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1. Introduction

Many discussions have been done on the equations of the form:

d u i  

d t  

_
A i (u,,..., u„), j= 1 ,... ,  n

where each A ( u )  is  a  quadratic f o r m . Two important examples a re  Volterra's
ecology equation (see Volterra [1], Jenks [2]), and Boltzmann's gas equation with
a finite number of velocities. (See Carleman [3], Conner [4].) Note that in both
cases, every solution starting from a non-negative initial data remains non-negative.

To study this type of equations, finding all the non-negative equilibrium points
is very im portant. The author studied the special type of equation:

dui  _ A N2 ; n
dt " o P

where each Ai (u ) is a  quadratic form with non-negative coefficients, and is a
param eter. In this case, each equilibrium point satisfies

u„)— pu3, j= 1,..., n

that is

MU) =  / 2 1 / 2 u

where 1-1; (u)= [A ; (u)] 1 / 2 . In this way, to find equilibrium points can be converted
to the nonlinear eigen-value problem.

This type of nonlinear eigen-value problem has been studied in detail by econo-
m ists. (See especially  M orishim a [5], N ikaido [6].) B ut the notion of inde-
composability defined by them is a  little too stringent in  order to guarantee the
existence of positive eigen-vectors. The author could loosen the sufficient condition
for this, introducing the notion of non-sectionality. He could also represent the
cannonical expansion of sectional homogeneous transformations of degree one
with which we can establish th e  characterization o f  the ir maximal eigen-value.
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We shall explain these facts in this paper.

2 . Fundamental Notions

We shall use vector inequalities. x y m eans x j _<_yi  for a ll j=1 ,..., n. Simi-
larly, x <y implies x i <y ;  f o r  a ll j= 1 ,..., n. Lastly, x<y implies that x y  and
x 0  y .  We call a vector x 0 non-negative, a vector x>0 positive.

Definition 1. H(x) is called a non-negative non-decreasing homogeneous trans-
formation of degree one or simply a homogeneous transformation if it satisfies the
following three conditions.

1) H(x) is a continuous map from [0, co) x •-• x [0, oo) into itself.
2) H (x)_H (y) for a ll x  y .
3) H(px)=pH(x) for all O. (Therefore H(0)=0.)

Our problem throughout this paper concerns À. 0 a n d  x  0  satisfying

which we call an eigen-value and an eigen-vector of H(x).
W e introduce here two subsets o f  homogeneous transformations, the inde-

composable ones defined by economists and the non-sectoinal ones which contain the
indecomposable ones.

Definition 2. (See Morishima [5].) A homogeneous transformation H(x) is called
indecomposable if it satisfies the following:

For any given proper partition 0 U S2= (i.e. 0 n S2= 4), 0 0 c1), S20 40,
there exists always (Tie Q for which following 1) holds.

1) H (x )< i - I (y )  when x e < yo  for all 0 e e, = y f o r  all w e Q.

Example of indecomposable transformation:

H,(x i , x 2 ) = (2xi+ xi)'l 2

H 2 (x 1 , x2 ) =(xi+2x3) 312

whose unique eigen-vector is H(1, 1)=3 1/2 (1, 1).

Definition 3 . A  homogeneous transformation is called non-sectional i f  it
satisfies the following:

For any given proper partition O u S2= {1,..., n }, there exists always C3e Q for
which following 1) and 2) hold at the same time.

1) H (x )< H (y )  when x o < y e for all 0 e e, o < x„ = y,,, for all CO E Q.
2) Let x ia > 0 be fixed for all co E Q, then

H ( x )  — ' c o  w hen all x 0(0 e e) - - - 0  co

Example of non-sectional transformation:

Hax i , x 2 )= x i/ 2 (2x
1
 + x2 )' /2
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H2 (x 1 , x 2 ) =x1/2 (x 1 +2x 2 ) 1/2

whose eigen-vectors a r e  H(1, 1)=3 112 (1, 1), 11(1, 0)=2 112 (1, 0), a n d  H(0, 1)=
21/2(0, 1) ,

Remark. A n  indecomposable homogeneous transformation H(x) is always
non-sectional. I n  f a c t ,  fo r any given proper partition (:)1 u Q, there exists (7)e Q
satisfying 1) of the definition 2. This hi clearly satisfies 1) of the definition 3. To
consider 2) of the definition 3, we set x=0 and y> 0 such that

Yo= I for all 0 e

= ° for all c o  e Q.

Then

(1) 0 = 11(0) < H(y) .

Let all x  , ,>  (a) E Q) be fixed and all x0 (0 e 0) go to infinity.

lirn H„(ty)
x 9 , co 1, 0 0

lim tH,(y)

= CO

because (1) holds. Q. E. D.

3. Preliminary Results

Theorem 1. (See Morishima [5].) A  homogeneous transformation has at least
one non-negative eigen-value and a non-negative eigen-vector associated with it.

P ro o f  We consider the following map from the set S = {(x,,..., x„); 0 for
all j  and x .= 1{ into itself.

J=1

(2) F(x )=  x + H ( x )  
1+ I-11/(x)

i=1

Then, by virtue of Brouwer's fixed point theorem, there exists at least one fixed point
y e S:

y= Fey ) —  + 44H
(y)

.
+  L

i=1
Rewriting this, we get

(3 ) H(Y)= lif(Y)11'.
J=1

Therefore, Ê  H,; (y) and y are the eigen-value and eigen-vector we have been looking
J=1

for. Q. E. D.
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We shall write down some fundamental results concerning the maximal eigen-
value and the maximal eigen-vector of homogeneous transformations.

Lemma 1. (See M o rish im a  [5 ].)  If there exist two non-negative eigen-vectors
y, f o r  t h e  same H(x) such that

then follows the  next inequality  concerning their eigen-values 2, A  respectively:

A.

A nd consequently, the eigen-vectors w ith the sam e position of  zero-elements have
the same eigen-value.

P ro o f . We redefine as y the vector py with the scalar p> 0 such that

p= m in 17i

j e J  y i

So y -.)7 and there exists i such that

w h e re  J = 0 ;y i >01.

Yi=Yi> 0 .

From the monotonicity of H(x),

(4) Â— H. —(y) H ( y )H . 0 7 )
— A.

Yi Yi i

We have proved the first statement.
If y and )7 have the same zero-position, then

f j ; "_i>13}

and

1j; y i > 0 1 1 j ;

Therefore, from the result just obtained,

and i.e. .1=A. Q. E. D.

