3). Since (5.14) is applied to £2,.s, it holds that

12usle, =716z, 1 dgulere-oert| L fus )

+oo0
=716z o)1 1 dguler e deN L fosllx,

Noting that
[dgu] = | guuU°+0W, VOte20Y)| | W]

+ |guv(U0+0Wy VOte?dY)||e®Y |

éKa(e—(r+/s)z+eze-/Lz)

for some positive K, and 0<#<1, we have

z -
12ucslx, SH| e et @-e-curnty ero-nyde
0

e Terurrmne it cortyde || L sl

=eKKi Kylslx, (5.15)

for some positive K, and any fixed p(0<p=pg?). Thus, from (5.14) and (5.15),
we know that

”-QESHXF§KL'Kf(KMU++K.15)HS”Xp ,

which shows that £2. is a contracting mapping in X, for any ¢€(0, ¢7) if o4
and ep satisfy the condition

KK (Kyo,+Ker)<l. (5.16)

Hence, under the assumption (5.16), (5.12) has a solution s€ X, and there exists
some positive constant K; such that

Isllx, =K Fly, . (5.17)
On the other hand, from (5.10) and (5.11), it holds that
{ Irll g2 = Ko(Kyllslx , +1F M x,)
Islie = Ku(Kglrlx, +1Fllx,)
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where K,= sup g (U +W, V°4¢?Y)|. These estimates combined with (5.17)
lead to
Itl%. =Kl Fly

for some positive constant Kr independent of e=(0, er) and 2€4;,. Thus, the
proof is completed.

Now, by the use of Lemma 5.4, we can apply the implicit function theorem
(Fife [6]) to the problem (5.4), (5.5).

Theorem 5.5. Suppose that (A.1)~(A.4) hold and that o, is small enough.
Then there exist €,>0 and 6,>0 such that for any ¢€(0, &) and 2€ A, there
exists te, e X, satisfying
(i) T, A, &, =0,

(ii) ltiglllt(e, Dz, =0 uniformly in i€ 4;,
and

(iii) (e, A) 7s uniformly continuous with respect to ¢ and A in the )c(s-topology.

Consequently, we found that (5.1); and (5.2), has a solution (U.(z, ¢, ¢, ),
(Vilz, &, ¢, B)) in R, for any e€(0, ¢) and (¢, )& 4;,.

In the almost same way to the discussion on (5.1), and (5.2),, we also know
the existence of a solution (U-(z. ¢, ¢, B), V_(z, ¢, ¢, B)) of (5.1)- and (5.2)_.

6. The existence of solutions in the entire line R.

In this section, we intend to match (U,, V) with (U_, V_.) at z=0 in the

C'-sense, by choosing B and ¢ appropriately. In order to do this, we define
two functions @ and ¥ by

D(e, ¢, ﬁ)z—d +0, ¢, ¢, B)— U ©,¢e,¢ B
2 ®.1)
Ui, c, )= ( V.0, e c B)) (Vzv_(o, e ¢ B)).

Setting D as D={(¢, ¢, B)|e<€(0, ), (B, c)€ 4;,} for sufficiently small &, and d,
we know from Theorem 5.5 that @(e, ¢, B) and ¥(e, ¢, B) are uniformly conti-
nuious in D. Therefore, @ and ¥ can be continuously extended in a way that

they are defined in D. From this extension, (ii) of Theorem 5.5 rewrites (6.1)
for e=0 as

20, c, ﬁ)_liﬁ W.(0, ¢, B)— dC

VO, c, p) (uv ©. p) (—;w_(o, p).

LW, ¢ p)
6.2)

Noting that
(i) @@, c*, =Y, c*, g*)=
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(ii) @(0, ¢, B*) has an isolated zero c=c*,

and

@iil) (0, ¢, B)=2]J(B) has an isolated zero p=p*,

we can apply the implicit function theorem [Theorem 4.3, 6] to (6.1) and then
we have

Lemma 6.1. For sufficiently small ¢>0, there exist B(e) and c(e) such that
D(e, c(e), Be)=T(e, c(e), Be))=0

and
H — Q% H — %k
151}101 Ble)=p*, 115101 cle)=c*.

