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1. Introduction.
In the field of population dynamics, since Fisher's model had been presented,

there have been extensive studies of reaction-diffusion equations of the form

an-at =D ik e + f(ii) ,

where Ft and f  are n  dimensional vectors and D is  an nX n constant m atrix. It
is widely known that (1.1) exhibits a  variety of interesting phenomena, in spite
of its sim plicity . One of them is the appearance of traveling wave fronts. This
type of solution is represented by the form

U(z)= Fr(x ct)

where c  is  a  velocity vector. This function V  necessarily satisfies the follow-
ing system of ordinary differential equations

DU"d-clit±f (U)=0 , (1.2)

subject to appropriate boundary conditions imposed at z= + oo, where '=d /d z .
W hen n =1 , the existence of V (z, c) and its stability were almost completely
discussed by many authors. For n=2 ,---,4, there are som e results on biological
models such as Nagumo's equation, Hodgikin-Huxley's equation, and Field-Noyes's
equation (see, for instance, [1 , 5 , 12 ]). However, there has not been as yet any
powerful general theory fo r a n y  n ,  except topological methods developed by
Conley [ 3 ] .

In the framework of (1.1), we discuss here a  model of two competing and
diffusing species described by

au8 2 u  d i=  f o(u, v)uat a x 2
(1.3)

ay 8 2v

at
d ,

8
x 2  =g o(u, v)v

where u  and y are the population densities of the tw o species. It is assum ed
from the competitive interaction that f o and g o satisfy
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afa gf 0(0 , 0) > 0 , g0(0, O)>0,o o< 0  and au  < C I .av

U nder fu rther add itiona l conditions on f  and  g o ,  T ang  and  F ife  [16] proved
th e  ex is ten ce  o f  so lu tio n s  (U(z), V (z)) o f  (1.3) jo in ing  th e  s ta b le  re s t s ta te
(u*, v*) (>0) satisfying f o (u*, v*)= g o (u*, v*)=0 a t  z = +00 with the unstable one
(0, 0) a t  z= - C O , and G ardner [10], Conley and Gardner [4] have recently found
a  tra v e lin g  w a v e  solutions jo in in g  tw o  s ta b le  r e s t  s ta te s  (u o , 0) a n d  (0, vo)
w here u , and y, satisfy fo(uo, 0)=g0(0, v 0)= 0 .  The la tter so lution is  o f  interest
from  an  ecological point of v ie w . Suppose th a t  (U(z), V (z)) satisfy

U( + 0 0 )= u o, V(+00)=0,
(1.4)

U( — co ) 0  , V (-00)=v0

T h is  specifies th e  habitats o f  two species at infinity z--4+ c o . If c>0 (resp. <0),
both diffusing and  competing species move in the r ig h t (resp. le ft) direction and
then  one of the  species, [v] (resp. [u ]) is  dominant asymptotically a n d  if  c=0,
they  c o e x is t . T h u s , it  is  o f  ecological importance to  know  th e  sign o f  c.

In  th is paper w e restric t th e  nonlinearities ( f 0  g o )  to

k l y  
{f o(u , 1+eiu

k 2 ug o (u, y)= b2y 1+ e 2y

(1.5)

w here a a , b a , k i  a n d  e, (1=1, 2) a re  a ll positive constants, and seek th e  sign  of
th e  velocity c o f  traveling w ave solutions. In the absence of ea (i=1, 2), f 0  and
g o a r e  t h e  classical com petitive interaction term  proposed by V o lte rra . T he
presence o f  ea s ta te s  th a t  th e  intracompetition ra te  o f  each species decreases as
the population num ber increases. If e,=+co, (1.3) w ith  (1.5) is formally reduced
to Fisher's equation o f  th e  form

wt=dw x x +(a— bw)w (1.6)

w ith  positive  constan ts a  a n d  b. T hen  in  th is  case, it is  w e ll k no w n  th a t u
(resp. y )  m oves i n  t h e  r ig h t  (resp. le f t)  d irection w ith  any  fixed  ve loc ity
c>2-V d i a ,  (resp. < —2-Vd2a 2 ) u n d e r the  cond itions (1.4). T h is  s itu a tio n  also
occurs in  th e  c a s e  w here v==_O (resp. u —=0), i . e., only one species exists in the
entire  line . M urray  [15], Gibbs [11] and Troy [17] discussed th e  system similar
to  (1.5) w ith  a2 =b 2 =e 0 =e2=0 derived  from  t h e  Belousov-Zhabotinskii reaction
and showed traveling wave solutions with some velocity c>0.

To m ake the discussion simple only, le t u s  consider here a  simplified model
o f  (1.5)

au 52u = ( a  b u  k y   )
u _ _ f ( u ,  y )at 2

6 a x 21 + e u
ay a2 y
at = ( a  b y  k y).

ax 2

(1.7)
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Unfortunately we m ust m ake th e  following assumption

(A l)0 - _ E 2 < 1  ,

though this restriction w as not needed  i n  [4 ] ,  to  re d u c e  th e  difficulty o f  th e
p rob lem  so  th a t the  singular perturbation technique developed by F ife  [8 ] can
be applied to (1 .7). Following his asymptotic analysis, we can succeed in proving
the existence of an E-family of solutions (U(z, c(E)), V(z, c(e))) a n d  finding the
sign o f  c(s) under som e conditions on the coefficients a, b, h an d  e.

2. Formulation.

W e a re  concerned with traveling wave solutions of (1.7), tha t is, (U(z), V(z))
where z= x —c(E)t of

E2U "±c (s )U '± f (U , V)=0

V "-F c (E )r±g (U , V )= 0
z E R , (2.1)

subject to th e  boundary conditions

U (-0 0 )= --b-a  , U(+ 00)=0 ,
(2.2)

V(-00)=0 , V (+00)= 17
a  .

W e make essential assumptions a s  follows :

(A.2) b<k ,

w hich indicates that tw o rest sta tes P_=(alb, 0) a n d  P ,= (0 , a lb )  o f  t h e  cor-
responding kinetic equations to (1.7) a re  asymptotically stable.

(A.3) c(E)=0(s).

