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§1. Introduction

We shall consider nonstationary waves on the free surface of an incompressible
ideal fluid when the surface tension is taken into account. The surface tension
creates the pressure difference across the surface which is proportional to the mean
curvature of the surface (Laplace’s formula, [3] Ch. VII).

Matters relevant to the capillarity (capillary phenomena) are treated in [4].
For mathematical problems on capillary surfaces, problems determining the shape
of the surface under the action of the surface tension, see, for example, [5] and papers
in Pacific J. Math. 88 No. 2 (1980).

We take coordinates y=(y,, y,) so that the fluid at rest occupies the domain

{y| —o<y, <+, —h+b(y,)sy,<0},

where h=const >0 is the mean depth and b is a given function such that —h+
b(y,)<O0 for all y,. The gravitational field is equal to (0, —g), where g=const is
not necessarily positive.

The irrotational motion of the fluid is governed by equations and conditions for
the density p=const >0, the velocity v=(v,, v,), the pressure p and F defining the
free surface, i.e. the domain

Qt)={yl —o<y;<+ow, —h+b(y,)Sy,<F(t, y,)}

which the fluid occupies at time t. p, v and p satisfy the equation of motion, con-
tinuity and irrotationality, i.e. for ¢ and y such that y e Q(¢),

(1.1) v+ (@-Vo=-p~'Vp+(0, —9g),
ov ov ov ov
b 1 2 2 1
(1.2 0y, + oy, 0 oy, 0y, 0.
ov 0 0

where b= V =grad, v-V=v,Fy——+vZFy—. The fluid cannot penetrate the
1 2
bottom. This means that for y such that y,=—h+b(y,),

(1.3) »-N=0
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where N=(N,, N,) is the outer normal to the bottom. The free surface always
consists of the same particles of fluid, in other words, if y(¢) is a solution of

L y(ty=o(t. 1), ya(0)~F(O0, y,(0)=0
then y,(t)— F(t, y,(1))=0. Thus for r and y such that y,=F(t, y,),
(1.4) (—5‘77+u~v>(y2—F)=0.

There is a different way to obtain (1.3) and (1.4), that is, we can derive (1.3) and (1.4)
from the law of mass conservation (or the equation of continuity) under the as-
sumption that the free surface and the bottom are expressed by smooth functions of
t and y,. The pressure difference across the surface is given by

o= e (O (EE))™)

where p is the pressure of the fluid just inside the surface, p, is the constant external
pressure and a=const >0 is the surface tension coefficient. The condition (1.5)
follows from the balance of forces acting on a part of the surface: :

aT(yl+z)—aT(y,>+§:‘”(p—po)N(yl)ds=0, 20,
where T(y,)=( +(F)»)~v(1, F),
NG =(1+(F)2) 12— F', 1),

F=20F  ds=(1+(F)?)'2dy,.
0y,

Letting z—0 we obtain
“7(‘3.‘(1 +(F)2)™ 12— (p—po)F' =0,

15— (F (1 +(F'P) 1)+ p= po =0.

Since the first equation follows from the second equation, we obtain the required
condition (1.5). Note that the curvature of the surface is equal to

0
——(F'(1 F' 2y-1/2 .
5y (FU+(F) 1)
Initial conditions at t=0 are given in the form

(1.6) A0)=Q, ie. F(O, y))=Fo(y;), 0, y)=vo(y)

where v, satisfies (1.2) for y € Q and (1.3). ‘
Exact solutions for progressive waves, stationary nontrivial solutions of (1.1)-
(1.5), were found in [6]-[12] under various additional conditions.
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There is the trivial solution F=0, v=0, p=p,—pgy, of (1.1)-(1.5). For the
investigation of nonstationary solutions close to the trivial solution, it is convenient
to treat the problem by introducing X(t, x)=(X,(t, x), X,(t, x)) such that

X0, )= F(O, x+X,(0, x)=0, 14X (1, x)>0,
(17) Lo ((x, 0+ X(1, x) =0, (x, 0)+ X(1, x)).

In view of (1.4) we see that (x, 0)+ X (1, x), — 00 <x < + o0, represents the free surface
at time . The trivial solution corresponds to X =0 (precisely, X =(const, 0), but
in this case we take x+const in place of x). It follows from (1.2) and (1.3) that
X, =KX, where K=K(X)=K(X, b, I)is the operator, see [2]. The differentiation
of (1.7) with respect to t and (1.1) give X,,= —p~'Vp+(0, —g), which leads to

(1.8) T+ X0 X)) (X +0, gN=(14+X,, X5)-(—p~'Vp)
= —p= 1 plt, (x, 0+ X1, x)).

Since (1+ X,,, X,,) and (1, F’), where y, =x+ X (1, x), are vectors tangent to the
free surface, it holds that

F(1+(F)) 112 =X, ((1+ X 1,)* + X3,)71/%
Noting that

we can write (1.5) in the form
(1.9)  p(t, (x, 0)+ X)— po= —al1 + X, )7 (X, ((1 + X,,)* + X3,)~1/2),
=—o((1+X )2+ X3) "3 (= X0 X 11 + (1 4+ X 1) X 500) s
which enables us to eliminate p from (1.8). Introducing
u=p-la,
0=0(X)=((1+X,,)*+ X3)"/%
(1.10) ¢ R=R(X,, X,,)

= —3Q(X\‘)_5((1 +X1x)X1xx+X2.\'X2xx)(_XZxXIxx+(l +X1x)X2xx)’

S=5(Xe Xox)=0(X ) (= X2 X e + (1 + X 1) X 5000) 5

we see that the problem (1.1)-(1.6) is reduced to the problem

(L1 (I + X )X 1+ X2 g+ X)) =puR(X s X)) +0uS(Xyy Xyni), OSEET,
(1.12) X, =KX, 0=Zt=T,

(1.13) X(0, x)=XO(x), X,/(0, x)=X{V(x).
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Our purpose is to show that if b, T and initial data are small then the problem
(1.11)~(1.13) is uniquely solvable. The problem (1.11)-(1.13) with p=0 was treated
in [1] for h=o00 and in [2] for 0<h<oo. The method used in this paper is the gen-
eralization of that in [1] and [2]. ,

For the investigation of the character of equations (1.11) and (1.12) we consider
the equations linearized at X =0 (we assume that b=0):

Xin+9Xo=1Xs0zx», Xy=—itanh(hD)X,,,
where D= —id,, (note that K(0, 0, 1)= —itanh (hD)). These equations give
X s+ (gD + uD3) tanh (hD)X ,,=0.
(Remember the dispersion relation
0? =(gk+ p~'ak3) tanh (hk),

cf. [3] Ch. VII. For the agreement of this relation and experiment, see [13].)
For the initial value problem

(1.14) Uy +(gD+puD¥ tanh (hD)u=f, 0Zt=T,
(1.15) u=uy, U=u,;, =0,
it is easily shown by means of Fourier transformation that (i) if
uge Hs*t312, y, e Hs, feC%[0, T], H)
then there exists the unique solution
ue Ci([0, T], Hs*3/2-3412y j=0, 1, 2;

(ii) moreover, if g>0 then the above solution u=u* converges to the solution of
(1.14), (1.15) with y=0 when u tends to zero. For the problem (1.11)-(1.13),
theorems corresponding to (i) will be given in §§4-6, (ii)-in §7.

In this paper we use the same notations in [2]. Here we repeat several of them.
Hs=H3%R'), —o0<s< + o0, is a Hilbert space with the inner product

(u, v);=2n)~! S(1+I€I)2‘ﬁ(é)9(é)dé, ﬁ(€)=g u(x)e~*dx.
For u=(uy,..., u,), u € HS means that u; e Hs for all j.
(u7 v)s=(u19 vl)s+ '“+(um* vm)s’ “u”s=(u~ u).!/21 (ll, U)=(M, v)O’ ”u“ = “uHO'

A~
A pseudo-differential operator P(D), D= —i%, is given by P(D)u(&)=P(&)(E).

Note that ||Asu||=|lull, A=1+|D|. £L(H", H%) is a Banach space consisting of a
linear continuous operator A from H" to H*, whose norm is given by

I4ll,s=sup |Aul;, weH", |ul,=1.

If B is a Banach space and u is a B-valued C/-function on the closed interval [0, T],
we say that u belongs to C/([0, T], B). By A* we denote the (formal) adjoint
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operator in H° of an operator A: (Au, v)=(u, A*v). If A and B are operators then
we put [4, B]=AB— BA.

In proofs we do not distinguish inessential constants and we use the same
symbol C. The statement C=C(a,...)>0 means that C is a positive constant
depending on a.... The reason for expressing u explicitly in estimates lies in the need
of uniform estimates (with respect to y), which will be necessary in §7.

§2. Quasilinearization
Putting
(2.1) Y=X,. Z=X,, W=(X,Y,2), W=(X,Y,).

we shall reduce equations (1.11) and (l.12) to quasilinear equations for W. The
method is similar to that used in [2]. The equation for X is

(2.2) Xu=Y.
Differentiations of (1.12) give
(2.3) X =K(X)0{ X +Fo(X..... 0] X),
(2.4) 010k X = — i sgn DOJOEX y,+ F jro.
Fio={isgn D+K(X)}0{0kX ,,+Fu(X,..., 3/0%X, 8] X ),
where j=0. k=1 (see [2] §5). From (2.3) with j=2 we obtain
(2.5) Yy =f(W, Wi, b, h)=K(X)Y,,+ F,o(X, X,, Y).

Adding (2.4) with j=0, k=3 multiplied by —pu to (2.4) with j=0, k=1 and applying
(14 D%~ ! to this sum we have

(2.6) Zy=—isgnDZ,,+(14+uD?)~(Fy,0—pFo30),
where
27)  Fowo=FoolX., Z,..., %7 'Z, X))
={isgn D+ K(X)} (iD)*X ,+ Fou(X, Z,..., 0k~ 'Z, X)), k=1, 3.
Since X, =Z, we obtain from (1.11)
(2.8) (I+Z)Y\+Z,(g+Y))=puR(Z, Z)+pS(Z, Z.,)
+go(1+uD?)~lisgn D(Z,—iDX ),

(the constant g, will be determined later). Differentiating (2.8) with respect to ¢
and eliminating Z,, by (2.6) we have

(2.9 (go(1+uD?)~Yisgn D+ P,)Z,,+(—g —puD*+ P,){—isgn DZ,,
+(1+uD?) Y (For0—HuFo30)} —(14+Z\)Y,,—Z,Y,,
+go(14+uD?)~'Dsgn DX,,=0,
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where

(2100 P,=P(Y, Z,Z,, Z,)

OR R .
=~ Yytugy (2 Z)+ugy-(Z 2.+ ngg (Z, Z)iD

0S__(z, Z.)@D)*+(j—uD%:  j=1,2.

+u 3 ijx

Noting that go(l +a)~'+a=2g{/>—1 for go=1 and a>0, we put
@2.11) g0=»“1—(z—g)2 if g<0, go=0 if g>O0.

Then for any >0 and any real £ it holds that
(2.12) g+go(l+pué?)~ 1+ pué2=const >0,

(const depends only on g). The operator acting on Z,, in (2.9) can be written in the
form

(1+P3)(g+go(l +uD?)~ " +uD?)isgn D,
where

(2.13) Py=—(Pisgn D+ P,)(g+go(1+uD?)~'+uD?)~".
Replacing Y,, in (2.9) by f, we obtain
214) Z, =f:(W, W,, u, b, g, I)
=isgn D(g+go(1+uD?)~'+uD>)~\(1+P3)"{—(1+Z)Y,,—Z,f,
+go(1+uD»)~ DX |, +(—g—uD*+ P,)(1 +uD?)~(Foo—pFo30)}-
Replacing Z,, in (2.6) by f; we obtain
(2.15) Zy=fs(W, Wi, 1, b, g, h)
= —isgn Dfy+(1+uD?)~Y(Foy9—1Fo30)-

Remark 2.16. Assume that functions X, Y, Z satisfy (2.2), (2.5), (2.14) and
(2.15). Then in virtue of (2.2) and (2.5),

(2.17) (X, —K(X)X,,),=0.

From (2.14) and (2.15) it follows that (2.6) holds. The replacement of f, in (2.14)
by Y,, shows that (2.9) holds. Therefore it holds that

(2.18) {1+ Z )Y +Zy(g+ Y2)—uR(Z, 2)—uS(Z, Z,,)
—go(1+uD?)~tisgn D(Z, —iDX,)}=0.

Moreover if X,,—K(X)X,,=0 then by the same procedure that we used to obtain
(2.6) from (1.12), we have (2.6) where Z is replaced by X,. This equation and (2.6)
give : ' : ’
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(2.19) (Z,— X, ), =—isgnD(Z,—X,,),
+(14+pD?)~YFo (X, Z, X ;)= Foi(X, X4, X1}
—u(1+uD?)" YFox(X, Z, Zys Z, X1) = Foas(X, X X oo Xrwr X10)}-

These comments (and also those in Remarks 2.37 and 2.44) will become necessary
to show that the unique solvability of the nonlinear system follows from that of the
quasilinear system.