Thus, this lemma directly leads to the main theorem.

Theorem 6.2. Suppose that (A.1)~(A.4) hold and that oc=min(ss, o) is
fixed small enough. Then, for small enough e, there exists a solution (U(z, c(e)),
V(z, c(e))) of the problem (2.3) and (2.2), satisfying

”U_(Uo"l_W)“X;,,S(R)“‘”V'—VOHX‘}) (R)_’O as e lO .
Moreover, the velocity c(e) satisfies

cle)—>c* as €10.

7. Numerical Simulations.

We have found the existence of an e¢-family of traveling wave solutions
(U(z, €), V(z, ¢)) of (1.7) (i.e., (2.1)) subject to boundary conditions (2.2). In this
section, let us show some pictures of traveling wave solutions. The curves of
f=g=0 for a=4.0, b=1.0, k=40 and ¢=4.0 are drawn in Fig. 3 where the

-3
dashed line is v=[*=1.18668 and S: Z fQu, f¥)du>0. For these values of the
+(P)
parameters numerical simulations were carried out by the use of the usual
explicit difference scheme for the initial value problems of (1.7). Fig. 4 shows

that the piecewise linear initial distribution

4 x<—15, 0 x<—15,
uo(x)= —%x—f—Z —15<x<15, vo(x)= %x—l—Z —15<x<15,
0 x>15, 4 x>15,

generates a traveling wave for ¢*>=0.01. In this case, the velocity of the front
is computed as ¢=0.2 which is approximately of order e. Another example is
drawn in Fig. 5 where ¢*=0.04 and the piecewise linear initial data is

4 x<—4, 0 x<3,
U(x)={—2x—4 —4<x<—-2, vo(x)=4 2x—6 3<x<5,
0 x>—2, 4 x>5.
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v

Fig. 3

Fig. 5
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This figure illustrates clearly that at the first stage, where the competitive
interaction does not work, the fronts of U and V propagate independently with
the same speed as that of Fisher’s model and then, at the next stage where
two species are encountered and compete, the fronts of U and V move together
from the left to the right with the same speed, as predicted by our result.

8. Appendices.

8.1. The proof of Lemma 4.2.
We consider the case (4.1); only. Define a nonlinear operator R(W., ¢, B) by
R(W+y c, ‘8)

2 VV++C W+ f( ll+(,B)+W+, ,8) (8.1)

dC dC
and regard it as a mapping from X2 (R,)X4; into X, (R,). We first note
RW.(, c*, B*), c*, f*)=0, and that the Frechét derivative of R with respect
to Wi, Rw(W,, ¢, B) is continuous in the neighborhood of (W.(, c*, 8%), c*, B*).
Let us show that the linear operator Ry(W.(, ¢*, B*), c*B*) mapping X2, into
X., is invertible. To do so, it is sufficient to prove the existence of a unique

solution w(¢)e X2, (R,) of
Ry(W4(C, c*, %), c*, BHw=k (8.2)

for any keX,,. Since @.(O)=—W.(, c*, p* (<0) satisfies Ry-¢.=0, we

dC

easily obtain a unique solution w({) of (8.2) in the form
wl)= ¢+(C)S ¢ (07])2 g+ P (E)k(E)dEdy . (8.3)

Here we note that w(C)EX3+(R+) for any k()= X.,. Thus, by the use of the
implicit function theorem, we know that there exists some 0 such that (4.1),
has a solution W.(, ¢, B) for any fixed (¢, )45, We can also discuss the
regularity of W.(, ¢, B) with respect to (¢, B), since R(W., ¢, B) is at least of
the C'-class. The monotonicity of W.(, ¢, B) can be easily shown by a phase
plane analysis.

Remark. Using the general theory of ordinary differential equations, we
can conclude that

WL, ¢, BEX . p(Ry).

(See, for example, Coddington and Levinson [2]).

