Singular perturbation approach to traveling waves in competing and diffusing species models

By

Yuzo HOSONO and Masayasu MIMURA

(Communicated by Prof. M. Yamaguti, June 13, 1981)

1. Introduction.

In the field of population dynamics, since Fisher's model had been presented, there have been extensive studies of reaction-diffusion equations of the form

$$\frac{\partial \bar{u}}{\partial t} = D \varDelta \bar{u} + \bar{f}(\bar{u}) , \qquad (1.1)$$

where \bar{u} and \bar{f} are *n* dimensional vectors and *D* is an $n \times n$ constant matrix. It is widely known that (1.1) exhibits a variety of interesting phenomena, in spite of its simplicity. One of them is the appearance of traveling wave fronts. This type of solution is represented by the form

$$\overline{U}(z) = \overline{u}(x - ct)$$

where c is a velocity vector. This function \overline{U} necessarily satisfies the following system of ordinary differential equations

$$D\bar{U}'' + c\bar{U}' + f(\bar{U}) = 0$$
, (1.2)

subject to appropriate boundary conditions imposed at $z=\pm\infty$, where '=d/dz. When n=1, the existence of $\overline{U}(z, c)$ and its stability were almost completely discussed by many authors. For $n=2\sim4$, there are some results on biological models such as Nagumo's equation, Hodgikin-Huxley's equation, and Field-Noyes's equation (see, for instance, [1, 5, 12]). However, there has not been as yet any powerful general theory for any n, except topological methods developed by Conley [3].

In the framework of (1.1), we discuss here a model of two competing and diffusing species described by

$$\frac{\partial u}{\partial t} - d_1 \frac{\partial^2 u}{\partial x^2} = f_0(u, v)u$$
,
(1.3)
$$\frac{\partial v}{\partial t} - d_2 \frac{\partial^2 v}{\partial x^2} = g_0(u, v)v$$

where u and v are the population densities of the two species. It is assumed from the competitive interaction that f_0 and g_0 satisfy

$$f_0(0, 0) > 0$$
, $g_0(0, 0) > 0$, $\frac{\partial f_0}{\partial v} < 0$ and $\frac{\partial g_0}{\partial u} < 0$.

Under further additional conditions on f_0 and g_0 , Tang and Fife [16] proved the existence of solutions (U(z), V(z)) of (1.3) joining the stable rest state (u^*, v^*) (>0) satisfying $f_0(u^*, v^*) = g_0(u^*, v^*) = 0$ at $z = +\infty$ with the unstable one (0, 0) at $z = -\infty$, and Gardner [10], Conley and Gardner [4] have recently found a traveling wave solutions joining two stable rest states $(u_0, 0)$ and $(0, v_0)$ where u_0 and v_0 satisfy $f_0(u_0, 0) = g_0(0, v_0) = 0$. The latter solution is of interest from an ecological point of view. Suppose that (U(z), V(z)) satisfy

$$U(+\infty) = u_0, \qquad V(+\infty) = 0, U(-\infty) = 0, \qquad V(-\infty) = v_0.$$
(1.4)

This specifies the habitats of two species at infinity $z \to \pm \infty$. If c > 0 (resp. <0), both diffusing and competing species move in the right (resp. left) direction and then one of the species, [v] (resp. [u]) is dominant asymptotically and if c=0, they coexist. Thus, it is of ecological importance to know the sign of c.

In this paper we restrict the nonlinearities (f_0, g_0) to

$$\begin{cases} f_0(u, v) = a_1 - b_1 u - \frac{k_1 v}{1 + e_1 u} \\ g_0(u, v) = a_2 - b_2 v - \frac{k_2 u}{1 + e_2 v} \end{cases},$$
(1.5)

where a_i , b_i , k_i and e_i (i=1, 2) are all positive constants, and seek the sign of the velocity c of traveling wave solutions. In the absence of e_i (i=1, 2), f_0 and g_0 are the classical competitive interaction term proposed by Volterra. The presence of e_i states that the intracompetition rate of each species decreases as the population number increases. If $e_i=+\infty$, (1.3) with (1.5) is formally reduced to Fisher's equation of the form

$$w_t = dw_{xx} + (a - bw)w \tag{1.6}$$

with positive constants a and b. Then in this case, it is well known that u (resp. v) moves in the right (resp. left) direction with any fixed velocity $c > 2\sqrt{d_1a_1}$ (resp. $< -2\sqrt{d_2a_2}$) under the conditions (1.4). This situation also occurs in the case where $v \equiv 0$ (resp. $u \equiv 0$), i. e., only one species exists in the entire line. Murray [15], Gibbs [11] and Troy [17] discussed the system similar to (1.5) with $a_2 = b_2 = e_1 = e_2 = 0$ derived from the Belousov-Zhabotinskii reaction and showed traveling wave solutions with some velocity c > 0.

To make the discussion simple only, let us consider here a simplified model of (1.5)

$$\frac{\partial u}{\partial t} - \varepsilon^2 \frac{\partial^2 u}{\partial x^2} = \left(a - bu - \frac{kv}{1 + eu}\right) u \equiv f(u, v)$$

$$\frac{\partial v}{\partial t} - \frac{\partial^2 v}{\partial x^2} = (a - bv - ku) v \equiv g(u, v).$$
(1.7)

Unfortunately we must make the following assumption

$$(A.1) 0 \leq \varepsilon^2 \ll 1$$

though this restriction was not needed in [4], to reduce the difficulty of the problem so that the singular perturbation technique developed by Fife [8] can be applied to (1.7). Following his asymptotic analysis, we can succeed in proving the existence of an ε -family of solutions $(U(z, c(\varepsilon)), V(z, c(\varepsilon)))$ and finding the sign of $c(\varepsilon)$ under some conditions on the coefficients a, b, k and e.

2. Formulation.

We are concerned with traveling wave solutions of (1.7), that is, (U(z), V(z))where $z=x-c(\varepsilon)t$ of

$$\varepsilon^{2}U'' + c(\varepsilon)U' + f(U, V) = 0$$

$$V'' + c(\varepsilon)V' + g(U, V) = 0$$
, $z \in \mathbb{R}$, (2.1)

subject to the boundary conditions

$$U(-\infty) = \frac{a}{b}, \qquad U(+\infty) = 0,$$

$$V(-\infty) = 0, \qquad V(+\infty) = \frac{a}{b}.$$
(2.2)

We make essential assumptions as follows:

$$(A.2) b < k ,$$

which indicates that two rest states $P_-=(a/b, 0)$ and $P_+=(0, a/b)$ of the corresponding kinetic equations to (1.7) are asymptotically stable.

(A.3)
$$c(\varepsilon) = O(\varepsilon)$$
.

This restriction is required from the situation that, when e is large enough, the velocity of [u] is expected to be of order ε . Then we regard $c(\varepsilon)$ as $\varepsilon c(\varepsilon)$ where $c(\varepsilon)=O(1)$. The resulting system from (2.1) is

$$\varepsilon^{2}U'' + \varepsilon c(\varepsilon)U' + f(U, V) = 0, \qquad z \in \mathbf{R}.$$

$$V'' + \varepsilon c(\varepsilon)V' + g(U, V) = 0, \qquad (2.3)$$

Since solutions have translation invariance, we normalize U by

$$U(0) = \alpha \in \left(0, \frac{a}{b}\right)$$

for fixed α and furthermore we put

$$V(0) = \beta \in \left(0, \frac{a}{b}\right)$$

for some β which will be determined later as a function of ε . Our aim is to show the existence of slowly traveling wave solutions (U(z), V(z)) joining P_{-} to P_{+} .

Throughout this paper, we use the following function spaces:

(1)
$$X_{\rho}(I) = \{u(z) \mid \|u\|_{X_{\rho}(I)} \equiv \sup_{z \in I} e^{\rho |z|} |u(z)| < +\infty, \quad u \in C(I)\}$$

(2) $X_{\rho}^{m}(I) = \{u(z) \mid \|u\|_{X_{\rho}^{m}(I)} \equiv \sum_{i=0}^{m} \left\| \left(\frac{d}{dz} \right)^{i} u \right\|_{X_{\rho}(I)} < +\infty, \quad u \in C^{m}(I) \}$
(3) $X_{\rho,\varepsilon}^{m}(I) = \{u(z) \mid \|u\|_{X_{\rho,\varepsilon}^{m}(I)} \equiv \sum_{i=0}^{m} \left\| \left(\varepsilon \frac{d}{dz} \right)^{i} u \right\|_{X_{\rho}(I)} < +\infty, \quad u \in C^{m}(I) \}$
(4) $\hat{X}_{\rho}^{m}(I) = \{u(z) \mid u \in X_{\rho}^{m}(I), \quad u(0) = 0\}$
(5) $\hat{X}_{\rho,\varepsilon}^{m}(I) = \{u(z) \mid u \in X_{\rho,\varepsilon}^{m}(I), \quad u(0) = 0\}$
(6) $Y_{\rho,\varepsilon}^{m}(I) = \{u(\zeta) \mid \|u\|_{Y_{\rho,\varepsilon}^{m}} = \sum_{i=0}^{m} \sup_{\zeta \in I} e^{\rho \varepsilon |\zeta_{i}|} \left| \left(\frac{d}{d\zeta} \right)^{i} u(\zeta) \right| < +\infty, \quad u \in C^{m}(I) \}$
(7) $\hat{Y}_{\rho,\varepsilon}^{m}(I) = \{u(\zeta) \mid u \in Y_{\rho,\varepsilon}^{m}, \quad u(0) = 0\},$
where I denotes $\mathbf{R}_{+}, \mathbf{R}_{-}$ or \mathbf{R} .

3. Reduced problem.

First we consider the reduced problem by putting $\varepsilon = 0$ in (2.3). The resulting system is

$$\begin{array}{l}
f(U, V) = 0 \\
V'' + g(U, V) = 0
\end{array}, \quad z \in \mathbb{R},$$
(3.1)

subject to (2.2). From the first of (3.1), we define $U = h_{\beta}(V)$ by

$$U = h_{\beta}(V) = \begin{cases} h_{+}(V) \equiv 0 & \text{for } V > \beta \\ h_{-}(V) = \{ae - b + \lfloor (ae + b)^{2} - 4bkeV \rfloor^{1/2} \} / (2be) \\ & \text{for } 0 < V < \beta. \end{cases}$$
(3.2)

Here $\beta \in I_0 = I_+ \cap I_-$ is arbitrarily fixed where $I_+ = (0, a/b)$ and $I_- = (0, v_c)$ $(v_c = \max(a/k, (ae+b)^2/(4bke)))$ (see Fig. 1).

Then, (3.1) is reduced to

$$V'' + g_{\beta}(V) = 0, \qquad z \in \mathbb{R}, \qquad (3.3)$$

where $g_{\beta}(V) = g(h_{\beta}(V), V)$. The boundary conditions are

$$V(-\infty) = 0, \qquad V(+\infty) = \frac{a}{b}.$$
(3.4)

We normalize V(z) by putting

$$V(0) = \beta . \tag{3.5}$$

Now we consider the problems

$$\begin{cases} V'' + g_{\pm}(V) = 0, & z \in \mathbf{R}_{\pm} \\ V(0) = \beta, & V(\pm \infty) = v_{\pm}, \end{cases}$$
(3.6)_{\pm}

where $g_{\pm}(V) = g(h_{\pm}(V)V)$, $v_{+} = a/b$ and $v_{-} = 0$.

Lemma 3.1. Consider the problems $(3.6)_{\pm}$ under (A.2). There exist uniquely monotone increasing solutions $V_{\pm}^{0}(z, \beta)$ ($z \in \mathbf{R}_{\pm}$) satisfying

$$V^{0}_{-}(z, \beta) \in X^{2}_{\mu_{-}}(\mathbf{R}_{-}) \text{ and } \left(\frac{a}{b} - V^{0}_{+}(z, \beta)\right) \in X^{2}_{\mu_{+}}(\mathbf{R}_{+}),$$

where $\mu_{\pm} = \sqrt{-g'_{\pm}(v_{\pm})}$.

The proof is seen in Fife [Lemma 2.1, 7].

(A.3)
$$J(\beta) = \int_{v_-}^{v_+} g_{\beta}(s) ds$$
 has a unique isolated zero at $\beta = \beta^* \in I_0$.

Remark. If $(ae+b)^2/(4bke) > a/b$, (A.3) is satisfied.