From (2.3) with j=3 we have
(2.20) You=KY +F30(X, X, Y, Y)).

After the replacement of X, in (1.11) by Y, differentiating (1.11) two times with
respect to t and eliminating Y,,, by means of (2.20) we have

2.21) (14X, + X3 K)Y, 0 =p(R+S)y — Y1 X 1 e — (9 + Y2) X5y —2Y,- X, — X, F 5.
Using (2.10) we write the first three terms in the right hand side of (2.21) in the form
(222)  m{R(X; X )+ S(X oo Xee) b= YViX g = (9 + Y2) X 20
=P (Y, Xo, Xeor X X1t (=g — D>+ Po(Y, X, X o X)) X 230
Ful (X Xy Xwr Xatr Xowor ) -

From (2.4) with j=k=1 and j=1, k=3 we obtain

(2.23) Yox=—isgn DY, +(1+puD?)~(F 10— pF30),
(2.24) Frio=FwolX, X Z, Zpr..o, 1Z, 041Z,, Y,)
= {i sgn D+ K(X)} (iD)Y,

+F (X, X, Z, Z,...., 0512, 31Z,. Y,), k=1, 3.

In (2.21) replacing 0/X, 0iX,, X, by 0i-1Z,0i7'Z,, Y(j=1, 2, 3) and eliminating Y,
by means of (2.23) we have

(2.25) Yiu=(14+Z,+Z,K)"{(P,—(—g—uD?*+P,)isgn D)iDY, +1,},
where
(226)  L,=1X. X, Y. Y, 2, 2,2, 2, Z,,, Z,,,)
=ul\(Z, 2, Z, Ziyy Z sy Zixx)
+(—g—uD*+PyY, Z, Z,, Z,.,)) (1 +uD?)~'(F 1o — 1F ; 30)
—2Y,-Z,—Z,F5(X, X, Y, Y).
Using (see [2] (5.12))
227 (A+Z,+Z,K)"'=Q(Z)"¥(1+Z,+Z,isgn D)+ P,,
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(2.28) P,=PuX, Z)
=—Q(Z)"2Z,{isgn D+ K(X)}
+Q(Z)"2Z,{[K, Z,]+[K, Z,JK+Z,(1+ K} (1+Z,+Z,K)" !,
we have
(2.29) Y, , =0 ¥1+2Z,+2Z,isgn D)Y(P,—(—g—uD?*+ P,)isgn D)iDY,
+P,(P,—(—g—uD*+P,)isgn D)iDY, +(V +Z,+Z,K)"'1,.
Noting that
(2.30) (1+Z,+Z,isgn D)(P,—(—g—uD?*+P,)isgn D)
=(1+Z)P,+Z(—g—uD?+P)+{Z,P,—(1 +Z,)(—g —uD?
+P,)}isgn D+iZ,([sgn D, P,]—[sgn D, P,]isgn D)
and using definitions of R, S and P; (cf. (1.10) and (2.10)) we have
(2.31) Q21 +Z,+Z,isgn D)(P,—(—g—uD?*+ P,)isgn D)iD
=—M-L-Q H{(1+Z)Y,+Z,(g+Y,)—u(R+S)}iD
+iZ,Q~*[sgn D, P,]—[sgn D, P,]isgn D)iD,
where we used notations
0=02)={(1+Z)*+ 23}/,
Ag=Ao(2)=0(2)7 3,
A =A(Z, Z,)=-3Q2) (= Z,Z\ +(1+2))Z,,).
Ay=A)Z, 2, Z.,)=QZ)"*(4R +35)
=—12Q2) {1+ Z )2\ 42,2, }{—Z,Z, +(1 + Z)Z,,}
+3Q2)" (=222, +(1+2))Z,.) .
Ay=AyZ2.2,. Z,,)

(2.32)

=30(2) (=22, +U+Z )2, ) —((1+Z )2+ 2Z,2,)%)
+Q(Z) N+ Z )2+ 22255}
Ay=AY, 2)=Q2D)2{(1+Z) (g + Y2) -2, Y},
M = M(W)=M(W, u)=u(Ao|D|* —ido,D|D|+ A,D?),

Thus we have

(2.33) Yie bt (M+D)Y, + Q- H{(I+Z )Y, +Z,(9 + 1;) —u(R+ S)}iDY; =1y,
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(2.34) fi=fi(W, Wi, u, b, g, h)
=iZ,Q(Z)~*[sgn D, P,]—[sgn D, P,]isgn D)iDY,
+Py(P,—(—g—puD?+P,)isgn D)iDY, +(1+Z, +Z,K)"'I,
where Y,,, 01Z, in I, are replaced by f,, di(f3, f4)-
Remark 2.35. The equation (2.33) can be written in the form
u,+paDaDa|D\u~3uaD{Q(Z)"3(—Z,Z,.+(1+2Z,)Z,,)}aDu

+ 244 Q(2) (= 2,2, +(1 +Z,)Z,,)}?alDlu

+Q(2)~"{(1+Z,)(g+Y2)—Z,Y,}alDlu

+iQZ) (1 +Z)Y,+Z,(9+ Y2)—pR(Z, Z,)—pS(Z, Z,,)}aDu=f,
where u=Y, and a=Q~"'. In this form the meaning of coefficients is clear:

—aQ(2)"H—-Z,Z,,+(1+2,)Z,,)

is the pressure difference, see (1.9); the curvature of the curve (x, 0)+ X(¢, x), —
<x< + o0, is equal to

1Q(2)~ (=222, +(1+2)Z5,)]

and the line element of this curve is ds=Q(Z)dx, therefore
aé’x=Q“5x=—5as—;
the normal derivative of the pressure is proportional to A,, that is,
QAZ)y"H(1+Z)(g+Yy)—2,Y,]

=Q(Z) " (—=2Zy, 1+Z))-(Y+(0, g))=N-(—p~'Vp).

The above form is inadequete to our purpose, that is, Hs-estimates of solutions,
because operators of order 2 and 3 are essential to this end.

Putting the third term of (2.33) equal to zero we obtain the required equations
for W,

(2.36) X,=Y, Y +M+LY,=f, Yy=f, Z,=(f3 fa)-
f;depends on W, Wi, u, b, g and h:

f=Uf1si fo) FIW, WO=f(W, Wi, )=f(W, Wi, . b),
(see (2.5), (2.14), (2.15) and (2.34)).

Remark 2.37. Let W=(X, Y, Z) satisfy (2.36) and (2.8). Then (2.33) holds if
f1 is replaced by

fi+Q7%Y, go(1 +uD) tisgn D(Z; — X y,).
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Reversing the procedure from (2.25) to (2.33) we have
(2.38) (1+Z)Y,+Z)KY,,+F;30)+2Y,-Z,
=P,Y, 4+ (—g—uD?+P){—isgn DY, + (1 +uD?)"(Fy 10— 1F30)}
+ul,+(1+Z,+Z,K)Q72Y,,go(1 +uD?)tisgn D(Z, — X {,).

According to Remark 2.16 we see, by differentiations of (2.17) and (2.6) with respect
to t, that (2.20) and

Zyu=—isgnDZ,,+(1+uD?)~(F o—1F30)
hold, where we used definitions of F,. In view of (2.22) and (2.10) we have
ul,=1{R(Z, Z)+S(Z, Z,)}y— (Y1 +P)Z\y—(g+Y,—g—uD*+ P,)Z;,.
Therefore (2.38) is transformed into
(1+Z,+Z,K)Q72Y, go(l +uD?>~'isgn (Z, — X ,)
={(1+Z)Y,+Zx(g+ ;) —puR(Z. Z,) = uS(Z, Z,)ju+ P (21— Y1)
+(~g—uD?+P)(Z,,+isgn DY, ,—Z,,—isgn DZ,,)
=go(l+uD*)~tisgn D(Z; — X Ju+ P(Z1 = X1
—(—g—uD>+P,)isgn D(Z; — X ;)
=(g+go(1 +uD?)~'+uD?— P isgn D—P,)isgn D(Z, — X )y
In virtue of (2.13) we obtain
(2.39) isgn (Z, — X )
=(g+go(1+uD?) "1 +uD?) (14 P3)" ' x
(14+Z,+Z,K)Q~2Y,,go(l +uD?)Visgn (Z,— X ,,).

It remains to determine values of W, W, at t=0 from X©, X{! by means of
(1.11) and (1.12). Assume that X satisfies (1.11)-(1.13). Initial values of Z and
X,, are given by

(2.40) Z=X, X,=K(X)X,. 1=0.
Eliminating X,,, from (1.11) by means of (2.3) with j=1 we have
(2.41) Y, ={1+Z,+Z,K(X)}"{—9Z,—Z,F o(X, X))
+uR(Z, Z)+uS(Z, Z,,)}, t=0.
In virtue of (2.3) with j=1,
(2.42) Y,=K(X)Y,+F,o(X, X;), t=0.

Differentiating (1.11) with respect to t we obtain
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I+ X )Y+ X5, Yy — P X — (=g —uD*+ P3) X 5,, =0,
which and (2.3) with j=2 lead to
(243) Y,={14+Z,+Z,K(X)} " {—Z,F,o(X, X,, Y)+P(Y, 2, Z,, Z,,)iDX |,
+(—g—uD?*+P,Y, 2, Z,, Z,,)iDX,,}, t=0.
Thus (2.40)-(2.43) are the required transformation of X, X,,, t=0, into W, W;, t=0.

Remark 2.44. (i) For initial values W, W}, t=0, determined in the above way,
following relations hold: in virtue of (2.41) and (2.42),

(2.45) (1+Z)Y, +Zy(g+Y,)=pR(Z, Z,)+uS(Z, Z,,), t=0;
(2.46) (1+Z)Y,,+Z,{K(X)Y,,+ F,o(X, X, Y)}
—P,iDX;,—(—g—uD*+ P,)iDX,,=0, t=0,

in virtue of (2.43). (ii) Let W be a solution of (2.36) with initial conditions given
by (2.40)~(2.43) and X,,— KX ,,=0 hold. Then (2.46) minus (2.18) with =0 is

P(Z,,—iDX,)+(—g—uD?*+P,)(Z,,—iDX,,)
+go(1+uD?)~tisgn D(Z,,—iDX)=0, t=0.
From (2.19) with =0 it follows that
(Zy— Xy )= —isgn D(Z; — X)) t=0.
Therefore we have
(2.47) 0=(g+go(l +uD?)~1+uD?*—Pisgn D—P,)isgn D(Z, — X ,,),

=(1+P;)(g+9go(l +uD?)~'"+uD?»isgn D(Z, — X,,),, 1=0.

§3. Estimates of functions and operators

In this section following facts (cf. [2] §2) will be used without comment.
3.1 lu(x)| £{2s— D}~ Y2ull, ueHs, s>1/2.
If u, ve H*, s>1/2, then uve H* and
(3.2) luvll, = Cllulllivl,  C=C(s)>0.
Ifu=(u,....uy), we H*, s2 1, and u(x) is real then
(3.3) IEGOWl = ClLE ] (1 + [ulls)™ [ wlls

where C=C(s, N)>0, m is the integer, sSm<s+ 1, F(z) is a C"-function on an open
set containing

Gu)={z=(zy,.... zy) | |zj| Ssup [u(x)|, 1 = j= N}
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and | Fll,, is the supremum of [32F(2)l, |x|=m, z€G(u). The difference F(u)—
F(v) can be written in the form

y ' oF .
(3.4 F) = @)= 3 ;=) || S5 (qu-+(1 =)o,

N
3.5 F(u)—F(v)=zl‘, {F(Dyyeens Djmys Ujs Ujgqseens UN)
—F(Uyyeuy Dj gy Djy Ujgpseees UN)Y -
From (3.3) and (3.4) it follows that
(3.6) 1F(u) = F(0) | ;S CIF g+ (L llulls+ ol u = vl

where [|[Fl/(n+1,=sup |DZF(z)|, |ae|E<m+1, zeG(u)u G(v). Using

0 _ ¥ OF ou;
(3.7 = Fo= '; _az-j-(u)_a_'L
we see that
(3.8) F(u)—F(0)e CX[0, T], H*)

if k=0 is an integer, s=1, u e CX[0, T], H*) and F is a C"***!-function in a certain
open set.

From now on we assume that all functions are real-valued.

By (2.32) and (1.10) we see that Q, Ao...., A;, R and S are singular at Z, =
—1, Z,=0. This singularity is avoided if |Z,(x)|Sn~'/?||Z,],<]1. Therefore we
have the following lemma.

