A note on locally noetherian pairs

By

Ravinder KUMAR

(Communicated by Prof. Nagata, July 30, 1982)

All rings are assumed to be commutative integral domains with unity $1\neq0$ in what follows. In order to generalize Gilmer's work [7], Wardsworth [10] defined a noetherian pair (N.P. in short) as follows:

"Let *A* and *B* be two integral domains such that *A* is a subring of *B*. Then *(A, B)* is said to be a noetherian pair if all the rings intermediate between A and *B* are noetherian."

If *A* is a subring of *B* and *p* a prime ideal of *A* then B_p denotes the ring $A_p \otimes_A B$ where as usual A_{ν} is the localization of A at ν . In Lemma 1 of his paper Wardsworth proves that if *A* is quasi-semi-local such that (A_m, B_m) is N.P. for any maximal ideal in of *A*, then (A, B) itself is N.P. and then goes on to ask if the condition that *A* has finitely many maximal ideals can be removed. Clearly, if *A* is an almost Dedekind domain (equivalently, $A_{\rm m}$ is a rank one discrete valuation ring for any maximal ideal in of A) which is not a Dedekind domain (for an example of such a domain see Appendix 3 [6]) and *Q* is the quotient field of *A*, then (A, Q) is not an N.P. However, (A_m, Q_m) is N.P. for any maximal ideal m of *A*. In this note we study pairs (A, B) such that $(A_{\mathfrak{m}}, B_{\mathfrak{m}})$ is an N.P. for any maximal ideal m of A and find in the sequel that many properties of the noetherian pairs generalize to such pairs. The notations and terminology are in general that of Nagata [9] unless stated otherwise.

I. Locally noetherian pairs

For the sake of convenience we make the following definitions.

Definition 1. A ring A is said to be locally noetherian if A_m is noetherian for any maximal ideal in of *A.*

Definition 2. Let A and *B* be two integral domains such that *A* is a subring of *B* (we shall henceforth say that (A, B) is a pair). The pair (A, B) is said to be a locally noetherian pair, locally N.P. in short, if (A_m, B_m) is a noetherian pair for any maximal ideal in of *A.*

Thus an N.P. is locally N.P. but the converse is not true as pointed out already. The following Lemma is immediate.

644 *Ravinder Kumar*

Lemma **1.1.** *Let (A, B) be a pair of d om ain s. The .following are equivalent: (i)* (A_m, B_m) *is N.P. for any maximal ideal in of A. (ii)* (A_n, B_n) *is N.P. for any prime ideal p of A.*

Lemma **1 .2 .** *(A, B) is an N.P. if and only if A is noetherian and for each proper ideal 1 of each ring C intermediate between A and B, is a finitely generated A-module.*

Proof. See Theorem 2 [10].

The above lemma immediately yields the following characterization of locally noetherian pairs.

Proposition 1.3. Let (A, B) be a pair. (A, B) is locally N.P. if and only if *(i) A is locally' noetherian and (ii) for any interm ediate ring C and a proper ideal I* of *C,* $C/I \otimes_A A_m$ *is a finitely generated* A_m -module for any maximal ideal in of A.

Proof. (*A*, *B*) is locally N.P. if and only if for any maximal ideal in of *A*, (A_m, B_m) is a noetherian pair. Also, C' is a ring intermediate between A_m and B_m if and only if $C' = C_m$ for a subring C intermediate between A and B. Now the result follows immediately on applying Lemma 1.2.

Remark 1. If (A, B) is locally N.P. then for any multiplicative subset S of A not containing zero (A_s, B_s) is also locally N.P.

It is well known that a locally noetherian ring *A* is noetherian if each nonzero element of *A* is contained in finitely many maximal ideals only. Following is an analogus result for locally **N.P.'s.**

Proposition 1.4. *Let* (A, B) *be a locally N.P. If each nonzero element of A is contained in only finitely many maximal ideals of A then (A . B) is an N.P.*

Proof. First of all as remarked above, *A* is noetherian. If *A* is a field there is nothing to prove. So we assume that A is not a field. Let C be a ring intermediate between A and B. Consider an ideal I of C. Let $J = A \cap I$. Then by Theorem 4 [10], $J \neq 0$. Now $C_{\text{m}}/(JC)_{\text{m}}$ is a finitely generated A_{m} -module. Since *J* is contained in only finitely many maximal ideals of A, there is a finitely generated ideal *I'* of *C* such that $I \supset I' \supset JC$ and $(I/JC)_{m} = (I'/JC)_{m}$ for each maximal ideal m of *A*. Thus *1* is finitely generated so that *C* is noetherian. Flence *(A, B)* is N.P.

