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§ 0 .  Introduction

In this paper, we shall study the structure of algebraic surfaces which may not
be complete. The main results were announced in the note [11], which will serve
as an introduction to this paper.

Let X  be a nonsingular surface over C and let P,„(X), k(X ) denote the logarithmic
m-genus of X , the logarithmic Kodaira dimension of X , respectively (see Iitaka [3]).
It is an important problem to find the smallest one among those positive integers m
with 13 „,(X )> O. If X  is complete, R(X)= — oo if and on lyif P 1 2 ( X )  =0 by virtue
of the classification theo ry . Our results, which extends the above result to the case
of open algebraic surfaces, are summarized as follows: Take a smooth completion
X  of X  such that D:= X  — X  is a divisor on X  with simple normal crossings.

(1) (Theorem 2.1 of §2). If 17(X)= 0, then P i (X)=1 for some 1 66.
(2) (Theorem 3.3 o f §3 ). If k ( X )  0, and if D is connected, then P i 2 (X)> O.
In particular, by virtue of Miyanishi-Sugie-Fujita's cancellation theorem [2], we

deduce from (2) the following theorem :

Theorem . Assume that D  is connected. T hen P 1 2 (X )=0  if  and only  if  X
contains an open set U of the form  U At x C, where C is an open curve.

In a forthcoming paper, entitled "Structure of open algebraic surface II, An
application to plane curves", we apply the results obtained in this article to pro-
jective plane curves.

The author expresses his hearty thanks to Professors Iitaka, Kawamata,
Miyanishi and Sakai for their helpful comments and suggestions.

Notation and Coventions
1. We use the following notations. A triple (X , X , D) is said to be nonsingular if
X is a complete nonsingular algebraic surface and D is a reduced divisor with only
simple normal crossings (i.e., D  consists of nonsingular irreducible components
crossing normally) such that X = X —D.
2. Let L be a free Z-module generated by all irreducible curves on X .  Each ele-
ment of LOQ is called a Q-divisor. Let D be a Q-divisor. If D =E a i Di is  a  de-
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composition into irreducible components, we define [D ]  to  b e  E[a 1]D1 ,  where
[a i] is the Gauss symbol of a i .
3. Let D be a  divisor on X .  Suppose that H°(X , nD)0 0 for some integer n > O.
Then there exist an integer K and positive numbers a, )6 and m o  such that

am K  dim H°(X , mm 0 D),13mK

for a ll m »O . W e define  K(D, X ) to  b e  the  integer K . If H°(X , nD)=0 for all
n>0, then we set c = — c c . If D is a Q-divisor, we define K(D, X) to be ic(mD, X),
where mD is a divisor in the usual sense.
4. I f  (X , X , D ) i s  a  nonsingular tr ip le , w e  d e f in e  m (X) (resp. R (X )) to  b e
dim H°(X , m (K (X )+D)) (resp. K(K(X )+ D, X )), where K (X ) is a  canonical divisor
of X.
5. If D  is a reduced connected divisor, we write p0(D)=-1

2-(D, K  + D)+1 and cop =
(K + D)ID . Note that Pa( D )  0 and pa(D)= 0 if and only if D consists of nonsingular
rational curves whose dual graph is a tree.
6. Let D1 , D 2  be divisors on X . We write D, —D2 when D , is linearly equivalent
to D2.

7. Let (X, X, D) and (Y, Y, C) be nonsingular triples. L e t  f: X—> Y be a surjective
morphism such that f  (X )c Y. Then there is an effective divisor B on X such that

K (X )+ f  * (K (Y )+ C )+ B.

We call B  the logarithmic ramification divisor and denote it by k f  (cf. Iitaka [3]).
In particular, if D =C =0, B  is called the ramification divisor and is denoted by R f .

Denote by f - 1 (A ) the set-theoretical inverse image of an algebraic set A o f Y.
If A is a reduced divisor on Y, f - 1 (A) becomes a reduced divisor on X .
8. Let f: X—>Y  be a birational morphism between nonsingular complete algebraic
surfaces. For a divisor I .  on  X , f * F denotes the direct image r  on Y. Let C be a
curve on  Y. T h e n  the proper transform f '(C ) of C on X  is usually abbreviated as
C'
9. Let £9 V(e) (e 0 )  b e  a  vector bundle o f  rank  2  o n  P 1. W e s e t  Ee :=
P(OC)0(e)) and call it the Hirzebruch surface.

§ 1 .  Almost minimal triples

We shall introduce the notion of almost minimal triple and construct an almost
minimal triple from a given triple (X, X, D) with k ( X )  O. Note that our definition
of almost minimal triple is closely related to the notion of relatively minimal model
by Kawamata [5].

First of all, we recall the following general notion and fact due to Zariski [14].
Let X be a nonsingular complete surface. A divisor D on X  is said to be semipositive
(or arithm etically  effective, after the terminology of Zariski) if (D, C) -0 for every
irreducible curve C on  X .  Furthermore, a Q-divisor D is said to be semipositive
whenever some positive multiple mD is a semipositive divisor.
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Theorem 1 . 1 .  L et D  be a  Q -d iv isor on X .  Suppose that K(D, X) 0. Then
there exists a unique effective Q-divisor N  such that:

(1) N=0 or the intersection m atrix  of  N is negative-definite;
(2) D—N is a sem ipositiv e Q -d iv iso r ;
( 3 )  (D—N, N)=0.

P ro o f . By hypothesis, some positive multiple m D  i s  a  divisor such that
1 mpl # 0 .  Applying Theorem 7.7 in Zariski [14] to  a  member D' of mDI, we find
a Q-divisor N ' which has the properties (1), (2), (3) for D '.  Then N=N 'Im has
the required properties.

Denoting D—N and N by D+ and D- ,  respectively, we say that D+ and D -

are the sem ipositiv e and negative components of D, respectively. The decomposition
D =D '  +D -  is called the Zarisk i decomposition of D.

Proposition 1.2. ( 1 )  For ev ery  Q -d iv iso r  D  an d  ev ery  positiv e integer n,
(nD)+ =n(D) and (nD) -  -=n(D - ).

( 2 )  If  D is a usual div isor, then H°(X, D) H°(X, [D+]).

P ro o f . See Kawamata [5; (1.4)].

Let (X , X , D) be a nonsingular triple such that i-c- (X ). O. Then, by Theorem 1.1,
we have the effective Q-divisor (K + D) -  , where K  denotes a canonical divisor of X .
We say that the triple (X , X , D) is almost minimal if (K + D) -  contains no exceptional
curves of the first kind.

Now we state the existence theorem of almost minimal triple as follows :

Theorem 1.3. Given a  nonsingular triple (X , X , D) with 1-c-(X) 0 , there exist
an  alm ost m inim al triple (Z, Z, B) an d  a b ira tion a l m o rp h ism  f :  X—*2 having
the following properties:

(1) B =f,(D),
(2) (K  +D ) = f *((K(Z)+ ),
( 3 )  R f supp(K + D ) -  , w h e re  K=K(X ).

P ro o f . Step (1). To prove this, w e have to introduce the following simple
notions concerning the boundary of X.

Let (X , X , D) be a  nonsingular triple. A n  irreducible component C  of D  is
sa id  to  be  an  edge com ponent, i f  (D—C, C ).. 1. A  connected reduced divisor

Ci  is said to be a linear chain, if each C. is an edge component o f  Ci  + +
C,.+(D—E ;  C i ). Moreover, a  linear chain is said to be rational, i f  each com-
ponent is a  nonsingular rational curve. Hence a  rational linear chain C  satisfies
(K+ C , C )=  — 2. Furthermore,

(K+D, C)=(K+C, C)+(D—C, C)= —2+(D—C, C)= —  2 or — 1 ,

according a s  (D— C, C)=0 o r  1 .  A  m axim al rational linear chain m eans a
rational linear chain which is not contained in  a  larger rational linear chain. Let
D(1),..., D(s) be all the maximal linear chains contained in  D .  For each D(i), let
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E rg  D(i)i  be the decomposition of D(i) into irreducible components such that the
first component D(i) 1 is  an edge component and (D(i) i , D(i) ; _ ,)=1  for 2

Step (2). Assume that some D(i) ;  is an exceptional curve of the first kind and
denote it by E .  Let ft: X -4Y  be the contraction of E, under which C :=y (D ) is a
divisor with simple normal crossings on Y. Then we have

K +D=y *(K (Y )+C)+aE

for some non-negative integer a. By the projection formula, we know that

K(K(Y )+ C, Y )=K02*(K(Y )+C)+aE, X )= O.
We shall show that

(K+D)+ = it*((K(Y )+ C)+).