Lemma 3.9. Let O0<co<n!/2, 521 and ¢>0. If
(3.10) YeHs, ZeH*?, |Z,l;Sco. Y+ 1Zls42=c
then (i) Ay =const>0 (const depends only on cg), (ii)
Ao— 1 € H*2, A, e H*', Ay, Ay, Ay—geHs
and these are Lipschitz continuous in 'Y, Z, i.e.
IAZ) = ASZO 42 +I1ANZ, Z,) = AUZ®, 25+
+IANZ, Zyy Zo) = ALZ0, 28, LRI SCIZ =20 542,
[ A4(Y, Z)— Ay(YO, Z0)|,<CI(Y—Y°, Z—-Z9)]
where YO, Z° satisfy (3.10), C=C(co. ¢, s, g)>0 and j=2, 3.
Lemma 3.11. Let O<co<n!/2 s21, u, ¢>0. If
(3.12) YeHs, ZeH*% |Z] Sco, [YIs+I1Zls=c

then for operators P,, P, and P; (see (2.10) and (2.13)) following estimates hold
forues, j=1,2and r=0, s: first,
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IPul,<CNI(1+pD¥ul,, [IPsul,SCNlul,
[(sgn D, P;lul;<CNI(1+uD?ul,,
where N=|Y|,+ (1 +uD?)Z|,+ (1 +uD*Z|2 and C=C(cy, ¢, s, g)>0; secondly,
I(P;—Pull, <CNoll(1 +uD>)ull,, [[(P3—Pul,<CNolul,
[[sgn D, P;—PQJul S CNol(1+uD?)ull,,

where No=||Y— Y [+ (1+ [(1 +uDH)Z| ,+ (L +uD?Z°| ) |(1 + uD)NZ ~ Z°)|,, PR=
P(Y°, Z° Z9, Z%,), k=1, 2, 3, Y°, Z% satisfy (3.12) and C=C(cy. ¢, s, g)>0.

Proof. In view of (1.10), (3.2) and (3.3) we have

[PE£9) | scazaz+iza.

72

where C=C(cy. ¢, $)>0. Using (3.1) if r=0and (3.2) if r=s we have
(3.14) IPull, CUY s+ HIZ N+ HIZ el )ull,
+Cu' || Z, || ' 2| Dull, + CI Z| | uD?ul,
SCUY s+ 11 +uDHZ] s+ [I(1+uDDHZIDII + pD?)ul,.
In the second inequality we used
(3.15) #IDollZ < Jlvl|2+ || D0 3= [1(1 + uD?)wl| < 2([v)| 2+ |uD?v] 2),

(3.13)

___(j_l)'|s§C||Z||x1

]r\

sazd, |2

(q is real). These estimates are obtained if we multiply
asl+a?s(1+a)*<2(1+a?), a=pé?,
by (2m) = (1 +]&])4D(&)|2 and integrate with respect to €. Since
I(1+uD?) (g +go(1 +uD?) " +uD?)~'u|, < Cllul,

where C>0 depends only on ¢, (2.13) and (3.14) give the required estimate for
Piu. Using estimates

I(sgn D, aJul;=Clallul,, C=C(s)>0,
(see [2] Lemma 2.14) and (3.13) we obtain
I[sgn D, Pjlull, S CNI|(1 +uD?)ul|;.
Taking (3.3) and (3.4) into account we see that

‘ 3(R+S) _9(R+S)°

+CIZ = Z2U N Zills+ 1 Z2A) + Cl Z = Z %,
(3.16)

SCIZ-Z°(1Z:lls+ 1 220l + Cll Z, — Z2l

“azjx a x s

S _ 9S°
’ aijx 6ijx

=Clz-2z°,
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d(R+S)° _ OR
0Z; 0Z,

I(P;—P)ull, £C| Y= YO l(1 +pD?)ull,+ C(1 + (1 +uD*Z],
+ (1 +uDHZO| )2 I(1 + uD)(Z = ZO)|| (1 + uD>)u .

where

(z°, ZQ)-}-——aS (2°, Z29,) and so on. Thus
0Z;
J

Remaining estimates are easily obtained, so the proof is finished.

Lemma 3.17. There exists ¢,>0 depending only on g such that if s>3/2,
u>0,¢>0 and

(3.18) YeHs, ZeH*2 Yl +I(1+uD)Z| Zco. Y +IZ],=c

then the inverse operator (1+ P3)~" exists and this operator is bounded in H® and
Lipschitz continuous in Y, Z:

I(L+P3)~ s SCUA+[ Y+ (1 +uD>Z] )%,
I(1+P3)~ ' =(1+ P~ s,
SCUL+ Y[+ 1 YOl + (1 + 1D Z| s+ I(1 + uDHZO| )2 x
(Y= YOl + (L +puD?)(Z—-Z%)],),
where C=C(co, ¢, 5, g)>0, P3=P,(Y°, Z°, Z9. Z2,) and Y°, Z° satisfy (3.18).

Proof. Putting r=0, s=1 in Lemma 3.11 we see that there exists 0<c¢,<n!/2
such that

[P3llo,0<CN=C(co+cd)<1.

Therefore (14 P3)~! exists and [[(1+P3) " 'ulClul, C=C(co, 9)>0. Put v=
(14+P3)"'uand A=1+|D|. Then

450 =[I(1+ P3)7'[L 4+ P3, AJo+(1+ P3)~ ' A%u||
SC||[P3, A5JA 5o, 0l A5 0l + Cllull,.
Since {e(1+ &)} 1< {e(1+]E))}*+1 it holds that
[As~tv] Sef Asvll +&' vl , €>0.
Putting (2¢)~'=C||[P3, A5]A'~3|l¢,0+ 1 we obtain
(3.19) %llvllsé(%)‘ls"‘llvll +Cllulls.
Noting that
[P, A]A 5= —([P,, A5]i sgn D+[P,, ADA' (g +go(1 +uD?)~ ' +puD?)"!
and using estimates
ICa, As]A*~sul| < Cllalllul, C=C(s)>0,
(see [2] Lemma 2.14) and (3.13) we obtain
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ILP3, A51A 50,0 SCUI Y [+ (1 +pDA)Z| s+ (1 +puDHZ]I?),
which and (3.19) give the required estimate for (1+P;)~!. Using
I(1+P3)~ ' =(1+ P~ 5= lI(1 +P3)"(P3=P3) (1+ P9~
SN+ P3) 7 s sl P§ = Pafl, I (14 P~ Ml

and Lemma 3.11, we have the second inequality required in this lemma, so the
proof is complete.

Lemma 3.20. Let O<co<n'/?2, s21, u>0 and ¢>0. If W=(0, Y, Z) and
WOo=(0, YO, Z° satisfy (3.12) then for the operator M+ L (see (2.32)) following
estimates hold for any ue & first,

(3.21) (M + Lyull, < C(1 + (1 + uD*)Z|| )*[I(1 + uD*)Dul .
(3.22) (M = MO+ L— LOul,
SC{Y=YOl+ L+ (1 +uDHZ]| + (1 + D) Z° )* x
I(1 + D) (Z = Z)||} (1 + uD?)Du s
where C=C(cy, ¢, s, g)>0, M°=M(W?) and L°=L(W?); secondly,
(3.23) I{M(W. &) — M(W., &)+ L(W, &)— L(W, d)}ul,
SC(6—e)B~1(1+(1+BDHZ|)?II(1 + BD*)Dul,
where >0, 0<e<d and C=C(cyp. ¢, s, g)>0.

Proof. In view of (2.32) it is easily seen that for Ag— 1, Ay, A, A, A3, Ay—g
estimates analogous to (3.13) and (3.16) hold, so in the same way as in the proof of
Lemma 3.11 we have (3.21) and (3.22). It is clear that

M(W, &)—M(W, 6)+ L(W, &)— L(W, 9)
=(e— )~ {M(W. B)+ L(W, B)} —(e—56)B~'A4IDI,
which and (3.21) give (3.23). Thus the proof is complete.
For functions W=(X, Y, Z), W;=(X,, Y,,) we put
(324) W, Willou=UX1Z+ 1 XD+ U X ill 232 + 980 X0 1212
Y 2+l Y a2 + 1 Y1122+ Y2 [+ (1 +uDHZ]

Since fy(W, W;) does not depend explicitly on ¢ (see §2), there is no need to regard
W, as the t-derivative of W'=(X, Y;). In following two lemmas, “t’’ in W/ does
not mean the t-derivative.

Lemma 3.25. There exists co=co(g, h)>0 such that if u>0, s=4, ¢>0 and
b, W, W, satisfy conditions
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beHs+3, ”b"3§c0» "b“s+3§c*
W, Wi, A32Y,. A2Z, A32X,, € H",
(3.26)
IXI3+ 1Yl +1(1+uDHZ) +1Z]3Sco. (W, WDl =c,
then f;, (1+uD?)f,, ;€ H* j=1,2 and
3.27) I fills+ 14+ D) fo40 I, SC L+ ) (L+ | W, Wil )47 W, Wi,

where C,=C,(co, ¢ 8, g, W>0 and fi=f(W, Wi, u, b), 1<k=<4; moreover, for
WO, WY satisfying (3.26) it holds that

(3.28)  Ifi=fH N +uDD(frsj=f 3 )5
SCU+ I+ [IW, Wil + WO, WL )OSt 10 W= WO, Wi — WY,
where j=1,2. C=Cl(co. ¢, 5, g, >0 and fQ=f(W°, W u, b), I k=4,

Proof. 1In this proof we use follwing notations: first, spaces of operators
L(r, s; 1), Lo(r, s; t) and operators K, ;,. see [2] §4; secondly, functions F given
by [2] (5.2); by F9,, K% ... we denote Fy, K, ;... in which W, W, are sub-
stituted by WO, W?: by ¢, we denote all constants depending only on g and h
(the minimum of them is the constant ¢, stated in this lemma): by C we denote all
constants depending on ¢, ¢, s, g and h except the case specially stated: lastly,

J(p, g, N)=(L+p 21+ | W, Wil )AL+ W, Wills, + WO, W2'Il,,),
E=|W, Wilsu Eo=IW-Wo W, =W,
According to [2] Lemmas 4.24 and 4.27 it holds that
Ky jw€LoQ+r, m+r;3), 0=sr<l, m23,

(m is an integer). By considerations in [2] §4 we see that K, ;, is rational in
by, Ao (1=/<8) and polynomial in @.by,.... 0%, A,,, (15/58, 05p=,
0<q=<k, p+q9>0). By [2] Lemmas 4.14-4.20 we have the following estimates for
the operator-norm of K, ;,: there exists co=co(h)>0 such that if j+k>0,

(3.29) X00 . Xik b,..., 0kbe H"", || X5+ |bl;=co.
then it holds that

(3‘30) ”Kl,j,k(xoo""' Xjk» b?"" (‘Qib: XOO* b)”2+r,m+r

éC Z ﬁ “(XI’HH’ bPJ‘I()"Ni

+
n,N,p,q i=1 mr

where C=C(m, r, j, k, cg, 1)>0, b*#=04b if =0, b*# =0 if x>0 and the summation
is taken over

1Sn<j+k, Nzl 0spsj, 0s¢;sk, pi+qi2l,

N1p1+"'+ann=j' qu1+"'+qun=k;
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moreover, for Y0,..., Y/ satisfying (3.29) it holds that
(3.31) 1Ky X%, .., Xi¥% b...., 0kb: X0, b)
— K, (YO0, Yk by 35D YOO b)l5 4 pmer

n
SCIXO =Yy, 32 TTI(XPE Y2 pPn| e,
n,N,p,q i=1

+C TS X YR (X Y B M

n,N,p,q I1=1
x [T (X7, YPide, prids)| N,
ixl
where C=C(m, r, j, k, ¢, h)>0.
Estimates for f,. From (2.5) and the definition of F; we see that

f,=K(X.b; X, b)Y, +2K, ; o(X, X, b; X, b)Y, + K, , o(X, X,, Y, b: X, b)X,,.
Therefore we have

1A ClI(Yym Yy XIS CE,
(3.32) If2=f3ls=1(K=K)Y, + KUY, — Y+,
N SCIX = XO, Y= Y°, X, — X2, Y~ Y3)|,Z CE,.
Estimates for f3. and f,. From (2.7) it follows that
Foro={isgn D—itanh (hD)+ K, o o(X. b; X. b)}v(iD)"X,‘,

+ i (I(;)Kn,o,q(X, Z,..,07VZ, b,....0%b; X, b)(iD)"9X,,. k=1, 3.
q=1

It is clear that
(3.33) IForolls=ClI Xl =CE,
IForo—F81olsSCI(X —X°, Z—-2° X,,— X})Ils= CE,.
Using (3.30) and (3.31) we see that
1K 105X 1y S CUNZ o b s+ 1Zo bIILIZ. B+ IZ. bIIDIX ]
S CUHNZ 1 Z DX S CU +1Z I X 3l
(in the last inequality we used (3.15) with u=1, ¢=3s),
1K 0,35 10— K9 0,3Xells=11(K1,0,3—K.0,3)X 1+ K 0,3(X 1, — X9
SCOIX = XN (NZexs Z20 bex) s+ (Zy 22, bIIIEZ, Z° b))
+I(Z, Z°% bIIDIX 1ol
 ACUZ = Z2 N+ 2= 22012, Z2° b)ls+ WZy, 295 b2 - 20
+I(Z, Z% bINNZ = ZONINX s lls+ CA+NZL I X 10— Xl
SCUHNZoells + N1 Z2M NN X = XU X yells + CUIZ 0 — Z2%lls + 1 Z = ZON I X 1ol
+ O+ ZL DN X 1 — Xl
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The estimates for K q,(iD)379X,, is similar to the above. Summing up these
estimates we have