It is easily observed that if *(A, B)* is locally N.P. then every ring *C* intermediate between A and *B* is locally noetherian. Now we prove the converse of this statement. The following lemma is immediate.

Lemma 1.5. Let (A, B) be a pair. Let I be an ideal of A such that $IB \neq B$ *and* let $C = A + IB$ *and* $S = 1 + IB$ *. Then*

 $\mathcal{A}=\mathcal{A}$

- *(i) S is a multiplicative closed set of the ring C.*
- (iii) $C_5 = A + IB_5$
- (iii) $IB_s \subset \text{rad } C_s$.

In the following *Q(D)* denotes the quotient field of the integral domain *D.*

Proposition 1.6. Let (A, m) be a local domain with dim $A > 0$. Let (A, B) be *a p a ir. Suppose B is not noetherian. Then there ex ists a rin g C intermediate between A and B such that C"is not noetherian for some maximal ideal* n *of C.*

Proof. Case I. When $Q(B)$ is algebraic over $Q(A)$, let *J* be an ideal of *B* which is not finitely generated. Put $I = J \cap A$. Clearly, $I \neq 0$. Let *a* be a nonzero element of *I*. Put $C = A + aB$ and $S = 1 + aB$. B_S is not noetherian. Hence by Lemma 1.5, C_S (= $A + aB_S$) is a non-noetherian quasi-local ring.

Case II. When $Q(B)$ is not algebraic over $Q(A)$, take a transcendental element x of *B*. Let *a* be a nonzero element of m. Put $C = A + aA[x]$ and $S = 1 + aA[x]$. Then Lemma 1.5 and the arguement used in the proof of Theorem 2 in [10] imply that C_S (= $A + aA[x]_S$) is a non-noetherian quasi-local ring.

Theorem1.7. *Let (A , B) be a pair. S uppose every C intermediate between A and B is locally noe the rian. Then (A , B) is a locally noetherian pair.*

Proof. Case I. When *A* is not a field, it is sufficient to show that, for any maximal ideal m of *A*, (A_m, B_m) is a noetherian pair. Now any ring intermediate between $A_{\rm m}$ and $B_{\rm m}$ is also locally noetherian. Thus $A_{\rm m}$ is a local ring and $(A_{\rm m}, B_{\rm m})$ satisfies the assumption of the theorem. Hence, Proposition 1.6 implies the conclusion.

Case II. Let *A* be a field. The conclusion is clear if *B* is algebraic over *A*. We, therefore, assume that $Q(B)$ is not algebraic over *A*. Take a transcendental element x of *B* and let $A' = A[x]$. Then (A', B) is locally noetherian pair by Case I. Thus, *Q(B)* is a finite algebraic extension of *Q(A')* (Lemma 3, [10]). Krull-Akizuki Theorem implies that (A', B) is a noetherian pair. Also (A, A') is a noetherian pair (Corollary 5, [10]). Therefore, *(A , B)* is a noetherian pair. This completes the proof of the theorem.

An example of a locally noetherian pair which is not a noetherian pair was mentioned in the introduction. We end this section with another such example.

Example. Let *R* denote a noetherian integral domain whose derived normal ring is not a finite *-module and that for each prime ideal* ν *the derived normal ring* of R_p is a finite R_p -module (Example 8, p. 211, [9]). Set $S = 1 + xR[x]$ and $A =$ $R[x]$ _{*s*}. Let $B = \overline{A}$, the derived normal ring of *A*.

Clearly (A, B) is locally N.P. Now A is noetherian and x is in rad A. Thus, B/xB is not a finitely generated A-module. Hence (A, B) is not an N.P.

2. Construction of locally noetherian pairs

Several of the results proved in [10] can be generalized suitably to the case of locally noetherian pairs. The following remark is immediate (cf. Corollary 5, [10]).

Remark 2. Let *A* be an integral domain and *x* an indeterminate over *A .* The

following are equivalent:

- (i) *A* is a field.
- (ii) $(A, A[x])$ is a noetherian pair.
- (iii) $(A, A[x])$ is a locally noetherian pair.

