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All rings are assumed to be commutative integral domains with unity 1#0 in
what follows. 1In order to generalize Gilmer’s work [7], Wardsworth [10] defined
a noetherian pair (N.P. in short) as follows:

“Let A and B be two integral domains such that A is a subring of B. Then
(A4, B) is said to be a noetherian pair if all the rings intermediate between 4 and B
are noetherian.”’

If A is a subring of B and p a prime ideal of A then B, denotes the ring 4,® 4B
where as usual A4, is the localization of A at p. In Lemma 1 of his paper Wardsworth
proves that if 4 is quasi-semi-local such that (4,,, B,,) is N.P. for any maximal ideal
m of A, then (A4, B) itself is N.P. and then goes on to ask if the condition that A has
finitely many maximal ideals can be removed. Clearly, if 4 is an almost Dedekind
domain (equivalently, A,, is a rank one discrete valuation ring for any maximal ideal
m of A) which is not a Dedekind domain (for an example of such a domain see
Appendix 3 [6]) and Q is the quotient field of 4, then (4, Q) isnotan N.P. However,
(A, Q,) is N.P. for any maximal ideal m of A. In this note we study pairs (A4, B)
such that (A4,, B,) is an N.P. for any maximal ideal m of A and find in the sequel
that many properties of the noetherian pairs generalize to such pairs. The notations
and terminology are in general that of Nagata [9] unless stated otherwise.

1. Locally noetherian pairs

For the sake of convenience we make the following definitions.

Definition 1. A ring A4 is said to be locally noetherian if A4, is noetherian for
any maximal ideal m of A.

Definition 2. Let A and B be two integral domains such that 4 is a subring of B
(we shall henceforth say that (4, B) is a pair). The pair (4, B) is said to be a locally
noetherian pair, locally N.P. in short, if (4,,, B,,) is a noetherian pair for any maximal
ideal m of A.

Thus an N.P. is locally N.P. but the converse is not true as pomted out already.
The following Lemma is immediate.
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Lemma 1.1. Let (A, B) be a pair of domains. The following are equivalent:
(i) (A, B,) is N.P. for any maximal ideal m of A.
(ii) (A,, B,) is N.P. for any prime ideal p of A.

Lemma 1.2. (A4, B) is an N.P. if and only if A is noetherian and for each proper
ideal I of each ring C intermediate between A and B, C/I is a finitely generated
A-module.

Proof. See Theorem 2 [10].

The above lemma immediately yields the following characterization of locally
noetherian pairs.

Proposition 1.3. Let (A, B) be a pair. (A, B) is locally N.P. if and only if
(i) A is locally noetherian and (ii) for any intermediate ring C and a proper ideal
Iof C, ClI®, A, is a finitely generated A,-module for any maximal ideal m of A.

Proof. (A, B) is locally N.P. if and only if for any maximal ideal m of A,
(A, B,) is a noetherian pair. Also, C’ is a ring intermediate between 4, and B,
if and only if C'=C,, for a subring C intermediate between 4 and B. Now the result
follows immediately on applying Lemma 1.2.

Remark 1. If (A4, B) is locally N.P. then for any multiplicative subset S of A4
not containing zero (Ag, Bs) is also locally N.P. S

It is well known that a locally noetherian ring 4 is noetherian if each nonzero
element of A is contained in finitely many maximal ideals only. Following is an
analogus result for locally N.P.’s.

Proposition 1.4, Let (A, B) be a locally N.P. If each nonzero element of A
is contained in only finitely many maximal ideals of A then (A. B) is an N.P.

Proof. First of all as remarked above, A is noetherian. If A is a field there is
nothing to prove. So we assume that A4 is not a field. Let C be a ring intermediate
between A and B. Consider an ideal I of C. Let J=AnI. Then by Theorem 4
[10], J#0. Now C,/(JC), is a finitely generated A, ,-module. Since J is con-
tained in only finitely many maximal ideals of A4, therc is a finitely generated ideal
I' of C such that Io]'>JC and (1/JC),=(1'|JC), for each maximal ideal nt of A.
Thus I is finitely generated so that C is noetherian. Hence (A4, B) is N.P.

It is easily observed that if (A4, B) is locally N.P. then every ring C intermediate
between A and B is locally noetherian. Now we prove the converse of this statement.
" The following lemma is immediate.

Lemma 1.5. Let (A, B) be a pair. Let I be an ideal of A such that IB#B
and let C=A+1IB and S=1+1B. Then

(i) S is a multiplicative closed set of the ring C.

(ii) Cs=A+IBs

(ili) IBgc< rad Cs.



Locally noetherian pairs 645
In the following Q(D) denotes the quotient field of the integral domain D.

Proposition 1.6. Let (4, m) be a local domain with dim A>0. Let (A, B) be
a pair. Suppose B is not noetherian. Then there exists a ring C intermediate
between A and B such that C, is not noetherian for some maximal ideal n of C.

Proof. Case I. When Q(B) is algebraic over Q(A), let J be an ideal of B which
is not finitely generated. Put I=Jn A. Clearly, I#0. Let a be a nonzero element
of I. Put C=A+aB and S=1+4aB. Bg is not noetherian. Hence by Lemma
1.5, Cs (= A+ aBy) is a non-noetherian quasi-local ring.