(3.34)  [[1Fo30llsSHCIDX 1 lls+ HC(L+ [ Zo DN X iells
SCUIX tellss 372+ RIZ il ) £ C(L+ 12,
(3.35)  ||uFo30—1F830l, SpC(IX — XOl (DX DX+ ID(X,,— X))
FUC{UIX 1ellsF+ NZ s ZEIIINX = XON s+ 1 Z 0 — 2345
F1Z=ZO 1 X 1ol + 1 X 10— XQell s+ 12211 10— Xl
<CJ(1, 0, 1)E,.
Noting that
Igo(1+uD?) DXy llsSgon™ "2 X s
and using Lemmas 3.11, 3.17 and (3.32)-(3.35) we obtain
(3.36) (1 +uD) 3]l S [I(1+pD?) (g +go(1+uD?*) ™" +uD?) ™ i (1 + P3)~ 155 %
X (Y1l s+ 1 f2lls+gop™ 21 X il
+ 1 (=g —uD?+Py)(1+uD?) "¢ I Foro— HFo30ll5)
<CJ(1, 2s+2, 0)E.
(3.37) KT+ uDH)(f3=Fs
SCI+Py)~ =1+ PY sl =(1+Z )Yy, — Z, f2+ go(1 +uD?) "} |D| Xy,
+(—g—uD?+ P,)(1+uD?)~(Fo10— 1Fo30)lls
+CI(+ P~ s Il =(Z, = ZDY, — AU+ ZY (Y, — Y§) —(Z, - Z5)f;
—ZY(fa—fD+go(1+pD?) DI (X — X
+ (P, =P (1+uD?)~"(Fo10—1Fo30)
+(—g—uD?+ P (1 +uD?) " (Fg0—F810—1Fo30+ 1F830)s}
<CJ(1,0, 45+ 5)E,.
By (2.15) we see that
(1 +uD?) fol = CJ(1, 25+2, O)E,
(3.38)
(1 +uD3 (fa—fDI;SCI(1, 0, 45+ 5)E,.

Estimates for f,. We use the decomposition f;=f,, +f;,+f,3 corresponding
to three terms in (2.34). Using Lemma 3.11 and noting that

I(1+uD?)iDY; Iy =11Yy 2+ ullYillaS 1Yy lls+ ol Yills+ a2

we have, in the same way in (3.36) and (3.37), =~
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(3.39) /1l SCI(, 2, 0E, | fiy —f11l,2CI(, 0, 3)E,.
f12 and f, 5 contain the operator

M=Z,+Z,K=Z,+Z,{—itanh (hD)+ K, o o(X, b; X, b)}.
If [ X5+ bl co then

1K 1,0,0ullg= 1K 0,0ulls = Cllul, = Cllull,
where C=C(cy, h)>0 and 2<¢g=<3. Therefore if
IX15+1Z0s+1blsSco 1X0l5+12005+ bl Sco

(¢y>0 is suitably small) then
(3:40) I(A+M)~ ul ;= Clull,,

I(L+M)"tu—(1+MO)~ul, SC(IX = Xl + 1 Z—Z°3)l|ull,

Let s=m+r (0<r<1 and m=4 is an integer). Using (3.40) with g=2+4r and
noting that operators K, o0, [K, Z;] and 14+K?2 belong to Lo(2+r, m+r; 3) we
see that

P,=PyX,Z, b; X,Z, b)e Lo(2+r, m+f; 3),
(cf. the proof of [2] Lemma 5.22). Using the estimate
I +uDH)DY 24, 1Yyl ulYills432
and Lemma 3.11 we have
(3.41) Ifi2lls=CI(1, 2, 00E, | f12—f12l,2CJ(1, 0, 3)E,.

Let T, be the translation operator: (T,u)(x)=u(x+z)=u?*(x). By definitions in
[2] §3 we see that

T,K(X, b; X, b)=K(X=, b*; X, b*)T,=K*T,.
Applying (3.40) with g=3 to
T.1+M) 'u—(1+M)"'u
=—=(14+M)"'[T, | +MI(1+M)"'u+(1+M)"(Tu—u),
[T, 1+M1=(Zi - Z)T,+(Z3— Z)T.K + Z,(K* — K)T,,

and repeating the same procedure that we used in the proof of [2] Lemma 4.22 we see
that

(3.42) M(X,Z,b; X, Z, b)=(1+M)~ 1€ Lo(m+r, m+r; 3).

Since fi3=(1+M)"11,, it remains to prove estimates for /,. To simplify notations,
from now on, we denote f5, f3, f4 by Yaps Zy,, Z,, respectively, (where ¢ does not mean
t-derivatives). From (2.22) it follows that
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o 02R , 02R %R
h= % (a7 Dot Yz a7 TPt oz oz, P e
i) 28 : :
aZjaZ Zlekt"l'z————aZJxvak Zj,xek,).

In view of (1.10), (3.3), (3.15) and (3.36) we obtain
(3.43) Nl I SHCUZANZNZNZ HIZNNZANZecls+ 120112
FNZ el N ZNZ+HNZ s Zesills)
SC(1+ (L +uDHZ||)? (1 +uD?Z,||; £ CI(2, 4s+7, O)E,
moreover, in virtue of (3.4) and (3.37), we have
(3.44)  pll,— 181, SCB2, 2)|Z—Z°I;+ B(1, 2)l|(1 +kD)(Z~Z)s
+ B2, D|(14+uD*)(Z,—Z9|,=CJ(2, 0, 65+ 10)E,,
B(j, k)y=(1+(1+uDHZ|
+ (1 4+uDHZ°| Y (I(1 + DA Z, ||+ (1 + uDHZP| k.
From (2.24) it follows that (k=1, 3)
Fio={isgn D—itanh(hD)-}-K1 0,0(X, b: X, b)}(iD)*Y,
+KipolX, X b3 X, b)(IDVX,, ' ‘

+Z( )Klo,,,(x Zooor 341, b.... 3b: X, B)(ID)-1Y,

+z( )K, vl Xy Xpo Zy 2y 0471Z, 997VZ,, ..., 03b5 X, DY(iD) 9K,

=G+ +Gy.
For k=1 we see by (3.30), (3.31), (3.36) and (3.37) that
(3.45) IF110llsSCA+IZ )Yl + 11X )= CI(A, 25+ 3, 0)E,
(3.46) IFi10=F$i0ls SCU+IZ I+ 1220 (1 X — X0+ 1 X, — X2

+1Z =20+ 1Y, = YO+ CIZ, — 22
<CJ(1, 0. 4s+5)E,,.
For k=3, estimates for G, + G, + G, are similar to those for Fg;¢:
1|G, +Gy+Gs|l,SCJ(1, 0, 0E, n| G, + G, +G3— G- G- GY|,=CJ(1, 0, 1)E,,
Cf', (3.34) and (3.39). Usmg (3.30) and (3.31) we obtain
HIK 13X el
SUC{I Ziacll s+ 120 NSIZs DI AN ZNN(Z s D lls + 1 X Ml Z s D)l
+1Z,I(Z, b )l|2+||X¢|| NZss belI(Zs DI+ I X lSI(Z, b I X 1l
: <C(l+u"2)(1+II(1+uD2)Z||s)(1+|I(1+uDz)Z I )(1+#”2)||Xull
<CJ(2, 25+4, O)E,
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ll”Kl,l,sxn"K?,l,ax?z”s=ﬂ”(’<1,1.3 - K13 X+ K9 1 3(X 1= XI5

SCIX-X°J(2,0,2s+4)E

FUCUNZeos = L0l s+ 1 Zee — Z2NIZ, Z°, b5+ 1(Zs Z2)I1SIZ =20
+1Z=Z2NMZs 22, b5+ (20, ZDNZ— Z8,

F X = XU Z s 2955 el

+1(Xe XD Zse = 22N+ 12, - Z211Z, 20, b,)) 2

+1(Z ZINNZ - ZOM(Z, Z° b+ 11X, — XPUIZy Z, be)IIZ, Z° bl
X XDINZ = Z2AZ, Z° b+ 1(Xpe XDMZse Z2, beIINZ—2Z0)
+1 X = XPUI(Z, 2% b3+ (X0 XDNZ—ZO1,I(Z, Z° b)IZHIX 1
+CJ(2,0, 2s+4) (1 +p' ) X 1, — X5

SCJ(2,0, 254 5)Eg+ C(1+ 12 (1+[[(1 + uDHZ ||, + (1 + D) Z0||) x

(X, = XPUs+ (1 + 1D (Z = ZO) |+ (1 + 1D (Z, = ZD) | ) (L + 1 D)1 Xy ]l
+CU+ HDA)Z, |+ (1 4+ HDIZE )L+ 1D Z = 2|21 X ],

. +CJ(2,0,25+5)Ea<CJ(2, 0, 45+ T)E,. ‘
Estimates for remaining terms of G, are similar to the above. Thus we have-
(B3A4T)  1F 30l SCI2. 2548, O, plF 30~ Fl3oll,SCI(2. 0, ds+T)E,.

It is easily seen that
(3.48) [YZ)l,=CJ(1, 2s+4, 0)E. | Y,Z,—YPZ?|,SCJ(1, 0, 45+ 6)E,,
(3.49) IZ2F30lls=CE, |Z,F30—23F%|s= CE,.
From (3.43)-(3.49) it follows that
1,1, £CIQ2, 4s+7, OE, |1,—-1§],SCJ(2, 0, 65+ 10)E,,
cf. (2.26). Using (3.42) we see that
(3.50) If13l,=CIQ2. 4s+7, 0E, || f13—f3:ll,=CJ(2, 0, 65+ 10)E,,

which complete the proof.

Lemma 3.51. Let g>0 (note that go=0, see (2.11)) and co=co(g. N)>0 be
the constant in Lemma 3.25. [f s24,0<0<2,c>0and b: W, W, satisfy conditions

be Hs*to+3, W, W, A32Y,, A2Z, A32X € Hs*7,
Ibls=co, XU+ 1YI+1(1+DHZ, +11Z]l3 S co,
18] 546+3+ (W, - W)lss oS
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then for 0<e<d<1 it holds that
I£5 =3+ 11 +eD?) (f54;—f 34 )
SCA+W, Wills4q,6) 276 = )2 |W, Wil
where j=1, 2, fi=f(W, W,, u) and C=Cl(cy, ¢, s, 0, g, h)>0.

Proof. Dependences of operators and functions on u are expressed by P,
F*,,... By C we denote all constants depending only on ¢, ¢, s, g, g and h. Put

J
N, @)=+ W, Willgso,)4 B=0272 A=(5—8)"/>

Since f, is independent of u, we begin with f3. Put

Ar=(1+P4)(g+uD?)(—isgn D), B*=(—g—puD>+Py)(1+uD?*)"".
Then
(3.52)  [(1+eD)(f5—fPI=CIA+ P A=

SCI(+P3) ™ gl A5 — A% §+(A° — A9 fl,.
By (2.14) we see that
A*f§— A%f§=(B*— B®)(Fo10—&F30) + BX(—&+8)Fo30.