Set E +=  ti*((K(Y )+C)+) and s_ =1.4*(K(Y )+C) -  + a E .  For every irreducible curve
F on X, we have

(e+ , T)=(y*((K(Y )+C)+), r)=((K(Y)+ C)+, tt * (F))._ 0,

because (K (Y )+C) + is  semipositive. L et E ' b e  a n  irreducible component of
s _ .  Then u(E') is either a point or a component of (K(Y)+ C) - . Hence

(ii*((K(Y )+ C)+), E')=((K(Y )+C)+, p * (E'))= O.

(cf. (3) of Theorem 1.1). Let (K (Y )+ C)- = Ç  r i N i be the decomposition into
irreducible components with ri E Q  a n d  r ,> 0 . F o r  integers x i ( i=1 ,..., p )  and
y (00), we obtain that

(Er=i xiP* Ni+ Y EY  =(Ef=ixikt * Ni)2 + Y2 E2 =(Ef--1 x i N i)2 — y2 <0.

This implies that the intersection matrix of e_ is negative-definite. Therefore, by
the uniqueness of the Zariski decomposition, we have

(K+D)+ = it*((K(Y )+C)+).

By contracting all exceptional curves of the first kind in  E i d  D(i)i  successively,
we may assume that every D(i) i  is not an exceptional curve of the first kind.

Step (3). We claim that

D(i) g supp (K+D) -

F or simplicity, we write Di  f o r  D(i)i . Thus D I  i s  an  edge component. As was
remarked before, (K+D, D 1)< O. S in c e  K(K +D, X )= IT(X ) 0, we have  some
positive integer m such that m(K + D)I 0 0; hence (D;)< O. F or T e m(K + D)I,
we have T =kD i + To, where k is a positive integer, F0 is an effective divisor and D,
is not an irreducible component of F o .  Then we have

(K +D, =11m(T, D 1 )=11m(kD 1 +F 0 , klm(Di).

So, k lm  a: = (K + D, D 1 )1(D?)> O. Hence we know that
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m(K+D—aD 1 ) —kD1 + 1 0 —maD,=(k—ma)D,+r o

and k - m a . Thus K(K+D—aD 1 ,  X )- .0 . L et e+ =(K+D—aD i ) a n d  e_=
(K+D—aD 1 ) -  +aD i , where 8++ 8_ =  K+ D .  If D, is contained in supp (K +D —
aD,) - , then (8+ , DO= 0 and the intersection matrix of B._ is negative-definite. If
D , is not contained in supp (K+ D — aD X , then ((K+D—aD 1 ) -  , O. S ince
(K+D—aD i ) i s  semipositive, it follows that ((K+D—aD,)+, 1) 1 ) O. On the
other hand, (K+D—aD 1 , D 1 ) =0 by the choice of a. Hence we have

((K+D—aD 1 )+, D i )=((K+ D —aD 1 ) -  , D1 )=0.

In both cases, 8+ ± E_ gives rise to the Zariski decomposition of K + D .  Therefore,
D, is a component of (K+D ) -  . Furthermore, we have

(K+D—aD 1 , D2 )= (K + D 2 +D—D 2 —aD1 , D2 )

=(K +D 2 , D2 ) +(D —D2 , D2 ) +(—aD 1 , — a <O.

Thus, replacing K + D  and D ,  by K+D—aD, and D2, respectively, in the above
argument, we see that D 2 is a component of (K+D ) -  . Repeating the above argu-
ment, we see that each D(i) ;  is a component of (K+D) -

Step (4). Let Fr (X,,..., X,.) be the polynomial in X 1 ,..., X,. defined by

X,.)=det
0

   

where det (*) denotes the determinant of a matrix (*). Note that Fr (X 1 ,..., X,.)=
X 1 F,._ 1 (X 2 ,...,

Setting au = — (D(03), we have a matrix

— ai, 1
—a 2

0
(i = s),

0 1
1 —ai ,.( 1 )

which is the intersection matrix o f  ErI4 D(i) i . Since this matrix is negative-
definite, it follows that Fr ( i ) (ai i ,..., a i,.( 0 ) 0 O. Set

_  F r (1 ) - ; (a i i+ 1 5 • • • ,  a i r ( ) )i f  D (i), ( i )  is not an edge component of D,ai r ( o )

F p - 1 ( a 1 1 5 . • • 9  a 1 1 - 1 ) + F r( 1 ) - ;( a i i + 1 5 • • • 5  air(1)) 
 , otherwise.

Fr(i)(aii,•••,air(1))

Here, we set F o  =F _ , =1
We claim that

=



=a1-2+1— F (0- J+1(aii,•••, a irm )
a i r ( i ) )

r ( i ) - ; ( a u + 1 , ••• ,  d ir (0 ) ) + 1 F r ( 1 ) - j - 1 ( a i j + 1 1 • • • ,  a i r ( i ) )  

Fr ( i ) (a i i ,••.,a i r ( j ) )
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(K +D)  = (K + D ' +  
p , q  d p q D(p),)+ ,

where D' denotes D— D (p )q . First, we shall show that

(K + D' +  p , q
 d„D (p) q , D(i) i )= 0,

for all i, j. If D(0 0  is not an edge component of D, then

(K+  D' + dp,D(p)q, D(i) j )

= (K , D (i) j )+ du  _ 1 + d1i(D(0.1)+ d 1 +  1

=0.

Here, we set d . 0 =0 a n d  di r ( i ) + , = 1 .  If D (), ( 0 is  an  edge component o f D, then

(K+ D' + E p ,, d p ,D(p) q , DOM =  (K  +  
p , q

 d p e D(p) q , D(i) j )

= au —  2 + 1 F1-2(d11,• • • j - 2 ) F r ( i ) - j + 1 ( a i j , • • • ,  a i r ( i ) )  

a i r ( o )

a u ) + F r ( o _ i _ , (a u _ 2 ,•.•,
a i r ( o )

=0.

Here, we set di o  =d i r ( i ) + , = 0 .  Secondly, we shall show that

K(K+D'+ E p ,  d p q D(p) q , X) .

By hypothesis, there exist a positive integer n  and an effective divisor T  such that
T  n (K  +  D ) . Write T =F 0 + E„, q oc„D(p) q ,  where ap q 's  are non-negative integers
and F o  is an effective divisor which contains none of D(p) q . Then, it suffices to show
that ap q /n 1 — d p g ,  fo r every p  and q. Let flp q  = (a p q ln) — (1— d p q ). We define a
Q-divisor C to be Ep, flp q D(p)q . We shall show that C is effective. Note that

(K+D , D (i) ; )=11n(F o + E p ,  ap q D(p),, D(i) i ) (E  p !Pig D (i ) j )

and

(K+ D — Jp,q  (1 d p q )D(p) q , D(i) i )=(K+ D' + E p , q d p ,D(p) q , D(i) i ) = 0

for every i and j. Thus, we obtain

(C, D(i) i ) = (E p , q 1 ,

1
;  q D(p)q , D(i) ; )— (E p  ( 1  d p q )D(p) q , D(i)i)

Fr ( i ) (a i i ,•••, ai r ( 1 ) )

a 1 (1. — F1 _ 1 (a 11 ,..., a 11 _2 ) + F r ( o _i (a i i + 1 ,•••, a i r ( i ) ) )
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D(i) i )—(K+D, D(i) j )= 0

for every  i and  j. Setting C o = E pp  g ).0 flp q D(p)q  a n d  C1 = — E p p ,  < 0  fipq D(P)q ,
we have (C, — C1 , CO= E — f l„ < 0  1

3
pq(

C
0

—
 C 1 9  D(P)q ) O. This im p lies tha t 0

(Co , Ci ) (C f).  On the other hand, since the intersection matrix of C is negative-
definite (cf. Step (3)), we have C, = 0 . Therefore,

a
Pq — (1— d )=f3 >0pq p q  =

for every p and q .  This implies that

K (K + D '+ E p ,q  d  p q D (P ), X ) 0

as required.
Now let A + =(K+D' + E p , q d pqD(P)q) +  a n d  A _=(K+D' + E p ,  dp q D(p)q ) -  +

Ep, (1 — dp q )D(p)q . We can verify, by the same argument as in the previous case
(cf. Step (3)), that A + A _ is the Zariski decomposition of K + D .  Hence we obtain
that

(K+D)± =(K+D ' +E p ,q  dp q D(p) q )± .