Lemma 3.2. Consider the problem (3.3)~(3.5). When $\beta = \beta^*$, there exists a unique monotone increasing solution $V^{\circ}(z, \beta^*) \in C^1(\mathbf{R})$ which is constructed by

$$V^{0}(z, \beta^{*}) = \begin{cases} V^{0}_{+}(z, \beta^{*}), & z \in \mathbf{R}_{+}, \\ V^{0}_{-}(z, \beta^{*}), & z \in \mathbf{R}_{-}. \end{cases}$$

Moreover, $V^{0}(z, \beta^{*})$ satisfies

$$V^{0}(z, \beta^{*}) \in X^{2}_{\mu}(\mathbf{R}_{-}) \text{ and } \left(\frac{a}{b} - V^{0}(z, \beta^{*})\right) \in X^{2}_{\mu}(\mathbf{R}_{+}),$$

where $\mu = \min(\mu_+, \mu_-)$.

The proof is the direct consequence of Lemma 3.1.

From the function $V^{0}(z, \beta^{*})$, we define $U^{0}(z, \beta^{*})$ by

$$U^{0}(z, \beta^{*}) = \begin{cases} h_{+}(V^{0}(z, \beta^{*})), & z \in \mathbf{R}_{+}, \\ h_{-}(V^{0}(z, \beta^{*})), & z \in \mathbf{R}_{-}. \end{cases}$$

Since $U^{0}(z, \beta^{*})$ is discontinuous at z=0 only, one may expect that $(U^{0}(z, \beta^{*}), \beta^{*})$

 $V^{0}(z, \beta^{*})$) play a nice approximation to a solution of (2.3) and (2.2) outside the neighborhood of z=0 (Fig. 2).

4. Boundary layer solutions.

Since $U^0(z, \beta^*)$ has a discontinuity of the first kind at z=0, we must modify $U^0(z, \beta^*)$ to become an approximation to a solution in the neighborhood of z=0. For this purpose, we introduce the stretched variable $\zeta = z/\varepsilon$ in this neighborhood and define boundary layer corrections $W_{\pm}(\zeta, c, \beta)$ by solutions of the problems

$$\begin{cases} \ddot{W}_{\pm} + c\dot{W}_{\pm} + f(h_{\pm}(\beta) + W_{\pm}, \beta) = 0, \quad \zeta \in \mathbf{R}_{\pm}, \\ W_{\pm}(0) = \alpha - h_{\pm}(\beta), \\ W_{\pm}(\pm \infty) = 0, \end{cases}$$

$$(4.1)_{\pm}$$

where $\cdot = d/d\zeta$ and α is a fixed constant satisfying $\alpha \in (h_+(\beta), h_-(\beta))$. Here we assume that $a/k < \xi$ (=($ae+b)^2/(4bke$)). For any $\beta \in (a/k, \xi)$, there exists some $h_0(\beta) \in (h_+(\beta), h_-(\beta))$ such that

$$f(h_0(\beta), \beta) = 0,$$

$$f(u, \beta) < 0 \quad \text{for} \quad h_+(\beta) < u < h_0(\beta),$$

$$f(u, \beta) > 0 \quad \text{for} \quad h_0(\beta) < u < h_-(\beta),$$

$$f_u(h_\pm(\beta), \beta) < 0.$$
(4.2)

Lemma 4.1. Consider the problem

$$\begin{cases} \ddot{W} + c\dot{W} + f(W, \beta) = 0, \quad \zeta \in \mathbf{R}, \\ W(\pm \infty) = h_{\pm}(\beta) \quad and \quad W(0) = \alpha, \end{cases}$$

$$(4.3)$$

for any fixed $\beta \in (a/k, \xi)$. Then there exists $c_0(\beta)$ such that (4.3) has a unique strictly monotone decreasing solution $W(\zeta, c_0(\beta), \beta)$ satisfying

$$|W(\zeta, c_0(\beta), \beta) - h_{\pm}(\beta)| \in X^2_{\tau_{0\pm}(\beta)}$$
 for $\zeta \in \mathbf{R}_{\pm}$,

where

$$\tau_{0\pm}(\beta) = \frac{1}{2} \left[c_0(\beta) \pm \{ c_0(\beta)^2 - 4f_u(h_{\pm}(\beta), \beta) \}^{1/2} \right]$$

and

$$\operatorname{sign}(c_0(\beta)) = \operatorname{sign}\left(\int_{n_+}^{n_-} f(s, \beta) ds\right).$$

The proof is seen in, for example, Fife and McLeod [9].

(A.4)
$$\beta^* \in \left(\frac{a}{k}, \xi\right).$$

Remark. (A.4) is satisfied if k/b>3 and $e\gg1$.

Lemma 4.2. Let c^* and $\tau_{\pm}(c, \beta)$ be

$$c^* = c_0(\beta^*) \text{ and } \tau_{\pm}(c, \beta) = \frac{1}{2} [c \pm \{c^2 - 4f_u(h_{\pm}(\beta), \beta)\}^{1/2}].$$

Under (A.1)~(A.4), there exists $\delta > 0$ such that for any fixed $(c, \beta) \in \Lambda_{\delta} \equiv \{(c, \beta) | | c - c^*| + | \beta - \beta^*| \leq \delta\}, (4.1)_{\pm}$ have unique strictly monotone decreasing solutions $W_{\pm}(\zeta, c, \beta)$ satisfying

$$|W_{\scriptscriptstyle\pm}(\zeta,\,c,\,\beta) \!-\! h_{\scriptscriptstyle\pm}(\beta)| \!\in\! X^2_{\tau_{\scriptscriptstyle\pm}}(\boldsymbol{R})\,,$$

where $\bar{\tau}_{+} = \inf_{(c,\beta) \in A_{\delta}} \tau_{+}(c,\beta)$ and $\bar{\tau}_{-} = \sup_{(c,\beta) \in A_{\delta}} \tau_{-}(c,\beta)$. Furthemore, $W_{\pm}(\zeta, c,\beta)$ are continuous with respect to $(c,\beta) \in A_{\delta}$ in the $X_{\tau_{+}}^{2}$ -topology and

$$\left[\frac{\partial}{\partial c}\left(\frac{dW_{+}}{d\zeta}(0, c, \beta)\right) - \frac{\partial}{\partial c}\left(\frac{dW_{-}}{d\zeta}(0, c, \beta)\right)\right]_{\substack{\beta=0^{*}\\\beta=\beta^{*}}} \neq 0.$$
(4.5)

The proof is delegated to Appendices.

5. The existence of solutions in half lines R_{\pm} .

In this section, we consider the following problems

$$\varepsilon^{2}U_{\pm}'' + \varepsilon c U_{\pm}' + f(U_{\pm}, V_{\pm}) = 0, \qquad z \in \mathbf{R}_{\pm}, \qquad (5.1)_{\pm}$$

$$U_{\pm}(0) = \alpha , \qquad V_{\pm}(0) = \beta , U_{\pm}(\pm \infty) = h_{\pm}(v_{\pm}) , \quad V_{\pm}(\pm \infty) = v_{\pm} .$$
(5.2)_±

Here we assume that (c, β) is close to (c^*, β^*) . We seek solutions $(U_{\pm}(z), V_{\pm}(z))$ of $(5.1)_{\pm}$ and $(5.2)_{\pm}$ in the form

$$U_{\pm}(z, \varepsilon, c, \beta) = U_{\pm}^{0}(z, \beta) + W_{\pm}(\zeta, c, \beta) + r_{\pm}(z, \varepsilon, c, \beta)$$

$$V_{\pm}(z, \varepsilon, c, \beta) = V_{\pm}^{0}(z, \beta) + \varepsilon^{2}Y_{\pm}(\zeta, \varepsilon, c, \beta) + s_{\pm}(z, \varepsilon, c, \beta), \qquad z \in \mathbf{R}_{\pm}.$$
(5.3)

Here Y_{\pm} are defined by

$$Y_{\pm}(\zeta, \varepsilon, c, \beta) = Y_{1\pm}(\zeta, c, \beta) - Y_{1\pm}(0, c, \beta) e^{\mp \tilde{\mu} \varepsilon \zeta}, \qquad (5.4)$$

where

$$Y_{1\pm}(\zeta, c, \beta) = -\int_{\zeta}^{\pm\infty} \int_{\eta}^{\pm\infty} [g(h_{\pm}(\beta) + W_{\pm}(\eta_1, c, \beta), \beta) - g(h_{\pm}(\beta), \beta)] d\eta_1 d\eta$$

for arbitrarily fixed $\tilde{\mu} \ (\geq \mu_{\pm})$. It is noted that

 $Y_{\pm}(0, \varepsilon, c, \beta) = 0$ and $Y_{1\pm} \in X^2_{\tau_{\pm}}(\boldsymbol{R}_{\pm})$.

In the following, we discuss the case of (U_+, V_+) only, because (U_-, V_-) can be treated in the almost same way. Therefore we omit the subindex + without confusion.

Put t = (r, s) and rewrite $(5.1)_{+}$ and $(5.2)_{+}$ as

$$T(t, \varepsilon, \lambda) = \begin{pmatrix} \varepsilon^2 r'' + c \varepsilon r' + f_u r + f_v s + N_1(r, s) + F_1 \\ s'' + c \varepsilon s' + g_u r + g_v s + N_2(r, s) + F_2 \end{pmatrix} = 0, \quad z \in \mathbb{R}_+,$$
(5.5)

and

$$t(0, \varepsilon, \lambda) = t(+\infty, \varepsilon, \lambda) = 0, \qquad (5.6)$$

where $\lambda = (\beta, c)$, $f_u = \partial f / \partial u (U^0 + W, V_0 + \varepsilon^2 Y)$, f_v , g_u and g_v are defined similarly, N_1 and N_2 are higher order terms with respect to t and F_1 and F_2 are represented by

$$\begin{cases} F_1 = \varepsilon^2 U^{0''} + c \varepsilon U^{0'} + \ddot{W} + c \dot{W} + f(U^0 + W, V^0 + \varepsilon^2 Y) \\ F_2 = V^{0''} + c \varepsilon V^{0'} + \ddot{Y} + c \varepsilon^2 \dot{Y} + g(U^0 + W, V + \varepsilon^2 Y) \end{cases}, \quad z \in \mathbf{R}_+.$$
(5.7)

Lemma 5.1. There exist some $\varepsilon_0 > 0$ and $\delta_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$ and $\lambda \in \Lambda_{\delta_0}$ it holds that

$$||F_i||_{X\mu_+} \leq K_i \varepsilon |\log \varepsilon| \qquad (i=1, 2), \tag{5.8}$$

where K_i is a constant independent of ε and λ (i=1, 2).

For the study of (5.5) and (5.6), we introduce two Banach spaces

$$\dot{X}_{\varepsilon}(\boldsymbol{R}_{+}) = \dot{X}_{\rho,\varepsilon}^{2}(\boldsymbol{R}_{+}) \times \dot{X}_{\rho}^{2}(\boldsymbol{R}_{+}) \text{ and } Y(\boldsymbol{R}_{+}) = X_{\rho}(\boldsymbol{R}_{+}) \times X_{\rho}(\boldsymbol{R}_{+})$$

Here ρ is an arbitrarily fixed constant satisfying $0 < \rho < \mu$ (=min(μ_+ , μ_-)). We define $T(t, \varepsilon, \lambda)$ by a mapping from $\mathring{X}_{\varepsilon}(\mathbf{R}_+)$ into $Y(\mathbf{R}_+)$.

Lemma 5.2. Define a linear operator M_{ε} by

$$M_{\varepsilon} \equiv \frac{d^2}{dz^2} + c \varepsilon \frac{d}{dz} + g_{v}(U^{0} + W, V^{0} + \varepsilon^{2}Y).$$

Suppose that M_{ε} is a mapping from $\mathring{X}^{2}_{\rho}(\mathbf{R}_{+})$ into $X_{\rho}(\mathbf{R}_{+})$. Then there exist $\varepsilon_{M} > 0$ and $\delta_{M} > 0$ such that M_{ε} has an inverse bounded uniformly in $\varepsilon \in (0, \varepsilon_{M})$ and $\lambda \in \Lambda_{\delta_{M}}$.

Lemma 5.3. Define a linear operator L_{ε} by

$$L_{\varepsilon} \equiv \varepsilon^2 \frac{d^2}{dz^2} + c \varepsilon \frac{d}{dz} + f_u(U^0 + W, V^0 + \varepsilon^2 Y) \,.$$

Suppose that L_{ε} is a mapping from $\dot{X}^{2}_{\rho,\epsilon}(\mathbf{R}_{+})$ into $X_{\rho}(\mathbf{R}_{+})$. Then under (A.1)~ (A.4), there exist $\varepsilon_{L} > 0$ and $\delta_{L} > 0$ such that L_{ε} has an inverse bounded uniformly in $\varepsilon \in (0, \varepsilon_{L})$ and $\lambda \in \Lambda_{\delta_{L}}$.