We next show (4.5). Differentiating R(W, ¢, §)=0 with respect to ¢, we

find that Wc=%W+(C, ¢, B) satisfies

d

RwW., c, ﬁ)Wc:_Y

Wi&, ¢, B) (8.4)
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so that W, is explicitly represented by (8.3) when £ is replaced by _diCW‘L(C’ ¢ B,

because W (0)=0. Differentiating it with respect to { and then putting {=0
and (¢, B)=(c*, B*), we obtain

WERTAGYIS (8.5)

L.
L W0, c*, pr= —¢+(O)SO

dC
On the other hand, it is easily proved that

0 d

g Wl e BN=50

dc W0, c*, B*).

In the same way as the above, we also obtain

a d 1 e Cax 2
Be a0 e =, e, &6

Therefore it follows from (8.5) and (8.6) that

0 d 0 d

1 (= c+& 12
o g W0 % BI— e W0, ¢, =i e grede 0,

#(0)

where ¢(C)—TdC_WC c*, B*). Thus, the proof is completed.

8.2. The proof of Lemma 5.1.
From (3.6);, (4.1), and (5.4), F, and F, in (5.7) can be rewitten as

Fi=eU" +ceU”+ f(h(VO)+W, VO+e*Y)— f(R(B)+W, B),
{ Fo=ceV¥+ce?Y —e2p?Y (0, ¢, Ble #*—g(h(V?), V) 8.7
—Lgr(B)+W, B)—g(h(B), B)I+g(h(V)+W, Vo+eY).
Now we divide R,={z]z=0} into I;=[0, —Aecloge) and [;=[—Aeloge, +0)

for any fixed A>0 and estimate F, and F, on each interval. We know that

(Bl se v eevw | 2L R AV T [(ATY. L ev)]|, s8)

Ou dv dz ov
where
g—{:_—ai(h(V"HW—l—ﬁ (h(B)—h(V?), V+etY),
%:i(h(‘g)q_w VoteY 40,(B—V°—eY)),
dﬁ dh o 0
and
dV“ dV°
dZ = (042)

for some 0< ;<1 (=1, ---, 4). Thus, (8.8) is estimated as
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|Fi| = U | +ce|UY |+ Ky(z+¢2K,)
=e?|UY | +ce|UY | +Kee(—Alog e+eK,) on I
for some constants K; and K,. Thus, it follows from Ue X %, that
|Fi|=0(—Acloge).
On the other hand, it is obvious from the first of (8.7) that
|Fi|=e?| U [4ce|lUY |+ f(R(VO)+W, VOt-eY)
—f(h(V®), VO)+f(h(B), B)—F(R(B)+W, B)]

et |0 el U |+ |2t Ly || Ly,

where

F _ @
%:a—i(h(w)wsw, VoteY?),

0 0
I S v, Vit by,

of _ of
W—w(h(ﬁ)-ﬂ%W, B,

for some #; (=5~7). Noting that
IWQ) | Scre™+<ciefr+loec<cet+  ((/e<ls)
for some ¢,, we find that, choosing A sufficiently large as A=1/z,,
IWQ) | =coeet+ (z€15)

for some ¢,. Then, by using U’, U"€X,,, we obtain |F;|=0(¢) on I;. Thus,
we find

| Fy =Ke|log ¢}

l|Xﬂ+(R+)

for some K,. In the similar way to the above, we can prove (5.7) for F,. The
details were seen in Hosono and Mimura [14].

8.3. The proof Lemma 5.2.

For brevity we omit the index + and write X%R,) and X,(R,) as X2 and

X, simply. For the proof, it is sufficient to show that a mapping from X’ﬁ
into X,

d2

0o— __ —
M= dz?

4 0 0
Fee— +gU+W, V)

is invertible. Because, M. is rewritten as
M. =M+(M.—M?),

(M.—M?) is regarded as a perturbation since IIZ\L—M‘QH,{%a,fpél(e2 for some K.
We first define M, by
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2
MoE%-!—[gv(U", VO +guU°, VOR' (V)]
which is a mapping from X% into X, for any fixed o’ (0=p’<p).