Step (5). Let Do b e  an  irreducible component o f D  su ch  th a t (K +D '+
E p , d p q D(p)q , DO< 0. Then Do E i ,i  Dm i ,  because (K+D ' + E p ,  dp q D(p)q ,
D(i)1 )= 0 .  Hence D o is a rational curve, i.e., pu (D0 ) = 0 .  Now, we claim that

(E i d  D(i) j , D0 )>= 1.

Indeed, supposing that (E i d  D(i) J , Do ) we shall derive a contradiction. Since
Do  E i ,i  Doi , we then (E,, i  D(i) i , D0 ) = 0 .  Thus we have

(K+  D, Do )= (K +D ' + D0)=(K+D' + E i ,  diJ D(Oi , D0 )<0.

Since we have, by the adjunction formula,

0>(K+D, D 0 ) = (K +D 0 , D0 ) +(D—D 0 , Do ) .  —2,

it follows that (D— Do , D0 ). 1, which implies that Do is a rational edge component.
This contradicts the fact that DoD ( i ) 1 .

Let C1,..., C1, D(1),.( 0 ,..., D(t),.( ,) be all components of D which meet Do , where
C15 s denote the components which are not contained in  Ep ,  D(p)q . If / 2 ,  we
have

(K+D' + E p ,  dp ,D(p)q , Do )__(K +C + Cy +Do, DO 0,

which contradicts the assumption. If 1=1, then t 2 by the definition of a maximal
rational linear chain. It is easily checked by induction on r(i) that

because 2 for j Then
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(K + D' + E p ,q  dpqD(P)g, (K + D0  + C 1 + Ef= i  d i r ( ,) D(i), ( i ) , D 0 )> 0,

which is a contradiction. Thus, this case can not occur. If 1 = 0, then t 3 and

(K + D' + Ep , q dp e D(p) g , DO< 0

if and only if
1 

Ef=t dirco= E ti=1- ( 1F r ( i) (ai i ,- , air(i)))
< 2 .

Therefore, we conclude that t = 3 and

{F r ( l ) ( a l l ,.•• , F ,.(2 )(a2 i,• • • , a 2 , ( 2 ) ), a 3 ,(3 ))1 =  {2, 2, n},

{2, 3, 3}, {2, 3, 41, {2, 3, 5 }, up to a suitable permutation,

where n is an integer 2. L etting a, be integers_2, we obtain

Fr (a i ,..., a r ) = 2 < >r=1, a 1 =2,

Fr (a i ,..., a r ) = 3  r= 1, a 1 =3

or r= 2 , a i = a 2  =2,

Fr (a ar)- 4   r -1 , a i = 4,

or r= 3, a 1 =a 2 =a 3 =2,

Fr (a i ,..., a r )= 5 G > r = 1, a i  = 5,

r=2, a 1 = 3, a 2 =2,

r =2, a 1 =2, a2 = 3,

or r =4, a i =a 2 =a 3 =a 4 =2,

Fr (a l ,..., a ) = 6< >r=1, a 1 =6

or r=5, a i  -  a 2  -  a 3  - a 4 -- a, - - 2

(cf. Proposition 2.2). Therefore the configuration of the connected component of
D containing Do is one of the following:

Type D

-/- 2

          

Type E6

 

- 2 - 3 - 3

 

- 2 - 3 ' - 2
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—2 —3 —4 —2 —4Type E 7

—2

/ 2 / - 2
—2 — 2

— 2

2

/ 2 / - 2
—  

Type E8 —2 —3 —5 —2 —2 —2
2

—2

— 2

—5 —3 —2
— 2

—2

Figure 1.

Here, each line represents a nonsingular rational curve, an integer attached to each
line stands for the self-intersection number of the curve corresponding to the line
and each horizontal line represents Do .

We shall prove that D, is not an exceptional curve of the first kind. Suppose,
on the contrary, that D, is an exceptional curve of the first kind. Then, by examining
separately each configuration shown above, we can check that the intersection matrix
of the connected component B of D containing D , is not negative-definite. On the
other hand, w e see that D , is a  component of (K +D) - ,  because (K +D '+
Ep ,q d p q D(p)q , D0 ) < 0 .  Since the other irreducible components of B are contained in
(K+D) -  b y  construction, B  should have the negative-definite intersection matrix.
This is a contradiction. Hence D, is not an exceptional curve of the first kind.

Let B(i)(i=1,..., t) be a connected component of D of which configuration is one
of Types D, E6, E 7 , E8  in the above table and let B (i)=Esi

(11 B(i)i  be the decomposi-
tion of B(i) into irreducible components. Since the intersection matrix of B(i)
is negative-definite, we have the uniquely determined positive rational numbers
b„ such that

(K + E p ,q  bpqB(P)q, B( =  0

for every i, j. It is easily checked that each bp q  is smaller than o n e . Writing D" =
D— E p D(p)- E i B(i) we have

(K+D" + E q d p q D(p)q + E„,m  b„„,B(n),„, 1")_ 0

for every irreducible component F of D, where E'p ,q dp q D(p), denotes the sum of the
D(p)g 's such that D(p)q B (i) . It can be shown, by the same argument as above,
that the divisor D* := D" +E; , q d „,D(p )q + E  n  b„,„B(n),q  satisfies ic(K +D*, 0
and that (K+D)+ =(K+ D*) +

Step (6). If K +D* is semipositive, then the triple (X , X , D) is almost minimal
by definition. Hence we may assume that (K +D*, 0 for some curve rv).
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Then ( 1 2 ) < 0  because k(K+D*, 0, and (K , F)< 0 because 1- D .  This implies
that F  is an exceptional curve of the first kind, whence (1 2 ) = —1. Let It: X ,Y
be the contraction of F and let d = it * (D).

We shall show that d  has only simple normal crossings. Let C 1 ,..., C i be all
irreducible components o f D  which meet F. Let ci denote  the coefficient of C,
in D * .  Then 0  c, < 1 i f  C. is contained in D (p )4 +  E n ,  B(n)„, and c 1= 1,
otherw ise. Note that

0>(K +D*, F)= — +(D*, F)= — 1+ E iF ) .

This implies that all C1 ,..., C 1 are contained in  E ;  D(p)q + E B ( n ) m .  W e claim
that c, = 1 +2/(Cf). Indeed, since (K +c C i , C.)= 0, we have

0 = (K +D*, C 1)—  (K + c,C C i ) =(D* — c i Ci , C i) +(c i —  c)(Cf).

Since (D* — c C .)  0 and (C?)< 0, it follows that c. Hence we have

(*) 1> E iE i  e ( c , ,  F).

W ithout losing generality, we may assume (C f) .. First, assume that
(Cf)_. — 6. Then (Ci)= • • • =(Cf_,)= —2 and (C I ,  F )=1  b y  (*). O n the other
hand, the intersection m atrix  o f  C, + ••• +C ,+1  is negative-definite, because
(K +D *, F)<0 implies that F gsupp(K+D) -  . From this, we infer readily that
/ 2  and (C 1 , F)= 1 and (C 1 , C2 ) - _ 1. If C, n C 2  n 1 =0  then A has simple normal
crossings. So, suppose that C, n C 2 n F  * 0 .  We put

2+ a : — , d 2 :=2d 1 ,1+ 2a

where a :=( C i) .  Then, we have

(K + d i C i  +d 2 C2 , C1) = 0  (1=1, 2),

where we note that (C I , C2 )=1 and (C )=  —2. Since

(K +c 1 C 1 +c 2 C2 , C ,)-(K +D *, C1)=0,

we have

(**) (c1C1±c2C2—d1C1—d2C2,C1)

=(K +c 1 C 1 ±c 2 C2 , C1) — (K+d 1 C 1 +d 2 C2 , C1). 0.

We set c 1 C1 + C2C2 —  d i C i —  d 2 C 2 =  A — B, where A , B  are effective Q-divisors with
no common components. Then, by (**), we have (A — B, O. This implies that
B=0 because the intersection m atrix  o f  B  is negative-definite and  (A , B).1:).
Therefore, we have On the other hand, by a direct computation, we have
d 1 + 1, w hich is a contradiction. Hence, C1 n C 2  n F = 0  and A  has simple
normal crossings if (Cf) —6.

The case in which (CD= —2, —3, —4 or —5 is treated in  a  similar fashion.
We write K +D= p*(K (Y )+ A )+ a' F for some integer a'. Setting b =la'i, we
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have

0 . 1c(K +D, X).-K(p.*(K(Y)+.4)+(b+a)T, X)=K(K(Y)+ 4 , Y) .