From the latter half of the lemma I, we know that there exists at most one
eigen-value for any given zero-position. Thus we get the following theorem.

Theorem 2 .  (See M orish im a  [5 ].)  A homogeneous transform ation has only  a
f inite num ber (at m ost 2" —1) o f  non-negative eigen-values associated with non-
negative eigen-vectors.

Definition 4 .  The maximal eigen-value o f H (x ) is denoted by 2.0  o r  ).0 (H).
And an eigen-vector associated with it is called a maximal eigen-vector.

Theorem 3 .  I f  there ex ists a positiv e eigen-vector y > 0  for H(x ), its eigen-
value is 20(H).
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P r o o f .  Let .1 be its eigen-value. Suppose there exists any other eigen-vector
with the eigen-value ;. Then, from the lemma 1,

This shows that ), is maximal. Q. E. D.

We shall cite without proof a few theorems about indecomposable homogeneous
transformations from Morishima [5], which will be the  basis o f  o u r discussion.

Theorem 4. (See M orishim a [5].) The eigen-vector o f  a n  indecomposable

homogeneous transformation H(x) is  unique u p  to  the sca la r m u ltip lica tio n , and

is positive. Its  eigen-value is also positive.

Theorem S. (See Morishima [5].)  I f  H(x)_H(x) fo r  a ll then

Ao (H)_4(.13).

If, moreover, H(x) is indecomposable and H(x)<FI-(x) fo r  a l l  x>0, then

4 ( f 1 )<A0(H).

Using the  theorem 4 and  the  theorem 5, we get the im portant lemma 2, its
proof will also be omitted.

Lemma 2 .  (See Morishima [5].) Let H(x) be a homogeneous transformation.
If we define a new homogeneous transformation H(e)(x) in  the fo llow ing m anner:

(5) H(e)(x)-= H(x)+EU(X)

where U i (x)=x,+•••+x„ f o r  a l l n, th e n  th is  H(s)(x) is  indecomposable

fo r  e>0, and .1.0 (H(e)) is a stric tly  increasing  function  in satisfying

lim Ao(H(e))= Ao (H).
E.to

Using the preceding theorems, we get the following propositions which will be
essential to our argument below.

Lemma 3. Fo r a  homogeneous transformation and i ts  maximal eigen-value

A0 , the follow ing hold.
1) For any A> A, there exists a positive vector y>0 which satisfies

H(y)— Ay <O.

2) F o r  a n y  A<A,, the re  ex is ts  a  non-negative vector y>0 which satisfies

H i (y)—Ay1 >0 f o r  a l l  jE  {i; yi >0} .

Proof of 1). We use H(e)(x) of the lemma 2. Then

(6) .1.0(H(e)) J. 20 (H )  w h e n  e J. 0.

Therefore there exists a certain E  such that
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.10 <4(HW) <
And

Ii(e) ['(O] = 4 (H (E ))Y (E ).

Here y(e)>0 since it is the eigen-vector of an indecomposable H (s )(x ). (See the
theorem 4 . )  Rewriting the last equality,

H [y(e)] +  BU[Y(E)] = A0(11(6))* )

H[y(c)] — Ay(e) = Fo(H(0)— — W  [Y(8)] •

Since y(s) > 0 and 4( 11(0)<

(7) H[y(E)]---1,y(E)<0.

Thus the vector y ()> 0  is the vector we have been looking for.
Proof of 2). Let y> 0 be the maximal eigen-vector, then

(8) HOO—AY= H(Y) — /1.01' + (2 0 — ))),

=(;to — 0.

With this vector y > 0, the statement of the lemma is clearly satisfied. The proof of
the lemma 3 is completed.

We can prove the converse of this lemma as follows.

Lemma 4 .  Fo r a homogeneous transformation H(x) and its m ax im al eigen-
value 20 , the following hold.

1) If  there exists a positive vector y>0 f or a given w hich satisf ies

H(y)--2y 0,
then

2) I f  there ex ists a non-negative vector y>0 f o r a g iv en  ). which satisfies

H (y )-4 .0 ,

then

Proof  of  1). Assume ).<4. Then, from the lemma, there would exist such a
>0 that

f/ i0 )> ;ti fo r  a ll j e {j; .

The sign of inequality remains unchanged with a certain p>1:

(9 ) H1(i)>pÂ f o r  a l l  j e {j;  > O } .

After n times iteration H ", we get the next inequality, using the homogeneity and
the monotonicity,
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1 _ _A„ 11(Y)> for a l l  j  { j ;  'Pj>0} .

On the other hand, because y >0, there exists an appropriate C> 0 such that Cy.
Then

Further

1--H"(17)<Cy.=

1This means that after any number o f iterations, H"(ii) rem ains bounded. This
fact contradicts (10) where p>1.

Proof  o f  2). Assume A>,1.0 . Then, from the  lemma 3, there would exist a
positive 0 such that

H(D— 47 <O.

With an appropriate p> 1,

After n times iteration, we get

(12) A„ "())) - „P

From the assumption of the lemma, after n times iteration,

-  
r

H "( y) y  O.

Since there exists an appropriate C> 0 such that y_ Cji,

I -- I 1(13) O.

1(12) implies 2—„ H"() tends to zero, while (13) means it does n o t. T h is  is a contra-
diction. Thus we finished the proof of the lemma 4.

Combining the lemma 3 and the lemma 4, we get a  rough characterization of
the maximal eigen-value as follows.

Theorem 6 . Following statements hold.
1) There exists a positive vector y> 0 which satisfies
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H(y)— Ay <0

if and  on ly  if A >  A,.
2 )  There exists a  non-negative vector y>0 which satisfies

H j (y)— Ayi > 0 f o r  a l l  j  { j;  yi  >0}

I f  and o n ly  if  A<A 0 .

Proof of the sufficiency. E vident from  the lemma 3.
Proof of the n e c e s s ity  o f I) . From the lemma 4, we get /1, ,A0 . Assume ), =i1o •

If A=2 0 =0, then H (y)<O , a contradiction. So w e can assume Ao > 0 .  W ith a
sufficiently small c>0, we get

H(y)— (4 — )-Y <0.

This means from the lemma 4,

A contradiction.
P ro o f o f  th e  necess ity  o f 2 ) .  From  the lemma 4, Assume ).=

Then, with a sufficiently small E> 0, we also get

H 1(y)—(A0 + r.)yi  >0 for all j  {,j; y 1 >0}.

Again from the lemma 4,

AH-E./10.

This is also a contradiction. Thus the proof of the theorem 6 is completed.

From the theorem 6, we can prove the next theorem.