Lemma 8.1. Let B (€1,) be fixed arbitrarily. Consider the problem

Myp=F, (zeR,) (8.9)
for any ko€ X,.. Then M, is invertible.
o
Proof. 1t is easy to see that gb,:% EX§,+(R+) satisfies

Myp;=0 and ¢,>0.
Then, by using ¢,(z) and

(2)= ¢l<z>§ (ex2,),

gb()Z

the Green function G(z, &) of M, can be explicitly written as

{ Du2)ha(8) (0=£<2),
Gz, H)= (8.10)
Di@)pu(z)  (2=26<H00),

where
{ Gz, &) Scret+¢d  (0=€=z),

|Gz, &) Sce 462 (z£E<+00),
for some ¢, and ¢,. Thus, a solution of (8.9) can be represented by
+o0 o
¢(Z)=MalkoESO Gz, Hk(E)dE  (eX}),
which implies the invertibility of M, Thus, the proof is completed.

We next consider the problem

Mp=rF (zeRy,). (8.11)
By the transformation of
p=e /DG (8.12)
(8.11) is reduced to
Mggsz[ j s Hasw+w, v")—%f)—}]gzzzs , (8.13)

where F=e®/2:L. Write A712 as
M= Mo+ (M2 —M,).
Then, it holds from Lemma 8.1 that for = X2 and k€ X, that

F=—M"(M2—M)+M; 'k, (8.14)
where
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Mz T—-M3=("Gte, O e @+ W( L), V&)~ g 0®), Vi)
g, V@) I ey soaz. w15

. dh
By noting that v =0 in R, and

0@ 1W(2), Vi) 2@, Vo) Seiestr

for some c¢,, it follows from (8.10) that

1M M =M x,

(7166, Ol cverd gz e S 11,

<(cse e i,
for some ¢, and ¢;. Then (8.14) or (8.13) has a solution &ef( z for any ke X,

when ¢ is appropriately small, that is, there exists some ¢; such that

181152, <cill bl x,
Thus, by putting p’ as

_ce
Al
(8.12) and (8.13) lead to
1152 <cdl blx, - (8.16)

Here (8.16) is valid for 0<e<e, if ey is chosen as
S er|+8)<p<pt S (ler +a)<p.

Thus, the proof is completed.

dh,
dh dv
Since d_1;$0 on ze R_, the proof must be carried out under the assumption

that o_= Selllep g Uz, B*), V(z, f*)| is sufficiently small in (8.15).

Remark. In the proof of (8.16), we used a special property, i.e.

=0.

8.4. The proof of Lemma 5.3.
We define L° by
2
=L ol L UDHWQ), VD).
df C
Here we write
FUA)+WE), Vo(el))=—(go+q:1+70)
where
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—qQ)=fU°0)+W (), VIO)—fu(U0), V0)),
—q:(€, O)=fuU(eQ)+W (@), V(D) —fu(U0)+W (), V(0))

and
—70=/u(U0), V,(0)<0.

Lemma 8.2. There exists €,>0 such that for any e€[0, &),
(i) —(gtro=—r)=—0°<0,
. d
(i) lg:l =K.e€ and ‘—daql =Ke,

(i) |gol SKse 545,

where 0 and K; (i=1, 2, 3) are some positive constants independent of ¢ and A.

Proof. We first show (i). We divide R,={{|{=0} into I;=[0, —Aloge)
and I3j=[—Aloge, +o0), for any fixed A>0. Since

z d j70 L 7 d )
~0:C, O=(Fuuy; U°+Fur o V)L, (®.17)
where
Fun=FurlUND)+ .U QUL+ ), VD),

Fur=FuU0)+W ), V() +0:(V(0)— V(L)) ,

d = d d - d
T qjo=_"_770 T yo—_%_yo
iz U= dz U%05el) and dz Vo= dz V°(8,e0)

for some 6; (0<6;<1, i=1~4), it turns out that
[:{, &) =Kielloge|  in I} (8.18)

for some K,>0. On the other hand, it follows from We X: (R,) that

—q:(§, &)=SulU°D), V(D) —fulU0), VIO)+Kee  in I3
for some K;>0. Here we note that