The proofs of Lemmas $5.1 \sim 5.3$ are delegated to Appendices. From Lemmas 5.2 and 5.3, it follows that

Lemma 5.4. There exists $\varepsilon_T > 0$ such that for any $\varepsilon \in (0, \varepsilon_T)$ ($\varepsilon_T = \min(\varepsilon_M, \varepsilon_L)$) and $\lambda \in \Lambda_{\delta_T}$ ($\delta_T = \min(\delta_M, \delta_L)$), $T(t, \varepsilon, \lambda)$ has the following properties: (i) There exists $K_1 > 0$ independent of ε and λ such that

$$\|T_{t}(t_{1}, \varepsilon, \lambda) - T_{t}(t_{2}, \varepsilon, \lambda)\|_{X_{\varepsilon} \to Y}^{*} \leq K_{1}\|t_{1} - t_{2}\|_{X_{\varepsilon}}^{*}$$

for any $t_1, t_2 \in \mathring{X}_{\varepsilon}$, where T_t is the Frechét derivative of T with respect to t. (ii) For sufficiently small $\sigma_+ = \sup_{z \in R_+} g_u(U^0(z, \beta^*), V^0(z, \beta^*)), T_t(0, \varepsilon, \lambda)$ has an

inverse bounded uniformly in
$$\varepsilon$$
 and λ .

(iii) There exists
$$K_2 > 0$$
 independent of ε and λ such that

$$||T(0, \varepsilon, \lambda)||_Y \leq K_2 \varepsilon |\log \varepsilon|,$$

where $\mathring{X}_{\varepsilon} = \mathring{X}_{\varepsilon}(R_{+})$ and $Y = Y(R_{+})$.

Proof. (i) is obvious and (iii) is a direct consequence of Lemma 5.1. We show (ii) in the similar way to the proof in [Lemma 15, 14]. Let us consider the linear problem

$$T_{\iota}(0, \varepsilon, \lambda)t = \begin{pmatrix} L_{\varepsilon} & f_{\upsilon}(U^{0} + W, V^{0} + \varepsilon^{2}Y) \\ g_{u}(U^{0} + W, V^{0} + \varepsilon^{2}Y) & M_{\varepsilon} \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix} = F$$
(5.9)

for $F = {}^{t}(F_{r}, F_{s}) \in Y(\mathbf{R}_{+})$. By the invertibilities of M_{ε} and L_{ε} (Lemmas 5.2 and 5.3), (5.9) is reduced to

$$\int r = -L_{\varepsilon}^{-1}(f_v s - F_r)$$
(5.10)

$$\int s = -M_{\varepsilon}^{-1}(g_u r - F_s) \,. \tag{5.11}$$

Substituting (5.10) into (5.11), we have the integral equation for s:

$$s = M_{\varepsilon}^{-1} g_u L_{\varepsilon}^{-1} f_v s + M_{\varepsilon}^{-1} (F_s - g_u L_{\varepsilon}^{-1} F_r) .$$
(5.12)

Now we examine the operator $\Omega_{\varepsilon} \equiv M_{\varepsilon}^{-1} g_u L_{\varepsilon}^{-1} f_v$ which is written as

$$\begin{split} \mathcal{Q}_{\varepsilon} s = & M_{\varepsilon}^{-1} g_{u} (U^{0}, V^{0}) L_{\varepsilon}^{-1} f_{v} s + M_{\varepsilon}^{-1} \varDelta g_{u} L_{\varepsilon}^{-1} f_{v} s , \\ \\ \equiv & \mathcal{Q}_{1\varepsilon} s + \mathcal{Q}_{2\varepsilon} s , \end{split}$$

where $\Delta g_u \equiv g_u(U^0 + W, V^0 + \varepsilon^2 Y) - g_u(U^0, V^0)$. It is easily found that $\Omega_{1\varepsilon}s$ satisfies

$$\|\mathcal{Q}_{1\varepsilon}s\|_{X_{\rho}} \leq K_{M} \cdot \sigma_{+} K_{L} K_{f} \|s\|_{X_{\rho}}, \qquad (5.13)$$

where K_M and K_L are bounds of M_{ε}^{-1} and L_{ε}^{-1} respectively and

$$K_f = \sup_{z \in R_+} |f_u(U^0 + W, V^0 + \varepsilon^2 Y)|.$$

We next estimate $Q_{2\varepsilon}s$ with the aid of the representation of M_{ε}^{-1} as

$$M_{\varepsilon}^{-1}w = \int_{0}^{+\infty} G_{\varepsilon}(z, \xi)w(\xi)d\xi , \qquad (5.14)$$

since Lemma 5.2 implies the existence of such Green's kernel $G_{\varepsilon}(z, \xi)$ satisfying

$$|G_{\varepsilon}(z, \xi)| \leq \begin{cases} c_1 e^{-\mu_{\varepsilon}^+(z-\xi)} & (0 \leq \xi \leq z) \\ c_2 e^{-\mu_{\varepsilon}^-(\xi-z)} & (z \leq \xi < +\infty) \,, \end{cases}$$

where c_1 and c_2 are some positive constants and

$$\mu_{\varepsilon}^{\pm} = \frac{1}{2} \left| -c \varepsilon \pm \sqrt{(c \varepsilon)^2 - g_{v}(h_{+}(v_{+}), v_{+})} \right|,$$

(see Appendix 8.3). Since (5.14) is applied to $\Omega_{2\varepsilon}s$, it holds that

$$\begin{split} \|\mathcal{Q}_{2\varepsilon}s\|_{X_{\rho}} &\leq \int_{0}^{+\infty} |G_{\varepsilon}(z, \varepsilon) \varDelta g_{u}| e^{\rho(z-\xi)} (e^{\rho\xi} |L_{\varepsilon}^{-1}f_{v}s|) d\xi \\ &\leq \int_{0}^{+\infty} |G_{\varepsilon}(z, \varepsilon)| |\varDelta g_{u}| e^{\rho(z-\xi)} d\xi \|L_{\varepsilon}^{-1}f_{v}s\|_{X_{\rho}}. \end{split}$$

Noting that

$$\begin{aligned} |\varDelta g_{u}| &\leq |g_{uu}(U^{0} + \theta W, V^{0} + \varepsilon^{2} \theta Y)| |W| \\ &+ |g_{uv}(U^{0} + \theta W, V^{0} + \varepsilon^{2} \theta Y)| |\varepsilon^{2}Y| \\ &\leq K_{3}(e^{-(\tau + /\varepsilon)^{2}} + \varepsilon^{2} e^{-/\varepsilon^{2}}) \end{aligned}$$

for some positive K_3 and $0 < \theta < 1$, we have

$$\|\mathcal{Q}_{2\varepsilon}s\|_{x_{\rho}} \leq K_{3} \bigg[c_{1} \int_{0}^{z} e^{-(\mu_{\varepsilon}^{+}+\rho)(\xi-z)} (e^{-(\tau+/\varepsilon)\xi} + \varepsilon^{2} e^{-\mu\xi}) d\xi \\ + c_{2} \int_{\varepsilon}^{+\infty} e^{-(\mu_{\varepsilon}^{-}+\rho)(\xi-z)} (e^{-(\tau+/\varepsilon)\xi} + \varepsilon^{2} e^{-\mu\xi}) d\xi \bigg] \|L_{\varepsilon}^{-1} f_{v}s\|_{x_{\rho}}$$

$$\leq \varepsilon K_{4} K_{L} \cdot K_{f} \|s\|_{x_{\rho}}$$
(5.15)

for some positive K_4 and any fixed $\rho(0 < \rho \leq \mu_{\varepsilon}^+)$. Thus, from (5.14) and (5.15), we know that

$$\|\Omega_{\varepsilon}s\|_{X_{\rho}} \leq K_L \cdot K_f(K_M\sigma_+ + K_4\varepsilon)\|s\|_{X_{\rho}}$$

which shows that Ω_{ε} is a contracting mapping in X_{ρ} for any $\varepsilon \in (0, \varepsilon_T)$ if σ_+ and ε_T satisfy the condition

$$K_L \cdot K_f (K_M \sigma_+ + K_4 \varepsilon_T) < 1.$$
(5.16)

Hence, under the assumption (5.16), (5.12) has a solution $s \in X_{\rho}$ and there exists some positive constant K_5 such that

$$\|s\|_{X_{\rho}} \leq K_{5} \|F\|_{Y_{\rho}} \,. \tag{5.17}$$

On the other hand, from (5.10) and (5.11), it holds that

$$\begin{cases} \|r\|_{X_{\rho,s}^{2}} \leq K_{L}(K_{f}\|s\|_{X_{\rho}} + \|F_{r}\|_{X_{\rho}}), \\ \|s\|_{X_{\rho}^{2}} \leq K_{M}(K_{g}\|r\|_{X_{\rho}} + \|F_{s}\|_{X_{\rho}}), \end{cases}$$

where $K_g = \sup_{z \in R_+} |g_u(U^0 + W, V^0 + \varepsilon^2 Y)|$. These estimates combined with (5.17) lead to

$$||t||_{X_s} \leq K_T ||F||_Y$$

for some positive constant K_T independent of $\varepsilon \in (0, \varepsilon_T)$ and $\lambda \in \Lambda_{\delta_1}$. Thus, the proof is completed.

Now, by the use of Lemma 5.4, we can apply the implicit function theorem (Fife [6]) to the problem (5.4), (5.5).

Theorem 5.5. Suppose that (A.1)~(A.4) hold and that σ_+ is small enough. Then there exist $\varepsilon_0 > 0$ and $\delta_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0)$ and $\lambda \in \Lambda_{\delta_0}$, there exists $t(\varepsilon, \lambda) \in X_{\varepsilon}$ satisfying

(i) $T(t(\varepsilon, \lambda), \varepsilon, \lambda) = 0$,

(ii) $\lim_{\varepsilon \downarrow 0} ||t(\varepsilon, \lambda)||_{X_{\varepsilon}}^{*} = 0$ uniformly in $\lambda \in \Lambda_{\delta_{0}}$

and

(iii) $t(\varepsilon, \lambda)$ is uniformly continuous with respect to ε and λ in the X_{ε} -topology.

Consequently, we found that $(5.1)_+$ and $(5.2)_+$ has a solution $(U_+(z, \varepsilon, c, \beta), (V_+(z, \varepsilon, c, \beta))$ in \mathbb{R}_+ for any $\varepsilon \in (0, \varepsilon_0)$ and $(c, \beta) \in \Lambda_{\delta_0}$.

In the almost same way to the discussion on $(5.1)_+$ and $(5.2)_+$, we also know the existence of a solution $(U_-(z, \varepsilon, c, \beta), V_-(z, \varepsilon, c, \beta))$ of $(5.1)_-$ and $(5.2)_-$.

6. The existence of solutions in the entire line R.

In this section, we intend to match (U_+, V_+) with (U_-, V_-) at z=0 in the C^1 -sense, by choosing β and c appropriately. In order to do this, we define two functions Φ and Ψ by

$$\begin{cases} \Phi(\varepsilon, c, \beta) = \frac{d}{d\zeta} U_{+}(0, \varepsilon, c, \beta) - \frac{d}{d\zeta} U_{-}(0, \varepsilon, c, \beta) \\ \Psi(\varepsilon, c, \beta) = \left(\frac{d}{dz} V_{+}(0, \varepsilon, c, \beta)\right)^{2} - \left(\frac{d}{dz} V_{-}(0, \varepsilon, c, \beta)\right)^{2}. \end{cases}$$

$$(6.1)$$

Setting D as $D = \{(\varepsilon, c, \beta) | \varepsilon \in (0, \varepsilon_0), (\beta, c) \in A_{\delta_0}\}$ for sufficiently small ε_0 and δ_0 , we know from Theorem 5.5 that $\Phi(\varepsilon, c, \beta)$ and $\Psi(\varepsilon, c, \beta)$ are uniformly continuious in D. Therefore, Φ and Ψ can be continuously extended in a way that they are defined in \overline{D} . From this extension, (ii) of Theorem 5.5 rewrites (6.1) for $\varepsilon = 0$ as

$$\begin{aligned}
\Phi(0, c, \beta) &= \frac{d}{d\zeta} W_{+}(0, c, \beta) - \frac{d}{d\zeta} W_{-}(0, c, \beta) \\
\Psi(0, c, \beta) &= \left(\frac{d}{dz} V_{+}^{0}(0, \beta)\right)^{2} - \left(\frac{d}{dz} V_{-}^{0}(0, \beta)\right)^{2}.
\end{aligned}$$
(6.2)

Noting that

(i) $\Phi(0, c^*, \beta^*) = \Psi(0, c^*, \beta^*) = 0,$

(ii) $\Phi(0, c, \beta^*)$ has an isolated zero $c=c^*$,

- and
- (iii) $\Psi(0, c, \beta) = 2J(\beta)$ has an isolated zero $\beta = \beta^*$,

we can apply the implicit function theorem [Theorem 4.3, 6] to (6.1) and then we have

Lemma 6.1. For sufficiently small $\varepsilon > 0$, there exist $\beta(\varepsilon)$ and $c(\varepsilon)$ such that

$$\Psi(\varepsilon, c(\varepsilon), \beta(\varepsilon)) = \Psi(\varepsilon, c(\varepsilon), \beta(\varepsilon)) = 0$$

and

$$\lim_{\varepsilon \downarrow 0} \beta(\varepsilon) = \beta^*, \qquad \lim_{\varepsilon \downarrow 0} c(\varepsilon) = c^*.$$

Thus, this lemma directly leads to the main theorem.