Theorem 7 .  Let x > 0 be an a rb itra ry  pos itive  vecto r. T hen

lim(x, H"(x)) 1/"=A 0 (H).
H-■

P r o o f .  Let y > 0  be  the maximal eigen-vector. W ith an appropriate C>0,
C y .  Then

(x, H"(x))(Cy, 11"(Cy))

=(Cy, C(A 0 (H))"Y)

=C 2 )0(H))"(Y, Y).

Because (y, y)>O,

(14) lim (x, H"(x)) 1 /"_ ). 0 (H).

From the theorem 6, for an arbitrary A>i,,„ there exists a positive vector , >.0 such
that

Choosing an appropriate C, we have x  C .  T h e n
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(x, H"(x))<(C)7, H"( ( 5))

Therefore

lim (x, H"(x))'/"

Since /1> /10  is arbitrary,

(15) Jim (x, H"(x)) 1/"
H—. cr.

Together with (14), this means

(16) lirn (x, H"(x))'/"-=/1.0 (H). Q. E. D.

4. Non-Sectional Homogeneous Transformations

In this section, we look into non-sectional homogeneous transformations. In
this case, the necessary consitions of the theorem 6 can be replaced with somewhat
looser ones which will be useful to prove the theorem 8.

Lemma 5. Assume H(x) is non-sectional. Then the following statements hold.

1) If there exists a positive vector y>0 fo r any g iven  2 such that

H(7)-4

then

2) If there exists a positive vector y>0 fo r any g iven), such  tha t

H(7)—.1.y>0,

then

2<2 0 .

P ro o f o f I). I f  H (y )-4 < 0 , there is nothing to p ro v e . (See the theorem 6.)
Assume the other case. L e t  u s  denote

J = j  H i (y ) -4 j <0}

K={lc; H k (y)— 2yk = 0} .

We shall construct a positive vector 'y > 0 such that

(17) H( 7)— 213 0, J = 1j ; H 217 J  <0} .

We consider the following vector with a sufficiently small E :

Y j g
Y j(g)

= Yj

fo r  a ll j e J

for all je K ,
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From the non-sectionality of H(x), at least one Hk [y(c)] (k  e K ) decreases as c in-
creases. So, for a sufficiently small e> 0,

H i [y(e)]— /11 j (e) < 0 for all j  J

Hk[Y(en —  k ( 8 ) < 0 f o r  a  c e r t a i n  k e K.

Therefore this positive vector y(c) has the property of (17 ). Repeating this proce-
dure, we finally obtain Y'> 0 such that

H( -72)— /<0.

The rest is clear from the theorem 6.
Proof  of  2). This time, we have only to introduce

for all j e J
y1(r)

{ =y r ke

=Y i for all j e K

where J=0 ; H 1(y)—y i >01, K  ={ k ; H k(y)— Ayk = 01. For the rest, the same argu-
ment as in 1) can be applied.

We have completed all the proof of the lemma 5.

Now we proceed to the main theorem of this p a p e r .  But, before that, note that
non-sectional homogeneous transformations might also have eigen-vectors with
zero-elements. (See the example of non-sectional transformation in the section 1.)
I n  th is  respect, they  a r e  very different from  indecomposable transformations.

Theorem 8. T he m ax im al eigen-vector of  a non-sectional homogeneous trans-
f orm ation is positiv e and is unique up to the scalar m ultiplication.

Pro o f  o f  th e  p o s it iv ity . After th e  necessary scalar multiplication, we may
assume, about the maximal eigen-vector y,

(18) min {y1 ; y1 >0}=1.

In order to prove the statement by contradiction, we assume

(1)0J0=1/;

We construct the partition J o , J,, . . .  in the following w a y .  Denote by J ,  all 6 . / 0

of the  definition 3, regarding J o a s  0, n1— J0 a s  Q .  I f  J o u n1,
we construct further J 2 , the set of all the (7) e —J, —J 1 , regarding J o u J,
as 0, —J0—J1 a s  Q .  We repeat this procedure if necessary. After a finite
number of steps, we obtain the partition :

(19) J0UJ1 U ••• U J,=11 ,..., 171.

Let us now construct positive vectors 0 ) ( k = y) inductively, in the follow-
ing way.

First, we set

j3j(v)= M r =1 for a l l  je {1,..., n1.
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Then we choose a  sufficiently large number Mv _ , such that the  vector 1- (1, - 1):

= My— 1 for all j e Jo  • -Jr-
)
7Iv-

1 
= M r for all j E Jv

satisfies

Hi U(v-1)] -4T, ; (v -1)> 0 for all j e J ,,.

This can be done because every H i (x )(j E JO goes to infinity as all x k (k e J o u •-• U
J,- 1 ) go to infinity at the same tim e .  (Recall the way of constructing this partition.)

Next we define .i(v-2 )  and M,_ 2 > My _ , such that

=Mv-2 for all j e Jo u • • • u J r _ 2

' ,-3(1, — 2) = M y _ ,f

=M,,

for all

for all

jeJ r _ i

jeJ v

satisfies

Iii[A v - 2)] - 4jj j (1, - 2)> 0 for all je J,,_ 1 .

Note that for each je  Jr , the same inequality still holds. In fact, for such a  j,

i [A v - 2)] - 2 (v -2)

Hi [Av - l ) ] - ) ' ( v -  l ) > 0

(Remind that Ai, - 2) - 1) and .p1(1, -2 )= (1 , -  I) for all je  J,.)
After v steps, we are led to 13(0) such that

 

=M o for all j e J o

for a ll j e J

for a ll j e J ,_ ,

for a ll je J„

 

(20) ./(0)

 

M,,

 

where

(21) Iii[13(0)]-4));(0)> 0 for all je J,  u • • • U

Now we define as follows.

= Mo)'; for all i G.4

= /14, for all je  J ,

(22) =M ,1 for:all j e J , _ ,

=M „ for a ll je J„

Reminding that yi ._. 1 for all j E Jo  an d  consequently 1," .')(0), for all je .16., we get
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(23) H JG') — - 1-1 0 4  ofl — AØ M O J

= M 0 [H i ()7)— A0 )71 ]=0 .

