A note on locally noetherian pairs

By

Ravinder KUMAR

(Communicated by Prof. Nagata, July 30, 1982)

All rings are assumed to be commutative integral domains with unity $1 \neq 0$ in what follows. In order to generalize Gilmer's work [7], Wardsworth [10] defined a noetherian pair (N.P. in short) as follows:

"Let A and B be two integral domains such that A is a subring of B. Then (A, B) is said to be a noetherian pair if all the rings intermediate between A and B are noetherian."

If A is a subring of B and p a prime ideal of A then B_p denotes the ring $A_p \otimes_A B$ where as usual A_p is the localization of A at p. In Lemma 1 of his paper Wardsworth proves that if A is quasi-semi-local such that (A_m, B_m) is N.P. for any maximal ideal m of A, then (A, B) itself is N.P. and then goes on to ask if the condition that A has finitely many maximal ideals can be removed. Clearly, if A is an almost Dedekind domain (equivalently, A_m is a rank one discrete valuation ring for any maximal ideal m of A) which is not a Dedekind domain (for an example of such a domain see Appendix 3 [6]) and Q is the quotient field of A, then (A, Q) is not an N.P. However, (A_m, Q_m) is N.P. for any maximal ideal m of A. In this note we study pairs (A, B)such that (A_m, B_m) is an N.P. for any maximal ideal m of A and find in the sequel that many properties of the noetherian pairs generalize to such pairs. The notations and terminology are in general that of Nagata [9] unless stated otherwise.

1. Locally noetherian pairs

For the sake of convenience we make the following definitions.

Definition 1. A ring A is said to be locally noetherian if A_m is noetherian for any maximal ideal m of A.

Definition 2. Let A and B be two integral domains such that A is a subring of B (we shall henceforth say that (A, B) is a pair). The pair (A, B) is said to be a locally noetherian pair, locally N.P. in short, if (A_m, B_m) is a noetherian pair for any maximal ideal m of A.

Thus an N.P. is locally N.P. but the converse is not true as pointed out already. The following Lemma is immediate.

Ravinder Kumar

Lemma 1.1. Let (A, B) be a pair of domains. The following are equivalent: (i) (A_m, B_m) is N.P. for any maximal ideal m of A. (ii) (A_p, B_p) is N.P. for any prime ideal \mathfrak{p} of A.

Lemma 1.2. (A, B) is an N.P. if and only if A is noetherian and for each proper ideal I of each ring C intermediate between A and B, C/I is a finitely generated A-module.

Proof. See Theorem 2 [10].

The above lemma immediately yields the following characterization of locally noetherian pairs.

Proposition 1.3. Let (A, B) be a pair. (A, B) is locally N.P. if and only if (i) A is locally noetherian and (ii) for any intermediate ring C and a proper ideal I of C, $C/I \otimes_A A_{\mathfrak{m}}$ is a finitely generated $A_{\mathfrak{m}}$ -module for any maximal ideal \mathfrak{m} of A.

Proof. (A, B) is locally N.P. if and only if for any maximal ideal m of A, (A_m, B_m) is a noetherian pair. Also, C' is a ring intermediate between A_m and B_m if and only if $C' = C_m$ for a subring C intermediate between A and B. Now the result follows immediately on applying Lemma 1.2.

Remark 1. If (A, B) is locally N.P. then for any multiplicative subset S of A not containing zero (A_s, B_s) is also locally N.P.

It is well known that a locally noetherian ring A is noetherian if each nonzero element of A is contained in finitely many maximal ideals only. Following is an analogus result for locally N.P.'s.

Proposition 1.4. Let (A, B) be a locally N.P. If each nonzero element of A is contained in only finitely many maximal ideals of A then (A, B) is an N.P.

Proof. First of all as remarked above, A is noetherian. If A is a field there is nothing to prove. So we assume that A is not a field. Let C be a ring intermediate between A and B. Consider an ideal I of C. Let $J = A \cap I$. Then by Theorem 4 [10], $J \neq 0$. Now $C_{\mathfrak{m}}/(JC)_{\mathfrak{m}}$ is a finitely generated $A_{\mathfrak{m}}$ -module. Since J is contained in only finitely many maximal ideals of A, there is a finitely generated ideal I' of C such that $I \supset I' \supset JC$ and $(I/JC)_{\mathfrak{m}} = (I'/JC)_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of A. Thus I is finitely generated so that C is noetherian. Hence (A, B) is N.P.