Theorem 6.2. Suppose that (A.1)~(A.4) hold and that $\sigma = \min(\sigma_+, \sigma_-)$ is fixed small enough. Then, for small enough ε , there exists a solution (U(z, $c(\varepsilon)$), $V(z, c(\varepsilon))$) of the problem (2.3) and (2.2), satisfying

$$\|U-(U^0+W)\|_{X^1_{\rho,\varepsilon}(\mathbf{R})}+\|V-V^0\|_{X^1_{\rho}(\mathbf{R})}\to 0 \quad as \quad \varepsilon\downarrow 0.$$

Moreover, the velocity $c(\varepsilon)$ satisfies

$$c(\varepsilon) \rightarrow c^*$$
 as $\varepsilon \downarrow 0$.

7. Numerical Simulations.

We have found the existence of an ε -family of traveling wave solutions $(U(z, \varepsilon), V(z, \varepsilon))$ of (1.7) (i. e., (2.1)) subject to boundary conditions (2.2). In this section, let us show some pictures of traveling wave solutions. The curves of f=g=0 for a=4.0, b=1.0, k=4.0 and e=4.0 are drawn in Fig. 3 where the dashed line is $v=\beta^*=1.18668$ and $\int_{n_+(\beta)}^{n_-(\beta)} f(u, \beta^*) du > 0$. For these values of the parameters numerical simulations were carried out by the use of the usual explicit difference scheme for the initial value problems of (1.7). Fig. 4 shows that the piecewise linear initial distribution

$$u_0(x) = \begin{cases} 4 & x < -1.5, \\ -\frac{4}{3}x + 2 & -1.5 < x < 1.5, \\ 0 & x > 1.5, \end{cases} \quad v_0(x) = \begin{cases} 0 & x < -1.5, \\ \frac{4}{3}x + 2 & -1.5 < x < 1.5, \\ 4 & x > 1.5, \end{cases}$$

generates a traveling wave for $\varepsilon^2 = 0.01$. In this case, the velocity of the front is computed as c=0.2 which is approximately of order ε . Another example is drawn in Fig. 5 where $\varepsilon^2 = 0.04$ and the piecewise linear initial data is

$$u_{0}(x) = \begin{cases} 4 & x < -4, \\ -2x - 4 & -4 < x < -2, \\ 0 & x > -2, \end{cases} \quad v_{0}(x) = \begin{cases} 0 & x < 3, \\ 2x - 6 & 3 < x < 5, \\ 4 & x > 5. \end{cases}$$

Fig. 3

Fig. 5

This figure illustrates clearly that at the first stage, where the competitive interaction does not work, the fronts of U and V propagate independently with the same speed as that of Fisher's model and then, at the next stage where two species are encountered and compete, the fronts of U and V move together from the left to the right with the same speed, as predicted by our result.

8. Appendices.

8.1. The proof of Lemma 4.2.

We consider the case (4.1)₊ only. Define a nonlinear operator $R(W_+, c, \beta)$ by

$$R(W_{+}, c, \beta) = \frac{d^{2}}{d\zeta^{2}} W_{+} + c \frac{d}{d\zeta} W_{+} + f(h_{+}(\beta) + W_{+}, \beta)$$
(8.1)

and regard it as a mapping from $X_{\tau_+}^2(\mathbf{R}_+) \times \Lambda_{\delta}$ into $X_{\tau_+}(\mathbf{R}_+)$. We first note $R(W_+(\zeta, c^*, \beta^*), c^*, \beta^*)=0$, and that the Frechét derivative of R with respect to W_+ , $R_W(W_+, c, \beta)$ is continuous in the neighborhood of $(W_+(\zeta, c^*, \beta^*), c^*, \beta^*)$. Let us show that the linear operator $R_W(W_+(\zeta, c^*, \beta^*), c^*\beta^*)$ mapping $X_{\tau_+}^2$ into X_{τ_+} is invertible. To do so, it is sufficient to prove the existence of a unique solution $w(\zeta) \in X_{\tau_+}^2(\mathbf{R}_+)$ of

$$R_{W}(W_{+}(\zeta, c^{*}, \beta^{*}), c^{*}, \beta^{*})w = k$$
(8.2)

for any $k \in X_{\tau_+}$. Since $\phi_+(\zeta) = \frac{d}{d\zeta} W_+(\zeta, c^*, \beta^*)$ (<0) satisfies $R_w \cdot \phi_+ = 0$, we easily obtain a unique solution $w(\zeta)$ of (8.2) in the form

$$w(\zeta) = -\phi_{+}(\zeta) \int_{0}^{\zeta} \frac{e^{-c^{*}\eta}}{\phi_{+}(\eta)^{2}} \int_{\eta}^{+\infty} e^{c^{*}\xi} \phi_{+}(\xi) k(\xi) d\xi d\eta .$$
(8.3)

Here we note that $w(\zeta) \in \dot{X}_{\tau+}^2(\mathbf{R}_+)$ for any $k(\zeta) \in X_{\tau+}$. Thus, by the use of the implicit function theorem, we know that there exists some δ such that $(4.1)_+$ has a solution $W_+(\zeta, c, \beta)$ for any fixed $(c, \beta) \in \Lambda_{\delta}$. We can also discuss the regularity of $W_+(\zeta, c, \beta)$ with respect to (c, β) , since $R(W_+, c, \beta)$ is at least of the C^1 -class. The monotonicity of $W_+(\zeta, c, \beta)$ can be easily shown by a phase plane analysis.

Remark. Using the general theory of ordinary differential equations, we can conclude that

$$W_{+}(\zeta, c, \beta) \in X^{2}_{\tau_{+}(c,\beta)}(\mathbf{R}_{+}).$$

(See, for example, Coddington and Levinson [2]).

We next show (4.5). Differentiating $R(W, c, \beta)=0$ with respect to c, we find that $W_c = \frac{\partial}{\partial c} W_+(\zeta, c, \beta)$ satisfies

$$R_{W}(W_{\pm}, c, \beta)W_{c} = -\frac{d}{d\zeta}W_{+}(\zeta, c, \beta)$$
(8.4)

so that W_c is explicitly represented by (8.3) when k is replaced by $-\frac{d}{d\zeta}W_+(\zeta, c, \beta)$, because $W_c(0)=0$. Differentiating it with respect to ζ and then putting $\zeta=0$ and $(c, \beta)=(c^*, \beta^*)$, we obtain

$$\frac{d}{d\zeta} W_c(0, c^*, \beta^*) = \frac{1}{\phi_+(0)} \int_0^{+\infty} e^{c^*\xi} \phi_+^2(\xi) d\xi .$$
(8.5)

On the other hand, it is easily proved that

$$\frac{d}{d\zeta}W_c(0, c^*, \beta^*) = \frac{\partial}{\partial c} \frac{d}{d\zeta}W_+(0, c^*, \beta^*).$$

In the same way as the above, we also obtain

$$\frac{\partial}{\partial c} \frac{d}{d\zeta} W_{-}(0, c^{*}, \beta^{*}) = \frac{1}{\phi_{-}(0)} \int_{0}^{-\infty} e^{c_{*}\xi} \phi_{-}^{2}(\xi) d\xi .$$
(8.6)

Therefore it follows from (8.5) and (8.6) that

$$\frac{\partial}{\partial c} \frac{d}{d\zeta} W_+(0, c^*, \beta^*) - \frac{\partial}{\partial c} \frac{d}{d\zeta} W_-(0, c^*, \beta^*) = \frac{1}{\phi(0)} \int_{-\infty}^{\infty} e^{c^*\xi} \phi^2(\xi) d\xi \neq 0,$$

where $\phi(\zeta) = \frac{d}{d\zeta} W(\zeta, c^*, \beta^*)$. Thus, the proof is completed.

8.2. The proof of Lemma 5.1.

From $(3.6)_+$, $(4.1)_+$ and $(5.4)_+$, F_1 and F_2 in (5.7) can be rewitten as

$$\begin{cases} F_1 = \varepsilon^2 U^{0''} + c\varepsilon U^{0'} + f(h(V^0) + W, V^0 + \varepsilon^3 Y) - f(h(\beta) + W, \beta), \\ F_2 = c\varepsilon V^{0'} + c\varepsilon^2 Y - \varepsilon^2 \mu^2 Y_1(0, c, \beta) e^{-\mu\varepsilon\zeta} - g(h(V^0), V^0) \\ - [g(h(\beta) + W, \beta) - g(h(\beta), \beta)] + g(h(V^0) + W, V^0 + \varepsilon^2 Y). \end{cases}$$
(8.7)

Now we divide $R_{+} = \{z | z \ge 0\}$ into $I_{1}^{\varepsilon} = [0, -A\varepsilon \log \varepsilon)$ and $I_{2}^{\varepsilon} = [-A\varepsilon \log \varepsilon, +\infty)$ for any fixed A > 0 and estimate F_{1} and F_{2} on each interval. We know that

$$|F_{1}| \leq \varepsilon^{2} |U^{0''}| + c\varepsilon |U^{0'}| + \left|\frac{\partial \bar{f}}{\partial u} \frac{d\bar{h}}{dv} \frac{d\bar{V}^{0}}{dz} \cdot z + \frac{\partial \bar{f}}{\partial v} \left[\left(\frac{d\bar{V}^{0}}{dz}\right) z + \varepsilon^{2} Y(\zeta) \right] \right|, \quad (8.8)$$

where

$$\begin{split} &\frac{\partial \bar{f}}{\partial u} = \frac{\partial f}{\partial u} \left(h(V^{0}) + W + \theta_{1}(h(\beta) - h(V^{0})), \ V^{0} + \varepsilon^{2}Y \right) \\ &\frac{\partial \bar{f}}{\partial v} = \frac{\partial f}{\partial v} \left(h(\beta) + W, \ V^{0} + \varepsilon^{2}Y + \theta_{2}(\beta - V^{0} - \varepsilon^{2}Y) \right), \\ &\frac{d\bar{h}}{dV} = \frac{dh}{dV} \left(V^{0}(z) + \theta_{3}(\beta - V^{0}(z)) \right) \end{split}$$

and

$$\frac{d\,\overline{V}{}^{0}}{dz} = \frac{d\,V^{0}}{dz}(\theta_{4}z)$$

for some $0 < \theta_i < 1$ (i=1, ..., 4). Thus, (8.8) is estimated as

450

Y. Hosono and M. Mimura
$$|F_1| \leq \varepsilon^2 |U^{0''}| + c\varepsilon |U^{0''}| + K_3(z + \varepsilon^2 K_4)$$
$$\leq \varepsilon^2 |U^{0''}| + c\varepsilon |U^{0''}| + K_3\varepsilon(-A\log\varepsilon + \varepsilon K_4) \quad \text{on} \quad I_1^{\varepsilon}$$

for some constants K_3 and K_4 . Thus, it follows from $U^0 \in X^2_{\mu_+}$ that

 $|F_1| = O(-A\varepsilon \log \varepsilon)$.

On the other hand, it is obvious from the first of (8.7) that

$$\begin{split} |F_{1}| &\leq \varepsilon^{2} |U^{0''}| + c\varepsilon |U^{0'}| + |f(h(V^{0}) + W, V^{0} + \varepsilon^{2}Y) \\ &- f(h(V^{0}), V^{0}) + f(h(\beta), \beta) - f(h(\beta) + W, \beta)| \\ &\leq \varepsilon^{2} |U^{0''}| + c\varepsilon |U^{0'}| + \left|\frac{\partial \bar{f}}{\partial u} \cdot W + \varepsilon^{2} \frac{\partial \bar{f}}{\partial v}Y\right| + \left|\frac{\partial \bar{f}}{\partial u}W\right|, \end{split}$$

where

$$\frac{\partial \bar{f}}{\partial u} = \frac{\partial f}{\partial u} (h(V^0) + \theta_5 W, V^0 + \varepsilon Y^2)$$
$$\frac{\partial \bar{f}}{\partial v} = \frac{\partial f}{\partial v} (h(V^0), V_0 + \theta_6 \varepsilon^2 Y^2),$$
$$\frac{\partial \bar{f}}{\partial u} = \frac{\partial f}{\partial u} (h(\beta) + \theta_7 W, \beta),$$

for some θ_i (i=5~7). Noting that

$$|W(\zeta)| \leq c_1 e^{-\tau_+ \zeta} \leq c_1 e^{A\tau_+ \log \varepsilon} \leq c_1 \varepsilon^{A\tau_+} \qquad (\zeta/\varepsilon \in I_2^{\varepsilon})$$

for some c_1 , we find that, choosing A sufficiently large as $A \ge 1/\tau_+$,

$$|W(\zeta)| \leq c_2 \varepsilon e^{-\mu + z} \qquad (z \in I_2^{\varepsilon})$$

for some c_2 . Then, by using $U', U'' \in X_{\mu_+}$, we obtain $|F_1| = O(\varepsilon)$ on I_2^{ε} . Thus, we find

$$\|F_1\|_{X_{\mu_+(R_+)}} \leq K_1 \varepsilon |\log \varepsilon|$$

for some K_1 . In the similar way to the above, we can prove (5.7) for F_2 . The details were seen in Hosono and Mimura [14].