This restriction is required from  the situation that, w hen e is  large  enough, the
velocity o f  [ u ]  is  e x p e c te d  to  b e  o f  order E. T hen  w e  regard  c(s) a s  sc(s)
w here c(s)= 0(1 ). T h e  resulting system  from  (2.1) is

E2U"d-Ec(E)U'+ f(U, V)=0
zE R . (2.3)

V"±sc(E)VH-g(U, V )=0

Since solutions have translation invariance, we normalize U  by

U (0) = a , 17)

fo r fixed a  a n d  furtherm ore w e put

V(0)= 13E (0, 1)

for some 43 which will be determined later as a function of E. Our aim is to show
the existence of slowly traveling wave solutions (U (z), V(z)) joining P_ to  P .
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Throughout this paper, we use the following function spaces :
(1) X (I )=  lu(z) I u x p (/ ) SuE l? I 

u ( z ) I < + co , u ECM}

(2) X (/ )= - fu(z) I u
(  d  V 

udz <+ 0 0 , U ECN i)}
X ( I )

(3) ilf (/)=-{u(z) u x;;(/) -=--- ddz <+ 0 0 ,, U ECm (i)}
X ( I )

(4) »"T,'(/)-= lu(z) u X7p
3 (/), u(0)=0}

(5) ..,;u9;,(I)= fu(z)lu u(0)=0}

(6) 17 ,Z(I)= {TIM I lus c u d )  u ( )u(C) <+00,U  ECm(i)}

(7) /*/ ;',!',(/) = {u(C) I u E r„n, „ u (0)= ,

where I  denotes R +, R_ o r R.

3 .  Reduced problem.

First we consider the reduced problem by putting 6=0 in  (2.3). The result-
ing system is

f(U , V)=0
z E R , (3.1)

V"± g(U, V)=0

subject to (2.2). From the  first of (3.1), we define U  2  f i (V ) by

h+ (V) -----0 for V > 8
U=hp(V)=-( 3 . 2 )

t. h_(V)-= fag —b+[(ae+b) 2 —4b keV]" 2 1 1(2be)

f o r  O<V< I3.

Here ISE /o =/ + n / _  is arb itrarily  fixed  w here /+ -=(0, a lb ) a n d  /_ =(0, vc)
(ve =max(a/k , (ae+b) 2 1(4bke))) (see Fig. 1).
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Then, (3.1) is reduced to
V"+gp(V)=0, z R,( 3 . 3 )

where gp(V)=g(hp(V), V ). T h e  boundary conditions are

V(-00)=0, V(±00)=-7-» (3.4)

We normalize V(z) by putting
V(0)=43. (3.5)

Now we consider the problems

V"-Fg(V)=O, zGR,

1 V(0)---13, V(±00)=-74,

where g ± (V)=-g(h ± (V)V), v + =alb and v_-=0.

Lemma 3.1. Consider the problems (3.6)± under (A .2 ). There exist uniquely
monotone increasing solutions V°± (z, P) (zGR ± ) satisfying

p )E X (R _ )  a n d  (---1 / (z , p ))E X + (R + ),

where p± = i / —gf,(v± ).

The proof is seen in  F ife [Lemma 2.1, 7].

(A.3) ./(45)=1v÷g(s)ds has a unique isolated zero at 43-=-P* Eio •v_

R em ark . If  (ae+b) 2 1(4bke)>alb, (A.3) is satisfied.

Lemma 3 .2 .  Consider the problem (3.3)--,(3.5). W hen 43=43*, there ex ists a
unique monotone increasing solution V°(z, P*) C'(R) which is constructed by

{V (z , P * ), zeR + ,
V°(z, P*).=

V(z, p*), zER_ .
Moreover, V°(z, P*) satisfies

V°(z, 13*) X 2
p (R _ ) a n d  ( w

a  —V°(z, 43*))EX(R.,),

where p=-min (124., p_).

The proof is the direct consequence of Lemma 3.1.

From the  function V°(z,43*), we define U°(z, 43*) by

{ h,r (V°(z, P*)), zeR + ,
U°(z, P*)=

h_(V°(z,
 13*)),

z e R _ .

Since u o (z , p*) is discontinuous at z-=0 only, o n e  m ay expect that (U°(z, p*),

(3.6)±



14(P)<u<h o (P),
ho(P)<u<h_(p),

(4.2)
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V°(z, p ) )  p lay  a  nice approximation to a solution of (2.3) and  (2.2) outside the
neighborhood of z=0 (Fig. 2).

a
1-5

V°(z,51

o
F ig . 2

4. Boundary layer solutions.

Since U°(z, 13*) has a  discontinuity o f th e  first kind at z=0, we must modify
110 (2, p*) to become an approximation to a solution in  the neighborhood o f z=0.
For this purpose, we introduce the stretched variable C=z/e in  this neighborhood
and  define boundary layer corrections IV (C, c, p) by solutions of the problems

C+ cW ±± f (h ± (P)+W ±, J3)=0,C R ,  ,{

W ± (0)=a—h ± (19),
W± (±00)=0 ,

where - =d/c/C a n d  a  is  a  fixed constant satisfying ae(h + (p), h_(P)). Here we
assume that alk<e (-=(ae+b) 2 1(4bke)). F or any pE (a lk ,e ), there exists some
ho (p)E(h + (p), h_(13)) such that

f (h 0(/3), p)=0,

{

f (u, /3)<0 f o r
f(u, p)>0 for

f  u(h±(13), p)<0.

Lemma 4 . 1 .  Consider the problem

S W-HW-Ff(W, 13)=0, CE R ,
( 4 . 3 )

W(-±œ)=h ± ( P )  a n d  W(0)=- a ,

f o r  any f ixed pE(alk, e). Then there exists co (P) such  that (4.3) h as  a  unique
strictly  monotone decreasing solution W(C, co(P), P) satisfying

IW(C, co(/3), p)—h±(p) X L ( p ) f o r  CER ±

where
1

ro±(19)--= [co(13)±-  Ico(P) 2 - 4fu(h±(P), p)} 1
/

27
and

(4.1),

sign(c 0 (13))=sign( 5 1 , + f (s , P)ds).
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The proof is seen in, for example, Fife and McLeod [9 ].

(A.4) P E ( (1?
R em ark . (A.4) is satisfied if  k lb>3 and e>1.

Lemma 4 .2 .  Let c* and z-,(c, P) be

1c*=c o (P*) an d  r ± (c, {c2-4f.(h±(P), ig)1
1/

2].

Under (A .1)--(A .4), there exists a > 0  such that f o r  any fixed  (c, p)Eila
==-{(c, 13)lIc— c*I±IP - 3*1 (4.1)± have unique strictly monotone decreasing
solutions W ± (C, c, P) satisfying

c, P)-12.,(8)1EX s (R),

where f-+ =  in f z - ,(c , i5) and T _=- s u p  s-_(c, ,(3). Furthemore, W *(C, c, p) are
(c,i9 )EA, (C, ),A5

continuous with respect to (c, P)EA a in the 20 s -topology and

[

a
(

d W  ± (0, c, p)) ,
a

3 c ( d  d
W
c

-  (0, c, / 3 ) )1 O .( 4 . 5 )ac c / C r=5'.
The proof is delegated to Appendices.

