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1. Introduction

Many discussions have been done on the equations of the form:

duj
dt

=Auy,...,u,), j=1....n

where each A;(u) is a quadratic form. Two important examples are Volterra’s
ecology equation (see Volterra [1], Jenks [2]), and Boltzmann’s gas equation with
a finite number of velocities. (See Carleman [3], Conner [4].) Note that in both
cases, every solution starting from a non-negative initial data remains non-negative.

To study this type of equations, finding all the non-negative equilibrium points
is very important. The author studied the special type of equation: '

—L=A,u,,.., u.,,)—/,m}, j=1,....n

where each A;(u) is a quadratic form with non-negative coefficients, and ¢=0 is a
parameter. In this case, each equilibrium point satisfies

Afuy . u)=pu?, j=1,...,n
that is
Hu)=p'?u

where Hj;(u)=[A4;(u)]"/2. In this way, to find equilibrium points can be converted
to the nonlinear eigen-value problem.

This type of nonlinear eigen-value problem has been studied in detail by econo-
mists. (See especially Morishima [5], Nikaido [6].) But thevnot‘ion of inde-
composability defined by them is a little too stringent in order to guarantee the
existence of positive eigen-vectors. The author could loosen the sufficient condition
for this, introducing the notion of non-sectionality. He could also represent the
cannonical expansion of sectional homogeneous transformations of degree one
with which we can establish the characterization of their maximal eigen-value.
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We shall explain these facts in this paper.

2. Fundamental Notions

We shall use vector inequalities. x<) means x;<y; for all j=1,...,n. Simi-
larly, x<y implies x;<y; for all j=1,...,n. Lastly, x<y implies that x<y and
x#y. We call a vector x=0 non-negative, a vector x>0 positive.

Definition 1. H(x) is called a non-negative non-decreasing homogeneous trans-
formation of degree one or simply a homogeneous transformation if it satisfies the
following three conditions.

1) H(x) is a continuous map from [0, co0) x --- x [0, o0) into itself.

2) H(x)ZH(y) for all x<y.

3) H(ux)=pH(x) for all u=0. (Therefore H(0)=0.)

Our problem throughout this paper concerns A=0 and x >0 satisfying
H(x)=Ax

which we call an eigen-value and an eigen-vector of H(x).

We introduce here two subsets of homogeneous transformations, the inde-
composable ones defined by economists and the non-sectoinal ones which contain the
indecomposable ones.

Definition 2. (See Morishima [5].) A homogeneous transformation H(x) is called
indecomposable if it satisfies the following:
For any given proper partition @ U Q={1,..., n} (i.e. ONQ=¢, O£, Q¥ ),
there exists always @ € Q for which following 1) holds.
1) Hgz(x)<Hg(y) when x,<y, forall e @,0=x ,=y , forall we Q.

Example of indecomposable transformation:
H\(xy, x;)=(2x}+x3)"/2
H,(x,, x;)=(x}+2x3)"/2

whose unique eigen-vector is H(1, 1)=3"/2(1, 1).

Definition 3. A homogeneous transformation is called non-sectional if it
satisfies the following:

For any given proper partition O U Q={l,..., n}, there exists always me Q for
which following 1) and 2) hold at the same time.

1) Hzi(x)<Hz(y) when xo<y, for all 0e ®, 0<x,=y, for all we Q.

2) Let x,>0 be fixed for all we @, then

Hg(x) —> oo when all xi0e @) —
Example of non-sectional transformation:

H(xy, x2)=x{/2(2x, +x,)'7
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H,(xy, X;)=x3/2(x; + 2x,)1/?

whose eigen-vectors are H(1, 1)=3"2(1, 1), H(1, 0)=21/2(1, 0), and H(O, 1)=
21/2(0, 1),

Remark. An indecomposable homogeneous transformation H(x) is always
non-sectional. In fact, for any given proper partition © U €, there exists we Q
satisfying 1) of the definition 2. This @ clearly satisfies 1) of the definition 3. To
consider 2) of the definition 3, we set x=0 and y>0 such that

yo=1 forall 0e®
V,=0 forall weQ.
Then
(1 0=H50)<Hzy).

Let all x ,>0 (we Q) be fixed and all x,(0€O) go to infinity.

lim Hy(x)=lim H(ty)

X900 !

=lim tHz(y)

=00
=00
because (1) holds. Q.E.D.

3. Preliminary Results

Theorem 1. (See Morishima [5].) A homogeneous transformation has at least
one non-negative eigen-value and a non-negative eigen-vector associated with it.

Proof. We consider the following map from the set S={(x,,..., x,); x;20 for
all j and i x;=1} into itself.
j=1

) F(x) =_M2‘l__ _
1+ _Zl H;(x)
=
Then, by virtue of Brouwer’s fixed point theorem, there exists at least one fixed point
yeS:
H
y=F()=—1FE0L
1+ j;l H;()
Rewriting this, we get

3) H(y)= {él H,()}-

Therefore, jﬁ: H(y) and y are the eigen-value and eigen-vector we have been looking
=1
for. Q.E.D.
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We shall write down some fundamental results concerning the maximal eigen-
value and the maximal eigen-vector of homogeneous transformations.

Lemma 1. (See Morishima [5].) If there exist two non-negative eigen-vectors
y, 7 for the same H(x) such that

{isy; >0 s{)j: 7;>0),
then follows the next inequality concerning their eigen-values 2, A respectively:
YRR

And consequently, the eigen-vectors with the same position of zero-elements have
the same eigen-value.

Proof. We redefine as y the vector py with the scalar p>0 such that

p=min 1L where J={j:y;>0}.
jed Vj

So y<7% and there exists i such that

y;i=7;>0.
From the monotonicity of H(x),
4) A= H;’()’) - H;_y('}") < Hi_,()-’) =1
i i ri

We have proved the first statement.
If y and 7 have the same zero-position, then

{1y, >0 s{ij: 7;>0;
and
{jiy;>0}2{j:7,>0}.
Therefore, from the result just obtained,
<1 and 221, ie. A=l Q.E.D.

From the latter half of the lemma 1, we know that there exists at most one
eigen-value for any given zero-position. Thus we get the following theorem.