Since (14+¢&D?) ! —(14+8D?»)~'=(1+eD?)~(6—e)D¥(1+6D?)~' we obtain decom-
positions

B — B% =B —¢&)D*(1 +6D?)~ ' +(—(e—06)D*+ P4 — P$)(1+6D?)~ 1,
A — A°={(1+ P5)(e—8)D*(g +0D?)~ ' + P§— P§} (—isgn D)(g +0D?),
P4 — Py = Py(0 —&)D¥(g + D)~ ' —{(P5— P})i sgn D+ P3—P3} (g +6D?)~ ",
cf. (2.13). By Lemmas 3.11 and 3.17 we see that
1Bl s.s+ 1 B?lls+ | P5lls,s = CN(I, 2),
[(1+P3§)~ |, SCN(e, 25)SCN(J, 25).
Noting that a2-* <1+ a2, a>0, we obtain
(0 —8)E2(1 4937 S(d—e)2EI710M 2P +082) 7 = A,
(L+BEH (1 +8E2)~ = (1 +[8"/2¢2°|€l7) (1 +662) ' =2(1 + (¢l
B(L+ &P = (8121 +1ED¥2)27(1 + &3 2 S (L +0(1 +E))3) (1 +[ED)>,
which lead us to estimates
(6 —e)D*(1+6D?)~ tull Z Allulls+,
(3.53) £ 1BD?ull < (1 + BD?u ;= 20(1+6D?u 4 4,

Bllullis s S lullZeg +0lulldis+3/2-
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In view of (3.24) we have
(3.54) W, Wills s S2IW, Wills+ o,

From (2.10) it follows that f(e—3)~!(P%— P?) is equal to P; with u=f, Y=0. By
Lemma 3.11 we have

(3.55) I(P5 = PPul,< B~ (6 —e)C(L+[I(L+BDZ],)*[I(1 + BDuls
SACNGS, D1 +DNullss,, =1, 2.
The above estimates show that
I145f§ — A°f§ S CN(S, 2)Al Foy0—8F 030545 + CN(8, 2)ABI Fos30ll
SCN(S, AW, Wils+q,s:
Here we used
[For0—€Fo30ls+a SCIW, Wilssg.er BllFosolsSCIW, Wills s = CIW, Willsso,s
which follow from (3.33) and (3.34). Since
I(A=~ A% 3l = CN(S, DAl(g +0D?) fl5+4
SCN(3, DAN(S, 2As+0) + I W, Willss s
cf. (3.36), we obtain
(3.56) [(1+eD?) (f5—f DI, SCN(S, 4s+20 +DAIW, Wilsi g5
By (2.15) we see that
fo—fi=—isgn D(f5—f%)+(1+eD?)~"(6—&)D*(1+D?)~"(Fy,0—&Fo30)
+(1+8D?)~Y(—g+05)Fg30-
Noting that [|(1+&D?)(1+0D?)" |, ;<! we obtain
(3.57) I(1+eD?) (f4—fPI,SCN(ES, 4s+20 +DAIW, Willss .5

Let f,=f,, +f12+f,; be the decomposition corresponding to three terms in (2.34).
Since P, defined by (2.28) is independent of u we see that

Ble—=8)" (S5 +f52—f11—1%2)

isequal to f, +f,, in which g = f and Y contained in operators P; is zero. Therefore,
using (3.39), (3.41) and (3.54) we have

150 +fi2=f1 =S, SCNO, DAIW, Wil g5
Note that
If§3=Sfisl.=ClIs— 13l
I3—1§=e(I5—13)+(e—0)I$ + B(F§ o —&F530 = F$10+0F{30)
+(B—B%)(F$10—0F30)—2Y,-(Zi - Z}),
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where we denoted f,, f4. f4 by Y,, Z%,, Z4, respectively. In (3.44) putting u=e,
Z°=2Z,Z,=27¢ Z%=2Z? we see by (3.36), (3.56), (3.57) that

let§ — Il = C(1 + [I(1+eD)Z])*(li(1 +eD?)Z¢|
+I(1+eDHZ2 | )II(1 +eD?)(Z5 - Z9) |,
SCN(S, 65420 +9)AW, Wilstg.6
where we used ||(1+&D?)u| < (1 +06D?)ull,. By (3.43) we see that
(e =3NS AIBII,=ACU + (1 + BDHZ[)2I(1 + BDA)ZY|I
SAC(L+[[(1+0D*)Z |44 0)* (1 +0D*)Z? |24,

é )'-CN(éu 4s + 40 + 7)” Ws W: ”x-hr.é'
It is clear that

I F510—€F530— FS10+0F30lls S 1 F5 10— Fiiolls+ el Fis0 — Fisolls+ A BF 30l

By (3.46), the first term in the right hand side is smaller than C|Zi—Z?|,. The
third term is smaller than

ACN(S, 25+ D)W, Wil s0s
by (3.47) and (3.54). " For the second term it holds that
el F5 30— Fi30ll, S C(1 + (1 +6D)ZI ) (1 +6D?)(Zi = ZDI I W, Willoo

cf. the estimate for K, ,;— K¢, in thc proof of Lemma 3.25. By (3.45) and
(3.47) we sec that

[(BE—B2)(F$,o—0F$30) |, SCN(, 2)A[F$10—6F430ll544

é CN(6~ 2(5 + 0') +6);~” W, W;||s+:r,6‘
Finally, noting that

12Y,(Zi=ZH| = CIZ; =22, S CN(6, 4s+20 +AAIW. Willsiq.5
and summing up the above results we have
1155 =S5l S CN(S, 6s+20 +9AIW. Wil g5
Thus the proof is finished.

By (2.40)-(2.43) we determined W, W, =0, from X, X{'. Since X,
X" are independent of yu, we see that X, Z, X,, t=0, arc indcpendent of x and
Y, Yy, t=0, depend on iz Y=Y4, Y, =Y, t=0

Lemma 3.58. There exists co=co(h)>0 such that if u>0,s26, ¢>0,"
(b, A32X© XVye Hs, [bll3+1XOsSco, Ibl+I1X O hs2+ XV Sc

then for W, W,, t=0, determined from X©, X{\) by means of (2.40)-(2.43) the
following hold: first, : '
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(W, W)= (A32X, A=312Y, AV2Z X, A™3Y,,) e H",

(3.59) HW, WOl = C{T+ 01 X O p 52+ 1X VL)
where C=C(cy, ¢, s, g, h)>0: secondly,
(3.60) [ XU+ Y2+ (1 +uD)ZI + I Z]|4

SCUX QN4+ 11+ puDHX O3+ [[(1 4+ 4DHX O3+ X{V]3),
where C=C(cy, g, 1)>0: lastly,
(3.61) IY = Yol 5+ Y5 = Yl 3 SCEO— )X O 545+ 1 X1,

where C=C(cq, ¢, 5, h)>0 and 0<e<3.

Proof. Since X=X and Z=X,, we can take ¢,>0 so small that if b5
+[I X y<co then K(X, b, h) and (I1+Z,4+Z,K)~ ' are bounded operators in
H3, and moreover if be H*, X € H**' then they are bounded operators in Hs. It
is not difficult to prove (3.59) and (3.60) by methods used in the proof of Lemma
3.25. Applying these methods to

Y5—Yi=(1+Z,+Z,K)" (6= 8) {R(Z, Z)+S(Z, Z,.)} .

Y- Yi=K(Yi—Y?3),

(14+Z,+Z,K) (Y5, — Y5 = —Z,{F3o(X. X,, Y5)=—F,o(X, X,. Y?))}
+{—(Y5-Y)+(e—8P,(0, Z, Z,, Z.)}iDX,,
+{—(e=OD2—(Y;~ YD) +(2= )P0, Z, Z,, Z,)}iDX,,

we obtain (3.61).

§4. Linear equations

In view of the second equation of (2.36) we consider the problem
4.1 Uy + u(A|D|3 —imA,D|D| + BD?)u + ABy|D|u =, 01T,
4.2) u=ug, u=u,;, t=0,

where m is real and 120. To simplify matters, we reduce this problem (whose
Hs-solution we shall need later) to the problem in H°. We introduce notations

M,,=1(A|D|>—imA_D|D|+ BD2)+ 1Bo|D|
(4.3) N,,=u(—imA,D|D|), A=1+|D|,

A'=A— A%, A®=const >0, B{=By,— B¥, B®=const >0.
It is clear that the equation (4.1) is equivalent to

(4.4) Aty + My AU+ ([ A5, M, ] = N, A)A=5 A5 = Af.
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We must show that the operator in the third term is of lower order.
Lemma 4.5. Let s>3/2 and r=0. Then for a, ue & it holds that
I(CA*, alD +isa AYul, = Clal,+srilullres-1
ILA%, aJull, = Cllally+sllully+s-1
where C=C(r, s)>0.

Proof. Putting v=[A4%, a]Du +isa,Asu, we have
(4.6) (A+1Eprog)=02m)~! S Q(&, ma(& —ma(n)an,

(&, n)=(1 + D41 +1EDen — (1 + InDn —s(& —n) (1 + Iy}
Applying the formula
F(»)=£(0) +f’(0)y+SZ(y—t)f”(t)dr

to (1+ y|&|+(1—y)In|)*, we have
(L+1EDs=+InDs +s(L+nD~ (&1 — nD

+s(s—1) S:,“ — O+ 1lE + (1 = 0l — 2.

By this expansion and the identity

(&l =Inhn—=E=m (1 +InD)=&n(sgn & —sgnn)—(E—n),
we can write Q in the form
(&, m)=s(1 +[&Dr{&n(sgn & —sgnm)—(E—m} (1 +[nl)~!
+ss— D)(1+]En S; .

Note that |&| < |E—7l, 7| S|E—n| if sgn é—sgn n=0, i.e. sgn = —sgnn and that
1 1
[, er| <) 1121+ =0~ 1= ni2de <1+l 18 =ny1E =l

because 0< 1 +|n| +t(|E] —In)) S 1+ Inl+1&—nl. Therefore
QIS CA+IE—nl)y*2(1+ 0"
+CA+ENE =L+ D=t + A+l +IE=nD)HE—nl*}
SCU+[E=nly*2(L+ )+t + CUA+[E—nly+s

Taking L,-norm of (4.6) and using Hausdorff-Young’s inequality we see that

lol,.=C S (T+1EDy*2a@ldElull, 45— 1+ Cllallrs s 1 S [a(m)ldn
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1/2
<c(((a+1eh22de) “lal, ps ollullrs

+Cllal el § (4120 ) < Clal sy

where 1/2<d<s—1. Similarly, using
L+ 1EDH{T+ 1D =L+ InDH S C{UT+IE—nly =+ (1 +n)) 71} [E—n
we obtain the second estimate. The proof is finished.
Applying the above lemma to
([45, M, ]— N AHAsu
=u([A*, A]JD+isA A5 —im[A*, A ])D|D|A~%u
+(u[ A3, B]D2+ A[ A5, By]|D|)A~su,

we obtain the following lemma.

Lemma 4.7. Let s>3/2, r=0 and A’ eH's*'| B, Bye H*s. Then for
ue it holds that

I([4%, M,,] — N A)A™ul,
SCu{A+ImDIA 541+ 1Bllra s} lully 41+ CAIBoll,45llull,
where C=C(r, s)>0.
In view of the above lemma we consider the initial value problem
(4.8) ug+Myu=f,  0=1=T,
4.9) u=ug, U,=u,, t=0,

(m is real). Note that (M,u)(t, x) is real if u(t, x) is real. Therefore from now on
in this section we assume that all functions are real.

Assumption 4.10.
1) A(t, x)=const >0, Bg(t, x)=const >0 and B(t, x) is real,
2) 32<r£2, A'eCi([0, T], Hr+1/2-3j12),

B, Boe C/([0, T, H™/), j=0,1,

3) A'eC[0, T1, H*), B, ByeCo([0, T], H?),
4) s=3, A(t.-)eHs*', B(,-), B)t,-)e Hs,

At s+ 1+ I1B(t, s+ | Bo(t, - )| = const < 0.
Under the above assumption we shall prove the estimate for u by means of
(4.11)  E2=(A%,, u,)+ p(A9*1|D|3/2y, |D|3/2u)+ u(A9BDu, Du)+ up(u, u)
+A(A2B,|D| /2u, |D|'2u)+ A(u, u)=(A%,, u)+ uF?+ AF3,
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where p and q are constants which will be determined later. For this purpose we
need the following lemma.

Lemma 4.12. Let A, B, B, satisfy 1), 2) of Assumption 4.10. Take a, d>0
such that

A(t, x)Za~ !, By(t, x)Za™ ',
(4.13) At s 172+ 1B+ I Bolt, N, S a.

At =y +IBLE -1+ I Bort, -y =d.
Then for any real q there exists Co=Co(a, q. r, A*, B§)>2 such that
S5C51S A< Co Cg'SAMZC,, C5'SAIB<Co,
|A9B| +1(AB),| = Co,

ray | ATIADIFIAT D41 (ATB)+](47Bo)| S Cod,

ILIDI2, A4*!] |D|3/2u+»3,—i(A"*‘)xDID|u|| SCollullsjz. ueH?,

LILIDI' 2, A9Bo] (DI 2ul < Collull, ueHC.
Proof. Let a, ue % and put

v=[ID2, a]|D2u+3La,DIDlu.

Then 8(&)=2m~" S Q(E. ma(& —ma(n)dn,

Q& m=(1E1372 = InPrIn|72 = 3-E = nminl

From identities
1
€32 = g2+ Il 2008~ )+ 3 Sou — D (E A+ (L =Dl 2(E| = Inl)2d,

(1€l = InDInl = (& —nn=CE,sgn E—sgnn)inl,
it follows that

(¢, 'I)=% &(sgn & —sgn 11)|r112+% [n|3/2 S; ceedt
I R (R A HELU]

{L =0 ani—1eDy =2z —nbzdr it lnl z14

<11~ 1l I”’S' (11241 < CIE P12,
0

Therefore [Q| < C|E—n[*/2|n|32, which gives [v]| SCllall,syp2llulls/z. In view of



Capillary-gravity waves 677
(3.1)~(3.8) and [2] Lemma 2.14 we can take C, so large that (4.14) holds.
Lemma 4.15. Let A, B, B, satisfy 1), 2) of Assumption 4.10. If
ue Ci([0, T], H373i/2), j=0, 1,2,
is a solution of (4.8) with fe C%[0, T], H®) then it holds that

(4.16) lu(t)lo < C3eC*|u(0)]o + C3 S;ec"‘”lif(r)lldr

where [u(Dlo =udI?+ pllu(Ol3/2 + Alu(DI3,2)'/2,
Co=Cola. 2m—=3)[3, r. A%, B), C=C2d+Cou'/2+C4102,
Proof. From inequalities '

27T HED3STHIEP S +ED3,  IBEIPS 1483
it follows that

417 272 ul3, ;= llul >+ 1 IDP2ull> < u 32, |1Dul2 < B=2||lul|+ B|||DI3/2u|2,
where f>0. Using (4.14) and (4.17) we see that
F22(5C5" = BCo) DI 2u| +(p— B~2Co) [u 2.