8.3. The proof Lemma 5.2.

For brevity we omit the index + and write $\dot{X}^2_{\rho}(\mathbf{R}_+)$ and $X_{\rho}(\mathbf{R}_+)$ as \dot{X}^2_{ρ} and X_{ρ} simply. For the proof, it is sufficient to show that a mapping from \dot{X}^2_{ρ} into X_{ρ}

$$M_{\varepsilon}^{0} = \frac{d^{2}}{dz^{2}} + c\varepsilon \frac{d}{dz} + g_{v}(U^{0} + W, V^{0})$$

is invertible. Because, M_{ε} is rewritten as

$$M_{\varepsilon} = M^{0}_{\varepsilon} + (M_{\varepsilon} - M^{0}_{\varepsilon}),$$

 $(M_{\varepsilon}-M^{0}_{\varepsilon})$ is regarded as a perturbation since $||M_{\varepsilon}-M^{0}_{\varepsilon}||_{X^{2}_{\rho}\to X_{\rho}} \leq K\varepsilon^{2}$ for some K. We first define M_{0} by Competing and diffusing species models

$$M_{0} \equiv \frac{d^{2}}{dz^{2}} + [g_{v}(U^{0}, V^{0}) + g_{u}(U^{0}, V^{0})h'(V_{0})]$$

which is a mapping from $\mathring{X}^{2}_{\rho'}$ into $X_{\rho'}$ for any fixed $\rho' (0 \leq \rho' \leq \mu)$.

Lemma 8.1. Let $\beta \ (\in I_0)$ be fixed arbitrarily. Consider the problem

$$M_0\psi = k_0 \qquad (z \in \mathbf{R}_+) \tag{8.9}$$

for any $k_0 \in X_{\rho'}$. Then M_0 is invertible.

Proof. It is easy to see that $\psi_1 = \frac{dV^0}{dz} \in X^2_{\mu_+}(R_+)$ satisfies

 $M_0 \phi_1 = 0$ and $\phi_1 > 0$.

Then, by using $\psi_1(z)$ and

$$\psi_2(z) \equiv \psi_1(z) \int_0^z \frac{dy}{\psi_1(y)^2} \quad (\in X^2_{u_+}),$$

the Green function $G(z, \xi)$ of M_0 can be explicitly written as

$$G(z, \xi) = \begin{cases} \psi_1(z)\psi_2(\xi) & (0 \le \xi < z) ,\\ \psi_1(\xi)\psi_2(z) & (z \le \xi < +\infty) , \end{cases}$$
(8.10)

where

$$\begin{aligned} &|G(z,\,\xi)| \leq c_1 e^{-\mu_+(z-\xi)} & (0 \leq \xi \leq z) , \\ &|G(z,\,\xi)| \leq c_2 e^{-\mu_+(\xi-z)} & (z \leq \xi < +\infty) , \end{aligned}$$

for some c_1 and c_2 . Thus, a solution of (8.9) can be represented by

$$\psi(z) = M_0^{-1} k_0 \equiv \int_0^{+\infty} G(z, \xi) k_0(\xi) d\xi \qquad (\in \mathring{X}_{\rho'}^2),$$

which implies the invertibility of M_0 . Thus, the proof is completed.

We next consider the problem

$$M^{0}_{\varepsilon}\phi = k \qquad (z \in \mathbf{R}_{+}). \tag{8.11}$$

By the transformation of

$$\phi = e^{-(c\varepsilon/2)z} \tilde{\phi} , \qquad (8.12)$$

(8.11) is reduced to

$$\widetilde{M}_{\varepsilon}^{0}\widetilde{\phi} \equiv \left[\frac{d^{2}}{dz^{2}} + \left\{g_{\upsilon}(U^{0} + W, V^{0}) - \frac{(c\varepsilon)^{2}}{4}\right\}\right]\widetilde{\phi} = \widetilde{k}, \qquad (8.13)$$

where $\tilde{k} = e^{(c \varepsilon/2) z} k$. Write $\tilde{M}_{\varepsilon}^{0}$ as

$$\widetilde{M}^{0}_{\varepsilon} = M_{0} + (\widetilde{M}^{0}_{\varepsilon} - M_{0})$$

Then, it holds from Lemma 8.1 that for $\tilde{\phi} \in \mathring{X}^2_{\rho'}$ and $\tilde{k}_0 \in X_{\rho'}$ that

$$\tilde{\phi} = -M_0^{-1}(M_{\varepsilon}^0 - M_0)\tilde{\phi} + M_0^{-1}k , \qquad (8.14)$$

where

$$M_{0}^{-1}(\tilde{M}_{\varepsilon}^{0}-M_{0})\tilde{\phi} = \int_{0}^{+\infty} G(z,\,\xi) \Big[g_{v} \Big(U^{0}(\xi) + W\Big(\frac{\xi}{\varepsilon}\Big),\,V^{0}(\xi) \Big) - g_{v}(U^{0}(\xi),\,V^{0}(\xi)) \\ - g_{u}(U^{0}(\xi),\,V^{0}(\xi)) \frac{dh}{dV}(V^{0}(\xi)) - \frac{(c\varepsilon)^{2}}{4} \Big] \tilde{\phi}(\xi) d\xi \,. \tag{8.15}$$

By noting that $\frac{dh}{dV} \equiv 0$ in R_+ and

$$\left|g_{v}\left(U^{0}(\xi)+W\left(\frac{\xi}{\varepsilon}\right), V^{0}(\xi)\right)-g_{v}(U^{0}(\xi), V^{0}(\xi))\right|\leq c_{3}e^{-\tau_{+}\xi/\varepsilon}$$

for some c_3 , it follows from (8.10) that

$$\begin{split} \|M_0^{-1}(M_z^0 - M_0)\widetilde{\phi}\|_{X_{\rho'}} \\ &\leq \int_0^{+\infty} \|G(z,\,\xi)\| c_3 e^{-\tau_+\xi/z} e^{\rho'(z-\xi)} e^{\rho'\xi} \|\widetilde{\phi}(\xi)\| d\xi + c_4 \frac{(c\varepsilon)^2}{4} \|\widetilde{\phi}\|_{X_{\rho'}} \\ &\leq \left(c_5 \varepsilon + c_4 \frac{(c\varepsilon)^2}{4}\right) \|\widetilde{\phi}\|_{X_{\rho'}} \end{split}$$

for some c_4 and c_5 . Then (8.14) or (8.13) has a solution $\tilde{\phi} \in \mathring{X}_{\rho}^2$, for any $k \in X_{\rho}$, when ε is appropriately small, that is, there exists some c_6 such that

$$\|\widetilde{\phi}\|_{X^2_{\rho'}} \leq c_6 \|\widetilde{k}\|_{X_{\rho'}}$$

Thus, by putting ρ^\prime as

$$\rho' \!=\! \rho \!-\! \frac{c\varepsilon}{2},$$

(8.12) and (8.13) lead to

$$\|\phi\|_{X_{\rho}^{2}} \leq c_{\mathfrak{s}} \|k\|_{X_{\rho}} \,. \tag{8.16}$$

Here (8.16) is valid for $0 < \varepsilon < \varepsilon_M$ if ε_M is chosen as

$$\frac{\varepsilon_M}{2}(|c^*|+\delta_1) < \rho < \rho + \frac{\varepsilon_M}{2}(|c^*|+\delta_1) < \mu.$$

Thus, the proof is completed.

Remark. In the proof of (8.16), we used a special property, i.e. $\frac{dh_+}{dV} \equiv 0$. Since $\frac{dh_-}{dV} \equiv 0$ on $z \in \mathbf{R}_-$, the proof must be carried out under the assumption that $\sigma_- = \sup_{z \in \mathbf{R}_-} |g_u(U^0(z, \beta^*), V^0(z, \beta^*))|$ is sufficiently small in (8.15).

8.4. The proof of Lemma 5.3.

We define L^0 by

$$L^{\scriptscriptstyle 0}_{\scriptscriptstyle \varepsilon} \!=\! \frac{d^{\scriptscriptstyle 2}}{d\zeta^{\scriptscriptstyle 2}} \!+\! c \, \frac{d}{d\zeta} \!+\! f_u(U^{\scriptscriptstyle 0}(\varepsilon\zeta) \!+\! W(\zeta), \, V^{\scriptscriptstyle 0}(\varepsilon\zeta)) \, .$$

Here we write

$$f_{u}(U^{\scriptscriptstyle 0}(\varepsilon\zeta)\!+\!W(\zeta),\ V^{\scriptscriptstyle 0}(\varepsilon\zeta))\!=\!-(q_{\scriptscriptstyle 0}\!+\!q_{\scriptscriptstyle 1}\!+\!\gamma_{\scriptscriptstyle 0})$$
 ,

where

Competing and diffusing species models

$$\begin{split} &-q_{0}(\zeta) = & f_{u}(U^{0}(0) + W(\zeta), V^{0}(0)) - f_{u}(U^{0}(0), V^{0}(0)) , \\ &-q_{1}(\zeta, \varepsilon) = & f_{u}(U^{0}(\varepsilon\zeta) + W(\zeta), V^{0}(\varepsilon\zeta)) - f_{u}(U^{0}(0) + W(\zeta), V^{0}(0)) \end{split}$$

and

 $-\gamma_0 = f_u(U_0(0), V_0(0)) < 0.$

Lemma 8.2. There exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in [0, \varepsilon_0)$,

(i) $-(q_1+\gamma_0) \equiv -\gamma_{\varepsilon}(\zeta) \leq -\theta^2 < 0$, (ii) $|q_1| \leq K_1 \varepsilon \zeta$ and $\left| \frac{d}{d\zeta} q_1 \right| \leq K_2 \varepsilon$, (iii) $|q_0| \leq K_3 e^{-\overline{\tau} + \zeta}$,

where θ and K_i (i=1, 2, 3) are some positive constants independent of ε and λ .

Proof. We first show (i). We divide $\mathbf{R}_{+} = \{\zeta | \zeta \ge 0\}$ into $I_{1}^{\varepsilon} = [0, -A \log \varepsilon)$ and $I_{2}^{\varepsilon} = [-A \log \varepsilon, +\infty)$, for any fixed A > 0. Since

$$-q_{1}(\zeta, \varepsilon) = \left(\bar{f}_{uu} - \frac{d}{dz} \bar{U}^{0} + \bar{f}_{uv} - \frac{d}{dz} \bar{V}^{0}\right) \varepsilon \zeta , \qquad (8.17)$$

where

$$\begin{split} \bar{f}_{uu} &= f_{uu}(U^0(\varepsilon\zeta) + \theta_1(U^0(0) - U^0(\varepsilon\zeta)) + W(\zeta), \ V^0(\varepsilon\zeta)) ,\\ \bar{f}_{uv} &= f_{uv}(U^0(0) + W(\zeta), \ V^0(\varepsilon\zeta) + \theta_2(V^0(0) - V^0(\varepsilon\zeta))) ,\\ \frac{d}{dz} \ \bar{U}^0 &= \frac{d}{dz} \ U^0(\theta_3 \varepsilon\zeta) \quad \text{and} \quad \frac{d}{dz} \ \bar{V}^0 &= \frac{d}{dz} \ V^0(\theta_4 \varepsilon\zeta) \end{split}$$

for some θ_i (0< θ_i <1, $i=1\sim$ 4), it turns out that

$$|q_1(\zeta, \varepsilon)| \leq K_4 \varepsilon |\log \varepsilon|$$
 in I_1^{ε} (8.18)

for some $K_4>0$. On the other hand, it follows from $W\in X_{\bar{\tau}_+}(R_+)$ that

$$-q_{1}(\zeta, \varepsilon) \leq f_{u}(U^{0}(\varepsilon\zeta), V^{0}(\varepsilon\zeta)) - f_{u}(U^{0}(0), V^{0}(0)) + K_{5}\varepsilon \quad \text{in} \quad I_{2}^{\varepsilon}$$