Theorem 2. (See Morishima [5].) A homogeneous transformation has only a
finite number (at most 2"—1) of non-negative eigen-values associated with non-
negative eigen-vectors.

Definition 4. The maximal eigen-value of H(x) is denoted by A, or Ay(H).
And an eigen-vector associated with it is called a maximal eigen-vector.

Theorem 3. If there exists a positive eigen-vector y>0 for H(x), its eigen-
value is Ao(H).
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Proof. Let A be its eigen-value. Suppose there exists any other eigen-vector
j with the eigen-value 1. Then, from the lemma I,

127

This shows that /2 is maximal. Q.E.D.

We shall cite without proof a few theorems about indecomposable homogeneous
transformations from Morishima [5], which will be the basis of our discussion.

Theorem 4. (See Morishima [5].) The eigen-vector of an indecomposable
homogeneous transformation H(x) is unique up to the scalar multiplication, and
is positive. Its eigen-value is also positive.

Theorem 5. (See Mqrishima [5]) If H(x)SH(x) for all x=0, then
lo(H)S Ao(H).

If, moreover, H(x) is indecomposable and H(x)< H(x) for all x>0, then
Jo(H) < Ao(H).

Using the theorem 4 and the theorem 5, we get the important lemma 2, its
proof will also be omitted.

Lemma 2. (See Morishima [5].) Let H(x) be a homogeneous transformation.
If we define a new homogeneous transformation H(g)(x) in the following manner:

(5 H(e)(x)=H(x)+eU(x)

where U (x)=x,+---+x, for all j=1,..., n, then this H(g)(x) is indecomposable
for >0, and Ao(H(g)) is a strictly increasing function in €20, satisfying

Iilm Ao(H(g))=Ao(H).
el

Using the preceding theorems, we get the following propositions which will be
essential to our argument below.

Lemma 3. For a homogeneous transformation and its maximal eigen-value
Ao, the following hold.
1) For any A> A, there exists a positive vector y>0 which satisfies

H(y)—Ay<O.
2) For any A<l there exists a non-negative vector y>0 which satisfies
Hy)—Ay;>0  forall je{j:y;>0}.
Proof of 1). We use H(g)(x) of the lemma 2. Then
6) ‘ Ao(H(e)) L Ag(H) when €|0.

Therefore there exists a certain ¢ such that
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Ao <Ao(H(g))<A.
And

H(e) [y(e)] = 2o(H(e))y(e) .

Here y(g)>0 since it is the eigen-vector of an indecomposable H(g)(x). (See the
theorem 4.) Rewriting the last equality,

H[y(e)]+eU[¥(e)] = Ao(H(&))(e)

H[y(e)] — 2y(e)=[Ao(H(&)) — ATy(e) —eU[¥(e)] .
Since p(g)>0 and Ay(H(g)) <4,
(7 H[y(e)]—Ay(e) <O.

Thus the vector y(g) >0 is the vector we have been looking for.
Proof of 2). Let y>0 be the maximal eigen-vector, then

(8) H(y)—2y=H(y)— Aoy +(4o— L)y
=(ig—A)y=0.

With this vector >0, the statement of the lemma is clearly satisfied. The proof of
the lemma 3 is completed.

We can prove the converse of this lemma as follows.

Lemma 4. For a homogeneous transformation H(x) and its maximal eigen-
value Ay, the following hold.
1) If there exists a positive vector y>0 for a given A which satisfies

H(y)— Ay =0,
then
}'Z;'O‘

2) If there exists a non-negative vector y>0 for a given A which satisfies

H(y)— Ay 20,
then
AL 2.

Proof of 1). Assume A</, Then, from the lemma, there would exist such a
7=>0 that

H () > A7 forall je{j;7;>0}.
The sign of inequality remains unchanged with a certain p> 1| :
) H ($)> piy; forall je{j;7;>0}.

After n times iteration H", we get the next inequality, using the homogeneity and
the monotonicity,
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(10) I';H}()‘:)>p")", forall je{j;7;>0}.

On the other hand, because y>0, there exists an appropriate C >0 such that < Cy.
Then

L HG 2 THCY)
C
=7 H(y)
=Cy
Further
(1) S HYHZC,

This means that after any number of iterations, AIF H"(}) remains bounded. This

fact contradicts (10) where p> 1.
Proof of 2). Assume A>A,. Then, from the lemma 3, there would exist a
positive >0 such that

H(7)— /7 <0.
With an appropriate p> 1, -
Lpoy<ts
l ')’ = p /'
After n times iteration, we get
(12) S H =L
A =p

From the assumption of the lemma, after n times iteration,
|
i H"(1)2y20.
Since there exists an appropriate C >0 such that y< C5,

(13) S 2 H' () 25720,

(12) implies 711'—' H"($) tends to zero, while (13) means it does not. This is a contra-
diction. Thus we finished the proof of the lemma 4.

Combining the lemma 3 and the lemma 4, we get a rough characterization of
the maximal eigen-value as follows.

Theorem 6. Following statements hold.
1) There exists a positive vector y>0 which satisfies
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H(y)—Ay<0

if and only if A>4,.
2) There exists a non-negative vector y=>0 which satisfies

Hy)—/4y;>0  forall je{j;y;>0}
if and only if A<2,. ‘

Proof of the sufficiency. Evident from the lemma 3.