FAUED, VD~ 1O, VO =(Fuw Tt ) L et
where

Fun=FuulUe)+05(U(0)—U(eL)), V(L))

Fur=FulU%0), V(L) +0,V°(0)—V(e0))) ,

dhe _ dhe o)1 g, — Vo) and 4V

dv
= Adz—(ﬁzﬁ@

dv — dV dz
for some @; (:=5~8). Therefore, by using
dhy _ b dav .
av =0, fulu, v)= m<0 and dz >0 in R.,

it is easy to see
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—q:({, e)=Ke in I3 (8.19)

for some K>0. Thus, (8.18) and (8.19) lead to (i) when ¢ is chosen sufficiently
small. Differentiating —g¢, with respect to {, we have

— 2 a0+, V(e 4
oUW Q), VL)L e
—fud O+, V0D 4
and then )
B | <Kot | {Fu D+ W), VD) dW
Lo O+WQ), VON} G-

SKee "+ Kele™+¢
éKgE

for some K;>0 (=7, 8,9), which implies the second of (ii). (iii) is obvious.
Thus, Lemma 8.2 is proved.

Remark. For the proof of Lemma 8.2 in the case of R_, it is sufficient to

show

dh_

(fun+Fun)20. (8:20)

If follows from an elementary calculation that

ea—b—4bel —2be*U*

A%
fuu'*"fuv‘gﬁ— (1_!_96)'2 T

. ea—b
(1+el)

A

<0.

(ea—b)
Here we used U > 2be)

>0. Thus, by noting —CZ—hV“—<0, (8.20) can be proved.

Let us rewrite the problem

Lr=FL (R,
{ (8.21)
r{0)=0, 7r(4+00)=0,
as
d _
Le—: Ty T As+BO r=k R+ ’
[ F={ g ~(A+BIF=E =Ry 822
r(0)=0, 7r(+o0)=0,

where Fz‘(r, %%),
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0 1
ao=| "] s ]
7.0 —c 28 0

Since A.({) has two real distinct eigenvalues

and k=40, k).
— PTAR
0= c—_l-xgc +7e ’
A. can be transformed into the diagonal form D.
A0
P*AP.=D.= ] )
0 2

by using the regular matrix uniformly in ¢ and {

1
roe, L )
A 220
Thus, by the change of the variable 7=P.iw with w="*%(w,, w,), (8.22) is reduced

to the convenient first order system
~_ [ d o o
Lew—{—dg—Ds BAclo=Pr
w1(0)+w2(0):0’

=Ry,
(8.23)

wi(+00)+wy(+00)=0,

where 1§5=P;IBOPe and C,=P;! if;‘ By setting ¢=0 in (8.22) and (8.23), we
define the operators L, and L, by

_ d ~ d ~
LO:d_C—AO—BO and LOZTC‘—DO—BO’

respectively. Here, let us introduce Banach spaces
={wlweY, (R)XY} (R)), wi(0)+w,(0)=0}

and -
Yp,eE {wl wEYp,e(R+) X Yp.s(R+)}-

Lemma 8.3. Let L, be a linear mapping from Vi into Y,. for any ¢
and any fixed p satisfying 0=e=e, and 0= p=p respectively. There exists §,>0

such that L, has an inverse bounded uniformly in A€ A,

Proof. Using the solution ¢.({) of Rw-¢.=0 (in (8.1)), we define ¢; @;

(=1, 2) and @ by
¢1(C)E¢+(C)EXT+(R+) ,

3 0=3:0 [ @)t dn e X . cny,

00="($0, 5 8:©) =12
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and

20)=(9.©), :0)) -

Since @({) is a fundamental matrix of L, a general solution Fo="(ro;, 7o) Of
L,#,=k, is represented by