for some $K_5 > 0$. Here we note that

$$f_u(U^0(\varepsilon\zeta), V^0(\varepsilon\zeta)) - f_u(U^0(0), V^0(0)) = \left(\bar{f}_{uu} \frac{d\bar{h}_+}{dV} + \bar{f}_{uv}\right) \frac{d\bar{V}^0}{dz} \cdot \varepsilon\zeta ,$$

where

$$\begin{split} \bar{f}_{uu} &= f_{uu}(U^0(\varepsilon\zeta) + \theta_5(U^0(0) - U^0(\varepsilon\zeta)), \ V^0(\varepsilon\zeta)), \\ \bar{f}_{uv} &= f_{uv}(U^0(0), \ V^0(\varepsilon\zeta) + \theta_6(V^0(0) - V^0(\varepsilon\zeta))), \\ \\ &\frac{d\bar{h}_+}{dV} = \frac{dh_+}{dV} \left(V^0(0) + \theta_7(V^0(\varepsilon\zeta) - V^0(0))\right) \quad \text{and} \quad \frac{d\,\overline{V}}{dz} = \frac{dV}{dz} \left(\theta_8 \varepsilon\zeta\right) \end{split}$$

for some θ_i (i=5~8). Therefore, by using

$$\frac{dh_{+}}{dV} \equiv 0$$
, $f_{uv}(u, v) = -\frac{b}{(1+eu)^2} < 0$ and $\frac{dV}{dz} > 0$ in R_{+} ,

it is easy to see

$$-q_1(\zeta, \varepsilon) \leq K_{\varepsilon} \varepsilon \quad \text{in} \quad I_2^{\varepsilon} \tag{8.19}$$

for some $K_6>0$. Thus, (8.18) and (8.19) lead to (i) when ε is chosen sufficiently small. Differentiating $-q_1$ with respect to ζ , we have

$$\begin{split} -\frac{\partial q_1}{\partial \zeta} =& f_{uu}(U^0(\varepsilon\zeta) + W(\zeta), \ V^0(\varepsilon\zeta)) \Big(\frac{dU^0}{dz} \cdot \varepsilon + \frac{dW}{d\zeta} \Big) \\ &+ f_{uv}(U^0(\varepsilon\zeta) + W(\zeta), \ V^0(\varepsilon\zeta)) \frac{dV^0}{dz} \cdot \varepsilon \\ &- f_{uu}(U^0(0) + W(\zeta), \ V^0(0)) \frac{dW}{d\zeta} \,, \end{split}$$

and then

$$\begin{aligned} \left| \frac{\partial q_1}{\partial \zeta} \right| &\leq K_7 \varepsilon e^{-\mu_+ \varepsilon \zeta} + \left| \left\{ f_{uu}(U^0(\varepsilon \zeta) + W(\zeta), V^0(\varepsilon \zeta)) - f_{uu}(U^0(0) + W(\zeta), V^0(0)) \right\} \frac{dW}{d\zeta} \right| \\ &\leq K_7 \varepsilon e^{-\mu_+ \varepsilon \zeta} + K_8 \varepsilon \zeta e^{-\tau_+ \zeta} \\ &\leq K_9 \varepsilon \end{aligned}$$

for some $K_i > 0$ (i=7, 8, 9), which implies the second of (ii). (iii) is obvious. Thus, Lemma 8.2 is proved.

Remark. For the proof of Lemma 8.2 in the case of R_{-} , it is sufficient to show

$$\left(f_{uu}\frac{dh_{-}}{dV}+f_{uv}\right)\geq 0.$$
(8.20)

If follows from an elementary calculation that

$$\begin{split} f_{uu} + f_{uv} \frac{dV}{dU} &= \frac{e \, a - b - 4 b e U - 2 b e^2 U^2}{(1 + e U)^2} \\ &\leq - \frac{e \, a - b}{(1 + e U)} < 0 \, . \end{split}$$

Here we used $U > \frac{(ea-b)}{(2be)} > 0$. Thus, by noting $\frac{dh}{dV} < 0$, (8.20) can be proved.

Let us rewrite the problem

$$\begin{cases} L_{\varepsilon}^{0} r = k & (\zeta \in R_{+}), \\ r(0) = 0, & r(+\infty) = 0, \end{cases}$$
(8.21)

as

$$\begin{cases} L_{\varepsilon}\bar{r} = \left\{ \frac{d}{d\zeta} - (A_{\varepsilon} + B_{0}) \right\} \bar{r} = \bar{k} \quad (\zeta \in R_{+}), \\ r(0) = 0, \quad r(+\infty) = 0, \end{cases}$$
(8.22)

where $\bar{r} = {}^{\iota} \left(r, \frac{dr}{d\zeta} \right)$,

Competing and diffusing species models

$$A_{\varepsilon}(\zeta) = \begin{bmatrix} 0 & 1 \\ \gamma_{\varepsilon}(\zeta) & -c \end{bmatrix}, \qquad B_{0}(\zeta) = \begin{bmatrix} 0 & 0 \\ q_{0}(\zeta) & 0 \end{bmatrix}$$

and $\bar{k} = {}^{t}(0, k)$. Since $A_{\varepsilon}(\zeta)$ has two real distinct eigenvalues

$$\lambda_{\varepsilon}^{\pm}(\zeta) = \frac{-c \pm \sqrt{c^2 + \gamma_{\varepsilon}}}{2},$$

 A_{ε} can be transformed into the diagonal form D_{ε}

$$P_{\varepsilon}^{-1}A_{\varepsilon}P_{\varepsilon}=D_{\varepsilon}=\begin{bmatrix}\lambda_{\varepsilon}^{+}&0\\0&\lambda_{\varepsilon}^{-}\end{bmatrix}$$

by using the regular matrix uniformly in ε and ζ

$$P_arepsilon(\zeta) \!=\! egin{bmatrix} 1 & 1 \ \lambda_arepsilon^+(\zeta) & \lambda_arepsilon^-(\zeta) \end{bmatrix}.$$

Thus, by the change of the variable $\bar{r}=P_{\varepsilon}\bar{w}$ with $\bar{w}={}^{t}(w_{1}, w_{2})$, (8.22) is reduced to the convenient first order system

$$\begin{cases} \widetilde{L}_{\varepsilon}\overline{w} = \left\{ \frac{d}{d\zeta} - D_{\varepsilon} - \widetilde{B}_{\varepsilon} + C_{\varepsilon} \right\} \overline{w} = P_{\varepsilon}^{-1} \widetilde{k} \quad (\zeta \in \mathbf{R}_{+}), \\ w_{1}(0) + w_{2}(0) = 0, \quad w_{1}(+\infty) + w_{2}(+\infty) = 0, \end{cases}$$
(8.23)

where $\tilde{B}_{\varepsilon} = P_{\varepsilon}^{-1} B_0 P_{\varepsilon}$ and $C_{\varepsilon} = P_{\varepsilon}^{-1} \frac{dP_{\varepsilon}}{d\zeta}$. By setting $\varepsilon = 0$ in (8.22) and (8.23), we define the operators \bar{L}_0 and \tilde{L}_0 by

$$\overline{L}_0 = \frac{d}{d\zeta} - A_0 - B_0$$
 and $\widetilde{L}_0 = \frac{d}{d\zeta} - D_0 - \widetilde{B}_0$,

respectively. Here, let us introduce Banach spaces

and

$$\overset{\circ}{\overline{Y}}{}^{1}_{\rho, \epsilon} \equiv \{ \overline{w} \mid \overline{w} \in Y^{1}_{\rho, \epsilon}(\mathbf{R}_{+}) \times Y^{1}_{\rho, \epsilon}(\mathbf{R}_{+}), w_{1}(0) + w_{2}(0) = 0 \}$$

$$\overline{Y}_{\rho, \epsilon} \equiv \{ \overline{w} \mid \overline{w} \in Y_{\rho, \epsilon}(\mathbf{R}_{+}) \times Y_{\rho, \epsilon}(\mathbf{R}_{+}) \}.$$

Lemma 8.3. Let \widetilde{L}_0 be a linear mapping from $\overset{\circ}{\overline{Y}}_{\rho,\varepsilon}^1$ into $\overline{Y}_{\rho,\varepsilon}$ for any ε and any fixed ρ satisfying $0 \leq \varepsilon \leq \varepsilon_0$ and $0 \leq \rho \leq \mu$ respectively. There exists $\delta_0 > 0$ such that \widetilde{L}_0 has an inverse bounded uniformly in $\lambda \in \Lambda_{\delta_0}$.

Proof. Using the solution $\phi_+(\zeta)$ of $R_W \cdot \phi_+=0$ (in (8.1)), we define ϕ_i , Φ_i (i=1, 2) and Φ by

$$\phi_1(\zeta) \equiv \phi_+(\zeta) \in X_{\tau_+(R_+)},$$

$$\phi_2(\zeta) = \phi_1(\zeta) \int_0^\zeta e^{-c\eta} (\phi_1(\eta))^{-2} d\eta \in X_{-\tau_-(R_+)},$$

$$\Phi_i(\zeta) = {}^t \left(\phi_i(\zeta), \frac{d}{d\zeta} \phi_i(\zeta) \right) \quad (i=1, 2)$$

and

$$\Phi(\zeta) = (\Phi_1(\zeta), \Phi_2(\zeta))$$

Since $\Phi(\zeta)$ is a fundamental matrix of \bar{L}_0 , a general solution $\bar{r}_0 = {}^t(r_{01}, r_{02})$ of $\bar{L}_0 \bar{r}_0 = \bar{k}_0$ is represented by

$$\bar{r}_{0}(\zeta) = \Phi(\zeta)\Phi(0)^{-1}\bar{r}_{0}(0) + \int_{0}^{\zeta} \Phi(\zeta)\Phi^{-1}(\eta)\bar{k}_{0}(\eta)d\eta.$$

Let us define $\Psi(\zeta, \eta)$ by

$$\begin{split} \Psi(\zeta, \eta) &= \varPhi(\zeta) \varPhi^{-1}(\eta) \\ &= e^{c\eta} \begin{pmatrix} \phi_1(\zeta)\phi_2(\eta) - \phi_2(\zeta)\phi_1(\eta) & -\phi_1(\zeta)\phi_2(\eta) + \phi_2(\zeta)\phi_1(\eta) \\ \phi_1(\zeta)\phi_2(\eta) - \phi_2(\zeta)\phi_1(\eta) & -\phi_1(\zeta)\phi_2(\eta) + \phi_2(\zeta)\phi_1(\eta) \end{pmatrix} \end{split}$$

and decompose it into

$$\Psi(\zeta, \eta) = \Psi_1(\zeta, \eta) + \Psi_2(\zeta, \eta),$$

where

$$\Psi_{1}(\zeta, \eta) = e^{c\eta} \begin{pmatrix} \phi_{1}(\zeta)\phi_{2}(\eta) & -\phi_{1}(\zeta)\phi_{2}(\eta) \\ \phi_{1}(\zeta)\phi_{2}(\eta) & -\phi_{1}(\zeta)\phi_{2}(\eta) \end{pmatrix}$$

and

$$\Psi_2(\zeta, \eta) = e^{c\eta} \begin{pmatrix} -\phi_2(\zeta)\phi_1(\eta) & \phi_2(\zeta)\phi_1(\eta) \\ -\phi_2(\zeta)\phi_1(\eta) & \phi_2(\zeta)\phi_1(\eta) \end{pmatrix}$$

Here, we note that

$$\begin{cases} |\Psi_1(\zeta, \eta)| \leq c_1 e^{-\tau_+(\zeta-\eta)} & (0 \leq \eta \leq \zeta), \\ |\Psi_2(\zeta, \eta)| \leq c_2 e^{-\tau_-(\zeta-\eta)} & (\eta \geq \zeta), \end{cases}$$

where $|\cdot|$ is an appropriate matrix norm.

Thus, a bounded solution of $\bar{L}_0\bar{r}_0=\bar{k}_0$ is represented by

$$\bar{r}_{0}(\zeta) = \frac{r_{01}(0)}{\phi_{1}(0)} \varPhi_{1}(\zeta) + \int_{0}^{\zeta} \varPsi_{1}(\zeta, \eta) k_{0}(\eta) d\eta - \int_{\zeta}^{+\infty} \varPsi_{2}(\zeta, \eta) \bar{k}_{0}(\eta) d\eta .$$
(8.24)

From the expression (8.24), any solution $\bar{w}_0 = {}^t(w_1, w_2)$ of $\tilde{L}_0 \bar{w}_0 = \bar{k}$ in $\overset{\circ}{\bar{Y}}{}^{1}_{\rho}{}_{\epsilon}(R_+)$ is given uniquely by

$$\overline{w}_{0}(\zeta) = \int_{0}^{\zeta} P_{0}^{-1}(\zeta) \Psi_{1}(\zeta, \eta) \overline{k}(\eta) d\eta - \int_{\zeta}^{+\infty} P_{0}^{-1}(\zeta) \Psi_{2}(\zeta, \eta) \overline{k}(\eta) d\eta , \qquad (8.25)$$

which completes the proof.