5 .  The existence of solutions in  half lines R,.

In this section, we consider the following problems

s2U 1,14 -sc U ,+ f (U  V )=0

17 ± scV ± g(U „, V  „)=0'
z E R , , (5.1),

U (0 )=a, V ± (0 )= ,
(5.2)±

U ± (±00)= h „(v), ±(± co)=-- v  .

Here we assume that (c, p) is  close to (c*, p*). We seek solutions (U,(z), V ,(z))
of (5.1), and (5.2), in  the form

u,„(z, s, c, p)=1.11(z, p)+147±(c, c, p)-Fr,(z , s, c, P)
(5.3)

V_(z, s, c, P)=-171(z, P)-1-s 2 Y ± (C, c, c, 43)+s,(z , s, c, p)

Here Y , are defined by

±(C, s ,c , 15) = 1 1±(C, c, /3) c, , (5.4)
where

c, p)=--- - r r [g (h ,( 1 3 )+ W ,(7 2 1 , c, 13), p)- g (h± (p), 13)]d121 4

for arbitrarily fixed p  ( 7.1± ). It is noted that
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Y ± (0, s, c, 1 3 )= 0  a n d  Y 1± X%(.1?± )

In the following, we discuss the case of (U t , V+ )  only, because (U_, V_) can be
treated  in  th e  almost same w a y . Therefore we omit the subindex + without
confusion.

Put t=(r, s) and rewrite (5.14 and (5.2) +  as

(ezr"±cer'Ff.r+fys+Ni(r, s)+Fi
T(t, a, 2)= )=0 , zGR + , (5.5)

s"+ces i +g„r+g o s+N2(r, s)d- F2
and

t(0, s, 2)=t(+00, s,  2)=O, (5.6)

where 2=(P, c), f u= aflau(U ° ,  V  0 + szY), f ,  g  and g t, are defined similarly,
N i  a n d  N 2  are higher order terms with respect to t and F, and F, are repre-
sented by

F1 =s 2 U0 "+ceU"±W +cW + f(U° +W , V°+e 2 Y)

F2 =V° 1 +csV 0 ' +? +cs 2 1. 7 +g(U°+W , V +s 2 Y)
E R, . (5.7)

Lem m a 5.1 . There exist some eo >0 and 60 >0 such that f o r any 6E(0, 50)
and 2 A,30 it holds that

K  log el (i=1, 2), (5.8)

where K i  is  a  constant independent o f  e and 2 (i=1, 2).

For the study of (5.5) and (5.6), we introduce two Banach spaces

.k' s (R + )= , s (R + ) X.Po (R+ ) a n d  Y(R + )= X p (R + ) X X p (R + ) .

Here p is  an arbitrarily fixed constant satisfying 0<p< du (=min(p + , p_)).
We define T(t, s, 2) by a  mapping from ./1*( E(R + ) into Y(R + ).

Lem m a 5.2 . Define a  linear operator M, by

d 2d  
AL= +cs + g„(U° +W , V°+ s 2 Y) .dz2 d z

Suppose that M . is a  m apping from  it,(1?+ )  in to X p (R + ). Then there exist
em >0 and Om >) such that M, has an inv erse bounded uniformly i n  s(0 , s m )
and 2c A3m .

Lem m a 5.3 . Define a  linear operator L s by

_ E , cl2
dz2 _

f _c E   d   + f  (uo + w , v0+,2y) .

dz

Suppose that L s is  a mapping from .k. ?0 ,,(R+ )  into X p (R + ). Then under (A.1)'-
(A.4), there exist EL >0 and 3L >0 such that L s has an inverse bounded uniformly
in  se(0 , SL) a n d  2 A3,.
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The proofs of Lemmas 5.1, 5.3 are delegated to Appendices. From Lemmas
5.2 and 5.3, it follows that

Lemma 5.4. There ex ists er >0 such that f or any e (0 , E T )  (ET
=

Inin(EM, EL))
and Ae Aa r  (5 T =min(am, 6L)), T(t, E, 2) has the following properties:
( i )  There exists K,>0 independent of e and 2 such that

II T 2 (t 1 , e , 2) —T 2 (t2 , e,

f o r any  t1 , t2 e./ts , where T 2 is  the Frechét derivative o f  T w ith respect to t.
( ii) F o r suf f iciently  sm all (4 =  sup g u (U °(z, P*), V ° (z, p.) ) , T1(0, s, 2) h as  an

inverse bounded uniformly in  s and 2.
(iii) There exists 1( 2 >0 independent of s and A  such that

17(0, r , 2 )1IY_ K26 110g

where --=-2t,(R + ) and Y =Y(R.,).

Pro o f . ( i )  is obvious and (iii) is a direct consequence o f  Lemma 5.1. We
show (ii) in the similar way to the proof in [Lemma 15, 14]. Let us consider
the linear problem

L, fy(U° +W , V° + s 2 Y ) ) ( r
T,(0, s, 2)t=( = F (5.9)

g u (U°-FW , V° + e2 Y) M,

for F -=`(F r , Fs ) EY(R + ). B y  th e  invertibilities of M , and L c (Lemmas 5.2 and
5.3), (5.9) is reduced to

r L.71 (f,,s - - Fr) (5.10)

J s=— M V(g u r—F,). (5.11)

Substituting (5.10) into (5.11), we have the integral equation for s:

s=M -,-1g„L ifys+ W (F , — guL -s-1F,-). (5.12)

Now we examine the operator S.2, 114V g L ; i f „  which is written as

f2cs=W g.(11 ° , V°)L7lf2 s-FMV4g u LT1f 2 s ,

,

where 4g,,== gu (U ° -FW , V° ±6 2 Y)— g u (U°, V°). It is easily found that [21,s satisfies

(5.13)

where K  and K L  a re  bounds of and respectively and

K f =
 sup I f  U(U

°± W  V° -1- 69 7 )1.
zelt+

We next estimate Q2 ,s with the aid of the representation of as

+.0
G,(z, e)w(e)de ,0
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since Lemma 5.2 implies the existence of such Green's kernel G,(z,e) satisfying

{ c i e- Ptu - E) (0<e<z)
Gs (z ,

c,e z)

w here c, and  c, a re  some positive constants and

— ce - Hs/(cs) 2
— gr(h+(v+),v+)