Proof of the necessity of 1). From the lemma 4, we get A=4,. Assume A=A4,.
If A=2,=0, then H(y)<O0, a contradiction. So we can assume 1,>0. With a
sufficiently small ¢>0, we get

H(y)— (%o —¢)y <0.
This means from the lemma 4,
Ao—EZ 1o

A contradiction.
Proof of the necessity of 2). From the lemma 4, A<A,. Assume A=A4,.
Then, with a sufficiently small ¢>0, we also get

Hi(y)—(Ag+e)y;>0 forall je{j;y;>0}.
Again from the lemma 4, | '
Ao+e=Z 4.
This is also a contradiction. Thus the proof of the theorem 6 is completed.
From the theorem 6, we can prove the next theorem.
Theorem 7. Let x>0 be an arbitrary positive vector. Then

lim (x, H'(x))/"=Ao(H).

n—-%

Proof. Let y>0 be the maximal eigen-vector. With an appropriate C>0,
x=Cy. Then

(x, H"(x))Z(Cy, H"(Cy))
=(Cy, C(Ao(H))"y)
= CHAo(H))"(3, 7).
Because (y, y)>0,

(14) lim (x. H'(x))!/" 2 Jo(H).

n-»a0

From the theorem 6, for an arbitrary A> 4, there exists a positive vector >0 such
that ‘ ’

H(7) <47

Choosing an appropriate C, we have x<Cj. Then
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(x, H"(x))<(C7, H"(C}))
<C2(3, 7).
Therefore

[im (x, H"(x))!/" < A.

n=-9

Since 1> A, is arbitrary,

(15) lim (x, H"(x))"/" S 2(H).

n—o

Together with (14), this means

(16) lim (x, H(x))!'/"=Ao(H). Q.E.D.

n—»oC

4. Non-Sectional Homogeneous Transformations

In this section, we look into non-sectional homogeneous transformations. In
this case, the necessary consitions of the theorem 6 can be replaced with somewhat
looser ones which will be useful to prove the theorem 8.

Lemma 5. Assume H(x) is non-sectional. Then the following statements hold.
1) If there exists a positive vector y>0 for any given A such that

H(y)—2Ay<0,
then
2> Ao
2) If there exists a positive vector y>0 for any given A such that
H(y) =4y =0,
then
2 <l

Proof of 1). If H(y)—Ay<O0, there is nothing to prove. (See the theorem 6.)
Assume the other case. Let us denote

J ={ji Hp—29,<0)
K={k: Hy)—Ap=0}.
We shall construct a positive vector >0 such that
an H$)—-47<0, JEJ={j: H{(})—A7;<0}.
We consider the following vector with a sufficiently small e:
=y;—¢ forall jeJ

7,(8) .
=Yy, forall jeK.
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From the non-sectionality of H(x), at least one H,[y(¢)] (k € K) decreases as ¢ in-
creases. So, for a sufficiently small ¢>0,

H;[y(e)]—Ay(e)<0 for all jeJ
H, [y(e)]— Ay (e)<0 for a certain ke K.
Therefore this positive vector y(¢) has the property of (17). Repeating this proce-
dure, we finally obtain $> 0 such that
H(F)—247<0.
The rest is clear from the theorem 6.

Proof of 2). This time, we have only to introduce

=y;+¢ forall jeJ
)’j(ﬁ)
=Y; forall jeK
where J={j; H(y)—y;>0}, K={k; H(y)—4y.=0}. For the rest, the same argu-
ment as in 1) can be applied.
We have completed all the proof of the lemma 5.

Now we proceed to the main theorem of this paper. But, before that, note that
non-sectional homogeneous transformations might also have eigen-vectors with
zero-elements. (See the example of non-sectional transformation in the section 1.)
In this respect, they are very different from indecomposable transformations.

Theorem 8. The maximal eigen-vector of a non-sectional homogeneous trans-
formation is positive and is unique up to the scalar multiplication.

Proof of the positivity. After the necessary scalar multiplication, we may
assume, about the maximal eigen-vector 7y,

(18) min {y;; y;>0}=1.

In order to prove the statement by contradiction, we assume

d#Jo=1j;7;>01E{l....n}.

We construct the partition Jy, J,,... in the following way. Denote by J, all e J,,
of the definition 3, regarding J, as 0, {l,....,n}—=J, as Q. If JouJ,&{l...., n},
we construct further J,, the set of all the we {1,..., n} —Jy—J,, regarding JoU J,
as 0, {1,...,n}—J,—J, as Q. We repeat this procedure if necessary. After a finite
number of steps, we obtain the partition:

(19 JoUJyu - ud,={1,...,n}.

Let us now construct positive vectors j(k) (k=1,..., v) inductively, in the follow-
ing way.
First, we set

Jv=M,=1 - forall je{l,.. n}.
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Then we choose a sufficiently large number M,_, such that the vector p(v—1I):

=M,_, forall jedy-J,_,

)7,'(""1)
=M, forall jeJ,
satisfies
H;[j(v—=1)]=/le7;(v—=1)>0 forall jed,.

This can be done because every H(x)(jeJ,) goes to infinity as all x,(keJyU -+ U
J,_,) go to infinity at the same time. (Recall the way of constructing this partition.)
Next we define y(v—2) and M,_,>M,_, such that

=M,_, forall jeJoU--UJ,_,
Fiv=2) =M,_, forall jed,_,
=M, forall jelJ,
satisfies
H[§(v—=2)] = 4o7(v=2)>0 forall jed,_,.
Note that for each jeJ,, the same inequality still holds. In fact, for such a j,
H;[y(v-2)]- lo?;("_ -2)
2 H;[7(v=1)]= 27 (v—1>0

(Remind that j(v—2)>7(v—1) and j(v—=2)=7(v—1) for all je J,.)
After v steps, we are led to $(0) such that

=M, forall jeJd,
=M, forall jeJ,
(20) 7/0)¢ :
=M,_, forall jed,_,
=M, forall jed,
where
(21) H[7(0)] = 747(0)>0 forall jeJ,u--UJ,.
Now we define § as follows.
=My, forall jelJ,
= M, for~all jed,

=M,_, forall jed,_,
=M, forall jeJ,

Reminding that ;21 for all jeJ, and consequently 72%(0), for all jeJy, we get
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(23) H (7)) —Ao¥; 2 H{(Mo}) — AoMo7;
= Mo[Hj(?) - )~0}_'j] =0.

With (20) and (22) in mind, we know (21) remains unchanged, replacing $(0)
with 7, that is,

(24) H (7)) — 207;2 H (7(0) — 247 (0)> 0
forall jeJ,U--UJ,.
Combining (23) and (24), we get
H(y)—4,=0 and $>0.
Using the lemma 5, we are led to the next contradiction,
Ao <4y

Proof of the uniqueness. We repeat the way written in Morishima [5] which
is used for indecomposable transformations. Assume there were two positive
maximal eigen-vectors y and 7. As usual, we redefine as y the vector py where

A
i

'

_ P= lrénjig" Yi
Then
O<y<y
We set
(25) b#I={j:7;>7}. ¢#FK={kiTi=nt-
From the non-sectionality, there exists k € K such that
Hy(7)>Hg(y).