Next, we consider the main part $\widetilde{L}_{\varepsilon}^{0} \equiv -\frac{d}{d\zeta} - D_{\varepsilon}$ of $\widetilde{L}_{\varepsilon}$. Let $\xi_{\varepsilon}^{\pm}(\zeta, \eta)$ be solutions of

$$\frac{d\xi_{\varepsilon}^{\pm}}{d\zeta} = \lambda_{\varepsilon}^{\pm}\xi_{\varepsilon}^{\pm},$$

$$\xi_{\varepsilon}^{\pm}(\eta, \eta) = 1,$$
(8.26)

then, they are represented by

Competing and diffusing species models

$$\xi_{\varepsilon}^{\pm}(\zeta, \eta) = \exp\left(\int_{\eta}^{\zeta} \lambda_{\varepsilon}^{\pm}(\eta') d\eta'\right). \tag{8.27}$$

Lemma 8.4. Let $\theta_{\varepsilon}^{\pm}(\zeta, \eta)$ be $\xi_{\varepsilon}^{\pm}(\zeta, \eta) - \xi_{0}^{\pm}(\zeta, \eta)$. Then, there exist ε_{0} and δ_{0} such that the following estimates hold for any $0 \leq \varepsilon \leq \varepsilon_{0}$ and $(c, \beta) \in \Lambda_{\delta_{0}}$:

$$\begin{split} \left| \left(\frac{d}{d\zeta} \right)^{j} \xi_{\varepsilon}^{+}(\zeta, \eta) \right| &\leq c_{1} e^{-\lambda_{0}(\eta-\zeta)} \qquad (\zeta \leq \eta < +\infty) , \\ \left| \left(\frac{d}{d\zeta} \right)^{j} \xi_{\varepsilon}^{-}(\zeta, \eta) \right| &\leq c_{2} e^{-\lambda_{0}(\zeta-\eta)} \qquad (0 \leq \eta \leq \zeta) , \\ \left| \left(\frac{d}{d\zeta} \right)^{j} \theta_{\varepsilon}^{+}(\zeta, \eta) \right| &\leq c_{3} \varepsilon e^{-\lambda_{0}(\eta-\zeta)} (\eta^{2}-\zeta^{2}+\zeta) \quad (\zeta \leq \eta < +\infty) , \\ \left| \left(\frac{d}{d\zeta} \right)^{j} \theta_{\varepsilon}^{-}(\zeta, \eta) \right| &\leq c_{4} \varepsilon e^{-\lambda_{0}(\zeta-\eta)} (\zeta^{2}+\zeta-\eta^{2}) \quad (0 \leq \eta \leq \zeta) , \end{split}$$

for j=0, 1, where $c_i~(i{=}1,\,\cdots,\,4)$ are some constants independent of $\epsilon,~\beta$ and c and

$$\lambda_0 = \inf_{(\beta,c) \in \mathcal{A}_{\delta_0}} \left| \frac{1}{2} (-c + \sqrt{c^2 + 4\theta^2}) \right|.$$

Proof. See, for instance, Hoppensteadt [13].

By the use of this lemma, the uniform invertibility of $\widetilde{L}^{0}_{\varepsilon}$: $\overset{\circ}{\overline{Y}}^{1}_{\rho,\varepsilon} \to \overline{Y}_{\rho,\varepsilon}$ is easily verified. In fact, a solution of $\widetilde{L}^{0}_{\varepsilon}\overline{w} = \overline{k}$ is represented by

$$\overline{w}(\zeta) = \nu' \xi_{\varepsilon}^{-}(\zeta, 0) e_2 + \int_0^{\zeta} H_{\varepsilon}^{-}(\zeta, \eta) \overline{k}(\eta) d\eta - \int_{\zeta}^{+\infty} H_{\varepsilon}^{+}(\zeta, \eta) \overline{k}(\eta) d\eta$$

where $e_2 = {}^t(0, 1), \ \bar{k} = {}^t(k_1, k_2),$

$$H^+_{\varepsilon}(\zeta, \eta) = \begin{pmatrix} \xi^+_{\varepsilon}(\zeta, \eta) & 0\\ 0 & 0 \end{pmatrix}, \qquad H^-_{\varepsilon}(\zeta, \eta) = \begin{pmatrix} 0 & 0\\ 0 & \xi^-_{\varepsilon}(\zeta, \eta) \end{pmatrix}$$

and ν' is an arbitrary constant. Setting $\zeta{=}0$ in the above representation, we have

$$\binom{w_{1}(0)}{w_{2}(0)} = \binom{0}{\nu'} - \int_{0}^{+\infty} \binom{\xi_{\varepsilon}^{+}(0, \eta)k_{1}(\eta)}{0} d\eta,$$

so that, by the condition $w_1(0)+w_2(0)=0$, ν' is uniquely determined as

$$\nu' = \int_0^{+\infty} \xi_{\varepsilon}^+(0, \eta) k_1(\eta) d\eta \, .$$

Hence, a solution \overline{w} of $\widetilde{L}^{\,_0}_{\,_\varepsilon}\overline{w} \!=\! \overline{k}$ in $\overset{\circ}{Y}_{\rho,\,_\varepsilon}^{\,_1}$ is uniquely given by

$$\overline{w}(\zeta) = (\widetilde{L}_{\varepsilon}^{0})^{-1}\overline{k} = \xi_{\varepsilon}^{-}(\zeta, 0) \Big(\int_{0}^{+\infty} \xi_{\varepsilon}^{+}(0, \eta) k_{1}(\eta) d\eta \Big) e_{2} \\ + \int_{0}^{\zeta} H_{\varepsilon}^{-}(\zeta, \eta) \overline{k}(\eta) d\eta - \int_{\zeta}^{+\infty} H_{\varepsilon}^{+}(\zeta, \eta) \overline{k}(\eta) d\eta .$$
(8.28)

Since the estimates in Lemma 8.4 hold uniformly in ε , (8.28) is valid for $\varepsilon = 0$. By the use of (8.28), the problem (8.23) is reduced to solving the integral equation

$$\begin{split} \overline{w}_{\varepsilon}(\zeta) &= (\widetilde{L}_{\varepsilon}^{0})^{-1} \{ (\widetilde{B}_{\varepsilon} - C_{\varepsilon}) \overline{w}_{\varepsilon} + P_{\varepsilon}^{-1} \overline{k} \} \\ &= (\widetilde{L}_{0}^{0})^{-1} \widetilde{B}_{0} \overline{w}_{\varepsilon} + \{ (\widetilde{L}_{\varepsilon}^{0})^{-1} (\widetilde{B}_{\varepsilon} - C_{\varepsilon}) - (\widetilde{L}_{0}^{0})^{-1} \widetilde{B}_{0} \} \overline{w}_{\varepsilon} + (\widetilde{L}_{\varepsilon}^{0})^{-1} P_{\varepsilon}^{-1} \overline{k} \,. \end{split}$$

Operating \widetilde{L}^{0}_{0} in the above, we have

$$\widetilde{\mathcal{L}}_{0}\overline{w}_{\varepsilon} = \widetilde{\mathcal{L}}_{0}^{0} \{ (\widetilde{\mathcal{L}}_{\varepsilon}^{0})^{-1} (\widetilde{B}_{\varepsilon} - C_{\varepsilon}) - (\widetilde{\mathcal{L}}_{0}^{0})^{-1} \widetilde{B}_{0} \} \, \overline{w}_{\varepsilon} + \widetilde{\mathcal{L}}_{0}^{0} (\widetilde{\mathcal{L}}_{\varepsilon}^{0})^{-1} P_{\varepsilon}^{-1} \overline{k} \,.$$

$$(8.29)$$

Thus, using Lemma 8.3, we arrive at the integral equation

$$\overline{w}_{\varepsilon} = Q_{\varepsilon} \overline{w}_{\varepsilon} + \tilde{k} , \qquad (8.30)$$

where $Q_{\varepsilon} \equiv \widetilde{L}_{0}^{-1} \widetilde{L}_{0}^{0} \{ (\widetilde{L}_{\varepsilon}^{0})^{-1} (\widetilde{B}_{\varepsilon} - C_{\varepsilon}) - (\widetilde{L}_{0}^{0})^{-1} \widetilde{B}_{0} \}$ is a linear operator in $\overset{\circ}{\overline{Y}}_{\rho,\varepsilon} \equiv \{ \overline{w} \mid \overline{w} \in Y_{\rho,\varepsilon} \times Y_{\rho,\varepsilon}, w_{1}(0) + w_{2}(0) = 0 \}$ and $\widetilde{k} = \widetilde{L}_{0}^{-1} \widetilde{L}_{0}^{0} (\widetilde{L}_{\varepsilon}^{0})^{-1} P_{\varepsilon}^{-1} \overline{k}.$

Lemma 8.5. Let ρ be any fixed constant satisfying $0 \leq \rho \leq \mu$. Then, there exist positive constants ε_0 and δ_0 such that

$$\|Q_{\varepsilon}\|_{\overline{Y}_{\rho,\varepsilon}}^{\bullet} \rightarrow \overline{Y}_{\rho,\varepsilon} \leq K \cdot \varepsilon$$
(8.31)

for $0 \leq \varepsilon \leq \varepsilon_0$ and $(c, \beta) \in \Lambda_{\delta_0}$ where K is some constant independent of ε, β and c.

Proof. $\|\widetilde{L}_0^{-1}\|_{\overline{Y}_{\rho,\varepsilon}\to\overline{Y}_{\rho,\varepsilon}^1}$ and $\|\widetilde{L}_0^0\|_{\overline{Y}_{\rho,\varepsilon}^1\to\overline{Y}_{\rho,\varepsilon}}$ are uniformly bounded in ε , β and c, hence it is sufficient to show

$$\begin{aligned} &\|(\widetilde{L}^{0}_{\varepsilon})^{-1}(\widetilde{B}_{\varepsilon}-C_{\varepsilon})-(L^{0}_{0})^{-1}\widetilde{B}_{0}\|_{\overline{Y}_{\rho,\varepsilon}\to\overline{Y}^{1}_{\rho,\varepsilon}} \\ &\leq \|(\widetilde{L}^{0}_{\varepsilon})^{-1}(\widetilde{B}_{\varepsilon}-C_{\varepsilon}-\widetilde{B}_{0})\|_{\overline{Y}^{1}_{\rho,\varepsilon}\to\overline{Y}^{1}_{\rho,\varepsilon}}+\|((\widetilde{L}^{0}_{\varepsilon})^{-1}-(L^{0}_{0})^{-1})\widetilde{B}_{0}\|_{\overline{Y}_{\rho,\varepsilon}\to\overline{Y}^{1}_{\rho,\varepsilon}}=O(\varepsilon) \,. \end{aligned}$$

From the uniform invertibility of $\widetilde{L}^{0}_{\varepsilon}$, we have

$$\|Q_1 \overline{w}\|_{\overline{Y}^1_{\rho,\varepsilon}}^{\bullet} \equiv \|(\widetilde{L}^{0}_{\varepsilon})^{-1}(\widetilde{B}_{\varepsilon} - C_{\varepsilon} - \widetilde{B}_{0})\overline{w}\|_{\overline{Y}^1_{\rho,\varepsilon}} \leq c_1 \|(\widetilde{B}_{\varepsilon} - C_{\varepsilon} - \widetilde{B}_{0})\overline{w}\|_{\overline{Y}_{\rho,\varepsilon}}$$
(8.32)

Since $\widetilde{B}_{\varepsilon} - \widetilde{B}_{0}$ can be written as

$$\begin{split} \widetilde{B}_{\varepsilon} &- \widetilde{B}_{0} = P_{\varepsilon}^{-1} B_{0} P_{\varepsilon} - P_{0}^{-1} B_{0} P_{0} \\ &= -P_{0}^{-1} (P_{\varepsilon} - P_{0}) P_{\varepsilon}^{-1} B_{0} P_{\varepsilon} + P_{0}^{-1} B_{0} (P_{\varepsilon} - P_{0}) , \end{split}$$

is holds that

$$|\widetilde{B}_{\varepsilon}-\widetilde{B}_{0}|\leq c_{2}|P_{\varepsilon}-P_{0}||B_{0}|.$$

Applying Lemma 8.2 to

$$P_{\varepsilon} - P_{0} = \begin{pmatrix} 0 & 0 \\ \lambda_{\varepsilon}^{+} - \lambda_{0}^{+} & \lambda_{\varepsilon}^{-} - \lambda_{0}^{-} \end{pmatrix}, \quad \frac{dP_{\varepsilon}}{d\zeta} = \begin{pmatrix} 0 & 0 \\ \frac{d\lambda_{\varepsilon}^{+}}{d\zeta} & \frac{d\lambda_{\varepsilon}^{-}}{d\zeta} \end{pmatrix}$$

and B_0 , we find that

$$|\widetilde{B}_{\varepsilon} - \widetilde{B}_{0}| \leq c_{3}|q_{1}||q_{0}| = O(\varepsilon)$$

and

$$|C_{\varepsilon}| \leq c_4 \left| \frac{dP_{\varepsilon}}{d\zeta} \right| \leq c_5 \left| \frac{dq_1}{d\zeta} \right| = O(\varepsilon),$$

so that

$$\|(\widetilde{L}^{0}_{\varepsilon})^{-1}(\widetilde{B}_{\varepsilon}-C_{\varepsilon}-\widetilde{B}_{0})\overline{w}\|_{\widetilde{Y}^{1}_{\rho,\varepsilon}}^{\circ}\leq c_{6}\varepsilon\|\overline{w}\|_{\overline{Y}_{\rho,\varepsilon}},$$

where c_i (k=1~6) are some positive constants.