W ith (20) and (22) in mind, we know (21) remains unchanged, replacing ^,7(0)
with tha t is,

(24) 1-I Ao-T,J-1/1( (0))—/10)7i(0)>0

for all j  J 1• • •  U
Combining (23) and (24), we get

H(3) — 0  and

Using the lemma 5, we are led to the next contradiction,

) -o

Proof  of  the u n iq u en ess . We repeat the way written in  M orishim a [5] which
is  u s e d  fo r  indecomposable transformations. Assume th e re  w e re  tw o  positive
maximal eigen-vectors y and A s  usual, we redefine as y the vector py where

p =  m in  
1. 11

Then

We set

(25) 4) 0-1={.i; '.;>));}, 0 K =tk ;

From the non-sectionality, there exists k e K such that

HkG')>Hk(Y ).
Since H(y)=.1. 0 y and H('3)=.1 0

- ,

)-0Yk= H k(Y)< Hk() =

But y, = -,-)k because k e K .  This is a contradiction.
Thus we have completed all the proof of the theorem 8.

Remark 1. Suppose H (x) is non-sectional. For any  A  (possibly 2>>1 0 )  and
any proper subset of suffixes J  cb, we can construct a positive vector y>0 such that

Hk (y)— Ayk >0 for all k

(But not necessarily H j (y)—Ay1 > 0  for all j e  J.) W e have  on ly  to  partition the
suffixes and construct 17(0) in the same way as in the proof of this theorem.

Remark 2. F rom  the  theorem  3 , w e  know  tha t any  positive eigen-vector is
associated with the maximal eigen-value.. Therefore this theorem also guarantees
the  uniqueness of the positive eigen-vector fo r each non - sectional homogeneous
transformation.



This inequality follows from (27) and lim H 2 (x 1 , x 2 )=-5- x2.
co

This homogeneous transformation H(x) can have no positive eigen-vector when
In fact, assume H(x ,, x 2 )=4 (x 1 , x 2 )>  0 .  With (28) in mind,
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Remark 3. It might be felt that 2) of the definition 3 is redundant. Indeed,
there is room in  loosening it. B u t  it cannot be rem oved. L et us illustrate this
situation with an example.

Consider the following two-dimensional homogeneous transformation with a
param eter >0:

H ,(x,, x 2 ) =p(xi + x I2

(26)
H2 (x 1 , x 2 ) = (xi + xi)' / 2 ( -7r — Arctan Arctan  x 2

x
t ) xi

It is easy to show, for any x, >0 and x 2 >0,

OH,a r  
—  p  —  p sin 0 >0ax2a x 2

OH 2 — °ax ,  

r ( ;  0 - 0 2 )

= (  —  0 2 ) cos 0 +- —  20) sin 0 > 0

where (r, 0) is the usual polar coordinates.
There are two partitions of suffixes, that, is 0={11, 52= {2} and 0= {2}, 52={1}.
Using (27), 6=2 or iT)= 1 satisfies I) of the definition 3, respectively. But, in the
former case, 65=2 does not satisfy 2) of the definition 3. This is the case because

(28) H2(x1, x 2 )<-,57r-x2 w h e n  x 1 >0 a n d  x 2 > 0.

(27)

ax ,

Âo x, =1- 11(x, „x 2 )> px,

2„x 2 = 112 (x 1 , x 2 ) < -,7; x 2

The first inequality means ) >p  while the second Âo < t t .  This is a contradiction.
Q.E.D.

One can show similarly that H(x) has a positive eigen-vector w hen 0<p<-7.-;-.
Thus we know that the condition 2) may be a little too stringent but is not redundant.

We can extend the latter half of the theorem 5 to the case where II(x ) is non-
sectional.

Theorem 9. If H(x) H(x) for all x > 0 and Fl(x ) is non-sectional, then

/10(11)</lo(H)
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P r o o f  First we consider the case where H(x) is also non-sectional. Let y> 0
be the maximal eigen-vector of H(x).

11(y)_H(y)=.1. 0 (H)y.

From the positivity, we can apply the lemma 5, and

il0 (H)<.10 (H).

Next, we go on to the general case. We set

(29) Ff(x)=— (H(x)+11(x)).

This Fi(x) is clearly non-sectional and 1-1(x)<F/(x)<H(x) for all x > 0 .  From the
result just obtained,

(30) )-o(R) < 4(H).

From the general result of the theorem 5,

(31) 219( 4 ( F1)
Combining (30) and (31), we get the final inequality,

).0 (H) <)(11).

The proof iS completed.

Using the theorem 8, we can sharpen the theorem 6 when H(x) is non-sectional.

Theorem 1 0 .  L et H(x) be non-sectional. T hen the follow ing hold.
) The ex ists a  positive y> 0 such that

H(y)—

if  and only  if  .1.>.1.0 (H).
2) There ex ists a  non-negative y 0 such that

H (y ) - 4 0

if  and only , if  ). <2.,„(11).

Proof  o f the suf fic ie n c y . C lear. W e have only  to  adopt the m axim al eigen-
vector as y.

Proof  of  the necessity  of  1). Clear from the lemma 5.
Proof  of  the necessity . of 2). If y> 0, we can use the lemma 5 directly. S o  w e

may assume that y > 0 has zero-elements. We set .1 and .a matrix A  as following.

J = 0 : y f >01.

24E =1 fo ra ! !  j E J

A = O e l s e w h e r e .

Setting ri(x) as
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(32) H(x)= H(Ax)< H(x).

The last inequality follows from the definition of the non-sectionality.
Then, since Ay=y,

TI(y)— Ay= H(y)— J.y>0.

From the lemma 4,

(33) 2:5_20(H).

From (32), using the theorem 7,

(34) 20(H)<A0(H).

Combining (33) and (34), we get

2 < 20 (H).

The proof of the theorem 10 is completed.

Corollary. Let H(x) be non-sectional. Then, the following hold.
1) If  H (y)- 2.Øy  0  f or a positive vector y>0, then

H(Y)= 4Y.

2) If  H(y)— /la  0 f o r a non-negative vector y> 0, then

H(y)=.) 0 y  a n d  y>0.

Proof  of  1). Assume that H (y)-2 0 y < 0 . Then, from the theorem 10, 20 >2 0 .
This is a contradiction.

Proof of 2). Assume that H(y)-2, 0 y Then, from the theorem 10,
This contradiction shows H(y)=2 0 y. The maximal eigen-vector must be positive.
So y>0. Q. E. D.

Remark. We can not replace the positivity of the vector y with the non-nega-
tivity in 1)'s o f both  the present theorem and coro lla ry . Let H(x,, x 2 )  b e  the
example o f non-sectional transformation in the section 2. In  th is case, 20 (H )=
3 112 . And H(1, 0 ) - 3 1 / 2 ( i ,  0 ) = ( 2 1 / 2 _ 3 1 1 2 ) ( 1 ,  0) 0. B u t H(1, 0)03 1/2 (1. 0).