Since H(y)=Aqy and H(§)= 4,7,
loyi=Hg(y) <Hg({) = Aoy
But y, =7; because ke K. This is a contradiction.
Thus we have completed all the proof of the theorem 8.

Remark 1. Suppose H(x) is non-sectional. For any A (possibly Z>/,) and
any proper subset of suffixes J# ¢, we can construct a positive vector y> 0 such that

H(y)=2y,>0  forall ke{l..., ny—J.

(But not necessarily H;(y)—Ay;>0 for all jeJ.) We have only to partition the
suffixes and construct $(0) in the same way as in the proof of this theorem.

Remark 2. From the theorem 3, we know that any positive eigen-vector is
associated with the maximal eigen-value. Therefore this theorem also guarantees
the uniqueness of the positive eigen-vector for each non-sectional homogeneous
transformation.
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Remark 3. It might be felt that 2) of the definition 3 is redundant. Indeed,
there is room in loosening it. But it cannot be removed. Let us illustrate this
situation with an example.

Consider the following two-dimensional homogeneous transformation with a
parameter u>0:

H(xy, x;)=p(x}+x3)!/2
(26)
Hy(x,, x;)=(x? +x§)'/2<% — Arctan &> Arctan 22
2 X, X,

It is easy to show, for any x, >0 and x,>0,

OH, _ or _ ..

ox, =pu ox, =psin >0
(27)

04, _ 0 (l _ 2)

ox, ~ox, T\ 2070

=(_2”_9—02>cos()—<%—20>sin 0>0

where (r. 0) is the usual polar coordinates.

There are two partitions of suffixes, that, is 6={1}, Q={2} and 0={2}, @={1}.
Using (27), @ =2 or @ =1 satisfies 1) of the definition 3, respectively. But, in the
former case, @ =2 does not satisfy 2) of the definition 3. This is the case because

(28) H2(>:,.x2)<—7;vx2 when x;>0 and x,>0.

This inequality follows from (27) and IimOO Hy(x,, x2)=%x2.
x1= A
This homogeneous transformation H(x) can have no positive eigen-vector when

yg%. In fact, assume H(x,. x,)=4¢(x,, x,)>0. With (28) in mind,
Aoxy=H (x, x5)>ux,
JoXa=Hy(x,, x2)<—7;7,\'2 S ux,.

The first inequality means 4y>u while the second A,<pu. This is a contradiction.
Q.E.D.

One can show similarly that H(x) has a positive eigen-vector when 0<u<—;£.
Thus we know that the condition 2) may be a little too stringent but is not redundant.

We can extend the latter half of the theorem 5 to the case where H(x) is non-
sectional.

Theorem 9. If H(x)< H(x) for all x>0 and P—I(x) is non-sectional, then

do(H) < Ao(H).
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Proof. First we consider the case where H(x) is also non-sectional. Let y>0
be the maximal eigen-vector of H(x).

H(y)= H(y)=Ao(H)y.
From the positivity, we can apply the lemma 5, and
Jo(H)<Ao(H).

Next, we go on to the general case. We sct

(29) A(x)=—=(H(x)+ H(x)).

|~

This A(x) is clearly non-sectional and H(x)< A(x)< H(x) for all x>0. From the
result just obtained,
(30) v JolH)<io(H).
From the general result of the theorem 5,
31 Ao(H)S Aol A).
Combining (30) and (31), we get the final inequality,
Ao(H)<Ao(H).
The proof is completed. a

Using the theorem 8, we can sharpen the theorem 6 when H(x) is non-sectional.

Theorem 10. Let H(x) be non-sectional. Then the following hold.
1) The exists a positive y>0 such that

H(y)—/y<0
if and only if A>Aio(H).
2) There exists a non-negative y=>0 such that
H(y)—2y=0
if and only if A<iy(H).
Proof of the sufficiency. Clear. We have only to adopt the maximal eigen-
vector as y.
Proof of the necessity of 1). Clear from the lemma 3.

Proof of the necessity of 2). If y>0, we can use the lemma 5 directly. So we
may assume that y >0 has zero-elements. We set J and a matrix A as following.

J=4{j.y;>0}.

A;=1 forall jeJ

Ji=
A;;=0 elsewhere.

Setting H(x) as
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(32) H(x)=H(Ax)< H(x).

The last inequality follows from the definition of the non-sectionality.
Then, since Ay=y,

H(y)—Ay=H(y)—2y=0.
From the lemma 4,
(33) ASAo(H).
From (32), using the theorem 7,

(34) Lo(H)<Ao(H).
Combining (33) and (34), we get

J<io(H).
The proof of the theorem 10 is completed.

Corollary. Let H(x) be non-sectional. Then, the following hold.
1) If H(y)— Aoy =0 for a positive vector y>0, then

H(y)=1/,y.
2) If H(y)— Aoy =0 for a non-negative vector y=>0, then
H(y)=24yy and y>0.

Proof of 1). Assume that H(y)—/4,y<0. Then, from the theorem 10, 145> 4,.
This is a contradiction.

Proof of 2). Assume that H(y)—14yy>0. Then, from the theorem 10, iy, <A4,.
This contradiction shows H(y)=2A,y. The maximal eigen-vector must be positive.
So y>0. Q.E.D.

Remark. We can not replace the positivity of the vector y with the non-nega-
tivity in 1)’s of both the present theorem and corollary. Let H(x,, x,) be the
example of non-sectional transformation in the section 2. In this case, Zo(H)=
312, And H(1, 0)=3'2(1, 0)=(21/2-3'2)(1, 0)<0. But H(1, 0)#3'/2(1. 0).

5. Resolvent Problem

In this section, we treat the resolvent problem, that is, we investigate the non-
negative solutions of the resolvent equation:

(35) Ax—H(x)=c¢ where ¢=0.