Case 1.  When Q(B) is not algebraic over Q(A), take a transcendental element
x of B. Let a be a nonzero element of m. Put C=A+aAd[x] and S=1+aA[x].
Then Lemma 1.5 and the arguement used in the proof of Theorem 2 in [10] imply
that Cg (= A+ aA[x]) is a non-noetherian quasi-local ring.

Theorem 1.7. Let (A, B) be a pair. Suppose every C intermediate between A
and B is locally noetherian. Then (A, B) is a locally noetherian pair.

Proof. Casel. When A is not a field, it is sufficient to show that, for any
maximal ideal m of A, (A4,, B,) is a noetherian pair. Now any ring intermediate
between A,, and B, is also locally noetherian. Thus 4,, is a local ring and (4,,, B,,)
satisfies the assumption of the theorem. Hence, Proposition 1.6 implies the con-
clusion.

Case II. Let A be a field. The conclusion is clear if B is algebraic over A.
We, therefore, assume that Q(B) is not algebraic over A. Take a transcendental
element x of B and let A"=A[x]. Then (A4’, B) is locally noetherian pair by Case I.
Thus, Q(B) is a finite algebraic extension of Q(A’) (Lemma 3, [10]). Krull-Akizuki
Theorem implies that (A’, B) is a noetherian pair. Also (4, A’) is a noetherian pair
(Corollary 5, [10]). Therefore, (A, B) is a noetherian pair. This completes the
proof of the theorem.

An example of a locally noetherian pair which is not a noetherian pair was men-
tioned in the introduction. We end this section with another such example.

Example. Let R denote a noetherian integral domain whose derived normal
ring is not a finite R-module and that for each prime ideal p the derived normal ring
of R, is a finite R,-module (Example 8, p. 211, [9]). Set S=1+xR[x] and A=
R[x]s. Let B=A, the derived normal ring of A.

Clearly (A4, B) is locally N.P. Now A4 is noetherian and x is in rad 4. Thus,
B/xB is not a finitely generated 4-module. Hence (4, B) is not an N.P.

2. Construction of locally noetherian pairs

Several of the results proved in [10] can be generalized suitably to the case of
locally noetherian pairs. The following remark is immediate (cf. Corollary 5, [10]).

Remark 2. Let A be an integral domain and x an indeterminate over 4. The
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following are equivalent:
(i) Ais afield.
(ii) (A, A[x]) is a noetherian pair.
(iii) (A, A[x]) is a locally noetherian pair.

The following generalizes Corollary 6 in [10] and Gilmer’s classification of
domains all of whose subrings are noetherian [7].

Proposition 2.1. Let B be a domain all of whose subrings are locally
noetherian. Let P be the prime ring of B. Then (P, B) is a noetherian pair.
Further,

(i) If ch B=0 then B is contained in a finite algebraic extension of the field
of rational numbers. :

(ii) If ch B#0 then either B is algebraic over P or B is contained in a finitely
generated field F such that trdeg, F=1.

Proof. By Theorem 1.7 (P, B) is locally N.P. Then Proposition 1.4 implies
that (P, B) is in fact a noetherian pair. The rest follows on applying Corollary 6
in [10] itself.

Next we wish to construct locally noetherian pairs. This construction is on
lines similar to that of the construction of noetherian pairs. Let us recall the
following from [10].

Definition 3. A maximal ideal m of a ring R is said to be low (resp. high)
maximal ideal according as ht m=1 (resp. ht m>1).

Notation Denote A= N {A,: m is high maxiaml ideal of A}.
Lemma 2.2. If A is a noetherian ring, then (A, A) is a noetherian pair.
Proof. See Theorem 8 [10].

Lemma 2.3. Let A be a locally noetherian ring. Then (A, A) is locally
noetherian pair.

Proof. If mis a high maximal ideal of A, then A, =A4,,. If, however, nis a low
maximal ideal then A, is a one dimensional noetherian ring. Thus it follows that
(A, 4,)is an N.P. Hence (4, 4) is a locally noetherian pair.

Proposition 2.4. Let (A, B) be a locally noetherian pair. Let C be a ring
intermediate between A and B. Then (C, B) is also a locally noetherian pair.

Proof. C is locally noetherian. Let CcT<B and m a maximal ideal of C.
Put p=mnA. Then T, is a ring of quotients of T, and therefore noetherian.
Hence (C, B) is locally N.P.

Remark 3. Theorem 10 in [10] is also generalized as follows:
“Suppose (4, B) is locally N.P. Let T be the integral closure of 4 and B.
Then Bc T. If, however, A is noetherian then dim B=dim 4. Incase 4 hasno low
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maximal ideals, B is integral over 4.

The following which is a generalization of Theorem 13 in [10], helps construct
new locally N.P.’s from known ones.

Proposition 2.5. Let R be locally noetherian and Rc Ac T, where A is a finite
integral extension of R. If (A, T) is locally noetherian pair then (R, T) is also a
locally noetherian pair.

Proof. Let B be a ring intermediate between R and T. Since (A, T) is locally
noetherian pair, C=B[A] is locally noetherian and a finite integral extension of B.
Using Theorem 2 in [5], B must be locally noetherian. An application of Theorem
1.7 now completes the proof of the proposition.
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