It is easily observed that if (A, B) is locally N.P. then every ring C intermediate between A and B is locally noetherian. Now we prove the converse of this statement. The following lemma is immediate.

Lemma 1.5. Let (A, B) be a pair. Let I be an ideal of A such that $IB \neq B$ and let C = A + IB and S = 1 + IB. Then

- (i) S is a multiplicative closed set of the ring C.
- (ii) $C_s = A + IB_s$
- (iii) $IB_s \subset rad C_s$.

644

In the following Q(D) denotes the quotient field of the integral domain D.

Proposition 1.6. Let (A, m) be a local domain with dim A > 0. Let (A, B) be a pair. Suppose B is not noetherian. Then there exists a ring C intermediate between A and B such that C_n is not noetherian for some maximal ideal n of C.

Proof. Case I. When Q(B) is algebraic over Q(A), let J be an ideal of B which is not finitely generated. Put $I = J \cap A$. Clearly, $I \neq 0$. Let a be a nonzero element of I. Put C = A + aB and S = 1 + aB. B_S is not noetherian. Hence by Lemma 1.5, $C_S (= A + aB_S)$ is a non-noetherian quasi-local ring.

Case II. When Q(B) is not algebraic over Q(A), take a transcendental element x of B. Let a be a nonzero element of m. Put C = A + aA[x] and S = 1 + aA[x]. Then Lemma 1.5 and the argument used in the proof of Theorem 2 in [10] imply that $C_S (= A + aA[x]_S)$ is a non-noetherian quasi-local ring.

Theorem 1.7. Let (A, B) be a pair. Suppose every C intermediate between A and B is locally noetherian. Then (A, B) is a locally noetherian pair.

Proof. Case I. When A is not a field, it is sufficient to show that, for any maximal ideal \mathfrak{m} of A, $(A_{\mathfrak{m}}, B_{\mathfrak{m}})$ is a noetherian pair. Now any ring intermediate between $A_{\mathfrak{m}}$ and $B_{\mathfrak{m}}$ is also locally noetherian. Thus $A_{\mathfrak{m}}$ is a local ring and $(A_{\mathfrak{m}}, B_{\mathfrak{m}})$ satisfies the assumption of the theorem. Hence, Proposition 1.6 implies the conclusion.

Case II. Let A be a field. The conclusion is clear if B is algebraic over A. We, therefore, assume that Q(B) is not algebraic over A. Take a transcendental element x of B and let A' = A[x]. Then (A', B) is locally noetherian pair by Case I. Thus, Q(B) is a finite algebraic extension of Q(A') (Lemma 3, [10]). Krull-Akizuki Theorem implies that (A', B) is a noetherian pair. Also (A, A') is a noetherian pair (Corollary 5, [10]). Therefore, (A, B) is a noetherian pair. This completes the proof of the theorem.

An example of a locally noetherian pair which is not a noetherian pair was mentioned in the introduction. We end this section with another such example.

Example. Let R denote a noetherian integral domain whose derived normal ring is not a finite R-module and that for each prime ideal \mathfrak{p} the derived normal ring of $R_{\mathfrak{p}}$ is a finite $R_{\mathfrak{p}}$ -module (Example 8, p. 211, [9]). Set S = 1 + xR[x] and $A = R[x]_S$. Let $B = \overline{A}$, the derived normal ring of A.

Clearly (A, B) is locally N.P. Now A is nottherian and x is in rad A. Thus, B/xB is not a finitely generated A-module. Hence (A, B) is not an N.P.

2. Construction of locally noetherian pairs

Several of the results proved in [10] can be generalized suitably to the case of locally noetherian pairs. The following remark is immediate (cf. Corollary 5, [10]).

Remark 2. Let A be an integral domain and x an indeterminate over A. The

following are equivalent:

- (i) A is a field.
- (ii) (A, A[x]) is a noetherian pair.
- (iii) (A, A[x]) is a locally noetherian pair.