First, we look into the general case where no further conditions are imposed on
the homogeneous transformation H(x). We formulate and prove the next theorem
in somewhat different way from Morishima [5].

Theorem 11. Let H(x) be a homogeneous transformation.
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1) Let A>Ay(H) be fixed. Then (35) is solvable for all c=0. The solution is
unique when ¢>0 and ¢=0, but it is not necessarily unique for the other ¢=0.
Choosing an appropriate one among the solutions for each ¢=0 if not unique, the
solution R(c) forms a homogeneous transformation with respect to ¢ 20. Moreover

1.1) R;(¢)>0 when ¢>0.

1.2) R (¢)<XR,(¢) when 0=c¢

1.3) Ry(c)<R,(¢) when 0Zc
Conversely

2) If (35) has a non-negative solution for some c¢>0, then 1> Ao(H).

<c.
<c.

Proof of 1). We begin with the solvability. Since 2> Ay(H), we can apply the
theorem 6. We have, therefore, y>0 such that

(36) L Hm <.

Remark A>Ao(H)=0. Let ¢=0 be fixed. Then, for a sufficiently large K>0,
37 ~}:(I-I(Ky)+c)<Ky.

We define the map

(38) F(x)=~i—(H(x)+c).

Note that [0, Ky]x - x [0, Ky] is invariant through this map. In fact, for all
0= x=Ky, using (37),

0<<

<F(X) S (HK) + ) <Ky.

NS

By virtue of Brouwer’s fixed point theorem, F(x) has a fixed point in [0, Ky] x --- x
[0, Ky]:

x=F(x)=-£~(H(x)+ 0).

This x=0 is clearly a non-negative solution of (35) for c=0. And note that x=
%(H(x)+c)g%>0 when ¢>0 which proves 1.1).

Next we prove the fact:
39) x<x if Ax—H(Xx)=c¢,Ax—H(X)=¢ and O<c=c.

We follow the ingeneous way of Morishima [5]. First, we set

(40) p=min 4 .

1sjsn Xj

Assume xX X, that is, p< 1. Then, since ¢>0 and px<X,
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(41) px=§(n(x)+c)
='}7(H(pX)+pC)

< II(H()?)+E)

=X.
(41) contradicts (40).

(39) shows the uniqueness of the solution of (35) for ¢>0. In fact, ix—H(x)=c¢
and Ax — H(X)=c imply that x< ¥ and x> %, i.e.,, x=%. As for ¢=0, (35) has only
the trivial solution because it must be an cigen-vector of H(x) with A which is greater
than the maximal eigen-value A4(H).

Let Ax—H(x)=c¢ with ¢>0. Then ¥=px is the unique solution of AX — H(X)=
pc, which proves

(42) R;(pc)=pR,;(¢) when ¢>0 and p=0.

In the sequel, we shall define R,(c) for ¢>0 with some zero-elements as a limit
of R,(c") where ¢’>0and ¢’ | c¢. It gurantees the non-decrease and the homogeneity
of R,(c) with respect to ¢ by virtue of (39) and (42). It also guarantees R,(c) for
¢ >0 with zero-elements is still a solution of (35) since H(x) is continuous.

We now define R,(c) for ¢>0 with some zero-elements. For that purpose, we
take a strictly decreasing positive sequence (c(v)>c(v+1)>0 for all v) which con-
verges to ¢>0. Since R;(¢(v)) is non-increasing from (39), we can define

(43) Ry(e)=lim R(c(v).

This limit does not depend on the choice of {¢(v)}. In fact, if we have two strictly
decreasing ¢(v) | ¢ and ¢'(v) | ¢, we can combine their subsequences to form another
strictly decreasing ¢”(v) | ¢. Then we have

I.im R;(c(v))=Ilim R,(c¢"(v))=1lim R,(c'(v)).

We prove the continuity of R;(c). First, we assume ¢>0 or ¢=0. We take a
sequence {c(v)} converging to ¢ (not always monotonously). R;(c(v)) is clearly
bounded. Any accumulating point of R;(c(v)) must be the unique solution of (35)
for ¢ since H(x) is continuous. This means

lim R;(c(v))=R;(c)

which shows the continuity of R,(c) at ¢>0 and ¢=0. Next, we assume ¢>0 has
some zero-elements. If we take a sufficiently small ¢>0, R,(¢) where &;=c;+¢ for
all j is near enough to [R;(c)]; from (43). In this way, using the non-decrease and
the homogeneity of R,(c),
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(1=8)R;()=R,()ER,(€) when (l-g)c=sy=ed.

Because £>0 is arbitray, this means the continuity of R,(¢) at ¢>0. Thus we have
proved R,(c) is continuous, therefore, a homogeneous transformation.

We prove now 1.2) and 1.3). It is clear that each x=0 cannot be solutions of
(35) for different ¢=0 and ¢=0. This means R;(c)# R;(¢) when ¢#¢. This proves
1.2). Let now 0Lc<¢. For a sufficiently small >0,

0<Zc<(l1=-8)<ec.
This proves, from 1.1),
RA()Z(1=8)Ry(&) < Ry(6)(>0).

1.3) is proved.
Proof of 2). Let the condition be satisfied:

Ax—H(x)=c>0.
So x must be clearly positive. We can apply the theorem 6, so
A>2Ao(H).
We have completed all the proof of the theorem 11.

Remark 1. The solution of (35) for ¢ >0 with some zero-clements is not always
unique. Let H(x) be the example of the non-sectional transformation in the section
2. Consider the following resolvent equation:

2x—H(x)=(1,0) where 2>312=},(H).

This equation has two solutions:

242172 > <4+1o'/2 4+101/2>
(——,)———‘, O and 3 s 7 6

Remark 2. 2) of the present theorem 11 becomes untrue if we replace ¢>0
by ¢>0. Let H(x) be the same as in the remark 1.

3 3
—z—x—H(x)=<?—2‘/2, 0)

has a non-negative solution (1, 0), but —2-<2‘/2=,10(H).
Now we consider the case where H(x) is non-sectional. Note that the remarks

of the preceding theorem are also valid for the next theorem.

Theorem 12. Let H(x) be non-sectional.