(see Appendix 8.3). Since (5.14) is applied to Q,,s, it holds that

+00
11Q2,s1Ix p - oG .,(z , E )4gu le P ( ' - E ) (eP I LVf„sl)d

E)114 guIe P ( ' - e )  dell LTV- vs11 x •

Noting that
V ° +E 20Y)I I WI

+  gut,(P +  O W , 17° -1-- E2017 ) I 1E2Y

L<K3 (e - (r+1 ')z + s 2 e- 1")

fo r some positive K , and 0<8<1, w e have

11[22:s11.xp --K ,[ci .fz e- ( ' " ) (E- z) (e- (r+is) E-Fs 2 e- PE)de0

H-c,
, - .

e- ( P ,T+P ) ( e- ' ) (e - ( r±' ) "̀-Fs2 e- re)deilliVivs11.r p

.- E.K,Kr, • Kf s x p
 ( 5 . 1 5 )

f o r  som e positive K , and  any fixed p(0<p ). Thus, from  (5.14) and  (5.15),
w e know  that

11QssIlx,--- KL•Iff(Kma++KiE)11s1Ixp,

w h ic h  sh o w s th a t  Q , is  a  contracting mapping in  X p  f o r  an y  EE(0, sr )  i f  o- +

and  Er  sa tis fy  the condition

K L, • K i (Km a+ + K i er )< 1 . (5.16)

Hence, under the  assumption (5.16), (5.12) has a solution s X p  a n d  there exists
some positive constant K, such that

(5.17)

O n the other hand, from  (5.10) and  (5.11), it holds that

11r11 ,—KL(KflislIx9 + 11F,-11x,),
1 s  1112p 15_Km (K ,W1 x Fs II xp )

± 1

2
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w h ere  K g = s u p  g„(U°+W , V°H-E 2Y ) 1 . These estim ates com bined w ith  (5.17)
zER +

lead to

fo r some positive constant K T  independent of s (0, sT) and  2 A5 1 . T h u s , the
proof is completed.

Now, b y  the  use  o f Lemma 5.4, w e can apply th e  implicit function theorem
(Fife [61) to  th e  problem (5.4), (5.5).

Theorem 5.5. Suppose th at (A.1)—(A.4) hold  and  that a+  is  sm all eno u g h .
T h e n  th e re  e x is t so >0  and  a1>0  such that f o r any  EE(0, s o )  and 2E114 ,  there
exists t(s, 2)EX , satisfy ing

(i) T(t(e, 2), s,
(ii) 2)L-=O  un if orm ly  in  2E A j o

en)

and
(iii) t(E, 2) is uniform ly  continuous w ith respect to  s  and 2 in  th e  k,-topology.

Consequently, we found that (5.14 and  (5.2)+ h a s  a  so lu tio n  (U± (z , s, c, p),
(V +(z , s, c, p)) in  R , fo r  any s (0, so)  and  (c, 13)E A ao.

In  the  alm ost sam e w ay to  the discussion on (5.1)+ a n d  (5.2), we also know
the existence of a solution (U_(z, s, e, p ) ,V _ (z ,s ,c , p)) o f  (5.1)_ and  (5.2Y.

6. The existence o f  so lu tio n s  in  th e  en tire  lin e  R.

In  th is  section, w e  in tend  to  m atch (U+, V + )  w ith  (U_, V_) a t  z= 0  in  th e
C'-sense, b y  ch oo sing  p  a n d  c  appropriate ly . I n  o rder to  do this, we define
two functions 0  and T . b y

 

d0(s, c, 13)= 
d  

U,(0, s, c, P)—  -
d C

U_(0, E, C, 13)
dC

dW(s, c, 13)= ( -d z V+ (0, s, c, P)) 2 —(-dd
z V _(0, E, c, p)y

  

(6.1)

  

Setting D a s  D= {(s, c , p)i s w(O , S o ), (48, c ) A 5 0 } f o r  sufficiently small s o a n d  50,
w e know  from  Theorem  5.5 th a t  0(s, c, 13) and Y r(s, c, p) a r e  uniform ly conti-
nuious in  D . Therefore, 0  a n d  ?P can be continuously extended in  a  w ay that
th e y  a r e  defined in  D. From  th is extension, (ii) o f Theorem 5.5 rew rites (6.1)
fo r s=0 as

{

0(0, c, P)=-d
d
c -W ,(0, c, P) d

d
c W_(0, c, 13)

W (0, c, P)=(-dd ll_(0, P)) 2 — (-dd-z-V9_(0, p))2 .

Noting that

( i ) 0 (0 , c*, p*)=?V(0, c*, p*)=0,

(6.2)
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(ii) 0(0, c, 13*) has a n  isolated zero c=c*,
and
(iii) T. (0, c, 13)=2/( 15) has a n  isolated zero 13 = p ,

we can apply th e  implicit function theorem [Theorem 4.3, 6] to (6.1) a n d  then
we have

Lemma 6 . 1 .  For suff iciently  small E>0, there ex ist P(s) and c(E) such that

0(s, c(s), P(E))=T(s, c(s), P(s))=0
and

lim p(s)= P* ,
E 0

lim c(s)=c*.

Thus, this lemma directly leads to the  m ain  theorem.

Theorem 6.2. Suppose th a t  (A.1)---, (A .4) ho ld  an d  t h a t  cy =min(a + , a _ ) is
f ix ed sm all enough. T hen, for sm all enough s, there ex ists a solution (U(z, c(s)),
V(z, c(s))) of  the problem  (2.3) and (2.2), satisfy ing

11U-(U°+W)II sCR) + 11V — V° 11 X ip  (R) — , 0  a s  E O.

M oreover, the velocity  c(s) satisfies

c(e)—>c* a s  s .

7. Numerical Simulations.

We have found th e  ex is ten ce  o f  an  s-fam ily o f  traveling wave solutions
(U(z, s), V(z, s)) o f  (1.7) (i. e., (2.1)) subject to boundary conditions (2.2). In  this
section, let us show  some pictures o f traveling wave so lu tio n s . T h e  curves of
f =- g = 0  f o r  a= 4.0, b= 1.0, k= 4.0 a n d  e=4.0 a re  drawn in  F ig . 3 where the

• — (,9)
dashed line is v=p=1.18668 and f(u , p * )d u > 0 . F o r these values of the

h+(,5 )
parameters numerical sim ulations were carried o u t  b y  th e  u s e  o f  th e  usual
explicit difference scheme for the initial value problems o f  (1.7). Fig. 4  shows
that the  piecewise linear initial distribution

4 x< —1.5 , 0 x< —1.5 ,
4

uo (x)-= — —1.5<x<1.5, vo(x)= —

4  

x+23 —1.5<x<1.5,

0 x>1.5 , 4 x>1.5 ,

generates a  traveling wave fo r  62 = 0.01 . In  this case , the  velocity of the front
is computed a s  c=0.2 which is approximately o f order s. Another example is
drawn in  F ig . 5 where e9 =0.04 and  the  piecewise linear initial data is

4 x< —4 , 0 x<3,

uo (x )= {— 2x-4 —4<x< —2, vo(x)= 2 x -6 3<x<5,

0 x> —2 , 4 x>5.
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F ig . 3

Fig. 4

U(t,X) V(t,X)

F ig . 5
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This figure illustrates clearly that at the first stage, where the competitive
interaction does not work, the fronts of U  and V  propagate independently with
the same speed a s  that o f Fisher's model and then, at the next stage where
two species are encountered and compete, the fronts of U  and V  move together
from the left to the right with the same speed, as predicted by our result.