5 . Resolvent Problem

In this section, we treat the resolvent problem, that is, we investigate the non-
negative solutions of the resolvent equation:

(35) 2x— H (x ) =  c  where

First, we look into the general case where no further conditions are imposed on
the homogeneous transformation H (x ).  We formulate and prove the next theorem
in somewhat different way from Morishima [5].

Theorem 11. Let H(x) be a homogeneous transformation.
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1) Let ). >). 0 (H) be fixed. T h e n  (35) is solvable for all c_>_0. The solution is
unique w hen c>0 and  c =0 , bu t it is not necessarily  unique f o r the other c>0.
Choosing an appropriate one am ong the solutions for each if  not unique, the
solution R A(c) form s a homogeneous transformation with respect to  c  O. Moreover

1.1) R ) ,(C)> 0  when c> O.
1.2) RAO< R ,( i)  w h e n  O c <F .
1.3) RA (c) < RA (0  w h e n  0  c <

Conversely
2) If  (35) has a non-negative solution for some c>0, then il>11 0 (H).

Proof of  1). We begin with the solvability. Since )1>.10 (H), we can apply the
theorem 6. We have, therefore, y>0 such that

(36) -
1
,H (y)< y .

Rem ark ii.>■10 (H ) 0 .  Let b e  f ix e d . T h e n , f o r  a  sufficiently large K >0,

(37) +(H (K y )+ c)< Ky.

We define the map

(38) F(x )= 1
) . (H(x )+c).

N ote th a t  [0 , Ky] x ••• x [0, K y] is  invariant th rough  th is  m a p . In  fa c t, fo r  all
x  .K y , using (37),

1 (H(K y)+c)< Ky.—  —  —

By virtue of Brouwer's fixed point theorem, F(x) has a fixed point in [0 , Ky] x ••• x
[0, K y]:

x =F(x )= (H(x )+c).

This is clearly a  non-negative solution of (35) for c (). And note th a t x=

—
1

(H(x)+ 0 when c> 0 which proves 1.1).
2. N e x t  w e  piii-Ove the fact:

(39) x.)-c" i f  ;.x—H(x)=c, a—  f i ( ) = a n d  0

We follow the ingeneous way of M o rish im a  [5 ]. First, we set

(40)
X .p = m in  .

Is is : , x i

Assume x .) 7 ,  that is, p< 1. Then, since c> 0 and px_.)7,
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(41) px  = (H (x )+ c)

=- -1 (H(px )+ pc)

<  (H (5 -0+

(41) contradicts (40).

(39) shows the uniqueness of the solution of (35) for e> 0. In fact, Lx- -H (x )=c
and f i(k )=c imply that x and x i.e., As for e = 0, (35) has only
the trivial solution because it must be an eigen-vector of H(x) with .1 which is greater
than the maximal eigen-value .10 (H).

Let )x — H(x )=c with e> 0. Then 5e= px is the unique solution of — H(3)=
pc, which proves

(42) RA(pc)= pR A(c) w h e n  c> 0  a n d  p  O .

In the sequel, we shall define RA (c) for c > 0 with some zero-elements as a limit
of R A (c') where c '> 0 and c' 4. c. It gurantees the non-decrease and the homogeneity
of R A (c) w ith respect to  c by virtue of (39) and (42). It also guarantees R A(c) for
c> 0 with zero-elements is still a solution of (35) since H(x) is continuous.

We now define R A (c) for c > 0 with some zero-elements. For that purpose, we
take a  strictly decreasing positive sequence (c(v)> c(v +1)> 0 for all v) which con-
verges to c > O . S ince  R ; (c(v)) is non-increasing from (39), we can define

(43) RA(c)=Iim R A(c(v)).

This limit does not depend on the choice of {c(v)}. In fact, if we have two strictly
decreasing c(v),I, c and c'(v)1, e, we can combine their subsequences to form another
strictly decreasing c"(v),I, c. Then we have

lim R A(e(v))=lim R A(c"(v))= lim R A(e'(v)).
V -* C C v -000

We prove the continuity of RA (c). First, we assume c> 0 o r c = O .  We take a
sequence {c(v)} converging to c  (not always monotonously). RA (c(v)) is clearly
bounded. Any accumulating point of R A(c(v)) must be the unique solution of (35)
for c since H(x) is continuous. This means

lim R A(c(v))= R A (c)

which shows the continuity of RA (c) a t c>0 and c= O. N e x t, w e  assume c > 0 has
some zero-elements. If we take a  sufficiently small c> 0, RAM where ei =c ; +s for
all j  is near enough to [R A (c)] ;  from (43). In this way, using the non-decrease and
the homogeneity of RA(c),
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(1— î)R ; (c)<  A (y) RA(ë) w h e n  (1 — s)c

Because e> 0 is  arbitray, th is m eans the con tinu ity  o f R A(c) a t c> 0. Thus w e have

proved RA(c) is continuous, therefore, a  homogeneous transform ation.

W e p rove  now  1.2) a n d  1.3). It is clear that each x 0 cannot be so lu tions o f

(35) fo r different c 0 and0 .  Th is  means R A (c) R ;,(0  when c0 . . Th is proves

1.2). Le t now Fo r a  suffic iently sm all (5> 0,

o  c bye <E...

T h is  p roves, from  1.1),

1?(c) (1 — 6)12,1(E.)< R A (E)( > 0) .

1.3) is proved.

Proof of 2). Le t the cond ition  be satisfied:

— 11(x)=c>0.

So x  must be clearly p o s it iv e .  W e can app ly the theorem  6, so

2 > 2 o(11 ).

W e have com pleted a ll the p roo f of the theorem  11.

Remark 1. The so lu tion  of (35) for c> 0 with some zero-elements is not always

u n iq u e .  L e t  H(x) be the exam ple of the non-sectional transform ation in the section

2. Consider the fo llow ing reso lvent equation:

2x — H(x)=(1, 0 )  w h e re  2 > 3 1/2 y i, o (H) .

Th is  equation has two solutions:

/ 2 + 2 1 / 2
 0 )  a n d  ( 

 4 + 1 0 1 / 2  4 + 1 0 1 / 2 )

' 3 ' 6

Remark 2 .  2) o f  th e  present theorem  11 becom es untrue i f  w e  rep lace c> 0
by c> O. Le t H(x) be the same as in the rem ark I.