We shall prove

(K+D)+ = p*((K(Y)+ J)+)

by examining separately each of the following cases.
C ase  1 . a' We obtain (K + D)* 4.1*((K(Y)+ J )+ )  by  the same argument as
in Step (2).
C ase  2 . a' < 0 :  I t  is  c le a r  th a t  (K +D )+  + ((K +D ) -  — al ')  g iv e s  r is e  to  the
Zariski decomposition of p,*(K(Y)+ d), because I ' is a  component of (K + D) -  . If
(Y—d, Y, d) is not alm ost minimal, we repeat the  above argument all again for
(Y —A, Y, d) and  finally we obtain an  almost minimal triple (Z, Z, B) having the
required properties. This completes the proof of Theorem 1.3.

Proposition 1.4. L et (X , X , D ) be  a  nonsingular triple w ith R ( X ) 0 .  Let
(Z, Z, B) and f :  be as in Theorem 1.3. If  (Y, Y, C) and g: X-4Y are an arbi-
trary  alm ost m inim al triple and a birational morphism, respectively, satisfying
the conditions (1), (2) of  Theorem 1.3, then g•f - 1  becomes a morphism.

Pro o f . Let E be an exceptional curve of the first kind on X such that f (E ) is a
point on Z. W e claim  that E is contained in the ramification divisor R9  of g .  We
have

K+D+g*C— D+R9=g*(K (Y)+C)+2R9.

Since (K + = g *((K (Y )+  C )+ ), it follows that

(K +D ) -  +g*C—D+R 9 =g*((K (Y )+C ) - ) +2R 9 .

N o te  th a t  g*((K(Y)+ C) - )+2R 9  h a s  th e  negative-definite intersection matrix.
Since g*C—D_.. 0 (cf. the condition (1) of Theorem 1.3) and  Egsupp(K+D) -  by
the condition (3) of Theorem 1.3, the intersection matrix of E+ R 9 is negetive-definite.
This implies that Eg R 9 o r  E n R9 = 0 .  Assume E n R9 = 0 .  Then E 0 : =g(E) is an
exceptional curve of the first kind on Y. On the other hand, since

Egsupp(K + D) -  s u p p  (g*((K( Y)+ ) +  2 R g ) ,

we have E 0  supp 0K(Y)-1- C y ) .  This contradicts the almost-minimality of (Y,
Y, C ) .  Therefore, E  Rg . Since g is birational, g(E) is also a  po in t. T h is implies
that g is a morphism. Q. E. D.

Let (X , X , D) be a nonsingular triple with i<.= (X )._ O. An almost minimal triple
(Z, Z, B) satisfying the condition (1), (2), (3) of Theorem 1.3 is called an  almost
m inim al model of (X , X , D).

We recall the definition o f  a  "relativ ely  m inim al m odel" due to Kawamata
[ 5 ] .  Let (X , X , D) be a nonsingular triple with r c (X ) .0 .  A pair (Y, C) is said to
be a  relatively  m inim al m odel of  (X , X , D) if there exists a birational morphism
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f: X—>Y such that
(1) Y is a  nonsingular complete surface and C is an effective Q-divisor with

coefficients not greater than one,
(2) (K + Dr = f*((K (Y )+C)+)= f*(K (Y )+C).
Now, we prove the following:

Proposition 1.5. L et (X , X, D) be  an  alm ost m inim al trip le  with R(X )..0.
Then D— (K + Dr is effective and (X , D— (K +D)) is a relatively m inim al model
of (X , X , D).

Pro o f . By the construction of (K + D r  in the Step (4) of the proof of The-
orem 1.3, it is clear that D— (K+D) -  is  effective. Then, since K + D —(K + =
(K + , this implies that (X, D — (K + D ) )  is a  relatively minimal model of (X,
-X , D).

Proposition 1.6. L et the notations and the assumptions be th e  sam e as in
Theorem 1.3. Then we have P„(X)=P„(Z) f or each positive n.

Proof. P(X )=dim H°(X , n(K + D))-= dim H°(X , [n(K+D)+])

=dim H°(X  , [f *(n(K(Z)+ B)+)]). On the other hand, P(Z)

=dim H°(Z, n(K(Z)+ B))= dim H°(Z, [n(K(Z)+B)+])

=dim H°(X , f*([n(K (Z)+B )+1)). Set Bm :=B— (K(Z)+ .

Then there is an effective divisor F  on X  such that [f * n B ,]= f * [n B ]+F and
codim f  (F). 2. Noting that K(Z)+ B m =(K(Z)+B)+ , we have

Pn(X)= dim Ho(X, [f*(n(K(Z) + B) + A)

=dim H°(X , [f*(n(K(Z)+B„,))])

=dim H°(X , f*nK (Z )+ f*[nB ]+F)

=dim H°(X , f*(nK(Z)+[nB„,])+F)

=dim H°(Z, n(K(Z)+B))

=15 .
( Z ) .

Remark.

(1) Let (X , X , D) be an almost minimal triple. Then the configuration of a
connected component of (K + D r is a linear chain, or has one of Type D, Type E,,
Type E7, Type E8 in the Figure 1.

(2) Let C be a connected component of (K+ D) -  . If G is not a rational linear
chain, then C is a connected component of D.
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§ 2 .  Triples (X, X, D) w ith  (X )= 0

Theorem 2.1. L et (X , X , D ) b e  a  n on sin gu la r trip le  w ith  R (X )= 0 . Then
P 1(X)=1 fo r  som e in teg er  i, 1 i 66.

P r o o f .  By Proposition 1.6, we may assume that (X, X , D) is almost minimal.
Set D.: = D —(K + D) -  . By Theorem (2.2) o f  Kawamata [5], there exists some
positive integer r such that r(K +D„,) is integral and trivial. T o  f in d  the smallest
integer among such integers r, we shall construct a ramified cyclic cover of X by the
following argum ent. Choose a n  affine open covering U= {U 1} o f  X  such that
0(K+ D), identified with the associated line bundle, is defined by suitable transition
functions { 0 }  with respect t o  U .  Take a  member F  o f  ir(K+D)1. Then F -
r(K+D)—r(K+D) -  ; hence F=r(K +D ) - . W e take  a  s e t  o f  regular functions
{si } on {U,} which represents the section of 0(r(K+D)) defining F; thus s1 - 4 s ;

o n  Ui n U1. S e ttin g  V= {(x, t)e Ui x CI tr  = S i(X )} , { V il can be patched together
to form an algebraic subset S of the total space of the line bundle associated with
K + D . Choose an  irreducible component X ' of S and denote by Tr': X'—>X the
morphism induced by th e  canonical projection 0 (K + D )— a . Since the cyclic
group of order r acts naturally on S, a cyclic subgroup G acts on X ' in such a way
that the quotient X'IG is birationally equivalent to X .  The morphism l e  is étale
outside 7e- 1 (F ) .  Thus, we have a nonsingular complete surface X  and a birational
m orphism  X-+X' such that y is isomorphic outside 7C- 1 (F) and 2 := tri(7C - 1 (F))
has only simple normal crossings. M oreover, w e m ay assume that the action of G
on X is regular. Setting it =7r' • p, we have

K(.1)+ g=7r*(K(X)+D)+R„

and supp k„g_ 7r- 1 (F); hence ic- (X)-= 0, where X =X —9 .  B y  construction, Pg (X)—
1. Such a triple (X, X, g ) has been studied by Iitaka [4] and can be classified in
the following three cases.

Let S be a relatively minimal model o f  X , let p: X-+5  b e  the associated bira-
tional morphism and let C=p * (g ).
Case I. tc(X)— O. S is a  K3 surface or an abelian surface. Then either C is a
zero divisor or C consists of nonsingular rational curves.
Case 2. 5  i s  a  ruled surface of genus 1. Then C consists o f  two disjoint regular
sections.
Case 3. S i s  a  rational su rface . Then G is one of the following;

(1) an elliptic curve,
(2) a disjoint union of an elliptic curve and a nonsingular rational curve,
( 3 )  a reduced divisor consisting of nonsingular rational curves.
Let a  be a  generator of G . Then a  gives rise to an automorphism a* of the

vector space H°(.1', K(.1")+ g) of dimension 1. For a nonzero element co a H°(.1e,
K(.4"- )+  9 ), we have a*co—aco. Here, a is a primitive n-th root of unity for some
integer n >0, because a* has finite order. W e shall show that Pn (X )= 1 .  Take a
nonzero element oh, e n (K (X )+ 9 )).  Then coo i s  a-invariant. Regaining
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the previous situation, denote supp F by N .  Since N  is the union of the zero loci of
sys on L I s, 7r- 1 (N) is a-invariant. Hence a acts on A' —n- l(N ), and X— 7c- 1 (N)--
(X —7E- 1 (N)1G4 X  — N is  an étale covering . If one regards co, as an  element of
H°(X —n - 1 (N ), n(K (X )+ 9)), then co, is a-invariant and so it is derived from an
element co l  e H°(X  —  N, n(K(X )+ D)). Hence we have H°(X  , n(K(X )+ D)+ aN)0 0
fo r  some integer a » O. N o t in g  th a t  n(K (X )+ +( n ( K ( X ) + D ) -  +aN )  is  the
Zariski decomposition of n(K  + D)+aN , we have