8. Appendices.

8 .1 .  The proof of Lemma 4.2.
We consider the case (4.1), only. Define a  nonlinear operator R (W ,,c, 13) by

d' d  
R(W +, c, P)= 

d ( 2
W+-Pc W ++f(h+(P)+W +, p) (8.1)

and regard i t  a s  a  mapping from X 4(R + )x A 6 into X r + (R + ). W e first note
R(W ,((, c*, p*), c*, p*)=0, and that the Frechét derivative o f  R  w ith  respect
to W ,, R w (W + , c, IS) is continuous in the neighborhood of (W ,((, c*, P*), c*, P*).
Let us show that the linear operator R w (W ,((, c*, p*), c*p*) mapping i n t o
X r +  is invertible. To do so, it is sufficient to prove the existence of a unique
solution w (C )E it4(R ,) of

R w (W ,((, c*, P*), c*, 13*)w= k (8.2)

d  
fo r a n y  k  Xr± . Since 95,(()= W ,((, c*, p*) (<0) satisfies R • , = 0 ,  we

d(
easily obtain a unique solution w(C) of (8.2) in the form

ç
e
b+ ;

' 11
)2

 - 1 :2 ''ec * O-F()k()ded27 (8.3)

Here we note that w (()G 5 4 (R ,) for any k(() X,+ . Thus, by the use of the
implicit function theorem, we know that there exists some ô such that (4.1),
has a solution W ,((, c, p) for any fixed (c, p)E11 6 . W e can also discuss the
regularity of W ,((, c, p) with respect to (c, P), since R(W + , c, 13) is at least of
the C'-class. T h e  monotonicity of W ,((, c , p ) can be easily shown by a phase
plane analysis.

Remark. Using the general theory o f ordinary differential equations, we
can conclude that

w +((> c , P) x4 (c .,9 )(1?±).

(See, for example, Coddington and Levinson [2]).

We next show (4.5). Differentiating R (W ,c, p)=0 w ith  respect to  c ,  we
a find that Wc -= a c  W ,((, c, P) satisfies

dR w (W „c, c, p) (8.4)
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d  so that W, is explicitly represented by (8.3) when k is replaced by
d C  

W+ (C, c, p),

because W2(0)= 0. D ifferentiating it w ith  respect to  C  and then putting C=0
and (c, j3)=(c*, 19*), we obtain

d 1 
W,(0, c*, 13*)=

r
+(0) ec 'ç0FF(e)de (8.5)(IC 0 o

On the other hand, it is easily proved that

d a d  W,(0,c*, ,3*)=dc ac d c  w +(° • c*, 13*) •

In the same way as the above, we also obtain

a d 1 W _(0, c, IS* *)= (0 ) 0
- - ec'E (e)deac d C  

Therefore it follows from (8.5) and (8.6) that

a da  d 1   -W+ (0, c*, p*) W(0, c*, p*)=  0 (0 )  c c ec 0 2 ( )det0,(Iac C ac (IC

d  where 95(C)= W(C, c*, p *). Thus, the proof is completed.dC

8 .2 .  The proof of Lemma 5.1.
From (3.6) + , (4.1) + and (5 .4 ), F, and F2 in (5.7) can be rewitten as

F1=s 2 U°"±csU"± f(h(V°)+W, V°H-ssY)— f(h(13)+W, P)

F2=ceV"±ce2y _ e 2122371(0, /9 ) e
- t“c_ g ( h ( v o) ,  VO)

—ig-(h(P)+W, 4
8)—g(h(fi), 48)]±g(h(V°)H-W, V°+e 2 17 ).

Now we divide R + =- {z1z_.0} into /1=[0, —As log s ) and 1"-=[— As log C°)'
for any fixed A>0 and estimate F, and F2 on each in terval. We know that

af dV° R dV ° z+ )z+s2Y(C)] (8.8)a u  dv d z av dz
where

af-a f  = (h(V°)+W+01(h(p)—h(V°)), V°+s 2 Y),au au

af a f  
av = av (h(P)+W,P+82Y+02(8—P-6217))

dh dh= (V°(z)±03(i3—V°(z)))d V  d V
and

dV° dV° = (0,z)dz dz

for some 0 < Oi < 1 (i=1, • • • , 4). Thus, (8.8) is estim ated as

(8.6)

(8.7)
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F11 _62 1U ° "1-kcsIU" -1-K3(z+ 6 2K4)
. E2 1U° " 1+CEIU" l+K 3s(—  A log 6 +61f4 ) o n  /i

for some constants K a a n d  K 4 .  Thus, it follows from U °  X 2
p +  that

I F1 I =O( — A  log 6) .

On the other hand, it is obvious from the first of (8.7) that

IF]. I -- 62 1u° " I+CSIU " I±I f (h(V ° )+W , V°H-E2Y)

—  f(h (r), 17 ° )+ f(h(P), t3)—  f (h(P)+W,

- s 21U°11 1+ csIU " a
a

l
it W +E 2 aa i

v  Y :fu W

where
af af = (h(V")+ + 5 W , V°±eY 2) ,au au

af (h(V°), V 0 +  6 e2Y 2) ,av av

au = (h(P)+ 0 7W , /3),au

for some O i (i=5 , --7). Noting that

W(C) 'cie - r-EC _<cie A r+ l 'g '< c iE A r+ E

for some c1 , we find that, choosing A  sufficiently large as

I W(C) I (z e I )

for some c2. T hen, by using U', L i"  X i i + , we obtain WI I =0(s) on J .  Thus,
we find

p+(,+).5,Kis I log 6 I

for some K1 . In the similar way to the above, we can prove (5.7) for F2 . The
details were seen in  Hosono and Mimura [14].