Putting f=C52, p=4C5'+p-2Cy=4C5' + C3, we have
(4.18) F224C5'(1ID132u|? + ul?) 2 max {C5 ' |u]l};2, Co' | Dul|?}.
It is clear that

F2 2 Coll IDP2u]|* + Col|Dul? + pllul|? £ (2Co + p)llu 32,

Co (1D 2ul|> + lul2) S FE< Co(ll DI 2ul|2 + [[u]|2).
Noting that C,>2 and 2C,+ p< C§ we obtain
4.19) Co'lu(IZZ E()? S C8lu(n)|2.
Differentiating (4.11) we see that

d

(4.20) % o

E2=(A%ty, )+ (A1, u)+ p(AT1[DP/2u, |DI32u,)
+ H(AYBDuU, Dut))+ up(u, )+ (A1), |DI32u, [ DJ312u)
+—12—,u((A‘lB),Du. Du)+ A(A9Bo|D|"/2u, |D|*2u,) + Au, u,)

+L 2B D1, 1))

=(A%Uy+ AM 34 124, u)+ %((Aq)t”n U
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+L WA= )P0, |DP12u) + 5 u((49B),Du, Du)
+-L2((49Bo), D! 2u, DI 2u)+(Ru, u,).

R=u([|D*12, A4*']|DJ>/> +"';’~ i(A*1),D|D| —i(A*B).D + p)

+A[|D|1/2, A1B,]|D|2 + i.
Putting g =(2m—3)/3, i.e. 3(¢+1)/2=m and noting that
IRull £ u{Collull 32+ CollDull+ pllull} + A(Co + Dl 12
SuQCo+pllull sz +MCo+ Dllull g, S uCHAC,)! 2 F +ACFCH/?Fo

we obtain

L4 g2 < (asf, )+ Cod(Auy, u)+-5 HCod{I|DI¥2u ]+ ]| Du|?}

A

+5 Codll IDI'2u]]? + | Rul| Co [l A%2u,|

S Coll fIIE+ Cod(Au,, u,)+ uC3dF*+ AC3dF3+ (C§uF + AC3F ))CoE
<GolfIE+CE?,
C=C%d+C3u'/?2+C§A'/2.
Therefore —dét—E(t) S Coll f(1)|| + CE(t) holds for t such that E()>0. Since E(?) is
continuous in t we have

E(t)gE(O)eC'+co§;e6<"t>uf<r)udr.

Using (4.19) we obtain the estimate (4.16). The proof is complete.
Lemma 4.21. Let A, B, B, satisfy 1)-3) of Assumption 4.10. If
ue Ci([0, T], H3273i12), j=0,1, 2,
is a solution of (4.8) with fe C%([0, T], H) then

@22 |A=ru(lo < ClA= U)o+ € (| 147 ldr
holds where C>0 is independent of u and f.
Proof. The equation (4.8) can be written in the form
A U+ M, _ A" Tu=A""f+(=N,+A"[A", M, DA~ "u
=A""f+uRD|D|'2A~"u+ ARy|D|A " "u,
R=(ird,+A~"[A7, DA—i(m—1)A,+ Bsgn D])|D|!/2, Ro=A""[A", B,].
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The adjoint of R in HO is
R*=|D|V2(—irA A" —[Ar, AID)A~"+|D|'/2(—[i(m—1)A,+sgn DB, A™]A~").
By Lemma 4.5 we see that
[R*vl| £ CUIA"ly+3/2 + 1Bll,+ 1) lI0ll, RSV = ClIBoll, o]l
which show that R, R, e C°([0, T], £(H®, H®)). Hence we can use (4.16).
|A=u(lo = ClA7uO)lo+C | (1A=l +14-u(oldr,
which leads to (4.22), and the proof is finished.
Theorem 4.23. Let A, B, B, satisfy 1)-3) of Assumption 4.10. If
uoe H32, u,eH° feC%[0, T], H%
then there exists the unique solution
ueCi([0, T], H3/2-3i/2), j=0,1, 2,
of (4.8), (4.9). Moreover (4.16) holds for u.

Proof. The uniqueness of u follows from (4.22). The solution u will be
obtained by means of the approximation of M,, by bounded operators. Noting that

Auy,+ (AB3M A~ HNAu=A3, AM, A" 3=M,, . 3+([43, M, ]—N;43)A73,

we consider the problem
(4.24) v,+Gv=g,0=t=T, V=0, V,=0,, t=0,
where G=A479Q,4943M,A73Q,, Q.,=(1+eA%%)"1' 0<e<l, g=(2m+3)/3. Since

(A4~ 9Q.A9A32)*u|| =[|A%249Q A~ || = C(1 + || 47— (A*)7||3/5) (sup A~ D[ul],

IMpttll32 = C(L+ | A'llsp2+ 1Bl 32+ 1 Boll 3y 2) ull 3+ 32,
we see that G e CO([0, T], L(H®, H°%)). Therefore, if

vo€e H32, v,eH’ ¢geC%[0, T], H°)
then the problem (4.24) has the unique solution
v=v"e C¥[0, T], H°).

Putting

E?=(A%,, v,)+ u(A7*'|D|*2Q,v, |D|32Q,v) + u(A1BDQ.v, DQ.v)+ up(Q., Q.v)

+A(A9B,|D|'2Q.v, | D|'?Q.v)+ A(Q.0, Q.0),

cf. (4.11), we see that
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Ld g (g AIM s o)+ A0
2 dt £ U"+ Qe m+]Qs( ) D,)+ 2 (( )tvn D,)

+-Lu(AT 1) DI72Q,0, IDI2Q,0)+-5 K(41B),DQ,0, DQ.v)

+-L 3(49Bo) DI 20,0, IDI'20,0) + (QRQu. v,

Since
G=A"90,AM,,,3Q,+ A~ 4Q,AU[A3 M,]—N;A3A73Q,,
I([A% M, )= N3ANASu| SCA" N4+ [ Bll s+ 1 Boll )l s
it holds that
5O+ 10372 S IO + 1Q,00)] 32+ g0l
<const (indep. of t and ¢).
Using decompositions
Q,=1—¢eA32Q,,
G =AM, A~3 = A3M,, A~ 3eA32Q,— A= 4eA32Q, AYA3M ,A73Q,,
=AM, A"3-G’,
we can write (4.24) in the form
v, + A3M A 30=g+G'v.
Put ut=A"3p*. It is clear that
ut, + M ut=A"3g+A-3G6' A3, 0st=T,
wt=A"3,, ui=A"3,, t=0,
S,Lf?(lllli(t)llﬁ 1Qeus (D)l 343/2) < 0.
Noting that
[A=3G' A3u?| = | M,eA32Que + (A~ 3A~1A312Q, A1 A312)e A3 2 M, 0 u°||
§C€”Q6“5“3+3/z-
(C>0 is independent of ¢ and 1), and using (4.16) we see that

sup |us(f)—u®(ly — 0, (&, 6 —> +0).
0=1sT

The limit u of u® exists and satisfies (4.16) in which f is replaced by 47 3.

easily seen that u is a solution of
u,,+M,,,u=A‘3g, 0=:<T,

u=A"3, u=A"73, t=0.

It is
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Therefore by approximations
A3g — f, A7 30— uy, A7, — u,

and (4.16) we obtain the required solution. The proof is complete.

Theorem 4.25. Let A, B, By satisfy Assumption 4.10. If

ug€ H*32, u, e Hs, fe CY[0. T], H®), f(1)e Hs, | f(t)|,Sconst <o
then there exists the unique solution u of (4.1), (4.2) such that

ue Ci([0, T], Hs*3/2=30i12) 0 C¥([0, T], H?),  j=0, 1.

Moreover for u it holds that
(4.26)  |u(n)l,=|A%u(t)|o = Cie*'[u(0)|,+ C3 X’ e f(o)lldt,
0

k=C3d+C3u' 2+ C3A 2+ C3p, Co=Cola, 2m+2s—3)/3, r, A*, BF),
B=C(O. ) sup {ut A1+ ImDIA s+ 1218, 2172 Byt )1}

(C(0, s) is the constant in Lemma 4.7). In addition, if
A€ CA[0. T]. H**'), B, By, fe C([0, T], H)
then ue C3([0, T], Hs™3/?),
Proof. The uniqueness of u follows from (4.22). Put
0. =(1+eA% 7", 0<e<|, R, =([A% M:]—N:iAS)As,

where Mj,, N: are operators whose coeflicients are functions A¥+Q,A4", Q.B, BS +
Q.B; instead of A=A“+A’, B. Bo=B+B;,. In view of (4.4), we consider the
problem

4.27) U+ M, =04 —Rr, O0ZIZT,
(4.28) v=A%uy, v =A%,, t=0.
Using Lemma 4.7 and noting that |Q.u|,< |lu|l, we see that
R.e CU[0, T1, L(H', H%), [R.ul = Blu(t)l,.
By Theorem 4.23, the problem (4.27), (4.28) has the unique solution
v=vte CI([0, T], H¥273i/12)  j=0, I, 2,
and for v¢ (4.16) holds:

1001 S G300+ C || e€1-9(1 QA% (1)) + Alo(Dl o).
From this estimate we obtain

(4.29) [v%(t)]o = Cie**v%(0)]o + C3 S; ek, A5 (7)lld.
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It is clear that

loe(t) —v3(N]lo = C§ S e I([[(Q. — QA (D) + |(R; — Ry)v’ (D) Dd.
By Lemma 4.7.
(R, = R)v?* (D) < (1 + DCI(Q: = Qo) A'(T. s 1 + Q. — Qo) B(z, )
+ Q.= Qs)Bo(z, ) iMv? (D)
By (4.29), |v%(7)| is uniformly bounded in § and ¢t. Hence we see that
Oét}gr [ve(t) —v%()] o — 0, (&, 6 —> +0).
It is not difficult to see that the limit u of A~*v* is the required solution and satisfies

(4.26), which is proved if we let e—0 in (4.29). The remaining part of the theorem
is trivial. The proof is finished.

Consider the initial value problem for the second equation of (2.36):
(4.30) U, +(M+Lu=f, 0=Zt=<T.
(4.31) u=uy, u,=u,, t=0,

where M =u(Ay|D|*—iAoDID|+ AD?), L=iuA,D+ (pA;+ A,) D], see (2.32). We
put

AdY, 2)=As(Y, Z)+ Ag(2)
=0(Z) (g +go+ Ya) 1 +Z,) = Y,Z,} —goQ(Z)" (1 +Z,).

From (2.12) it follows that g+g,>0. By (3.1) we see that if ¥, Z are small in H'
then 1+Z, =const >0, As=const >0.

Assumption 4.32. 1) Let co=co(g)>0 be a constant such that 1+Z,
>const >0, As=const >0 if | Y|, +1Z];=¢,. 2) Lets=3,¢>0,d>0and Y, Z
satisfy

Ye Ci([0, T], H27¥), ZeC/([0, T], H*"%/), j=0,1,
Y(t)e HS, Z(t)e H**2,
(4.33)

YD+ 1ZDIs<co, YOI +1ZLD)] =4,
YOl +1ZMs=¢, [1Z(1)]s+2=const <co.

Lemma 4.34. Under Assumption 4.32, the following hold: first,

Ag—1€CI([0, T], H*2)), A, e Ci([0, TT, H¥%),

—(g+90) € CI([0, T], H*7)), j=0, 1, A,, A3, As—go€ CX[0, T], H?);

secondly, there exists C,=Cy(cy, s, g)>2 such that for A=Ay, B=A,, By=4;,
q=2s—1)/3, inequalities in (4.14) hold and
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|42 +14312C2, |46l =90C2s5
lastly, there exists Cy=C;(co, ¢, s, g)>0 such that
H2C0, )21 Ao — isr 1 + 141 ) S Ca(u' 2 + (1 +pDHZ] ),
2|45, LIA™*u| = C(1+ (1 + uDHZ| ) |lull, ue HO,
where C(0, s) is the constant in Lemma 4.7.

Proof. Using (3.1)~(3.8) and Lemma 3.9 we obtain the first assertion, which
shows that A=A4,, B=A,, By=A, satisfy Assumption 4.10. So the second as-

sertion holds. Using Lemma 4.5, noting that
[Ao— s+ 1 SCllAo— L5+ Cll Aol

and proceeding as in the proof of Lemma 3.11 we obtain the last assertion.