1) Let .>Ao(H) be fixed. Then (35) is solvable for all ¢=0. The solution
is unique when ¢>0 and ¢=0, but it is not always unique for the other c>0. How-
ever, there exists only one positive solution for each ¢=0. Defining R;(c) as the
positive solution when ¢ >0 and R;(0)=0, it forms an indecomposable homogeneous
transformation with respect to c. Moreover
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1.1) R,;(¢)<R,(¢) when 0=c<c.
Conversely
2) If (35) has a positive solution for some ¢>0, then 1> Ay(H).

Proof of 1). We begin with the existence of positive solutions for ¢>0. I[f
¢>0, it immediately follows from the preceding theorem 11. Assume ¢>0 has
some zero-elements. From the remark 1 of the theorem 8, we have a positive
vector 5>0 such that

H{(§)-25,>0 forall jeJ={j;c;=0}

Then, with a sufficiently small K>0, we have
- 1 S~
(44) RF < (c+H(RY)).

Let y>0 be the maximal eigen-vector of the non-sectional H(x). Then, with a
sufficiently large K>0,

(45) Ky>-(c+H(Ky).
We set a map:
F(x)= (c+H(x)).

Through this map, the interval [K¥,, Ky,]x --- x [K5,. Ky,] is invariant. In fact,
for x such that 0 < Kf<x< Ky,

Ry <L (c+ HRP)SFx) < (c+ HKp) <Ky,

The fixed point of F(x) is a solution of (35) which is positive because x=F(x)>
Kj>0.

We shall show the positive solution for ¢>0 with zero-elements is unique and
the same one as R,(¢) in the theorem 11. Let y>0 be the positive solution of (35)
where ¢>0 has zero-elements. We set " and y” as follows.

y=(l—¢)y and y"=(l+e)y.
' satisfies
3y = H )= ¢;=(1 =) (Ay;— H (1) —¢; <O
for all je {j; ¢;>0},
Iy = Hyy) = eo=(1 — &) (A3, — Hi() — ¢, =0

for all ke {k; ¢,=0}.
We modify y’ very slightly in the same way as in the proof of the lemma 5 so that we
can find 0<j <y satisfying

(46) 3 —H(®{)—c<0.
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We also modify 9" to find >y
47) Af—H(§)—c¢>0.

In a usual way, from (46) and (47),

G(x)=—lr(c+ H(x))

/

maps [7, ;1% -+ x [¥,, §.] into itself.

A slight perturbation of ¢ leaves (46) and (47) unchanged. Therefore, the solution
of (35) for ¢’ near enough to ¢ can be found in [, §;]1x---x[},, 7,]. Recalling
that the solution for a positive ¢’ is unique (see the theorem 11) and §, § can be taken
arbitrarily near to y (take a small &), we can assert

y=lim R,(¢").
c’tc
This shows y is the same one as R,(c) in the theorem 11, consequently unique.
From the fact just proved and the theorem 11, R;(c) as a positive solution of (35)
for ¢>0 is clearly a homogeneous transformation with respect to c.

Now we prove 1.1) which is stricter than to say R,(c) is indecomposable. As-
sume 1.1) did not hold. We denote

J={j; 0=y;<¥;}
K={k; 0<y,=7%}

where y=R,(c) and 7=R,(¢€)>0 (¢=0). The non-emptiness of J follows from 1.2)
of the theorem 11. Since H(x) is non-sectional, there exists k € K such that

Hy(y) <Hg(y)
But, we have
cr=Ayr —Hi(y) S Ay — Hg(9) =y

This contradicts the definition of K.
Proof of 2). Let the condition be satisfied.

Ax—H(x)=c>0 and x>0.
From the theorem 10,
A>J0(H).
We have proved all the statements of the theorem 12.

For the sake of comparison, we write down the results about indecomposable
homogeneous transformations. We omit its proof. See Morishima [5] for the
proof and the original formulation.

Theorem 13. Let H(x) be indecomposable.
1) Let A>Ao(H) be fixed. Then (35) has a unique solution for all c=0. The
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solution R;(c) for each ¢=0 forms an indecomposable transformation with respect
to c. Moreover

1.1) Ry(¢)>0 when ¢=>0.

1.2) R,(c)<R,;(¢) when O0=c<c.
Conversely

2) If (35) has a non-negative solution for some ¢ =0, then A>2y(H).

6. Cannonical Expansion of Sectional Homogeneous Transformations

It is known that there is a unique decomposition of any decomposable (reducible)
matrix to indecomposable (irreducible) submatrices. (See Gantmacher [7].) For
homogeneous transformations, a parallel argument is possible. In this section, we
investigate this problem, restricting our attention to docile transformations which we
shall define later. First, we introduce some abbreviations. '

Definition 4. Let ©® U Q={l,..., n} be a proper partition. We denote by Xxg,
Hg(x) the projections to the coordinates x, (for all 0 e @), Hy(x) (for all 8¢ O),
respectively.

Definition 5. A homogeneous transformation H(x) is called docile if it satisfies
the following. ,

1) H(x) is real-analytic in (0, c0) x -+ x (0, c0).

2) 1If there exist a proper partition © U Q={1,..., n}, & € Q, vectors 0=y <7,
0<7y, such that

Hz(e, 70) < Hy(Fo, 0)
then

Hg(xg, Xq) — 00
when x,— o0 for all 6 € @ and x>0 is fixed.

Remark. An equivalent of 2) is the following: Let y,>0 be fixed. If Hgy(x,,
7o) is bounded, then H(xg, yo)=const.

Example of docile transformation:
H(x)=[Pj(xy,..., x,)]1/mi for all j

where each Pj(x) is a homogeneous polynomial of degree m; with non-negative
coefficients. -

We begin with a lemma.

Lemma 6. Let H(x) be docile and ©® v Q={l,..., n} be a proper partition. If
there exist 0<y9<Jg and 0<yq such that

Ho(ve, 70)= Ho(Ve, Ya)
then
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H(xe, Xo)=H(0, xq)
Proof. First, we note
(48) Ho(xg, Yo)=const. when 7y5=<x¢=7e.
In fact, for such xg,

Ho(ye, Y0) S Ho(Xe, Yo) S Ho(Fe. Yo) =Ho(Ves Ya) -

Then, from its real-analyticity in (0, c0) x --- x (0, 00) and continuity in [0, c0)x ---
x [0, o),

(49) Ho(xg, yg)=const.= H(0, yq) forall xgo20.