P(X )= dim H°(X , n(K + D))= dim H°(X , En(K+ D) + M

= dim H °(X , n(K +D )+aN )00

(cf. Proposition 1.2).
Therefore, for the proof of Theorem 2.1, it suffices to show that n is not larger than
66. We consider three cases separately.
C ase  1 . S  is a K3 surface or an abelian surface. In this case, since S  is absolutely
minimal, a induces an automorphism of denoted by the same letter a, and we
have isomorphisms of one-dimensional vector spaces compatible with the canonical
a c tio n s  o f  a, H °(X , K ()+ H ° ( .3 ,  K ( S ) +C ) L ,' H°(S. , K(S)). B y  the  Hodge
theory, a is an eigenvalue of the automorphism a* of H 2 ( , Q )/L , induced by a,
where L  is the subspace generated by divisors. The second Betti number b2 (S ) is
6 if S is an abelian surface and b2 (S) is 22 if S' is a K3 surface. Furthermore, dim L
1. Therefore, counting the dimension of a a*-stable subspace o f  H 2 (S , Q)/L , we
know that 0 ( n )  21, where 0(n) denotes the Euler function. B y a  straightforward
computation, we have 6 6 .
Cases 2 a n d  3 . S  is a ruled surface of genus 1 or a rational surface. Let 2  = E i gi

be the decomposition into irreducible components. There exist at most two non-
rational components, which are, in fact, elliptic curves; hence E i g(.9 i) . . 2 .  By
Deligne [1], we have the following commutative diagram;

H 2 (X , C)-1-1 1 (.1", 52 1)

H 2 (X ,  C )  H 1(.1", SP(log 9))(:)H °(, K (.1")+ g) ,

where j*  is the canonical homomorphism induced by the inclusion j : X - + X . From
an exact sequence (cf. litaka [15; the proof of Lemma 1]),

0 10 1 ( l o g  9 ) O f O g i 0 ,

we have a long exact sequence

• • • 'P ( . ,  S2') 111(X, (21 (log g)) - -+ 0  , IP( 9 »

Note that dim (D i  111 ( g i , o! 9 9 j ) = E  g ( g .i)_ 2. T h u s ,

dim H 2 (/', C)/Im j *  3.
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O n the other hand, the homomorphism j *  is, in fact, defined over Q .  L et L '=
Im (j* : H 2 (.1", Q)-41 2 (X, Q)). N ote  th a t  o- *(L')=1:, dim Q  H2 (f , Q)11: 3  and
wisE Im j* , because co E H°(. " , K(Y)+ g). Hence we have tb(n)._ 3, whence n  6.

Q. E. D.

Proposition 2 .2 .  L et (X , X , D) be a n  alm ost m inim al triple w ith  R(X)=0.
Assume that X is rational, D is connected and Pg (X )= 0 .  Then P 2 (X )=1,P 3 (X)=1,
P4 (X )= 1  o r P 6 (X )= 1 .  Furtherm ore, th e  co n f ig u ratio n  o f  D  is  one of  the
following:

 

—4

   

—2

Figure 2.

Here each line represents a nonsingular rational curve and each number indicates
the self-intersection num ber of the corresponding curve.

Pro o f . W e shall prove that P i(X )= 1, w here i=2, 3, 4 o r  6 .  We consider
separately the following two cases.
C a se  1 :  [D ,„]=0 . Then supp D=supp (K + D) - , because D„,= D —(K + D) -  i s
an effective Q-divisor with every coefficient< I. T h u s  w e  have (K+ D,„, C) =0 for
each irreducible component C o f D .  Note that (K+D,„) 2 =0 because K+D„, is
semipositive and  R(X)= 0. Hence we have 0= (K +D,„) 2  =(K + A n , K)+(K + D,,„
D„,)=(K+D„„ K).
On the other hand, since the triple is almost minimal and supp D=supp (K+D) - ,
D does not contain any exceptional curve of the first k ind . Let C be an irreducible
component of D .  Then (C 2 ) <0 because Cg.supp (K+D) - . If (C, K )< 0, then C
is an exceptional curve of the first kind, which contradicts the assumption. Hence
(C, O .  T h u s

(K +D , K )(K +D „„ K )=0 .

Note that H2 (X, 2K + D)= H°(X, — K— D)=0 because X is rational and pg (x )=0.
By the Riemann-Roch Theorem,
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hc)(X ,2 K + D )-1
2-(2K +D ,K +D )+1= (K , K +D ).0 ,

because pg po =0 and the connectedness of D imply (D, D + K)= —2 (cf. Miyanishi
[8; Lemma 2.1.3.]). Assume that P 2 (X )= O. T h en  w e  have (K, K +D)= 0  and
also (K, C)= 0 for each irreducible component C  of D .  Then (K 2 ) = 0 .  Since
(K + D„,)2 = 0 and (K , D )=  0, we have (D )= 0 .  T h is  implies that D„,= 0 because
supp Din g supp (K +D) - . Since nK n(K + D„,)— 0 for some integer n and since X
is rational, we have K -0 , which is a contradiction. Hence P2 (X )= 1.
Case 2 :  [D„,]0 O. W e  set Do = [D ,] and D' = D— Do . The Q-divisor (K + D) -

is obtained by the method explained in the Step (4) of the proof of Theorem 1.3.
In particular, Do is connected because D is connected and if C1 ,..., C, are all the
irreducible components of D;„ which meet Do (if such components exist at all), then
every Ci is  a  component of the form D ( J ) r ( j )  according to the previous notations.
Hence the coefficient of Ci in D;„ is of the form 1— 1/a with 2. Since r(K + D,„)—
0, it follows that (K +D„ D 0 )=0  and so, we have

(K +D„, Do ) = (K, D o ) + ( N) + Do).

However, (K, D0 ) +(D6)= —2 because Do is connected and IK +D o l = 0 .  Thus

—2+ E i , ,  ( 1 - 1 )= 0 .a i

This implies that, if we assume a l

1=3 and

• • • we have

a l  = a 2 = a 3 = 3,

or 1=3 and a l  =2, a 2 = a 3 =4,

or 1=3 and a, =2, a 2 = 3, a 3 = 6,

or 1=4 and a l  =a 2 =a 3 =a 4 =2.

By recalling again the construction of K+ D =(K + D r  in Theorem 1.3, we know
that a(K +D ,) is an integral divisor, where a : = L. C. M. (a 1 ,..., al). Since X  is
rational, Pa(X )= 1 for a = 2, 3, 4, or 6.

Secondly, we shall determine the configuration of D .  I f  [D m ] = 0, then every
irreducible component of D  appears in D,„ with positive coefficient (<1) and 2(K +
D .) is an integral divisor, which is, in fact, a trivial divisor. Hence we infer that

1 We shall show that D is a linear chain. Assume that the configuration of
D has Type D, E6, E7 or E8 (cf. Remarks in § 1 ) .  By a simple computation (cf. Step
(3) in Theorem 1.3), we know that the coefficient of an edge component C with
(C2)= —2 in Din is less than —

1

2
. This is a contradiction. Hence D is a linear chain.

Let D=Eri =, Di b e  the decomposition into irreducible components, where D I i s
an edge component and (D i , Di _ 1)=1  for i =1,..., r- 1 .  S e t  ai = — (Di). Then,
by Step (3) of Theorem 1.3, we have D ,= - - D if and only if
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F .  ,J - . .  l l •  • •, a,.)
Fr (a l ,..., a r ) 2

for all j. The solutions of these equations are as follows:

(1) r=1  a n d  a 1 = 4,

(2) a t= a r= 3 , a2= •••= a ,-1= 2 -

If [D „J  0, a  connected component of (K+ D) - is a  linear chain (cf. Remarks in
§1). Set D0 : = [D m ]. Since (K +D 0 , D 0 )= —2, an edge component of D , meets
at least two irreducible component of (K + D) -  (cf. Step (1) of Theorem 1.3). If
D, has only one edge components, then D , is irreducible. If D , has just two edge
components, then D , is a linear chain. From these facts and Step (3) of Theorem
1.3, we know that the configuration of D  is one of the following, where the first
two configurations appear in the case [D,1=0:

(II)
( 1 .)