3 1/2has a  non-negative so lu tion  (1, 0), but

Now  w e consider the case where fl(x) is  n o n -s e c tio n a l. Note tha t the remarks

of the preced ing theorem  are a lso  va lid  for the next theorem.

Theorem 12. Let H(x) be non-sectional.
1) L e t .1>,1,0 (H) b e  fixe d . T h e n  (35) is solvable f o r  a l l  c _ 0 .  The solution

is unique when c>0 and c =0, but it is not always unique for the other c > 0 . How-
ever, there exists only one positive solution fo r  each D e f i n i n g  R A (c) as the
positive solution when c>0 and R (0 )= 0, it fo rm s an indecomposable homogeneous
transform ation w ith respect to c. Moreover
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1.1) R A(c)< R A(0  w h e n  0
Conversely

2 )  If  (35) has a positive solution for some c>0, then ). >.1.0 (H).

Proof  of  1). We begin with the existence of positive solutions for c> O. If
c> 0 , it immediately follows from the  preceding theorem 11. Assume c > 0  has
some zero-elements. From  th e  remark 1 o f th e  theorem 8 , w e have a positive
vector ';;> 0 such that

I11(17)— /1 > 0 fo r  a ll j E J = 0 ; c i =

Then, with a sufficiently small R > 0, we have

(44) R-T<I(c+ H(Kj1)).

Let y >0 be  the  maximal eigen-vector o f the  non-sectional H (x ).  Then, with a
sufficiently large K> 0,

(45) K y >÷(c+H(K y )).

We set a map:

F (x )= 4 (c+ H (x )).

Through this map, the interval [Rh, Kyi x •-• x Ky„] is  invarian t. In fact,
for x such that 0< Ky,

<-1)-(c+ H(1)).<_F(x)_.<-1
T; (c+H(Ky))<Ky.

The fixed point of F(x) is a solution of (35) which is positive because x=F (x )>

We shall show the positive solution for c with zero-elements is unique and
the same one as RA (c) in the theorem 11. Let y >0 be the positive solution of (35)
where c> 0 has zero-elements. We set y' and y" as follows.

y' ---(1 —e)y a n d  y" =(1+ e)y.

y' satisfies

— H i (y')— c =(1 Hi(y))— c < 0

for all j E {i; ci > 0},

AY;. — c k = ( 1 —  8 ) ( )yk—  Hk(Y)) —  ck = 0

for all ke{k; c k =0}.
We modify y' very slightly in the same way as in the proof of the lemma 5 so that we
can find 0 y satisfying

(46) — HU)— c<0.
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We also modify y" to find '.1>y

(47) HG1)— c>0.

In a usual way, from (46) and (47),

G(x)= I  (c + H(r))"

maps 5 ] x ••• x [y-„, j'„] into itself.
A slight perturbation of c leaves (46) and (47) unchanged. Therefore, the solution
of (35) for c' near enough to c can be found in x ••• x [17„, ")"„]. Recalling
that the solution for a positive c' is unique (see the theorem 11) a n d  :) can be taken
arbitrarily near to y (take a small e), we can assert

y= lim R,(c').

This shows y is the sam e one  a s  RA (c) in  the  theorem 11, consequently unique.
From the fact just proved and the theorem I l ,  R A (c) as a positive solution of (35)
for c> 0 is clearly a  homogeneous transformation with respect to c.

Now we prove 1.1) which is stricter than to say  R ( c )  is indecomposable. As-
sume 1.1) did not h o ld .  We denote

J = { j ;  0

K_—{k; 0<y k =yrk }

where y»-R A (c) and = R ) > 00 ) .  The non-emptiness of J follows from 1.2)
of the theorem 11. Since H(x) is non-sectional, there exists k e K such that

lik(Y)<Hk ( )

But, we have

ck  =i1•Yk 
— lik (y )5  4 'k  Ilk ()=

This contradicts the definition of K.
Proof of 2). Let the condition be satisfied.

— H(x)= c> 0  a n d  x >O.

From the theorem 10,
2 > 4( 11 ).

We have proved all the statements of the theorem 12.

For the sake of comparison, we write down the results about indecomposable
homogeneous transform ations. We om it its  p ro o f. S ee  Morishima [5] for the
proof and the original formulation.

Theorem 1 3 .  Let H(x) be indecomposable.
1) Let .1.>,1,0 (H ) be f ix ed. T hen (35) has a unique solution for all c 0. T h e
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solution R (c) for each c form s an indecomposable transform ation with respect
to c. Moreover

1 .1 ) R A(c )> O  w h e n  c > O.
1.2) 1?; . ( c ) < R ,# )  w h e n  0  c < e.

Conversely
2 )  If  (35) has a non-negative solution f or some c> 0, then .1> /18 (H).

6. Cannonical Expansion of Sectional Homogeneous Transformations

It is known that there is a unique decomposition of any decomposable (reducible)
matrix to indecomposable (irreducible) submatrices. (See G antm acher [7].) For
homogeneous transformations, a parallel argument is possib le . In  this section, we
investigate this problem, restricting our attention to docile transformations which we
shall define later. First, we introduce some abbreviations.

Definition 4. Let 6  u be a  proper p a rtitio n . We denote by x 8 ,
118 (x ) the projections to  th e  coordinates A- 0 (fo r all 0 e 0), 11 0 (x ) (for a ll 0 E 0),
respectively.

Definition 5. A homogeneous transformation H(x) is called docile if it satisfies
the following.

I) H(x) is real-analytic in (0, oo) x • •• x (0, co).
2 )  If there exist a proper partition O U nj, 6.5 e Q, vectors 0

0< y , such that

H4Y e, Y n)<I1 ,-00, Y n),

then

H,,(x e , )0 — *  o o

when x,--* co for all 0 e 0 and x0 > 0 is fixed.

Remark. An equivalent of 2) is the follow ing: Let m > 00 be fixed. If H„(x e ,
y ,) is bounded, then Hp(xe ,

Example of docile transformation:

for all

where each Pi (x ) is  a  homogeneous polynomial of degree m;  with non-negative
coefficients.

We begin with a  lemma.

Lemma 6. Let H(x) be docile and Ou K2= {1,..., n} be a proper partition. If
there exist 0 < '118  and  O< yo  such that

yn)=11f ( e, Yn)
then
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H0(x0, x0 ) --7. H(0, x0 )

P roo f. First, we note

(48) Hn(xe, yn ) aconst. w h e n  ye

In fact, for such xe ,

Ho(Ye, Y0)- H0(x(9, Y0)- 11 0(E) , Yo)=HdYe, yo).