Theorem 4.35. Let Assumption 4.32 hold. If
upe Hst3/2, wu, e Hs, feCo[0, T], H%, f(f)eHs, | f(f)|,<const<oo
then the problem (4.30), (4.31) has the unique solution
u e Ci([0, T], Hs+3/2=3ii12) n C3([0, T], H®), j=0, 1.
Moreover u satisfies the estimate

(4.36) O = I+ IO 2+ D )17
< C3e O+ €3 | el f@
0

(4.37) C=C3d+C3u/2 +C4
+CHCp 2+ goCop™ 2+ Capl 2+ Cy(1+ sup [[(1+uDHZ(D],)} -
In addition, if
(4.38) f, YeCX[0, T, H), ZeC[0, T], Hs+?)
then ue C¥[0, T], Hs"3/2),

Proof. Theorem 4.25 proves this theorem except (4.36). Assume that (4.38)
holds. The equation (4.30) is equivalent to

(4.39)  Asu,+(M —ispAy,DID|+ As|D\)Asu = A5f— RAsu, .
R=iuA,D+(nAz+ Ag) |D|+([A5, M]+isuAeD|D|ASYA~5+[As, L]A~5.
Noting that
[RA*u|| = (u(sup |A,| +sup |A3]) +sup [4e))ull+
THCQ[ Ao —1lss y + [ AgIullss o+ 1[4°%, L]ull
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< {Cap! 24 goCap™ 2+ Col 2 4+ (1 + DHZ)
+ L C1+ (1 +pDAZ )2} (),

and using (4.16) we obtain (4.36). If (4.38) does not hold then we obtain (4.36) by
the same method used in the proof of Theorem 4.25, that is, by approximations of
f and coefficients of R in the right hand side of (4.39). The proof is complete.

§5. Quasilinear system
Consider the initial value problem for (2.36):
(5.1) X, +X=X+Y, Y, +(M+LY,=f,, Yyu=fr, Z,=(f35.f). 0Zt<T.
(5.2) W=WO =(X©_ YO _ ZO) W =W =X Y, 1=0.
We shall use following notations:
W=(X,Y,Z), W=(X,Y,), W=, Z), A=1+|D|,
UW, W)=(A32X, X, A2Y,, Yy, A2Z, 32X, Xy, Yy)),
VW, WH=(A32X 1. Xgue A733Y 40 Yo, A2Z1),
(5.3) W@ =IW(0)ls
=1 XDIZ+IXDOND2+ (u+g5u ) 2UX D243,
FIX D432 2+ YOI+ 1l YD 52
F 1Yy (OZ41 22+ 1 YDl + (1 + 1D Z(0) | 5.
By (3.24) we see that
(5.4) (W (), Wil STW@), Wil S IWO;e

We shall show that the problem (5.1), (5.2) has the unique solution under the
following assumption.

Assumption 5.5. The minimum of constants ¢, in Lemma 3.25 and Assumption
4.32 is denoted again by ¢, =cy(g, 1)>0. For b and initial data it holds that

sZ4+3/2, beHs*3, UMW, WW)eHs, |b];<c,.
(5.6) J= XU+ YO+ (1 +uD)HZO| + [ 293 < co.

Theorem 5.7. Under Assumption 5.5, there exists T>0 such that the problem

(5.1), (5.2) has the unique solution W satisfying conditions.

A¥2X . X, € CX[0, T HY). Y, eCi([0, T], Hs+3/2-3312) j=0,1,2,
(5.8) .

Y. A2Ze CX([0. T], HY).

that is, UW, W)), V(W.,; Wi)e CY[0, T}, H),
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(5.9) XI5+ 1 YOI+ 1L +uD)Z)| + 1 Z(1) | 5S¢0, O0SIST.

3

Proof. Throughout this proof we denote 4 and s by ¢, so the conditon “¢g=
4, s> is omitted.
Step 1. (Constants). Take J,, d,, ¢,, d such that

»
(5.100  J,ZCWO0),=C3UIX D2+ [ X OUDV2 + (u+ g3~ )X N2, 52
FIX N2, 3D 2+ Y24 ul Y2, 50+ Y2, )2
+1 YU+ 1 +uDHZO] ),
(5.11) d,>J, c,=max{d, [|bl,.s}. d=dg+2C,(1+p)(1+d,)?d,,

where C,=C,(¢g, g, g)>2 is the constant in Lemma 4.34 and C,=C,(co. ¢4, 4.
g, )>0 in Lemma 3.25.

Step 2. (Estimates). We shall prove estimates for Wsatisfying (5.8). (5.9) and
(5.12) 1Yl +IZOl 2 =d, WD), =d,, 0stsT.

First of all, from

L LU 21X =X+ X, X)=(X + Y, X0, (X1, + 1Y IIX],

we obtain ,
(IXOIF+IXOID2 =X 017 + ||X(0)II§)”2+S;(IIX(I)N,,+ 1Y ()] )dr.
Similarly, (we put p=q+3/2),
(12X DIF+1X((OID 2 X (017 + I|X1(0)||,2,)”2+S;(IIX1(')|I,,+ YDl )dt.

Since [(W(1), W (), IW(1)],Zc¢, we see by Lemma 3.25 that
(5.13) il g+ 1L +uD?) fo 4511, S C(1+ ) (1 +d ) 77| W (1),

where j=1,2 and C,=C\(cy, ¢, ¢, g, h)>0. It is clear that Y, Z satisfy (4.33).
So we can use (4.36):

it

YDl = CeP | Y(O)],, + C3 S PO f il d,
0

qu=

where f is the constant defined by (4.37) in which sup |[(1 +uD?)Z(1)]|, is replaced by

d,. Tt is clear that

120l = 1Y+ Yl 1200+ | 1520

(1 +pDHZ(D)]|, < (1 +uD*)Z(0), + g; I(1+uD?)(f3, fa)lljdt.

Summing up the above estimates we obtain
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(5.14) \W()], < W(0)],Cieb + N S' D=0 W(7)] d,
0

N=2+(u+g3u= "2~ 2 4+2C3C (1 4+ p) (1 4+d)*a*7.

From this estimate it follows that

(5.15) (WD), C3IW O], exp (k1) SJ,exp (kD).

(5.16) k,=B+N=C3d+Cou' 2+ C5+ CH{Cou' 12 +goCop™ 112+ Cypt/?
+Ca(1+d,)* +2+(1+g3u2)2+2C3C (1 + ) (1 +d)***7,

where C, = C,(co, ¢, 4. g, h)>0is the constant in Lemma 3.25 and C,=C5(co, 4, 9)>
2, C3=Cs(co, ¢4» g, g)>0 in Lemma 4.34.
Step 3. (Iteration). Put

(5.17) T=min {(co—J)(d,+2d)~", k3" log(d,J3"), k;* log (dJ71)}.

By (5.6) and (5.11) we see that 0< T<oco. By E we denote the totality of Wsatisfying
conditions

(5.18) UW. W), V(Wi W) e C[0, T, H?),

(5.19) WD)l < T, exp (k).

(5.20) 1Y)l + 1 Z(0)] < d.

(5.21) IX(0 = XO 3+ [ V()= YO+ [(14+D?) (Z(1) - ZO)]

+IZ(H =235 ¢o—J.

Taking W°e E and in (5.1) replacing W contained in M + L and right hand sides by
WO we obtain the system of linear equations for W. We denote this sytem by
(5.1-0) and consider the initial value problem (5.1-0), (5.2). From (5.21) it follows
that WO satisfies (5.9). Therefore by (5.18) and Lemma 3.25 we see that

FiWo, W), A2, (WO, W) e CX[0, T], H®), j=1,2,
and (5.13) holds in which W is replaced by W9, if we note that
l(woce), Wonl, S IwWoenl,sJ,exp (k) <d,<c,.

Clearly, Y9, Z° satisfy (4.33). Hence by Theorem 4.35 and integrations with respect
to t we see that the problem (5.1-0), (5.2) has the unique solution W satisfying (5.18).
By the same method used in the step 2 we obtain the estimate (5.14) in which |W(7)],
is replaced by |W°(t)|,. Noting that [W°(t)|,<J, exp(k,7) and k,=B+N we have
(5.19). It is easily seen that
1Yl + I ZdDN 2 S HY(Dlla + 11+ uDHZL1)]] 4
SNY )+ 120la+ 1(1+uD?) (f35 fa)lla
SIW(D)]a+2C,(1+ ) (1+d)?3 WD)y
Sdy+2C(1+p)(1+dy)*d,=d;
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(5.22) X0 =XOU3+1Y(1)— YOl +[[(1 +puD?) (Z() = Z ||, + | Z(t) = 2| 5

ég;(llX,(t)Ilﬁll Y(0), 4+ 21(1 +uDAZ (1)) 3)dt S (dy +2d)t o —J.

Thus We E, which means that G defined by W=G(W?) is the mapping from E to
itself. Put WO =W, 0<t<T. Since |WO1)|,<J, by (5.10), for W° (5.18)-

(5.21) hold, i.e. Woe E. Hence we can define the se‘:;ence WieE, j=0, by Witl=
G(W9J), j=0. The difference W= Wi+ — Wi, j>=1, is a solution of
X+ X=Xi—Xi-t4Yi—yi1,
(5.23) Yiu+(MI+ L)Y, =f{—fi"—(M/—Mi~'+ Li— Li-1) Y},
Ya=fi=f7 Z=(H=ri7 A=), 0sisT
W=0, W;=0, t=0,

where fi=f(Wi, Wi"), MJ=M(W/), Li=L(WJ). Since |Wi(t)|,<J,exp (k) and
s—3/2=4 we see by Lemmas 3.20 and 3.25 that

I(M7 =M=+ LI = LY Y{|, SC1 YT = YI7Y, + | Z7 = ZI ) Y a5
SCwWit) - wimt(@)l,,
A=+ 10+ uD) (f ek = DI SCIWi(t) = Wi (1)),

where r=s5—3/2 and C>0 is independent of j and . By the same method used in
the step 2 we obtain

(5.24) Wit\(1)— Wi(1), £C S \Wi(t) = Wi=1(1)]d1.

where C>0 is independent of j and . Therefore there exists W such that
(5.25) sup [WIi(t)=W(t)|;-3, —> 0, j— oo.
0ZtST
It is clear that W is a solution of (5.1), (5.2) and that W satisfies (5.18) where s is

replaced by s—3/2, (5.19) with g=4, (5.20) and (5.21). Since W/ satisfies (5.22)
it holds that

(5.26) XN+ 1Yl 2+ 1 +uD)ZO], + 1203 <co, 0St<T.

The uniqueness of the solution W stated in this theorem is proved by the method
used for the derivation of (5.24) from (5.23).

Step 4. (Smoothness). Noting that |[Wi(1)|,<J exp (ki) and Wi=G(Wi-1)
we see that

(5.27) Ui, W)l + V(W) wi@)|,£C

where C>0 is independent of j and f. Since any bounded sequence in a Hilbert
space has a weak limit we see, in view of (5.25), that
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(5.28) Uw(), wy1)e H»
for any fixed t and
(5.29) [W(n)|,Sliminf |Wi(1)|, S Jexp (k).
For 0=t,<1 it holds that
X (0= Xl S lim inf X0 = Xt Sliminf {10
<const-(1—1,), ’
where p=s5+3/2. Therefore X, e C%[0, T], Hs*3/2). Similarly, using (5.27) we
see that
A32X X, e CY([0. T]. H), Y, A2Z e C%([0, T], H¥).
Put F(r)y=f,(W(1), W(1)) and consider the problem

U+ IM(W)+ LOW)u=F, 0<I<T,
(5.30)

u=Y9, u=Y{V =0

Clearly, Fe C%[0, T]. Hs=3/2). By (5.28), (5.29) and Lemma 3.25 we see that
F(He Hs, |F()|,Sconst <o for 0=1<T. By Theorem 4.35 the problem (5.30)
has the unique solution u, on the other hand Y, is a solution of (5.30). Therefore

Y, =ue Ci([0. T], Hs*32-3i2) j=0, I.

Thus U(W, W!)e CX[0, T], H%), which guarantees that I'=f,, Y, =f, and A2Z,=
(A2f,5, A%f,) arc in CO[0, T], H%). Again by Theorem 4.35 we see that Y, €
C%[0, T, Hs=32), Thus V(W,;,, W/)e C%([0, T]. H*), which completes the proof.

Remark 5.31. (i) If U(W'®, W"")>0 in H* then putting d,=J}/?2 and
letting J,—0 we see by (5.17) that T- 0.

0 (4]
(ii) Let W be the solution of (5.1) whose initial values W lf(i/'“’ satisfy
(5.6) and (5.10). By the method used to obtain (5.24) we see that
0 0
(5.32) IW(1) = W(D)|,—3 SCIW(O0) = W(0)| -3/, O0SIST,

where C>0 depends only on s, g, h. yt, ¢p0 J, J 0 d, and ¢,
(iii) In the above proof we have shown that W satisfies conditions (5.18)-
(5.21). Therefore (5.15) holds for W:

(5.33) [W(N],=C3IW(0), exp (k)= exp k), 0<I=T.