8.3. The proof Lemma 5.2.
For brevity we omit the index +  and write 24(1?+ )  and X p (R + ) as it?„, and

X , simply. For the proof, it is sufficient to show  that a  mapping from
into X,

d2d  
M o dz2 +" dz ±g„(U°H-W , V")

is invertible. Because, M . is rewritten as

Ms =M2-F(M,—M?) ,

af af

(M,—M?) is regarded as a perturbation since — 12p _1 p :<K6 2 fo r  some K.
We first define Mo by
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cl2  

11/10 —  dz2 
+ Eg o (uo vo) ±  g u (uo vo)h, ( vo i

which is a  mapping from jCO3 into X p , fo r any fixed p' p ' p ) .

Lemma 8.1. Let IS (G/0) be f ixed arbitrarily . Consider the problem

114,0= (z

fo r  any  k o c X p ,. Then Mo is invertible.
dV°Pro o f . It is easy to see that 01= d z  EX 2p÷ (R+) satisfies

/1/4,=-0 a n d  0 1 >0.

Then, by using 01(z) and

0 2(z)==-0,(z) (. '  d Y ( E  X + ) ,
0,(Y)2

the Green function G(z, e) of  Mo can be explicitly written as

e

{01(z)02(e) (0 ,
G ( z ,  ) =

01(e)02(z) (z <  Do) ,
where

I

I G(z , e)1:<c i e-  P+" - e) ( 0 z )  ,

I G(z , e)1 c2e- P-F(E- ') ( z e < +0 0 )  ,
for some c1 a n d  c2. Thus, a solution of (8.9) can be represented by

0(z)= M V iz o =- F G(z , e)ko(e)de ( E  ,)  ,

which implies th e  invertibility o f Mo. T h u s , th e  proof is completed.

We next consider th e  problem

Mçb=k (z R +) .
By the transformation of

0
= e -ccsi2q ,

(8.11) is reduced to

1171 3  dgo(U° , V 0) —  ic-V1 }9 =k  ,

where l i = e i 2)z/z. Write /a°, as

la?---Mo - F(7■1?— M0).

Then, it holds from Lemma 8.1 that fo r ÇSG14, and  1-i0 EX,, that

V — M,71 (1■1 — Mo)g3d h ,

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)
where
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MV(fa2—M0)ç-5= o
+ - G(z, )[gy(LP(e)+W( I 's )  V °(e))— gv(U°(e), V°(e))

— gu(LID( ), V°(e)) d
d

 v
h (V ° (e)) (C

4
)2 ] P)clE (8.15)

dh By noting that
d V

i n  R+ and

g v(r P ( ) + W ( ) ' V c i ( ) ) - gv ( U ° ( ) ' 17‘)(e))

fo r some c,, it follow s from  (8.10) that

IIM -0- 1 0 4 ".— Airok311xp ,

<c,e-r+'els

(cs)
IG(z ,)1c3e-'4-eP'('-e)e9"Ig-5(e)Ide-Fc4

2
4 1k311x,„

( c :1 ) 2 )11'$11,cp ,

fo r some c4 a n d  c„. T hen  (8.14) o r  (8.13) has a  so lu tion  '5'E.'Po, fo r a n y  k
w hen e is appropriately sm all, that is, there exists som e c, such that

Thus, by  putting  p' as
CE

P i =  P 2
(8.12) and (8.13) lead to

11951112, 5c6Illellx p . (8.16)

H ere (8.16) is valid  fo r 0<5<s m  i f  em  is  chosen  as

631 (10 1+5 1)<P<p+ 631 (Ic*14-51)<[t.2

Thus, th e  proof is completed.

dh+ R em ark . In  the  proof o f  (8.16), w e used a  special property, i. e. =O.dVdh _
Since  on  zER_, th e  proof m ust be carried o u t  u n d e r  t h e  assumptiondV
t h a t  r_=  s u p  g u (U°(z , [3*), V°(z , 13*)) is sufficiently small in  (8.15).zER_

8.4. T h e  proof o f  Lemma 5.3.
W e define L° by

d2d  L°= +c +.f.(P(sC)+W(C), V°(eC)) .dC2d C
Here we write

f u ( P ( 4)+W(C), V°(s))=—(go+qi+r,),
where
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0()= f u(U °(0)+W(C), V°(0))—f u (U°(0), V°(0))

— 01(C, 6)=.f.(U °(r)+W (C), V °(sC))— f (U °(0)+W (C), V °(0))
and

—ro—f.(ua(0), vo(o))<o.

Lemma 8 .2 . There exists so >0 such that for any sE[O, so),

(i) — (91-FT0)=-- - 7%(C).-5- 02<0

(ii) lqi i K i sC a n d  1 - q 1 __<K2 s ,

(iii) 1001 5.K8e- i+c

where 0 and Ki  (i-=-1, 2, 3) are  some positive constants independent o f  s and 2.

P ro o f. W e first show  ( i ). W e divide R+ -= I C?„.01 in to  /1=[0, —A log s)
and .11=[— A log s, +co), fo r  any fixed A >O . S ince

— 41(C, ddz U°±fuv d
d

z V°)EC, (8.17)

where
fuu=fuu(LP(EC)+0,(uo(o)—uo(E))±w(c), v°(Ec)) ,

fu0=fuv(P(0)+W(C), V°(r)d- 0 2(V °(0)— V°( r ) ) )

d   — d d  — dU ° =  U°(0 3 r )  a n d  V°= V°(04s)
dz dz dz dz

for some 19i  (0< O i  <1, i=1 ,--4), it  tu rn s  out that

191(C, E)1 Vf4s I log s I i n  /1

for some K4 > 0 .  O n the  other hand, it follow s from  W OE X F ,(R + )  that

E)_ f u(LP(EC), F(sC)) — fu(LP(0), 1"(0))± K 5 s in

fo r some 1-(5 > O. H e r e  w e  note that

dh+\ r
.f.(11°(4 ), V °(EC))—fu(P(0), V

0
(0))=(fuu dV f" )  

d V °

 d z  6 6 '

(8.18)

where
f..—fuu(u°(4)+195(u°(0)—u°(60), v°(6))

fuy=f.0V(0), v°(6)+ 0 6(v°(0)—v°(sC)))

dri+ dh+d  V  dV = (V °(0 )±  7 (V°(sC) V°(0))) and -= (084)dV dV dz dz

fo r some Oi  (i=5-- , 8). Therefore, by using

dh+d V  < 0  and > 0  i n  R + ,dV ' f  " (u ' v )= - (1 -Feu ) 2d z

it is easy to  see
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—91(C, 6)5_ 1(66 in I (8.19)

for some K6 >0. T hus, (8.18) and (8.19) lead to  ( i )  w hen  s is chosen sufficiently
sm all. D ifferentiating — q 1 w ith  respect to  C, w e have

a q i   d=f..(LP(EC)+W (C), V0 (sC))(  d
u
:  s +  d

d
W
c )ac

dV° 
f uy(U° (6C)+W(C), P ( ;) ) 6dz

dW — fun(u°(3)+w(c), V°(0))
'

and then

ac < 1(7s P+Ec+ f ..(u°(EC)+w(c), v°(6c))
dW— f ..(U ° (0) ±W (C), P(0))1 dC

K8sCe-r+c

for som e K i >0 (i=7, 8, 9), w hich  im plies the second of (ii). ( i i i )  is obvious.
Thus, Lemma 8.2 is proved.