Then, from its real-analyticity in (0, cc) x ••• x (0, co) and continuity in [0, co) x •••
x [0, co),

(49) 110(x0, yn ) a--  const. -a- Hn (0, Y s ) f o r  all

Let an arbitrary yn . 0 be fixed. Then there exists some C>! such that y0 :5. Cyn .
Thus,

H0 (x e , y0 ) H 0 (Cx e , Cyo )

=CH o (x e , yn )

= CH0 (0, yo).

From the remark of the definition 5,

H0 (x e , y0 ) a-  H0 (0, ),
0 ).

Since .)70 __O is arbitrary, the lemma 6 is proved.

Assume H(x) is docile and sectional. From  the definition 3, we have a proper
partition lu  J={1 ,...,n }, 0_y j < 4;',, and y > 0 such that

11 ,(y1, J)= H 1(Y "?..1)

We used the docileness of H (x ).  Then, applying the lemma 6, we get the following.

(50) Hi(xi, H,(x1, 0).

Hj (x,, xj ) -a-- Z j (x,, x j ) +H j (0, xj )

w here  Z j (x,, x ) -Hj(0, x j ), consequently Z j (x,, xj )_ -_.0  a n d  Z j (0,
x j ) O.

If H i (x,, 0) or H j (0, xj ) is sectional, we refine the partition I u J. For instance,
if both are sectional, we get the partition I  U 12 =I, J1 u J2 = J  where

H,,(x j i , x12 , 0, 0) a- H j i (x,,, 0, 0, 0)

x12 , 0, 0) a-  2, 2(x, i , x12 , 0, 0)+11 1 2 (0, x12 , 0, 0)

H j 1 (0, 0, x j ,, xj , ) a  j ,(0. 0, xj 1 , 0)

Hj 2 (0, 0, x j ,, xj 2 ) a-- 2 j 2 (0, 0, x j ,, xj 2 ) +H j 2 (0, 0, 0, x3 2 )

and
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2, 2 (x) O. 0)L--_-0

2, 2 (x ) 0 , 2 j 2 (0, 0, 0, xj 2 ).---_-0

Therefore we have got a further expansion of H(x), recalling (50)

x „, 0, 0)

H , i (x ,,, 0, 0, 0)

x „, 0, 0)

x12 , 0 , 0 )+ 1 /12 (0 , x„, 0, 0)

• x j ) +H j ,(0, 0, x j i , x i ,)

a-7 • (x 1 , x j )+ H j i (0, 0, x j ,, 0)

// j 2 (x ) .Z 2(x 1 , x j )+H j 2 (0, 0, xj ,. x.12)

• x j )+ 2 .4 0 , 0, x j i , x 2 ) +H . 2 (0, 0, 0, x„)

We redefine 2 1 2 (x,, 0) as Z„(x), Z 2(x )+ 2 2 (0, x j ) as Z „ (x ) .  Thus we have obtained

• H„(x ,,, 0, 0, 0)

• Z„(x)+ H x „, 0, 0)

Flj 1 (x)_--Z5 1 (x)+H j ,(0, 0, x j ,, 0)

113 2 (x):.---- Z„(x)+1 -1„(0, 0, 0, x„)

where Z„(x)__ 0, Z .„(xR:.0, Z 2( x )  0  and

4 ( 2 (0, x„, x 1 , x,„):=_ 0

Z.„(0, 0, x j ,, 0

ZJ 2 (0, 0, 0, x . 2 ):7-- 0

We continue this procedure unless every Hj k (0,..., 0, x i k , 0 ,..., 0) is non-sectional.
Thus the former part of the next theorem is proved. For the simplicity, we denote
110 (0,..., 0, x,, 0,..., 0), (0,..., 0, x,, 0,..., 0) b y  H„(x„, 0) and (x ,, 0 ) from now on.

Theorem 1 4 .  A ny  docile hom ogeneous f ransf orm ation  h a s  a cannonical
expansion with the partition of suffixes

f 1 U•••UJ,U.1 + 1 U-•• UJ,={1,..., n}

such that

H d x )  H j k (x j ,„ 0) f or all  k =1 ,.. . ,  p

H i k (x )-.Z .,,(x)+11 .1 ,(x j k , 0) f or a l l  k =p +1 , . . . ,v

w here each H j k (x j k , 0 )  (k =1,..., v ) is non-sectional and Z ,„(x ) - 0 , Z j k (x )#0,
Z j k (0,..., 0, x j ,„ xj,,).---0 for all k =p+1,..., V .
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Moreover, if we do not take the order of  {J k l into account, the partition J ,u  •  u
n}  is unique.

P ro o f .  Only the proof of the uniqueness is left. Note that in the first
place.

We assume there is another cannonical partition

/, ••• U ••• U n}

First w e show any Jk (I . 1c-.p) and 441 i t ')  are  identical o r  d is jo in t. We
p ro v e  th is  b y  contradiction. Assum e 4) 0 J k  n lk ,

J k  o r  4) 0 J k  n ik , i k ,. For
th e  definiteness, we assum e the first. S in c e  f i j k (x )= H 4 (x ,,, 0 ) a n d  11,k .(x) ---=
_= i k .(x 0), 1-1,0 4 , (x )  i s  a  function o f  on ly  x j o i c . This m eans 1-1.,,,(x)

d x j k , 0) is sectional, a contradiction.
Next, we show any Jk (1 - Ic._ 11) and /k ,(f/' + 1 are disjoint, and  ally

J k (p + k  y) and /k .(1 k' it') are also disjoint. We prove only the former one
by contradiction, because the  proof of the la tter is th e  sa m e . W e may assume

k ' k ' 0  (1). In fact, if Jk ' k', I i k ,(X i k

,
,  0 ) must be sectional, a contradiction. And

if J k =  Z j k ( X ) Z i k , ( X )  must satisfy Z .,,(x)a-0 and Z,k ,(x )#0  at the same time, a
contradiction. We may assume k ' is the smallest that satisfies Jk

—
lk

,
0  .  (The

above argument shows it' + 1 . )  The follows

fk — (I I C U lk '+ 1 U U It.) =4).

This implies Jk  g -  I  U ••• therefore

, ....  0, x l c .............  X1 „,)

- t i
J k n I c (

x
)

Hj o i c (x,,, 0)

It means 0) which contradicts the non-sectionality
of 111 ,(x l ,„ 0). This contradiction shows each Jk ( l . k _ f t )  is disjoint from 1„, + , u

We have proved J ,  U •-• U J„ and 1 „,,, U •-• U 1 , are disjoint, so are 1,u•— u
and  J„, ,U • • • U J„.  This means J ,  U ••• U ••• U 1„.. We proved also any

'.k . /./) and are identical o r  d is jo in t. Therefore /„.1 is
only 4  permutation of {J 4 1 .