(2„)

—4 —3 — 2  — 2  2
I n components I

(III)
(1) (2) (3)

—3 —3 —3 —3 —2 —2

(4)
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(2) (3)

— 2

—2— 2 — 4 — 4 —2

(4)

—2

— 2

( V )
( 1 ) (2)— 2 ( 3 )

—2 —3 —6 —2 —2 —6

(4)

Figure 3.

We shall prove that the cases III—(1), (2) can not o c c u r . We can show in a similar
fashion that the other cases except those listed in the statement of the proposition do
not o c c u r . We assume that D has such a configuration.
Case III—(l)

c l

—3

C3

—3

Do

Figure 4.

Let D — Do = C i + C2+ C3 be the decomposition into irreducible components. Then

D0 +---(C 1 + C 2+  C 3).3

Noting that (K  D ., K )=0, we have (K 2 ) + (Do , K)+ 2 = 0. If X  has no exceptional
curve of the first kind then X  is either P 2 or a Hirzebruch surface En (n =0, 2, 3,...).
Such a divisor D does not exist on P 2 or  I .  H e n c e  X  has an exceptional curve E
of the first kind. Then we have

C2

—3
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0 =(K + D„„ E)= -1+(D o , E)+1((C1, E)+ (C2, E)+(C3, E)).

Therefore either (a) (Do , E)=1 and (C1, E)=0 for i =1, 2, 3 or (b) Do = E .  By con-
tracting E, the case (a) can be reduced to the case (b). Suppose Do = E .  Let p:
X ->T7 be the contraction of E .  Then D' = tt(D) has the following configuration:

C;

Figure 5.

In this case, we have K(Y) 2 = 0  because 1.1*(K(Y )+1D')=K(X )+D„, and (K(X )+
D,) 2 = O. Thus there exists an exceptional curve of the first kind E' o n  Y  Letting
C;=p(C i), one has (K(Y)+ E iE ' ) = 0 .  But this is a contradiction.
Case III-(2).

B ;

C lc 2 - 2

- 2- 3

Do

Figure 6.

Let C 1, Bi  be the irreducible components as shown in the above configuration. Then

D,„= D o +-(C , + C2+ B2)±
1

/31 .3

In this case,

0= (K+ D„„ K)= K 2 + (D o ,  K ) + -
2

+ —
2

= K 2 + (Do ,  K ) + -
4

3 3 3 '

which is impossible. Q. E. D.

R em ark The configuration of D is I-(1) or (2„) or II-(1) (resp. III-(4), resp.
IV-(3), resp. V-(4)) in Figure (3) if and only if P1 (X )= O and P2 (X )= 1 (resp. P1 (X )=
P2 (X )= O  a n d  P3 (X )= 1, resp. P2 (X )=P 3 (X )= O  an d  P 4 (X )= 1 , resp . P3 (X )=
P 4 (X )=P 5 (X )= 0 and P 6 (X)=1).

Now we shall give several examples.

Example 1 . Let C 1 be  a  nonsingular conic on P 2 and let C2 be an irreducible
cubic on P 2 such that

— 3
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(1) {p} =C 1 n C2,
(2) C2 has only one singular point q  p  (see Figure 7-(i)). We resolve the

singularity of C, +C 2 . Let /./: Y -P 2  be the composite of blowing-ups such that the
configuration of D' =p, - 1 (C i + C2 ) is as shown in Figure 7-(ii). Let g  be the proper
transform of Ci for i =1, 2. Let p i  : -X -Y  be the blowing-up of one of two points in
11- '(q) n c"2  and let D be the proper transform of D '.  Then the configuration of D
is as shown in Figure 7-(iii). Putting X = X  -D , we have

R(X)= 0, P 3 (X )=P 4 (X )=P 5 (X )= 0  a n d  P o (X) =1.

(i)

contact
of order 6

 

PO

Figure 7.

Example 2 .  Let M  b e  the minimal section of the P 1 -bundle morphism of
■P: E1 ->ln  and 1 a fiber t/J- 1 (u). Let C , (resp. C2 ) be an irreducible curve linearly
equivalent to M +1  (resp. M+2/) such that D o : = M + / +C , + C2 is  as shown in
Figure 8-(i). Let n o : Y-41 1 be  the composite of blowing-ups of po : = C, n Cy  and
its infinitely near points p i , p 2  o f order 1, 2 lying on the curve C , and the point
go : =C 2 n M .  Then we obtain the configuration of f ro l(D0 )  as shown in Figure
8-(ii). Let j : X—> Y be the composite of blowing-ups of the point q l : =  n E3 and
its infinitely near point q2 on C .  L e t  D be (p o lt 1 ) - 1 (D0 ) with 14(E2 ) and E s deleted
off, where E s is the exceptional curve arising from the blowing-up of g2 . Then the
configuration of D is  as shown in Figure 8-(ii). Let X :=X  - D .  Then we have

R(X )= 0, P2 (X )=P 3 (X )= 0  a n d  15,(X )=1.

- 2 -2



£2
C ;

- 2  E 3

C 2
E1 - 1

M '- 2

140 o
E0
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Figure 8.

Example 3. Let M  be the section of E2 with (M2 )=  -2  and let I be a fiber.
Let C, (resp. C2 ) be an irreducible curve linearly equivalent to M + 2/ (resp. 2M +41).
Suppose that the configuration of D0 = C1 + C2 is as shown in Figure 9-(i). We
resolve the singularity of Do . Let /20 : Yo .-41.

2 be a composite of suitable blowing-
ups by which y-

0
1(D0 )  becomes as shown in Figure 9-(ii). Let y i : X—>Y be the

blowing-up of one point q  of /20
- 1 (p) n C2 and its infinitely near point of order one

on C .  L e t  D be yo
- iy -, 1(D0 ) with the exceptional curve of the first kind appearing

in the last stage deleted off and let X  =X  - D .  Then we have

R(X )= 0, P 2 (X )= P 3(X )= 0  a n d  P 4 (X )= 1.

Example 4 .  Let C„ (resp. C2 ) be an irreducible curve of E2 linearly equivalent
to M+21 (resp. 2M + 4/) as in Example 3 and let Do = C, + C2, whose configuration
is, however, as shown in Figure 10-(i). Let y o : Y-*E2 be a composite of blowing-
ups by which y (D o ) becomes as shown in Figure 10-(ii). Let 12, : Y1 -> Y0 be the
composite of blowing-ups at p' = C'1 n c; and one point q  of C2 n A V (p), where p
is the singular point of C 2 .  Let h 2 : X -> Y, be the blowing-up of p " :=C ' n y1 1(1;0.
Let

D=(Itoltill2)-1(C1+ C2) -  Oti l Gtiqq» U gi' (p"))

and let X  = X - D .  Then we have
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R(X )=0, P 2 (X )=O  a n d  P 3 (X)=1.

(i)

contact
of order 4

Figure 9.

(iv)
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—1

 

—2 —2

 

—2

                       

Figure 10.
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Example 5. Let M  be the minimal section of E2 and let I be a fiber. Let C1,
C2 be irreducible curves linearly equivalent to M + 2/. We assume that D o : = M +
/+ C i  + C y  has only simple normal crossings as shown in Figure 11-(i). Let Po=
C2 n! and {p i , p2 } = C i  n  C 2 . Let /to : Y0 -4.E2  b e  the composite of blowing-ups of
Po and p i . Let : Y-- Y0 be the blowing-up of g ,: =C2 n 4//61(p i ). Let p.2 : Y2
be the composite of blowing-ups of 1" n (10/11) - 1 (P0 ) and CI n fir.

1 (q 1 ). Let D be
the proper transform ,4((ti 0 ,u1)- 1 (D0 )) and let X = X — D . Then we have

R(X )=0, P 2 (X )= O  a n d  P3 (X )= 1.

i t

   

0j—  1
CI

  

—1

                 

M'

    

—2

        

1
—2

—2 mr"

Figure 11.

Proposition 2.3. L et (X , X , D) be an alm ost m inim al triple such that R(X)==
P2 (X )=0, X  is rational and D is connected. A ssume that there are no exceptional
curves E of  the f irst k ind w ith (D, E)= 1 . If  the  intersection m atrix  of  D  is not
negative-semidefinite, then (X , X , D) is isomorphic to one of the triples enumerated
in the above examples.

Pro o f . We shall give a proof in the case where 15 3 (X )=15
4 (X )= 0 and 15 6 (X )= 1.