Remark. F or the proof of Lemma 8.2 in the case of R_, it is sufficient to
show

d h _ f + f ) 0 ..dV (8.20)

If follows from an elementary calculation that

dV
=

 e a —b —4beU —2be 2U 2

f l1, 24 - 1- J  U1) dU (1- eU) 2

e a —b
(1 - [- e l l )  

<0 .

(ea —b) dh _H ere w e used U>> 0 .  Thus, by noting <0, (8.20) can be proved.(2be) dV

Let us rewrite the problem

L !r= k ( R + ),

1 r (0 )= 0 , r(-1-00) =0 ,
as

L ,F- -= — (A s + B 0)}, = k (C E  R+ ) ,

r(0)=0, r(+ 0 0 )=0  ,

(8.21)

(8.22)

w here F= 1
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Bo(C)=[° 0]Ag)=—[ 11irg) —ci q.(C)
and t (0, k). Since A,(C) has tw o  rea l distinct eigenvalues

2P(C)= 2

A . can be transform ed into the diagonal form  D,

P ; 1 ./1,P ,= D ,= [
-,' 2  0

0  2;

by using the regular m atrix uniform ly in s and C

.1;' (C)= 
IX(C) 2;(C)]

[  1 1 1 .

Thus, by the change of the variable  ? = P ,0  w ith  0= t (wi, w2), (8.22) is reduced
to  the convenient first order system

E,0—{  dd
c D ,  il ed-C,}0=P„Tire (CeR+),

{ w0(0)±w2(0)=0 , w1(+œ)H-w2(+00)=0 ,
(8.23)

dPw here ig,=P; 1130P, and C,-=P ,;'  ( lc   . B y setting  s=0 in (8.22) and  (8.23), we

define the operators Lo and 1:0 b y

dLo —  A0-130 a n d  f o = d  D 0 - 130,dC dC

respectively. Here, let us introduce Banach spaces

and
{0 I e (R+) X Y, ,(R + ), w i(0)+ w 2 (0)=- 0}

fir, I 7,T) ,(R+)xY ,,,(R + )}.

Lemma 8.3. L et f o b e  a  linear m apping f rom  ti„,, in to  37 ,,, f o r  an y  s
and any f ixed p  satisfy ing (3,- s- so and  0 . ,o dri respectively. There exists 50 >0
such that i o has an inverse bounded uniformly in  2c21 60 .

Pro o f . U sin g  the solution çb_F(C) o f  Rw •çb...=0  (in (8.1)), we define 0i , 0 i

(i=1, 2) and 0  by
oi(c)= 0±(C)G Xr+(R.4.)

952(C) = 95 .1(C) 0
Ce - " ( 0 1 (0 ) -  2 67 E X -  r _ (R+) r

'(C) ( 0  ( C )  dd t i ( C ) ) (i=1, 2)
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and
0(C)=(01(C), 02( )).

Since OM is  a  fundamental matrix o f  E0 ,  a  general solution
L0F0=E0 is represented by

7 0 —  V o l,  NO of

Fo(C).= CC)0(0) -1F0(0)±5 c
00(C)0 - '(7))/i0(v)ch7 .

L et us define W(C, 77) by

rC , 0=0 (00 -1 09)

(01(0952(77) - 02(00i(77) --95i(C)02(72)+02(00,(72)\
=e c 12

gi 1(002(77) —  952(C)01(7)) —  01(0952(0+ 02(001(72V

and  decompose it into
yr(c, 72)+ W2( , 72),

where
01(C)952(7)) — 01( ) 952(77)

f 12)=6"7
(95i(C)952(77) — 01(C)02(72))

and

2(C, _— (Cc))::(
2( ) 1( )

777) : 2 (CC ) :1 (7 )11)) •Here, w e note that

1 Ti(C, 77) i e - '+ (z- " )
( O(0 ),

t 1 W2(C, c2e-r-('- (7)>=C),

w h e re  • is  an  appropriate matrix norm.
Thus, a  bounded solution of r of o=k, is represented by

Po(C)- - r
o

° 01(C) 4 ogri(C, )2)ko(v)dry— Org, 77)k 0(72)dv . (8.24)

—From the expression (8.24), any solution gi0—`,wi, - 2 /  o f  r oW0=fi in  P,1',(R.,.) is
given uniquely by

+m
tcT 1 (C)W 22)1i02)4 - 1  P(T 1(C)

7 r 2(C, 72)/Z(77)c172 , (8.25)

which completes th e  proof.

Next, we consider the m ain part dD ,  of 1 .  L et e s± ( c ,  72)  be solu-
tions o f

dc - (8.26)
e:(7) , 72)=1,

then, they a re  represented by



_cose - À 0 " - : ) (772 — C2 - 1- C ) (( Y)<H- 00) ,
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e:(C, )2)=exp(:2,t(72')cly1). (8.27)

Lemma 8 . 4 .  Let 8 - - (C, 72) be )2)—egC, 72). Then, there ex ist s o and
such that the following estimates hold fo r  any

( ;lc Ye+(c '7)

 
<c i e- 2 0(1) - z)

(7di ) j es(c '7)

 
<c2e - À 0(c- 9 )

(–±i-t–) o÷(c 7))

(—ccicYo (c '7)

for 1 =0, 1, where ci  (i=1, ••• , 9) are some constants independent o f E ,  p and c
and

20= inf(,9,0EA3 o

1
—
2

(— c+V c 2 +4 8 2 )

Pro o f . See, for instance, Hoppensteadt [13].