The following generalizes Corollary 6 in [10] and Gilmer's classification of domains all of whose subrings are noetherian [7].

Proposition 2.1. Let B be a domain all of whose subrings are locally noetherian. Let P be the prime ring of B. Then (P, B) is a noetherian pair. Further,

(i) If ch B=0 then B is contained in a finite algebraic extension of the field of rational numbers.

(ii) If ch $B \neq 0$ then either B is algebraic over P or B is contained in a finitely generated field F such that tr deg_P F = 1.

Proof. By Theorem 1.7 (P, B) is locally N.P. Then Proposition 1.4 implies that (P, B) is in fact a noetherian pair. The rest follows on applying Corollary 6 in [10] itself.

Next we wish to construct locally noetherian pairs. This construction is on lines similar to that of the construction of noetherian pairs. Let us recall the following from [10].

Definition 3. A maximal ideal un of a ring R is said to be low (resp. high) maximal ideal according as ht m = 1 (resp. ht m > 1).

Notation Denote $\tilde{A} = \cap \{A_m : m \text{ is high maxiaml ideal of } A\}$.

Lemma 2.2. If A is a noetherian ring, then (A, \tilde{A}) is a noetherian pair.

Proof. See Theorem 8 [10].

Lemma 2.3. Let A be a locally noetherian ring. Then (A, \tilde{A}) is locally noetherian pair.

Proof. If m is a high maximal ideal of A, then $\tilde{A}_m = A_m$. If, however, m is a low maximal ideal then A_m is a one dimensional noetherian ring. Thus it follows that (A_m, \tilde{A}_m) is an N.P. Hence (A, \tilde{A}) is a locally noetherian pair.

Proposition 2.4. Let (A, B) be a locally noetherian pair. Let C be a ring intermediate between A and B. Then (C, B) is also a locally noetherian pair.

Proof. C is locally noetherian. Let $C \subset T \subset B$ and \mathfrak{m} a maximal ideal of C. Put $\mathfrak{p} = \mathfrak{m} \cap A$. Then $T_{\mathfrak{m}}$ is a ring of quotients of $T_{\mathfrak{p}}$ and therefore noetherian. Hence (C, B) is locally N.P.

Remark 3. Theorem 10 in [10] is also generalized as follows:

"Suppose (A, B) is locally N.P. Let T be the integral closure of A and B. Then $B \subset \tilde{T}$. If, however, A is noetherian then dim $B = \dim A$. In case A has no low

646

maximal ideals, B is integral over A."

The following which is a generalization of Theorem 13 in [10], helps construct new locally N.P.'s from known ones.

Proposition 2.5. Let R be locally noetherian and $R \subset A \subset T$, where A is a finite integral extension of R. If (A, T) is locally noetherian pair then (R, T) is also a locally noetherian pair.

Proof. Let B be a ring intermediate between R and T. Since (A, T) is locally noetherian pair, C = B[A] is locally noetherian and a finite integral extension of B. Using Theorem 2 in [5], B must be locally noetherian. An application of Theorem 1.7 now completes the proof of the proposition.

Acknowledgement. I wish to acknowledge my thanks to Prof. M. Nagata for his help and encouragement during the preparation of this note. I also wish to thank Dr. Jun-ichi Nishimura with whom I had several discussions.

> DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

Department of Mathematics Ramjas College, Delhi University, Delhi-110007 India.

References

- D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math., 32 (1980), 362–384.
- [2] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
- [3] E. Davis, Overrings of commutative rings I, Trans. Amer. Math. Soc., 104 (1962), 52-61.
- [4] D. E. Dobbs, Lying over pairs of commutative rings, Canad. J. Math., 33-2 (1981), 454-475.
- [5] P. M. Eakin, The converse to a well known theorem on noetherian rings, Math. Ann., 177 (1968), 278-282.
- [6] R. W. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
- [7] R. W. Gilmer, Integral domains with noetherian subrings, Comment. Math. Helv., 45 (1970), 129–134.
- [8] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970.
- [9] M. Nagata, Local rings, John Wiley 1962, reprint ed. Kreiger, 1975.
- [10] A. R. Wardsworth, Pairs of domains where all intermediate domains are noetherian, Trans. Amer. Math. Soc., 195 (1974), 201-211.