Next, we consider

$$\|Q_2\overline{w}\|_{\overline{Y}^1_{\rho,\varepsilon}}^{\circ} \equiv \|((\widetilde{L}^0_{\varepsilon})^{-1} - (L^0_0)^{-1})\widetilde{B}_0\overline{w}\|_{\overline{Y}^1_{\rho,\varepsilon}}^{\circ}.$$

From (8.28), $e^{\rho \epsilon \zeta} \left(\frac{d}{d\zeta}\right)^j Q_2 \overline{w}$ (j=0, 1) is written as

$$e^{\rho\varepsilon\zeta} \left(\frac{d}{d\zeta}\right)^{j} Q_{2}\overline{w} = e^{\rho\varepsilon\zeta} \left[\left(\frac{\partial}{\partial\zeta}\right)^{j} \xi_{\varepsilon}^{-}(\zeta, 0) \int_{0}^{+\infty} \xi_{\varepsilon}^{+}(0, \eta) e^{-\rho\varepsilon\eta} (\widetilde{B}_{0}(\eta) e^{\rho\varepsilon\eta} \overline{w}(\eta))_{1} d\eta \right] - \left(\frac{\partial}{\partial\zeta}\right)^{j} \xi_{0}^{-}(\zeta, 0) \int_{0}^{+\infty} \xi_{0}^{+}(0, \eta) e^{-\rho\varepsilon\eta} (\widetilde{B}_{0}(\eta) e^{\rho\varepsilon\eta} \overline{w}(\eta))_{1} d\eta \right] e_{2} + \int_{0}^{\zeta} \left[\left(\frac{\partial}{\partial\zeta}\right)^{j} (H_{\varepsilon}^{-}(\zeta, \eta) - H_{0}^{-}(\zeta, \eta)) \right] \widetilde{B}_{0}(\eta) e^{\rho\varepsilon(\zeta-\eta)} \cdot e^{\rho\varepsilon\eta} \overline{w}(\eta) d\eta - \int_{\zeta}^{+\infty} \left[\left(\frac{\partial}{\partial\zeta}\right)^{j} (H_{\varepsilon}^{+}(\zeta, \eta) - H_{0}^{+}(\zeta, \eta)) \right] \widetilde{B}_{0}(\eta) e^{\rho\varepsilon(\zeta-\eta)} \cdot e^{\rho\varepsilon\eta} \overline{w}(\eta) d\eta = 0$$

where $(\cdot)_1$ denotes the first component of the vectors. Here, we used the fact $\xi_{\varepsilon}^{\pm}(\zeta, \zeta) = \xi_{\delta}^{\pm}(\zeta, \zeta) = 1$. Now, we estimate Q_{2i} (i=1, 2, 3) with the aid of Lemmas 8.2 and 8.4 in the following. First it is shown that

$$|Q_{21}| \leq \left| e^{\rho \varepsilon \tau} \left(\frac{\partial}{\partial \zeta} \right)^{j} \theta_{\varepsilon}^{-} (\zeta, 0) \int_{0}^{+\infty} \xi_{\varepsilon}^{+} (0, \eta) e^{-\rho \varepsilon \eta} (\widetilde{B}_{0}(\eta) e^{\rho \varepsilon \eta} \overline{w}(\eta))_{1} d\eta \right|$$

$$+ \left| e^{\rho \varepsilon \zeta} \left(\frac{\partial}{\partial \zeta} \right)^{j} \xi_{0}^{-} (\zeta, 0) \int_{0}^{+\infty} \theta_{\varepsilon}^{+} (0, \eta) e^{-\rho \varepsilon \eta} (\widetilde{B}_{0}(\eta) e^{\rho \varepsilon \eta} \overline{w}(\eta))_{1} d\eta \right|$$

$$\leq C_{7} \varepsilon e^{-(\lambda_{0} - \rho \varepsilon) \zeta} (\zeta^{2} + \zeta) \int_{0}^{+\infty} e^{-\lambda_{0} \eta} e^{-\rho \varepsilon \eta} \cdot e^{-\tau + \eta} d\eta \| \overline{w} \|_{\overline{Y}_{\rho, \varepsilon}}$$

$$+ C_{8} \varepsilon e^{-(\lambda_{0} - \rho \varepsilon) \zeta} \int_{0}^{+\infty} e^{-\lambda_{0} \eta} \eta^{2} \cdot e^{-\rho \varepsilon \eta} \cdot e^{-\tau + \eta} d\eta \| \overline{w} \|_{\overline{Y}_{\rho, \varepsilon}}$$

 $\leq c_9 \varepsilon \| \overline{w} \|_{\overline{Y}_{\rho,\varepsilon}}.$

Secondly, we have

$$\begin{aligned} |Q_{22}| &\leq C_{10} \varepsilon \int_{0}^{\zeta} e^{-\lambda_{0}(\zeta-\eta)} (\zeta^{2} + \zeta - \eta^{2}) \cdot e^{-\tau + \eta} \cdot e^{\rho \varepsilon (\zeta-\eta)} d\eta \| \overline{w} \|_{\overline{Y}_{\rho,\varepsilon}} \\ &\leq C_{10} \varepsilon (\zeta^{2} + \zeta) \cdot e^{-(\lambda_{0} - \rho \varepsilon) \zeta} \int_{0}^{\zeta} e^{(\lambda_{0} - \tau_{+} - \rho \varepsilon) \eta} d\eta \| \overline{w} \|_{\overline{Y}_{\rho,\varepsilon}} \\ &\leq C_{11} \varepsilon (\zeta^{2} + \zeta) \cdot e^{-(\lambda_{0} - \rho \varepsilon) \zeta} \cdot e^{(\lambda_{0} - \tau_{+} - \rho \varepsilon) \zeta} \| \overline{w} \|_{\overline{Y}_{\rho,\varepsilon}} \\ &\leq C_{11} \varepsilon (\zeta^{2} + \zeta) \cdot e^{-\tau_{+} \zeta} \| \overline{w} \|_{\overline{Y}_{\rho,\varepsilon}} \leq C_{12} \varepsilon \| \overline{w} \|_{\overline{Y}_{\rho,\varepsilon}} .\end{aligned}$$

Analogously, we know that

$$\begin{aligned} Q_{23} &| \leq C_{13} \varepsilon \int_{\zeta}^{+\infty} e^{-\lambda_0 (\eta - \zeta)} (\eta^2 - \zeta^2 + \zeta) e^{-\tau_+ \eta} e^{\mu \varepsilon (\zeta - \eta)} d\eta \| \overline{w} \|_{\overline{Y}_{\rho, \varepsilon}} \\ &\leq C_{13} \varepsilon \int_{\zeta}^{+\infty} e^{-(\lambda_0 + \rho \varepsilon) (\eta - \zeta)} (\eta^2 + \eta) \cdot e^{-\tau_+ \eta} d\eta \| \overline{w} \|_{\overline{Y}_{\rho, \varepsilon}} \\ &\leq C_{14} \varepsilon \| \overline{w} \|_{\overline{Y}_{\rho, \varepsilon}} . \end{aligned}$$

Thus, these estimates lead to

$$\|Q_2\overline{w}\|_{\overline{Y}^1_{\rho,\varepsilon}}^{\circ} \leq C_{15}\varepsilon \|\overline{w}\|_{\overline{Y}_{\rho,\varepsilon}}.$$
(8.33)

Here C_i ($i=7, \dots, 15$) are some positive constants. (8.32) and (8.33) show Lemma 8.5.

Lemma 8.5 implies that Q_{ε} is a contracting mapping in $\tilde{Y}_{\rho,\varepsilon}$ for sufficiently small ε , so that we conclude that there exists a unique solution $\bar{w} \in \tilde{Y}_{\rho,\varepsilon}$ of (8.30). Therefore, the problem (8.22) has a unique solution $\bar{r}=P_{\varepsilon}\bar{w}$ satisfying

$$\|\bar{r}\|_{\bar{Y}^{1}_{\rho,\varepsilon}}^{\circ} \leq c \|\bar{k}\|_{\bar{Y}^{-}_{\rho,\varepsilon}},$$

where c denotes some positive constant independent of ε , λ and ρ . Namely, $L^0_{\varepsilon}: \mathring{X}^2_{\rho, \varepsilon}(\mathbf{R}_+) \to X_{\rho}(\mathbf{R}_+)$ is invertible uniformly in ε , λ and ρ .

Since L_{ε} can be written as $L_{\varepsilon} = L_{\varepsilon}^{0} + f_{u}(U^{0} + W, V^{0} + \varepsilon^{2}Y) - f_{u}(U^{0} + W, V^{0})$, it is also shown that $L_{\varepsilon}: \mathring{X}_{\rho, \varepsilon}^{2}(\mathbf{R}_{+}) \to X_{\rho}(\mathbf{R}_{+})$ has an inverse bounded uniformly in ε, λ and ρ . This completes the proof of Lemma 5.3.

DEPARTMENT OF COMPUTER SCIENCES, KYOTO SANGYO UNIVERSITY

Department of Mathematics, Hiroshima University

References

- G.A. Carpenter, A Geometric Approach to Singular Perturbation Problems with Applications to Nerve Impulse Equations, J. Diff. Eq. 23 (1977), 335-367.
- [2] E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York (1955).
- [3] C. Conley, Isolated Invariant Sets and the Morse Index, C. B. M. S. Regional Conference Series in Math., 38, A. M. S., Providence, Rhode Island (1978).
- [4] C. Conley and R. A. Gardner, An Application of the Generalized Morse Index to Travelling Wave Solutions of a Competition Model, to appear.
- [5] R.J. Field and W.C. Troy, The Existence of Solitary Traveling Wave Solutions of a Model of the Belousov-Zhabotinskii Reaction, SIAM J. Appl. Math., 37 (1979), 561-587.
- [6] P.C. Fife, Boundary and Interior Transition Layer Phenomena for Pairs of Second-Order Differential Equations, J. Math. Anal. Appl., 54 (1976), 497-521.
- [7] P.C. Fife, Semilinear Elliptic Boundary Value Problems with Small Parameters, Arch. Rat. and Mech. Anal., 52 (1973), 205-232.
- [8] P.C. Fife, Asymptotic Analysis of Reaction-Diffusion Wave Fronts, Rocky Mountain J. Math., 7 (1977), 389-415.

- [9] P.C. Fife and J.B. McLeod, The approach of Solutions of Nonlinear Diffusion Equation to Travelling Wave Solutions, Arch. Rat. Mech. and Anal., 65 (1977) 335-361.
- [10] R.A. Gardner, Existence and Stability of Travelling Wave Solutions of Competition Models: A Degree Theoretic Approach, J. Diff. Eqs., 44 (1982) 343-364.
- [11] R. G. Gibbs, Travelling Waves in the Belousov-Zhabotinskii Reaction, SIAM J. Appl. Math., 38 (1980), 422-444.
- [12] S.P. Hastings, Some Mathematical Problems from Neurobiology, Amer. Math. Monthly, 82 (1975), 881-895.
- [13] F. Hoppensteadt, Properties of Solutions of Ordinary Differential Equation with Small Parameters, Comm. Pure Appl. Math., 24 (1971), 807-840.
- [14] Y. Hosono and M. Mimura, Singular Perturbations for Pairs of Two-Point Boundary Value Problems of Neumann Type, Lecture Notes in Numer. Appl. Anal., 2 (1980), 79-138.
- [15] J. D. Murray, On Travelling Wave Solutions in a Model for the Belousov-Zhobitinskii Reaction, J. Theor. Biol., 156 (1976), 329-353.
- [16] M. M. Tang and P. C. Fife, Propagating Fronts for Competing Species Equations with Diffusion, Arch. Rat. Mech. and Anal., 73 (1980), 69-77.
- [17] W. C. Troy, The existence of Traveling Wave Front Solutions of a Model of the Belousov-Zhabotinskii Chemical Reaction, J. Diff. Eqs., 36 (1980), 89-98.