By the  use  o f th is  le m m a , t h e  uniform  invertib ility  o f  -1:?: ye,, is
easily  verified. In  fact, a  so lution of i o s i-i7= T? is represented by

0 ( ) = V ,  0 ) e 2 d .
o HT(C, 72)E(72)d)7 j + m il(C, )2)Te(7))cl72

w here e2 =t(0, 1), E= t (ki, k2),

77) 0
)2)-=

\ 0 0
H T(C, 72)-=

( ei ( 0C, 72))

and  V is  an  arbitrary  c o n s ta n t. Setting C=0 in  th e  above representation, w e
have

( w ,(0)) (  0 ) 77)k i (y)))
dr),

w2(0) 0

so  tha t, by  the condition w1(0)±w 2(0)=0, V is uniquely determined as

+0 .1/=.çe;'(0, 72)k1(72)d7).
0

_
Hence, a solution W  o f f ,?W =k  in  r o,, is uniquely given by

W(c)=(En-k--eT(c, 0 ) ( r ( 0 ,
 77)kicod72)e2

0 E ---E ,0  and (c, 43)E A 5 0 :

((._ 7)< + 0 0 )

(0._72 C) ,

-ISHT(C, Oli(77)d72 j  H p ( c ,  ) 2)fico d , .  (8.28)0
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Since the estimates in Lemma 8.4 hold uniformly in s, (8.28) is valid for s=0.
By th e  u se  o f (8.28), the problem (8.23) is reduced to solving the integral
equation

7,7 e (C)=(r,?) - 1  {(A's —Cs )f,-vs +Plk }

{(E?) - 1 A — Cs)—  (T4) - 1 11017.7) + (ED - T .: 1k •

Operating Eg in the above, we have

ogys—Es{(ED-ici—c.J—(Es)-iijoILT+Es(rz-P-sik • (8.29)

Thus, using Lemma 8.3, we arrive at the integral equation

0, = Q,W s ±re , (8.30)

where Q„,-EcTif(0){(ED-iog—c.)—(Egy-ifial is a  linear operator in f7 ,„,,
fro WaYp, X Y w1(0)-kw2(0)=0} and fi="1-,V "af D - 1 P -E- 1 E.

Lemma 8.5. Let p  be any fixed constant satisfying O p p .  T h e n , there
exist positive constants so and ao  such that

11Qd1; (8.31)

fo r  O e . so and (c, /3)EA d 0  where K  is some constant independent o f e, ie  and c.

P ro o f .  It i'll ' a n d  Eg1117., p „  are uniformly bounded in s, 43 and c,
hence it is sufficient to show

( 0 ) - 1 (
— 0 0 )

11(EO-141s — bo)il ,±11((ED-1---(1,8)-1)b'olii,p,E-17.€=0(e) .

From the uniform invertibility of f ,?, we have

11(210I11;,1, I  (E ) - OL — .40) WI! c ) — Cs —  o)olly (8.32)

Since IL-14o can be written as

b e —  fl0=P,r'B0P0 — PVB0P0

= — PV(Ps — Po)PT 1 B0P€ - FPVB0(P. — P0),
is holds that

Applying Lemma 8.2 to

P,—Po =

and B o ,  we find that

(2,; —0 2_0, A.,7 dP,
2(T) ' dC

/ 0 0\
=  dA  c1,1 

dC  dC

I b's—jjo I I qi I I qo I =0(E)

dP,
dC

dq,
dC =0(s),

and
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so that
(E?) - 1 (B — C — b- 0)17v111+, c6e

where ci  (k = 1 -- , 6) are some positive constants.
Next, we consider

11c/27TO ------ 11((E ) - 1  ( L 1 ) oWI i

From (8.28), (—d-,-)Q20 ( j= 0 , 1 )  is written as
dç

r-F-
ePec ( d  Y Q2 IT=  eP i(

a
 ) 'e (c ,  0 ) )  eta v)e - P"'(130(v)eP'' 1,7)(7)))1dv-dc

/  a  v
) e,T(c, e (o, 7,)e- P'vCij o(v)eP W(7)))idde2Jo

: c Y(HT(C, v) - 1 - 1 cT(C,77))]. I 3 o(v)eP“c - 1 2 ) •eP"7 0()2)d77

j c+ 1 (  a
a
c  )

1 (Hgc, v )—Ht(c, v )dij o(00 ,-(c-7) • eP---v ob2)d,,

—  Q 21+  Q 22 Q 23

where (•), denotes the first component of the vectors. Here, we used the fact
et(C, C)=e,;(C, C)=1. Now, we estimate Q2, (i=1 , 2, 3) with the aid of Lemmas
8.2 and 8.4 in the following. First it is shown that

1(22115_ ePs:( 'a3c0 a 7 (C, CO 0 MO, ri)e - Ps'2(P0(77)eP' 71 re(77))1d72

ePsc( a Ye,T(c 8.'0 22)e- P.', (k(7) )ePsvocoid vac -
+

• e- T +72 clY) 11<c7ce-(2°- Ps (C2+ )5m 
e -2 0v e -

0

+C8Ee—C20—POC e— •Zoi) 2 —p2 .•e e (177iiirdli
0

_ c96111•Tilf-p . , •

Secondly, we have

1 Q221 — CIOE C
oe —  4 ( C — V ) (C 2 + C - 722) • e — '+ '7 • eo ' ( - '7) ch21101117'

5CHE(C2-+C)• e - ' ' ' ' ' ) c e( 2 °- r ÷- P '''' 411011 17
0 P "

<C116(C2+C). " • e(2 0 — r +— Pe) 117,71117  p. ,

+C) • e—r +C 110 11P s C 126 11'0 11P p ,s •

Analogously, we know that
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IQ 2 3C 1 s\c c 2 "') - c)(7/2 —C2+C)e - r-oe'c: - "))411

_. C„s - F t * e - ( 2 °+ns)" - :)(722 +)2)• e- '+' 411 011 P,

C 1 is I Wi7 3 -

Thus, these estim ates lead to

II Q2014 (8.33)

Here Ci  (i=7,••• ,15) are  some positive constants. (8.32) and (8.33) show Lemma 8.5.

Lemma 8.5 im plies that Q, is  a  contracting mapping in  F p ,  s  fo r  sufficiently

sm a ll E ,  so  th a t  w e  c o n c lu d e  th a t  th e re  e x is ts  a  un ique  so lu tion  wE )7 p , ,  of
(8.30). Therefore, th e  problem (8.22) has a  un ique  so lu tion  F=P,T) satisfying

I1F114

w h e re  c  deno tes som e p o sitiv e  co n stan t independent o f  E, A a n d  p. Namely,
iq,, ,(R + ).—>X p (R.,) is invertible uniformly in  E ,  2 a n d  p.
Since L . c a n  b e  w ritte n  a s  L0=L24-fu,(U°+W ,vo±ey)_fu(uo+w, vo) , i t

is a lso  show n that L ,: 27,0(1?+ )--÷X ,(R + ) has an  in v e rse  bounded uniformly in
s, A a n d  p .  T h is  completes th e  proof o f  Lemma 5.3.
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