FO=0QBO) 7,0+ [ BQO- (En
Let us define ¥(C, ») by

VE N=20)2(n)

cﬂ(¢1(€)¢2(7])—¢2(©¢1(77) —¢1(C)¢z(7])+¢z(C)¢1(7]))
=e
6:1(0)P2(9)—6:0)1(n)  — 1 Q)P2()+P=(E)Pa(7)
and decompose it into

w(Cr 7]):grl(C, n)+w2(Cr 7/1) ’
where

- $:(D:(7)  —3:(O)pe(n)

and

e ﬂ):ecv('—%(C)sﬁx(??) ¢2(C)¢1(77))
- —3:(0)p:(n)  (0)pu(n)

Here, we note that
{ TE D) Sciem+Gn 0=9=0),
1T D Scee™™-C7 (20,

where |-| is an appropriate matrix norm.
Thus, a bounded solution of L,Fo=Fk, is represented by
= e\ 70:(0) C/- N -
FO="20y OROH IE ey = WAC iy @20

From the expression (8.24), any solution @w,=%w,, w,) of foiu'ozk? in 17,‘,'5(R+) is
given uniquely by

(4 ~ +o0 —
wo(C)=S0Po"‘(C)’1f1(C, ’7)k(’/)d’7_gc POV, pk(pdy, (8.25)
which completes the proof.
Next, we consider the main part NSETJdC__D‘ of l~,s. Let &£(¢, 5) be solu-
tions of
de7 _xer,
dg (8.26)
&x(n, =1,

then, they are represented by
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& m=exo( [ 2202). ®21)

Lemma 8.4. Let 0:(C, ) be £, n)—E&5(&, n). Then, there exist ¢, and d,
such that the following estimates hold for any 0<e=¢, and (c, ,B)EA,;O:

(e Ve | eiera- (C=n<+oo),
(4 )& | sewe s 0=9=0),
() 05 )| Sesce o2t —40) CSp<itoo),

(L Yor m|secememest—rmm 05720,

for j=0,1, where ¢; (i=1, ---, 4) are some constants independent of ¢, B and ¢
and
J— M _ 21 AA2

Proof. See, for instance, Hoppensteadt [13].

By the use of this lemma, the uniform invertibility of L°: V. —»Y,.is
easily verified. In fact, a solution of L?@w=F is represented by

BQO=vEC, Oent [[HC opdn—{THC, ity

where e,=%0, 1), k="'(k,, k.),

&Cn 0 0 0
HIE, n)= o HIG =
0 0 0 &&

and v’ is an arbitrary constant. Setting {=0 in the above representation, we

have
(wl(O)) (0) +w(5?(0, 7/)121(77))
= —S dn,
w,(0) v/ 0

so that, by the condition w,(0)+w.(0)=0, v’ is uniquely determined as
4o
v={"er0, ity

°

Hence, a solution iz of Low=F in Y} . is uniquely given by
oQ)=(L) k=62, 0)(§ §50, kilp)dy Jes

+ 1@ R =G DRy, 828
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Since the estimates in Lemma 8.4 hold uniformly in ¢, (8.28) is valid for ¢=0.
By the use of (8.28), the problem (8.23) is reduced to solving the integral
equation

(LY {(B.—Cow.+P: k)

(E1Byw.+ {(E)*(B.—~C)—(L)' By w.+(L)*P: k.

7A(9)

Operating I8 in the above, we have
Low.=L3{(L)(B.~C)—(LY ' By w.+LULH P k. (8.29)
Thus, using Lemma 8.3, we arrive at the integral equation
0.=Q.w.+k, (8.30)
where Qszfo‘lfg {(Eg)-l(ﬁs—cs)—@g)-lﬁo} is a linear operator in }_’,,,EE
{wlweY , XY, ., wi(0)+w0)=0} and k=L LYLY-'P k.
Lemma 8.5. Let p be any fixed constant satisfying 0=p=p. Then, there
exist positive constants e, and 0, such that
1Q.l7, -7, K¢ (8.31)

for 0=Ze=¢, and (c, ﬁ)EA,;O where K is some constant independent of ¢, B and c.