Let an arbitrary y,=>0 be fixed. Then there exists some C>1 such that y,<Cy,.
Thus,

Ho(xe, yo) S Ho(Cxg, Cyq)
=CHg(xe, v0)
=CHg(0, 7o).
From the remark of the definition 5,
Ho(xg, yo)=Ha(0, yo).
Since yo=0 is arbitrary, the lemma 6 is proved.

Assume H(x) is docile and sectional. From the definition 3. we have a proper
partition Iy J={l,..., n}, 0<y, <7, and y,>0 such that

H(yp, v))=H(y1, 7).
We used the docileness of H(x). Then, applying the lemma 6, we get the following.
(50) H(x;, x5)=H,(x, 0).
H(x;, x))=Z,(x;, x;)+H,0, x,)

where Z,(x;, x;)=H ,(x, x,)— H /0, x,), consequently Z,(x,, x;,)=0 and Z,0,
x;)=0.

If H(x;, 0) or H/0, x;) is sectional, we refine the partition / UJ. For instance,
if both are sectional, we get the partition I, U I,=1, J, U J,=J where

Hy (x;,, X1, 0,0)=H; (x;,. 0,0, 0)
Hy (%7, X1, 0, 0) =2, (x,,, X, 0, 0)+ H (0, x,,, 0, 0)
H,; (0,0, x;,, x;,)=H,; (0.0, x,,. 0)
H,,00,0, x,,, x,,)=Z,,0, 0, x,,, x;,)+H,,(0, 0, 0, x,,)

and
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Z,(x)20, Z,,0, x,,,0.0)=0
Z,(x)20, Z,(0,0,0,x,,)=0
Therefore we have got a further expansion of H(x), recalling (50)
H; (x)=H,(x,,, x;,, 0,0
=H,(x;,,0,0,0)
H,(x)=H(x;, x;,,0,0)
=Z,(x;,, X1, 0, 0)+H,,(0, x,,, 0, 0)
H,(x)=Z,; (x;, x))+H,; (0,0, x;,, x;,)
=Z,(x; x)+H,; (0,0, x,,0)
H;(x)=Z;,(x;, x;))+H,; 0,0, x;,. x;,)
=Z, (x5, x))+Z,,0, 0, x;,, x,,)+H,,0,0,0, x,,)
We redefine Z,z(x,, 0)as Z,,(x), Z,z(x)+Z,z(0, x;)as Z,(x). Thus we have obtained
H;(x)=H,; (x,,0,0,0)
H;(x)=2Z,,(x)+ H 0, x;,, 0, 0)
H; (x)=Z,(x)+H, (0,0, x;,, 0)
H,(x)=Z,;,(x)+ H,; (0,0, 0, x;,)
where Z,,(x)20, Z, (x)20, Z, (x)=20 and
Z, (0, xy,, x4,y x;,)=0
Z;(0,0, x;,, x;,)=0
Z,,0,0,0, x;,,)=0

We continue this procedure unless every H, (0,..., 0, x,,, 0,..., 0) is non-sectional.
Thus the former part of the next theorem is proved. For the simplicity, we denote
H0,..., 0, x,, 0...., 0), (0,...,0, x4, 0,...,0) by Hg(x,, 0) and (x4, 0) from now on.

Theorem 14. Any docile homogeneous transformation has a cannonical
expansion with the partition of suffixes

Jiu-uJ,ud, U ud,={1,., 0}
such that »
H,(x)=H;(x,,0)  forall k=1,..pu
H, (0)=Z,(X)+Hy (x5, 0)  forall k=p+1,..,v

where each H;(x;,0) (k=1,...,v) is non-sectional and Z;(x)20, Z;(x)#0,
Z,(0,..., 0, x5, Xg,, s--s X5,)=0 for all k=p+1,..., v.
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Moreover, if we do not take the order of {J,;} into account, the partition J U -+ U
J,={l,..., n} is unique.

Proof. Only the proof of the uniqueness is left. Note that y=1, in the first
place.
We assume there is another cannonical partition

Lyu- Ul Ul U-ul,={l,.,n}

First we show any J(1<k<u) and (1 <k'<y') are identical or disjoint. We
prove this by contradiction. Assume ¢#J, NI .&EJ, or ¢#J . NI.El;.. For
the definiteness, we assume the first. Since H,(x)=H,(x;,,0) and H; .(x)=
=H, (x;,0), Hyop(x) is a function of only x,,q,.. This means H,(x)=
H,,(x;,, 0) is sectional, a contradiction.

Next, we show any J(1<k=p) and [.(p'+1=5k'<v') are disjoint, and any
Ji(u+1=2k=v) and I(1Zk'<y’) are also disjoint.  We prove only the former one
by contradiction, because the proof of the latter is the same. We may assume
Jo—Ipy#¢. Infact,if J &I, H; (x,, 0) must be sectional, a contradiction. And
if Jy=1, Z;(x)=Z,,.(x) must satisfy Z,; (x)=0 and Z,.(x)#0 at the same time, a
contradiction. We may assume k' is the smallest that satisfies J,—1I,.#¢. (The
above argument shows k>’ +1.) The follows

Jk;(’1k, Ulps Uu--ul)=6.
This implies J, &1, U --- U [, therefore
Hy g (X1 O=Hy o 0,,(0,..., 0, xp00e0, Xp,0)
=Hy01,0(x)
=H, ny,(x,. 0)

It means Hy, .o (% 0V=H, 05,(X), 05 0) Which contradicts the non-sectionality
of Hy,.(x;,., 0). This contradiction shows each J,(1<k=<y) is disjoint from 1., U
] ]“,.

We have proved J, U ---uJ, and I,.,, U - U I, are disjoint, so are I, U---U I
and J,,,U--UJ,. This means J,U--uJ,=1,U---U[,. We proved also any
JI k=) and I (1Sk'<yp’) are identical or disjoint.  Therefore {I,..., 1} is
only a permutation of {J,..., J,}.