The following generalizes Corollary 6 in [10] and Gilmer's classification of domains all of whose subrings are noetherian [7].

Proposition 2.1. Let B be a domain all of whose subrings are locally noetherian. Let P be the prime ring of B. Then (P, B) is a noetherian pair. *Further,*

(i) If ch B =0 then B is contained in a finite algebraic extension of the field of rational numbers.

(ii) If ch $B \neq 0$ then either B is algebraic over P or B is contained in a finitely *generated field* F *such that* tr deg_p $F = 1$.

Proof. By Theorem 1.7 *(P, B)* is locally N.P. Then Proposition 1.4 implies that (P, B) is in fact a noetherian pair. The rest follows on applying Corollary 6 in [10] itself.

Next we wish to construct locally noetherian pairs. This construction is on lines similar to that of the construction of noetherian pairs. Let us recall the following from [10].

Definition 3. A maximal ideal in of a ring *R* is said to be low (resp. high) maximal ideal according as ht $m = 1$ (resp. ht $m > 1$).

Notation Denote $\tilde{A} = \bigcap \{A_m : m \text{ is high maximal ideal of } A\}.$

Lemma 2.2. If *A* is a noetherian ring, then (A, \tilde{A}) is a noetherian pair.

Proof. See Theorem 8 [10].

Lemma 2.3. Let A be a locally noetherian ring. Then (A, \tilde{A}) is locally *noetherian pair.*

Proof. If in is a high maximal ideal of A, then $\tilde{A}_{m} = A_{m}$. If, however, in is a low maximal ideal then $A_{\rm m}$ is a one dimensional noetherian ring. Thus it follows that (A_m, \tilde{A}_m) is an N.P. Hence (A, \tilde{A}) is a locally noetherian pair.

Proposition 2.4. Let (A, B) be a locally noetherian pair. Let C be a ring *intermediate between A an d B . Then (C, B) is also a locally noetherian pair.*

Proof. C is locally noetherian. Let $C \subset T \subset B$ and in a maximal ideal of *C*. Put $p = \ln \frac{A}{A}$. Then T_m is a ring of quotients of T_p and therefore noetherian. Hence *(C, B)* is locally **N.P.**

Remark 3. Theorem 10 in [10] is also generalized as follows:

"Suppose (A, B) is locally N.P. Let T be the integral closure of A and B. Then $B \subset \tilde{T}$. If, however, A is noetherian then dim $B = \dim A$. In case A has no low

maximal ideals, *B* is integral over *A ."*

The following which is a generalization of Theorem 13 in [10], helps construct new locally N.P.'s from known ones.

Proposition 2.5. Let R be locally noetherian and $R \subset A \subset T$, where A is a finite *integral extension of* R . *If* (A, T) *is locally noetherian pair then* (R, T) *is also a locally noetherian pair.*

Proof. Let *B* be a ring intermediate between *R* and *T*. Since (A, T) is locally noetherian pair, $C = B[A]$ is locally noetherian and a finite integral extension of *B*. Using Theorem 2 in [5], *B* must be locally noetherian. An application of Theorem 1.7 now completes the proof of the proposition.

Acknowledgement. I wish to acknowledge my thanks to Prof. M. Nagata for his help and encouragement during the preparation of this note. I also wish to thank Dr. Jun-ichi Nishimura with whom I had several discussions.

> DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

DEPARTMENT OF MATHEMATICS RAMJAS COLLEGE, DELHI UNIVERSITY, DELHI-1 10007 INDIA.

References

- [1] D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math., 32 (1980), 362-384.
- [2] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
- [3] E. Davis, Overrings of commutative rings I, Trans. Amer. Math. Soc., 104 (1962), 52-61.
- [4] D. E. Dobbs, Lying over pairs of commutative rings, Canad. J. Math., 33–2 (1981), 454– 475.
- [5] P. M. Eakin, The converse to a well known theorem on noetherian rings, Math. Ann., 177 (1968), 278-282.
- [6] R. W. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
- [7] R. W. Gilmer, Integral domains with noetherian subrings, Comment. Math. Helv., 45 (1970), 129-134.
- [8] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970.
- [9] M. Nagata, Local rings, John Wiley 1962, reprint ed. Kreiger, 1975.
- [10] A. R. W ardsworth, Pairs of domains where all intermediate domains are noetherian, Trans. Amer. Math. Soc., 195 (1974), 201-211.