The other cases are proved in a similar fashion. Then, since 15 ,(X )=1, we know, by
Proposition 2.2, that D has the following configuration:



C3

C I

C2
A

            

Do

    

Cs
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Figure 12.

where all curves (possibly except Do )  have self-intersection number — 2 . Since D
is not negative-semidefinite, (Dy) . — 1. Suppose that (Da)= O. Noting that

0=(K +D,„, K )=(K +D o , K),

we have (K2 ) = 2 .  Then there exist a  complete nonsingular surface Y and a bi-
rational morphism Y such that Y is isomorphic to a  Hirzebruch surface
En and n(Do ) is a fiber; consider the P 1-fibration on X  induced by the linear system
'Do l. Let 1 be a fiber of E .  Since

(y (A ) ,  =(P(B2), 1) =04C5), 0= 1 ,

it follows that IAA), 1.1(B 2 ), [KC 5 ) are nonsingular. Note that /AB, +C, +••• + C 5) is
contained in a union of several fibers. Let E be an exceptional curve of the first
kind contracted by p .  Noting that

D„,= D o + -
1

A +  —
1

(B 1 +2B 2 ) + —1 (C i +2C 2 +3C 3 +4C 4 +5C 5 ),2 3 6

(K+ D„„ E) = 0, and

(F, E) . 1

for F = A, B,, Cp  where i =1, 2  and 1=1,..., 5, we have one of the following five
cases:

(1) (A, E) =(C 3 , E)=1 ,

(2) (B2, E)= (C 2 , E)= 1 ,

(3) (B1, E)= (C 4 , E)=1,

(4) (C,, E)= (C 3 , E)= 1 ,

(5) (C2, E)= (C 4 , E)=1.

We consider separately each of the above cases.
Case (1). Let p : b e  the contraction of E+ C3+ C2 +CI. Then
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(4u0 (C4 )2 ) = 1. On the other hand, since we may assume that p o factors p, ,u(C4 )
is contained in some fiber of Y. This is a contradiction.

Case (2). Let p o : X-+Z0 b e  the contraction of E+ C2 + CI . Then p 0 (D) is
given as follows:

Figure 13.

where A' : = p o (A), = p o (131) ,  etc. T h e n  (C'32) =  0 and, since we may assume
that y o  factors p, the image of C3 by /./•/./0- 1  is  a fiber on Y. But (B'2 , C'3) = 2  and
B'2 becomes a section of the PI-fibration of Y. This is a contradiction.

Case (3). Let po : X —>Zo  b e  the contraction of E+ C4 + C3 + Cy +  C i .  Then
(u0(B1)2 )=3 > O. This is a contradiction because B1 is contained in  a fiber of the
P 1 -fibration.

Case (4). Let po : X—>Z0 b e  the contraction of E + C 1 + Cy + C3 + C4. Then
: = /20 (C 5) is singular and a section of the P '-f ib ra tio n . This is a contradiction.

Case (5). By the same reasoning as in Case (4), we have a contradiction.
Therefore we obtain ( D )  O. Suppose n: =(D )> O. L e t pn be general

points of Do . Let v: Y-a be the composite of the blowing-ups of p„ and let
D' (resp. DO be the proper transform of D (resp. Do ) by v. T hen  w e have another
triple (Y — D' , Y, D') with (D 2 ) = 0 .  But this case does not take place. (Note that
we do not use the assumption that there are no exceptional curves E  of the first
kind with (D, E)----1 in the case where (D ) =O.) Hence (D )  <0 and then (D )  = —1.
Let Ito : X—>Z0 be the contraction of Do + C5 + • • • + C1, which gives the configuration:

A '

Figure 14.

Note that (A' 2 )=4 and (B ')= 4. S in ce  ( K  Do , K )= 0 and (Do , K)= — 1, (K(X ) 2 )
=1 and K(z 0 )2 = 7. Let E' be an exceptional curve of the first kind on Z o . Then
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we have one of the following three cases :

(1) (A ', E')= 2 ,

(2) (Fri , E')=3 ,

( 3 )  (B'2 , E')=(13'1 , E ')=1.

First, we shall show that the case (2) does not occur. Assume that the case (2) occurs.
By the contraction of E ', B ', becomes singular. Since every irreducible singular
curve o n  a  relatively minimal rational surface meets all curves except a minimal
section, we have a contradiction because the image of A' has a positive self-intersection
num ber. Hence the case (2) can not occur. Second, assume case (1). Then we
shall prove that there exists another exceptional curve o f the  first kind E" on Z o

such that (B'2 , E")=(f ri , E")= 1. Let a :  0 —W b e  the  con trac tion  o f E '. Since
(K(W ) 2 ) =(K(Zo) 2 ) + 1 = 8 , W  is a Hirzebruch surface. Then (6.(BD2 ) = —2 implies
that a(B )  is a minimal section. Let I be the fiber of P'-bundle structure of W such
that o-(E')e 1 and let l ' be the proper transform of I by a. Note that l ' is an ex-
ceptional curve of the first kind and that (I ', B )=  1 because (o-(B ) , 1 )=1 . Therefore,
putting l' =E", E" has required properties.

Hence we may assume that the case (3) occurs, if  necessary, changing E  for
another exceptional curve of the firs t k ind . Then, by contracting E' and B'i ,  we
obtain the case considered in  Example 1. Q .  E .  D.

§3. Triples (X, L D) with i(X )= 2

Let (X , X , D) be an almost minimal triple with k(X )= 2. W e shall introduce
some definitions concerning D .  Let C be a connected component of D .  C is said
to be a  1-elliptic component of D if C is either a nonsingular elliptic curve or a cycle
o f  nonsingular rational curves. Exlcuding these cases, suppose th a t  C  consists
of nonsingular rational curves. The connected component C is said to be  - i --elliptic
(resp.3 4 6resp. resp. if C has one of the configurations
in Figure 3—(II) (resp. 3—(111), resp. 3—(IV), resp. 3—(V)). Given a positive integer n
and a divisor D with only simple normal crossings, we define ei(n, D) by

ei(n, D)= j
1
.-elliptic components o f  DI, if n  1 (mod i)

0 otherwise.

We abbreviate ei(n, D) as si(D) if there is no danger of confusion. Then we have
the following:

Proposition 3.1. With notations and assumptions as above, we have

Pn (X )=- ir (nK — [— (n — 1)D,]+[D,„], (n —  1)K — [— (n-1)D„,]+[D,„])

+x (0x )+e,(D )+8 2 (D)+ E 3(D) + B4(D)± E 6 (D), if
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where D,n =D— (K +D) -

P roo f. The assumption R(X)=2 implies that Ir(K+ D J  is a  linear system of
integral divisors free from base points for an integer r » 0  and th a t (K +D,n )2 >0
(cf. K aw am ata [5; (2.9)]). By Kawamata's vanishing theorem [6 ], we have

Hl(X , [— (n — 1)(K + D,n )])= 0 f o r  n  2.

By the Serre duality,

111(X, nK —[—(n —1)D„,])= 0 if 2.

On the other hand, it is easy to verify the relations:

nK + nD> nK — [ — (n - 1 )Dm]+[Dn ] -En(K +

Since

H°(X , [n(K H°(X , n(K +D)),

this implies that

Pn(X )=h ° (X , nK — [— (n-1 )D ,]+[D a.

We shall compute h'(TC, nK— [— (n-1)130„,]+[D,,,]). First of all, note that

h2 (X , nK — [— (n-1)D„,]+[D m ])= h°(X , (1—  n)K +[— (n-1)D,,,]— [D m ])

<h°(X , [(1—  n)(K+ D,n )])= 0 if 2,

and that

h2 (X , nK — [— (n-1)D,n ])=h°(X , (1—  n)K +[— (n-1)D m ])

=h°(X , [(1 — n)(K + D,„)])= 0 if 2.

From an exact sequence with 2,

0 --+  e(nK — [— (n-1)D, n ]) --> 0(nK  — [— (n-1)D„,]+[D„,])

----> C[ D i ((nK— [— (n-1)D ,J+[D m ])1 [D . ) - - ->  0,

we have a long exact sequence

H'(X , nK—  [—  (n— i)D,„]) H'(X , nK — [— (n— 1)D m ] + [D„,])

H q[D , n ],3  O .

It follows that

111(X , nK — [—(n — 1)D„,] +[D m ])= h'([D m ], (n K — [ — (n — 1)Dm ] +[Dm])1[D,„]) ,

f o r  rt 2.