We have only to repeat the same procedure for

Hy, w0000, x5 45y X))
and so on. We have completed all the proof of the theorem 14.
Remark. From the theorem 14,
H;(0,...,0, x5, X5, 0oy X, )= H (x5, 0)
Especially, o |
' Hy,(0,..,0, 0, X5, 1venns X,,) =0,
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Example of cannonical expansion:

Consider the following docile homogeneous transformation.
H ()= x}/2xy7
Hy(x)=2x; +x,
Hq(x)=3x{/2x1/2 4+ x, + x;
H 4(x)=(2x3x5+ 3x,x2)"/3

Hs(x)=(x3x4+2x3 +x3)!/3.

Its cannonical partition of suffixes is
Ji=J,={1.2}, J,=J,,={3}, J3=J,={4,5}.

We give two applications of cannonical expansion.

Theorem 15. Let H(x) be docile and its cannonical partition be

Jyu--uJ,.={l,....,n}.
Then the next formula holds.

/lo(H)=12135xv {Ao(H (%}, 0))} .
Proof. For simplicity, we use the following notations.
AolK)=Ao(H (x5, 0), k=1,...,v.
o= max {iq(k)}.
1Sksv

Proof of Ao(H)=1,.

Let us take an arbitrary A<Z,.
certain k such that

Then there exists a

A<Ao(k).
We denote by y,, >0 the maximal eigen-vector of H, (x,,, 0).

Setting y=(y,,, 0),

HJ(?)-}vyjz(}~o(k)—).)j>0 fOl‘ a” jGJk
Hy(y)=/y;=H(y)20 for all je&J,
From 2) of the theorem 6, we get

A<Ao(H).

Since 4 is an arbitrary number smaller than 1,, we obtain

ToSAo(H).

Proof of io(H)<Z,. Let us take A>J, arbitrarily. We shall construct a
positive vector >0 such that ) :

H() -7 <0,
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We denote by y,, the maximal eigen-vector of H,,(x,,., 0) for all k. In other words,
(s1) H,, (1. 0)=Ao(k)y,, and 7,,>0.

First, we put, with m,=1, '

(52) F(v)=(0, myy;,).

Since 4> Ag(v),

(53) H, (G(v) =27, (v)=m(Ao(v) = )y, <O.

Recalling the remark of the theorem 14,

(54) H 1, (3() = 255,(1) = Hy, (0, 3, ) = 0=0.

for all k<v.

We go on to the second step.

(55) pv—1)=(0,..., 0, m._y;._,, my,)
with a sufficiently small m,_, >0, (53) unchanged:
(56) H,; (G(v=1))— 43, (v—=1)<0.

In the same way as we obtained (53) and (54),
(57) Hn-,(f’("" 1) —43,,_,(v=1)<0,
(58) H, G(v—1) =i, (v=1)=0 forall k<v—1.

We define m,_,, m,_3,... in the same way. Finally we are led to §(1)=(n,y,,.
MY sye-os MY,,) Such that

(59) H, (7(1))—=29,,(1)<0 forall k=1,... v
This means, from the lemma 6,
A>2o(H).
Since / is an arbitrary number greater than Z,, we get
To=Ao(H).
We have proved the theorem 15.
At the end of this paper, we give another application of cannonical expansion.
Theorem 16. Let H(x) be docile and expanded cannonically with
JyU - UJ, U, U UJo={l,...,n}.
There exists a positive vector associated with Ao(H) if and only if K
' Ao(H (X4, O))=;10(H) for all k=l /1‘. Ce
Ao(H 5 (x5, 0)) < Ao(H) forall k=pu+1,...,v.
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Proof of sufficiency. We use the same procedures as in the proof of the theorem
15 and of the theorem 8. So we write the proof here rather briefly.

Let y,, >0 be the maximal eigen-vector of H; (x,,, 0) for each k=1,...,v. We
construct a positive vector

F=0M,Y50-0 MYs M1 Vo, e myy.)
where we determine m,, m,_,,..., m, inductively so small that it satisfies
(60) H (y)=2o(H)y; forall jeJ,u---ulJ,
H (y)<Ao(H)y; forall jeJ,,yU---UJ,.

Next, we split every J(u+1<k=v) into J; and J;. Jji is all the suffixes jeJ,
such that

Hj(xll""‘ x-’k—-l‘ )’1,\_»«-', y.l,.) 0

when every x(jeJ,U--UJy-)=o and y; >0,..., y, >0 are fixed. And J;=
Jo—=Ji. Ji(p+ 1 =k=v) is not empty because H, (x)#H(0,..., 0, x,,,..., x;,) means,
from 2) of the definition 5, there exists at least one such je J,.

Recalling the remark of the theorem 8, there exists y;, >0(u+ 1 <k =v) such that

H (v, 0)> Aoyyi.
We construct a positive vector
T=(Myysseees My Myus (%5, 00 M.,y;,)
where M,. M, _,..., M, are determined inductively so large that § satisfies
(61) H(F)=Ao7; forall jeJ,U--UJ,
H{(7)> Ao7; forall jed,, U--UJ,.

After a necessary scalar multiplication, we may assume y<7. Then, the map

)LH(x) leaves the interval
Y0

[)-'Iﬁ fl]x e x[‘yn’ fn]

invariant.  Thus there exists a positive fixed point of this map which is a positive
eigen-vector associated with A,(H).

Proof of necessity. Let y be a positive eigen-vector associated with Ay(H).
Then

(62) Hy (94, O)=H, (y)=Ao(H)y,, forall k=1,....pu.
(63) H, (35, O)=H,; (y)+ H (v, 0)—H,(7)
<AoVs. forall k=pu+1,...v

since H,(7,,, )< H, (y)(u+ 1=k Zv) follows from the lemma 6.
From (62),
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Ao(H (X, 0)=4(H) forall k=I1,..., u.
From (63), using the theorem 10,
Ao(H j (x4, 0)) <Ao(H) forall k=pu+1,...,w

We have completed all the proof of the theorem 16.
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