4=

§6. Nonlincar equation

In this section we shall show that the problem (1.11)-(1.13) has the unique
solution.

Assumption 6.1. The minimum of constants ¢, in Lemmas 3.25, 3.58 and
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Assumption 4.32 is denoted again by c¢o=co(g. N)>0. Let eg=ey(y, h)>0 be a
constant such that C(ey+e3)<c, where C=C(cq, g, h)>0 is the constant in (3.60).
Lastly, let s=8+1/2, ¢>0, ¢’>0 and b, X®, X{! satisfy conditions

be H.\‘+3/2, X0 ¢ HS+3/2, X(II) € I,I.\"
(6.2) b3S co. X OaSco, NTXOUa+ 11+ uDHX O+ [ X1 3 Zeq,
||b“s+3/z§('~ ||Xw'||s+3/z+“X(|”||s§('l~

Theorem 6.3. Under Assumption 6.1, there exists T=T(g, h, u, co. €q, s, ¢, ')
>0 such that the problem (1.11)-(1.13) has the unique solution X satisfying conditions

(64) XG (—‘J([Ov T]9 I’.\'+3/2"3_i/2)' ’=07 I~ 27
(6.5) IX(DlySco. OSIST

Proof. Consider the problem (5.1), (5.2) where W W' are determined
from X, X{ by means of (2.40)-(2.43). Using Lemma 3.58 we see that

$s—324+43/2, beHs3*3, UW©, Wh')ye Hs3,
(6.6)  J=[XO+ YU+ (1 +uD)Z O, +[| 2] 3 < Cleo +€d) <co.

that is, Assumption 5.5 holds if we replace s by s—3. By Theorem 5.7 the problem
(5.1), (5.2) has the unique solution W=(X, Y, Z) satisfying (5.8) in which s is replaced
by s—3 and (5.9). By Lemma 3.58, (5.10), (5.11), (5.17) and (6.6) we can take
T >0 depending only on constants g¢,....¢’. Moreover by Remark 5.31 we may
assume that T—oo if ¢'—0, i.e. initial data X, X'V tend to zero. By (2.17),
(2.40) and (2.42) which shows that (X,,— KX ,),=0, =0, we see that X,,— KX,,=0,
0<1<T, ie. X satisfies (1.12). By (2.18), (2.40) and (2.45) we see that

(6.7) (1+Z)Y, +Z,(g+Y,)=pR(Z, Z,)+uS(Z, Z,,)
+go(l+uD>)isgn (Z, - X,,)

for 0Zt<T. From (2.40) and (2.47) it follows that

(6.8) Z,— X ,=(Z,—X,,=0, 1=0,

(note that ¢, is so small that the operator in (2.47) is invertible, cf. the definition
(2.14) of f3 and Lemma 3.25). In view of (2.5), (2.14) and (2.15) we see that f,, f;
and f, are differentiable with respect to t, therefore the derivative Z,, exists. By
(6.8) and (2.39) we see that Z, — X ,,=0, 0<t<T. Noting that Z,—X,,.=0, t=0,
by (2.40) and integrating (2.19) we have

1Zo(1) = X5 (D)4 <C SO 1Z5(1) = X5 (1), _ adlt,

where we used the Lipschitz continuity of F,; Hence Z,—X,,=0, 0<S(<T.
Thus we have proved that Z=X,, 0St<T. By (6.7) we see that X satisfies (1.11).
Since X and A2X,=A2Z are in CY([0, T], H*3), X e C\([0, T]. H%). Noting
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that Y, € CO([0, T], H*73*3/2) and Y,=K(X)Y,+F,o(X, X,) we see that X,=
Ye CY[0, T], H*~3/2), Integrating (2.6) we have

uD?*Z,=(—isgn D)uD?Z,+F,
t
F=uDZ,(0)+i sgn DZ,(0)+ || (144D?)~'(Foso—iFos0)dt}.

The equation (1.11) can be written in the form
Q2 H(L+Z)Y, +Zy(g + Yy) ~ iR(Z, Z)} =i~ Z,Z 1y + (1 + Z,)Z5,,)
={—Z,isgn D+(1+2Z,)} (i sgn D)uD?*Z,—(1+Z,)F.
Consider the integral equation
puy=isgn D(1+Z, —Z,isgn D)~ Y{G(Y, Z, Z)+(1 +Z,)F(u)},
©9 [ piy=(1+Z, — Z5i sgn D)~ {G(Y. Z, Z)+(1+Z )F(u)} — F(u),
where
GY, Z, Z)=QZ){(1 +Z))Y, + Zy(g + Y,)—uR(Z, Z,)} ,
F(u)=uD?*{Z,(0)+ i sgn DZ,(0)}

+SO UD?(1 + D)~ {Foyo( X, Z, X 1) = tFo3o(X. Z. Zy, u, X )},
Since
(6.10) Z(0)e Hs*1/2,  Ye C([0, T], Hs-312), Ze Co[0, T], Hs 1),

the problem (6.9) has the unique solution u e C%[0, T], Hs"2). On the other hand,
Z.. is a solution of (6.9). Hence Z,,=u, which shows that

6.11) Z e CO([0, T, H*).

But under conditions (6.10) and (6.11), the problem (6.9) has the unique solution
ueCo%[0, T], H=3/2). Thus ZeC%[0, T], H*'/2) and we have proved (6.4).
The condition (6.5) follows from (5.9) or (5.26):

(6.12) X3+ 1 XDl + (A + D)X (D] + 1 XDl 3<co, 0=t<T.

4]
It remains to show the uniqueness. For a solution X of (1.11)-(1.13) we put

0

0 0 0 0 0O 0 O
Y=X,. Z=X, W=(X,Y.Z).

0
By (6.6) we see that W satisfies (6.12) for 0=<t<t,, (1,>0 is sufficiently small).
Using equations (1.11) and (1.12) we see that

0 0 0 0
UW, W), V(W,,, W)e C[0, to], H*™3).

0
Moreover, by the reduction in §2, W is a solution of (5.1), (5.2). Hence by Theorem
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0
5.7, W(t)=W(t),0<t<t,. Taking =1, as the initial time instead of t=0 and noting
that the condition (6.12) guarantees that (6.6) holds for initial values at t=1¢, we see

0
that W()=W(1), to<t<t,, (1, —1,>0 is sufficiently small). Repeating this pro-

() 0
cedure we see that W(t)=W(t), 0<t<T, ie. X(1)=X(1), 0Zt<T. The proof is
complete.

0
Remark 6.13. Let )% be a solution of (1.11)-(1.13) whose initial data X(®,
0 0 0 0 0
XV satisfy (6.2). By (5.32) for W=(X, X,, X,) it holds that

(6.14) [W() = WD) -3 -2 S CIW(O) = W(O),_ - 32

Using (6.14), equations Y,=K(X)Y,+F,o(X, X)), Z,=(fs.fs) and Lipschitz
continuity of the solution of (6.9) with respect to X, X,,, Y, Z, Z, we see that

SR Y 0)_ %0 (1 _ oy
_]Z:O "al(X(t)_X(t))”s—3j/2§C"X( )_X( )”s+C”X| _X1 “3—3/21

where C=C(g, h. p, ¢y, €g, s, ¢, ¢')>0.

§7. Limit of X when u tends to zero

Throughout this section we assume that g>0 is a fixed constant, (therefore
go=0 by (2.11)) and that g moves in the interval O<u=<1.

Theorem 7.1. Let Assumption 6.1 hold and
[X O+ (1 +DHX O3+ 11XV [3 S eo.

Then in Theorem 6.3 we can take T' instead of T such that T'=T’(g, h, cg, ey,
s, ¢, ¢')>0, i.e. T' is independent of u. Moreover, if in Assumption 6.1 the con-
dition that s=8+1/2 is replaced by s=8+1/2+ ¢ where 0<o <2 then the solution
X =X* of (1.11)~(1.13) converges to the solution of (1.11)~(1.13) with p=0:

2 ) X
(7.2) ZO 107(Xe(t) = X3, £ CEO—e) (X Ol 432+ 1 X§Vlls), OSt<T),
=

where r=s—3—-3/2—0,0<e<d<1 and C=C(g, h, cy, €. s, ¢, ¢’, )>0.

Proof. 1In the proof of Theorem 6.3 we defined T by (5.17), but T depends on y,
so we must show that the infinimum of T (when y moves in the interval (0, 1]) is
positive. For W©_, W) determined from X©, X{V by means of (2.40)-(2.43),
note that X, Z© X are independent of p and Y@ =YW@k y{D=y(D.u
depend on p in such a way that

(Sup (X O3+ [ YOkl +[[(1+DDZO ]y +]ZON) I <o,
<usl

sup (“Y(O)’M“s—3+3/2+||Y§1)’””s—3)<wa
O<us1

where J' =C(ey +€3), cf. (3.59), (3.60) and (6.6). In (5.10) and (5.11) we can take
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J o dg ¢, (=4, s—3) depending only on g. I, ¢o, ey, s, ¢, ¢’ and we take d'=d,+
4C (1 +d4)*3d, instead of d. Since g,=0 we see by (5.16) that

ky= sup k,<oo.
Oo<ugi

Therefore the minimum T’ of constants
(co=Jd)Wdy+2d')71, (k) 'log(dadz!), (ks_3) 'log(ds—3J52s),

is independent of y and 0<T'<T for O<u<1.

To prove the second part of the theorem, let W* be the solution of the problem
(5.1), (5.2) corresponding to X* and put W=W:— W93 Then W is a solution of
equations

X, +X=X+Y,
Y+ (Me+ LYY, =f5~f3—(Me—M?+ Le— L) Y3,
Yo=f5—f3 Z=(f5—1% f5—fD.

where fh=f(Wr, W', 1), M*=M(W*, p), L*=L(W*, ). By (5.4) and (5.33) it
holds that

(7.3) [WH), WE (Do IWH(WD)lg,p = IWHDIs-3,,
é Cgl W"(O)ls— 3.n exp (ks— 3’) §Js— 3 CXp (ks— 3’) s

for 0<t< T, 0<0<s—3, 0<f<u<d<l1. By the method used to obtain (5.14)
we have

(7.4) |W()I,.=CIW(0),,
+CS;(||(f‘i— L L=+ I +eD?) (515 fi—f DIt
+C SO I(M?— M+ Lo — L3) V3|, d.

where r=s—3—3/2—0 and C>0 is independent of ¢, 6 and t. Applying Lemmas
3.25 and 3.51 to

f‘s__f6={f(Way W;:" 8) _f(Wd’ W;V’ 8)}+{f(W6s W;S" 8)_.f(W6’ W‘r”» 5)}

we see that the first integral in (7.4) is smaller than

t
C(1+e) SO(1+II We, Wil e+ 1 Ws, WLLLDTONW, Wi, odt
+CS‘ L+ W 10,5)02 (8 — ) 2N WO, WY 11,5
0

< IO, i+ CE=0)2 sup WA (Dlyess.
0 0<r=sT’

Here we used (7.3) and (5.4). By Lemma 3.20 we have
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(7.5) l(Me—M?+Le—LO)YS,
SCUL+WeD),,o+ WO W (D), Nl (1 +D?)D Y,
+C@E—ea)f~ (1 + (1 +pDHZ%||,)*|I(1+ BD*)DY S|,
where f=462"/2_ Since _
1L +EDDD Y, SNVl 4y 81 Y203 S2AWAD] 43726
and by (3.53) the second term of the right hand side of (7.5) is smaller than
CO—e) 2L+ WD), 45,5 IWADlr 454328

we see that the second integral in (7.4) is smaller than

cg' IWD),.0di+CE =) sup |[WI()ysarasz.s-
) 0SIST’

Thus we have
0.6 WOl IWOl,di+ WO,

+CE=e)12 sup (WO Dan, s+ W Dlrros32,0)
By (3.61) we see that
(7.7 W), =(1Y5,(0) = ¥Y$,(0) |, +ell Y§(0) = Y§(O) [l,+3,2
+1Y5(0) = Y§(0) [+1/2) 2+ 1 Y5(0) — Y$(0) |,
SCE=)IX O r3a32+ X1V 43).
Using (5.33) and (3.59) we have
(1.8)  IWOWigst WO (Dsgrsjas SAWAD)| -3, s SCIWH(0)] =34
SCIW?3(0), WO, ZCUX O gr3pz+ 1 X5VN).
From (7.6)-(7.8) it follows that
(7.9) |We(t) = WD), = IW (DI, . S CO =) 21 X O 14 32+ I X -

Since [W(t)l,0<|W(1)|,. and W=(X:—X? X: —X?, X:—X3), (7.9) gives (7.2).
Since

I8(R(Z?, Z3) +S(Z°, ZI |, = Co2BUIZENE + 1 ZEll,)
S C&°2(1+|(1+BDH)Z?|,)?
S Co72(14 |[(146D)Z%,4,)%,

where f=352-9/2_it is not difficult to see that the limit of X* is a solution of (1.11)-
(1.13) with u=0. The proof is complete.
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