Put Do =[D„,] and D;„=D„,— Do . Take a  connected component C  of Do . Then,
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by the Serre duality, we have

hl(C, (nK — [— (n-1)D,„] + Do )Ic )= h '(C, (nK+nD o —[—(n— 1)g,i] lc )

=h 1(C, ncoc — [— (n-1)D;„]1 c )=h°(C, (1— n)co c +[— (n— l)g„] Io,
where coc = (K + C) lc .  and n 2 .  Suppose h°(C , (1 — n)co + [ — (n — 1)D] I c ) 0 O.
Then we have

( * )  deg ((1 — n)cpc  + [ — (n — ODA  Ic )= (1—  n)(K +C, C)+([— (n-1)g, ], ,

where 2.
Since C and D,n have no common components, a — (n-1)D ], C ) . 0. It follows
th a t  (K +C, O. Suppose th a t  (K +C, C)= O. T h e n  ([—(n — ODA , C)= O.
We shall then show that C is a connected component of D .  Assume the contrary.
Let E be an irreducible component Of D — C with Cn E  0 .  By the definition of C
and Do , we have E. Do . Thus the coefficient of E in D ' is smaller than one. But
since E n D0 E n coo, the coefficient of E in D ' is nonzero (cf. Step (4) in the proof
of Theorem 1.3). Hence, Egsupp [— (n — 1)Dj for 2, which is a contradiction.
Therefore, C is a connected component of D .  Since h°(C, (1— n)coc )0  0 by the as-
sumption and deg coc  = 0, wc  —Cc  and hence C is a 1-elliptic component of D.

Suppose th a t  (K +C , C )<O . T hen  (K +C , C )= —2 and every irreducible
component of C is a nonsingular rational curve. From (*), we have

(**) 2(n —1) =>(— [— (n-1)D ], C), (n> 2) .

Let C1 ,..., C i exhaust irreducible components of D ' which meet C and let ci =1— j-a .

be the coefficient of Ci in D'„, (cf. the proof of Proposition 2.2.), where we note that
2 for all i. By (**), we have

2(n —1)> —[ — (n —1)(1— (n >2)

Under the additional assumption a a2 • • • a 1,  such a  system of integers
(n, a 1 ,..., al) can be enumerated as follows:

(1) n 1 (2), 1=4, a 1 =a 2 =a 3 =a 4 =2,

(2) n 1 (3), 1=3, a 1 =a 2 =a 3 = 3,

(3) n 1 (4), / = 3, a1 =2, a2 = a3 =4,

(4) n-=-1 (6), 1=3, a 1 =2, a2 = 3, a3 = 6.

In each case, we have

2(n —1)= E, —[ —(n — 1)(1 — 1 -a i )1 (n>__2),

whence

— + C)+[—  (n —  D a lc  C c (n >2).
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This implies that

(***) ((1—n)(K+C)+[— (n-1)D„], E)=0 2)

for every irreducible component E of C .  First of all, assume that C is reducible.
Since the configuration of C is a tree because (K+C, C)=  —2, C has at least two edge
components. Each edge component meets at least two distinct irreducible com-
ponents of supp D'„, (cf. the proof of Step (4) of Theorem 1.3). From these facts,
we know that every connected component of D containing C is a —

1
-elliptic com-

ponent.
Secondly, assume that C is irreducible. It is easy to verify that every connected

component of D containing C  is a  —
1

-elliptic component, a  -1--elliptic component3 4
or a ----elliptic component (cf. the proof of Proposition 2.2). In  each of the

6
above cases, it is also clear that

(1 — n)wc + — (n — 1)1Y,„]) lc Cc

and that

h°(C, (1— n)coc +[—(n-1)1);„] I c)= 1 .

Therefore we have shown that

hiOED,„], (nK—[—(n—OD,,,]+[Dai[D,,d)

=8 1 (D)+E 2 (D)+8 3 (D)+ 84.(D)+ 66 (D).

Therefore we obtain the stated estimation of Pn (X). Q. E. D.

Proposition 3 .2 . L et (X , X , D ) be an  alm ost m inim al trip le  w ith R(X)=2.
If  [D„,]00, then 1 2 (X)> O.

Pro o f . We shall show that the assumption P2 (X )=P 3 (X)=15
4 (X )=T)

6 (X)= 0
leads to a contradiction. By Proposition 3.1, we have

(*) 0= P„(X)= ,.1--(nK—[—(n-1)D„,]+[D„,], (n —1)K —[—(n —1)D,,]+[D,,,])

+ X(0 x)+ E1(D)+ 8 2(D)+ c 3 (D)+E4 (D)+s 6 (D),

for n =2, 3, 4 and 6. On the other hand, by Kawamata's vanishing theorem [6],
we have

(44) h°(nK—[—(n-1)D,,,])

= f(nK—[—(n-1)D„,], (n —1)K —[—(n-1)DJ)+ x(0 x )

for n  2  (cf. the proof of Proposition 3.1). From (*) and (**), we have



124 Shuichiro Tsunoda

(2n — 1)K-2[— (n—  1)D,„]±[D„,])+ 8 1 (D)+ 8 2 (D)

+ 83 (D)+ 84 (D)+8 6 (D)= 0

for n =2 , 3, 4 a n d  6 .  Let C be a  connected component of [D m ] and let D,,...,
be all irreducible components of D— [Dm ]  which meet C .  Then the coefficient of
Di in  D . is 1 — —

1 

for some integer 2 (cf. the proof of Proposition 2.2).  Sincea•
K +D,„ is semipo isitive, we have

( K + C +  ( I   c).> 0.

1 1N o tin g  th a t  (2 n -1 ) (1  
a •

— 2 [— (n -1 ) (1 - - )1 , th is  in e q u a lity  im p lie s— a.

(C, (2n —1)K — 2[—(n — 1)D„,]+C).0

for n=2 , 3 , 4  and  6 . Thus, the relation (***„) implies

(C, (2n —1)K — 2[ — (n —1)D,„]+ C)= 0

for every connected component C of [D„,] and for n=2, 3, 4 and 6; moreover, we
have Ei(D)=0 for i =1, 2, 3, 4, 6. From this we have

(1) 3(C , K +C)+21=0

(2) 5(C, K +C)— 2 E [_2(1 __1-)1=oa i

(3) 7 (C , K +C )-2 E  [— 3(1 — ,÷)1= o

(4) 11(C, K + C) — 2 E —1i)1=0.

If 1=0, then (C, K + C ) = 0 .  This implies that C is a  1-elliptic component. Hence',
8,(D)0 0, which is a contradiction. So we may assume 10 0. From (1), we have
(C ,K +C )= —2, w h en ce  1 = 3 . W e  m ay  assume th a t  a, a2 _ 13 . From (2),
we have a 1 = 2 and a3 _ 3. From (3), we have a 2 =  3 . O n the  other hand, note that
—2 + E (I  o because (K+D„„ 0. H e n c e  03  6 .  Then, we have

0= — 22 — 2[ —N1-2[ — 2j- 1 > 0 ,2 3 6

which contradicts (4). Q. E. D.

Theorem 3.3. L e t (X , X , D ) b e  a n  alm ost m in im al trip le  w ith R(X )._0.
Assume that D is connected. T hen P, 2 (X )>0.

P ro o f . By K uram oto [7], we know that P, 2 (X )> 0  if  X  is  n o t a  rational
surface . Hence, we may assume tha t X  is  rational. F irst of all, assume that
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[Dm ] = 0 and P 2 (X ) = 0 .  Then we have

0= h°(X , 2K+ K +D)

by virtue of the Riemann-Roch theorem and the fact that (K +D, D)= — 2 . On the
other hand,

0  (K +D,n )2 =(K , K +D „,)(K , K +D )

because each irreducible component C  o f D  satisfies (C , K )  0, w hich is a  con-
sequence of the assumption that (X , X , D) is almost minimal and [D, ] = O. H e n c e
P 2 (X )=0 and [Dm ] = 0  imply that (C, K )=0 for all irreducible components C of D
and that

K2 =(K, K+D,„)=(K+ D„,) 2 = O.

Hence (D,i,)=0. Since either supp D=supp (K+ D) -  =0  or the intersection matrix
of Dm  is negative-definite, we have D„,= O. T here fo re , R (X ) 0 implies that K (X ) 0,
which is a contradiction because X  is rational.

Secondly, we assum e [D „,] O. If k (X )=0, we proved in Proposition 2.2 that
P 1 2 ( X ) = 1 .  If R (X )=1, we can show th a t P 1 2 (X )> 0 by making use of formulas
(2.5) and (2.8) of Kawamata [5] (or Miyanishi [8; L em m a 4.1]). If k (X )=2, we
have P 1 2 (X )> 0  by virtue of Proposition 3.2. Q .E.D .
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