b €

Proof. L3z, -7}
hence it is sufficient to show

IEY-HB.~Co—(LYBils, v ,
<|(LYYB.~C.—Bollgy -7 (LD =LY HBils, -7, =O0().

and | L3z 7, . are uniformly bounded in ¢, 8 and ¢,

From the uniform invertibility of IN,Q, we have

Q@5 =LY B.~C.— Bowlsy <eil(B.—~C.—Boywly,,  (832)

0 € 0. €
Since ﬁs—ﬁo can be written as
B.—By=P:'B,P.—P;'B,P,

=—Pi (P.—Py)P;'BoP.+P7'By(P.—Py),
is holds that
| B.—By| <c,| P.—P,| | Bo|.
Applying Lemma 8.2 to

P.—P,= Cae T dar dac

and B,, we find that

|§5—§0| =cslq1l 1gol =0Ce)
and

4P | da:
ac =cs dc

[C| =cy

=0(e),
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so that
||(L2)"(Bs—Cs—Bo)wllé’;'sécseWII?N ,

where ¢; (k=1~6) are some positive constants.
Next, we consider

1Q.@l7 = I(EY (LY Bomly,, -

From (8.28), e’”c(—;c—)j()zw (j=0, 1) is written as

o () Qua=er | (-5 ) erc, 0,60, e rButerrmtyindy

—(aic)jfa(c, 0650, me~rr(Bolper T mmMidy Jes

+Sz[<%)’(1'1.?(c, )—H;(¢, 7]))]50(77)9#5(5-»7) et (p)dy

_S:N[<’%)](H:(Cv ﬂ)_H:(Cy ”))]§°(v)epe(c_v)'QPSVW(p)d;?

=Qut+ Q22— Qs

where (-), denotes the first component of the vectors. Here, we used the fact
EX(L, O=¢%(, ©)=1. Now, we estimate Q,; (=1, 2, 3) with the aid of Lemmas
8.2 and 84 in the following. First it is shown that

0
g

|Qul =|er5(—) 0:¢, O] 8100, e r(Batmrerrminidy|

0 V.. e —pen( B .
+[er{(—55) & 8, 0,010, mereniButperrmpudy|
<Cree-to-eo8 (4 0| e toremeen- e d |l
0 oc
+00
—i—Cgee‘(i""”)CSo 8’10’77]2-2""7-e"+’7d7]”LU|l;—p_E

Scoc| @y, , -

Secondly, we have

<
| Q2| écxosgoe_ Roct- PECHC—7n") e " .eM(C"I)dn“ w-”l_’p,e
écwe(cz_i_C).e-(lo-ps)CS:e(lo-r,,_—Ps)ﬂd7]” u—;”}—,p’ .

éCua(CZ-E‘C)'e‘““"’”C'e”“"*’"“’cllwnrzp .
=Cne@*+0) 'e"+cllwll?p,5§C126H w"?/,,e .

Analogously, we know that
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o

|Qual ZCuse e D D Ter Py,

écwegzwe_(10+ps><17-:>(,72_|_,7) . e—r+’7d7]” w”}—,p' .

<Cuclaly,,.
Thus, these estimates lead to
1Q:wl71 ,=Ciscl@ly, , - (8.33)

Here C; 1=7, ---, 15) are some positive constants. (8.32) and (8.33) show Lemma 8.5.

Lemma 8.5 implies that Q. is a contracting mapping in )7,,,5 for sufficiently
small ¢, so that we conclude that there exists a unique solution we }7},,5 of
(8.30). Therefore, the problem (8.22) has a unique solution 7=P.@ satisfying

1715 <clflz, ..

where ¢ denotes some positive constant independent of ¢, 2 and p. Namely,
LY Xﬁ,e(R+)—>X,,(R+) is invertible uniformly in ¢, 4 and p.

Since L. can be written as L. =L%-f (U +W, VO'+e2Y)—f (U +W, V), it
is also shown that L.: X2 .(R.)— X,(R,) has an inverse bounded uniformly in
e, 2 and p. This completes the proof of Lemma 5.3.
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