We have only to repeat the same procedure for

0, xj „..., x j v )

and so  on . W e have completed all the proof of the theorem 14.

Remark. From the theorem 14,

0, xj ,, xj„)-F I,,,(x j,, 0)

Especially,

1 1 4 (0 ,. .  „  0 , x jk ,
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Example of cannonical expansion:
Consider the following docile homogeneous transformation.

H 1 (x)=x1 12 x112

H2 (x)= 2x 1 +x 2

H3 (x)=3x1 12 xY2 +x 2 +x 3

ff 4 (x)=(2xix 5 +3x 4 xi) 1/3

H 5 (x) = (xix + 2x +  x ) 1 /3 .

Its cannonical partition of suffixes is

J ,= J p =tl ,  2 1 ,  J 2  = 4 ÷ , ={ 3 } , J3  =J r = {4, 5} .

We give two applications of cannonical expansion.

Theorem 15. Let H(x) be docile and its cannonical partition be

J 1 U•••UJ,.={ 1,...,n} .

Then the next formula holds.

).0 (H)= max {).0 (H.,
k  (x

P ro o f . For simplicity, we use the following notations.

/10 (k)=2. 0 (1/j ,(x j ,,, 0)), k =1,..., V.

4 =  max {) 0 (k)}.
15 k 5 r

Proof  of  A0 (H ) . 4 .  L e t u s  take an arbitrary A < 4 .  Then there exists a
certain k such that

A<A0(k).

We denote by yi k >0 the maximal eigen-vector of Hj k (x ‘,,, 0). Setting y=(y j k , 0),

H i (y )—  J =() o (k)— A)J > 0 for all j e

II i (y)— - i = H j (y)_ . 0 fo r  a ll ji; J,,

From 2) of the theorem 6, we get

Since), is an arbitrary number smaller than 4 , we obtain

Proof  o f  A 0(11)-A 0. L e t u s  take 2 >A0  a rb itrarily . W e shall construct a
positive vector jY>0 such that

H(ji) .15■ O.
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We denote by yj k  the maximal eigen-vector of f i j k (x j ,, 0) for all k. In other words,

(51) 0)=/10(k )y ik  a n d  yj k > O.

First, we put, with m y = 1,

(52) .1(v)=(0, m y yj ,) .

Since ), >;t o (v),

(53) )•-j„( v)= /14(4( v) <O.

Recalling the remark of the theorem 14,

(54) ))— W O= H j k (0,

for all k <v.

We go on to the second step.

(55) I )= (0 ,..., 0 , my _ in ,,y j )

with a sufficiently small m r _ > 0, (53) unchanged:

(56)

In the same way as we obtained (53) and (54),

(57) H ((v -1 ))— — 1)< 0,

(58) li.,,(A v -1 )) -4 .4 (v -1 ) .- --0 for all < E

We define m„_ 2 , m„_ 3 , . . .  in the same w a y . Finally we are led to iii(1)=(11,7,,,,
m y y ) such that

(59) Hjk()7( I ) ) —  j i ,(1)< 0 for all k = v.

This means, from the lemma 6,

i•>/1•0(10•

Since ), is an arbitrary number greater than 7,0 , we get

Ao( H) •

We have proved the theorem 15.

At the end of this paper, we give another application of cannonical expansion.

Theorem 16. Let H(x) be docile and .expanded.cantionically  with

,I 1 U •••U J,U J„. 1,A U •••U J,={ 1 ,..., 17} .

There exists a positive vector associated with ,10 (H ) if and only  i f  .

/10 (11,,,(x j ,, O ))=4(H ) f o r  a l l  k =1,..., p ,

1,o(11 .4(xsto  0 ))< ,1,0(11) f or a l l  k  = +1 ,. . . ,  v.
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Proof of  suff iciency. We use the same procedures as in the proof of the theorem
15 and of the theorem 8. So we write the proof here rather briefly.

Let yj k  > 0 be the maximal eigen-vector of H j k (x j ,, 0) for each k = 1 , . . . ,  .  We
construct a positive vector

=  (m„Yr,• • • •• in„Yr„, nip + iY • • n74.1.,,/

where we determine m,,, ...... m so small that it satisfies

(60) 1 1 i (y) = ).0 ( I / )y fo r  a ll je J ,  U U J „

Hi(y)<A0( 1- )Y; for a l l  j E J , ± 1 U ••• U

Next, we split every J k (p +  I k  v) into J k  and J .  f k is all the suffixes j  e ik
such that

yj oc

when every x j ( j  J i u • • • u J k _ i ) - 4 0 0  a n d  y j k > y j, > 0 a re  f ix e d . A nd JZ =
J ( p + 1 .-5 _ k  y) is not empty because H i k (x )#H (0 ,..., 0, xj k ,..., x j ,) means,

from 2) of the definition 5, there exists at least one such j e  Jk .

Recalling the remark of the theorem 8, there exists y:,>0(p.+1:5_k . _1?) such that

Hik(Y:r„, 0)>

We Construct a positive vector

'7= 0 4 „1'.7,•• • •• M„Y r,• M„+1Y:r ,•• • •• MyY:rs,)

where M. M v _ ,,..., M I, are determined inductively so large that sa tisf ie s

(61) for all ,j e J i u ••• u J

Hg)>),0 -T'i fo r  a ll j  e J p + I U ••• U

After a  necessary scalar multiplication, we may assume .T)<'2. Then, the map

- -,
1

H(x) leaves the interval
4 42,

i] x • x U„, ',7„1

in v a r ia n t. Thus there exists a positive .fixed point of this map which is a positive
eigen-vector associated with 20 (H).

Proof  o f  necessity. L e t y  be  a positive eigen-vector associated with ).0 (H).
Then

(62) Hh(y jk , 0)= H j k (y)=,1 0 (//)y.,, for all k =1,..., p .

(63) jk(yjk, 0)=/1 4 (y)+11. 4 (y j k , 0)— H,,(y)

<A o y j , for all k = p+ 1,

since 1-1 (y,,,,, v) follows from the lemma 6.
From (62),
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0))= /10 (H ) for all k = I p.

From (63), using the theorem 10,

4(11,,(x j ,, 0))<4 (H ) for all k= p+ 1,...,

We have completed all the  proof of the theorem 16.
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