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A note on locally noetherian pairs
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(Com m unicated by Prof. Nagata, Ju ly  30, 1982)

All rings are assumed to be commutative integral domains with unity 100 in
what follows. In order to generalize Gilmer's work [7], Wardsworth [10] defined
a noetherian pair (N.P. in short) as follows:

"Let A  and B  be two integral domains such that A  is a subring of B .  Then
(A , B) is said to be a noetherian pair if all the rings intermediate between A and B
are noetherian."

If A  is a subring of B and p a prime ideal of A  then B o denotes the ring Ao O A B
where as usual A  the localization of A at p .  I n  Lemma 1 of his paper Wardsworth
proves that if A  is quasi-semi-local such that (A„„ B„,) is N.P. for any maximal ideal
in of A , then (A , B) itself is N.P. and then goes on to ask if the condition that A  has
finitely many maximal ideals can be removed. Clearly, if A  is an  almost Dedekind
domain (equivalently, A„, is a  rank one discrete valuation ring for any maximal ideal
in of A) which is not a Dedekind domain (for an example o f  such a  domain see
Appendix 3 [6]) and Q is the quotient field of A, then (A , Q) is not a n  N .P . However,
(A , Q„,) is N.P. for any maximal ideal in of A .  In this note we study pairs (A , B)
such that (A„, B„,) is an N.P. for any maximal ideal m of A  and find in the sequel
that many properties of the noetherian pairs generalize to such pairs. The notations
and terminology are in general that of Nagata [9] unless stated otherwise.

I. L ocally  noetherian pairs

For the sake of convenience we make the following definitions.

Definition I. A  r in g  A  is said to be locally noetherian if A ,  is noetherian for
any maximal ideal in of A.

Definition 2. Let A and B be two integral domains such that A is a subring of B
(we shall henceforth say that (A , B) is a  p a ir ) . The pair (A , B) is said to be a locally
noetherian pair, locally N.P. in short, if (A,,, B,„) is a noetherian pair for any maximal
ideal in of A.

Thus an N.P. is locally N.P. but the converse is not true as pointed out already.
The following Lemma is immediate.
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Lemma 1.1. Let (A , B) be a pair of  d o m ain s . The .following are equivalent:
(i) ( A ,  BO is N .P. for any  m ax im al ideal in of  A.
(ii) (A r , Br ) is N .P. for any  prim e ideal p of A.

Lemma 1 .2 . (A, B) is an N.P. if  and only if  A  is noetherian and for each proper
ideal 1 of  each ring  C  intermediate between A  and B, is a finitely generated
A-module.

Pro o f . See Theorem 2 [10].

The above lemma immediately yields the following characterization o f locally
noetherian pairs.

Proposition 1 .3 .  Let (A , B ) be  a pair. (A , B ) is locally  N .P. if  and only  if
(i) A  is locally ' noetherian and (ii) for any  interm ediate ring C and a proper ideal
I of C, C110,,,A „, is a finitely generated A ,„-module for any maximal ideal in of A.

P ro o f . (A , B ) is locally N.P. if and only if for any maximal ideal in o f A,
(A m, B m)  is a  noetherian pair. Also, C' is a ring intermediate between A m an d  B,„
if and only if C'= Cm for a subring C intermediate between A and B .  Now the result
follows immediately on applying Lemma 1.2.

Remark 1. If (A , B) is locally N.P. then for any multiplicative subset S of A
not containing zero (A s , Bs ) is also locally N.P.

It is well known that a  locally noetherian ring A  is noetherian if each nonzero
element o f A  is contained in  finitely many maximal ideals only. Following is an
analogus result for locally N.P.'s.

Proposition 1.4. Let (A , B) be a  locally  N .P. If  each nonz ero elem ent of  A
is contained in only f initely  many maximal ideals of  A  then (A . B) is an N.P.

P ro o f .  First of all as remarked above, A  is noetherian. If A  is a field there is
nothing to p ro v e . So we assume that A is not a field. L e t  C be a ring intermediate
between A and B .  Consider an ideal I of C .  Let J=A  n i. Then by Theorem 4
[10], J 0 0 .  N o w  C,„I(JC)„, is  a  finitely generated A -m odule. Since J  is con-
tained in only finitely many maximal ideals of A, there is a  finitely generated ideal
1' of C such that I D I 'n JC  and (11.1C),,,=(17JC)„, for each maximal ideal m of A.
Thus 1 is finitely generated so that C is noetherian. Flence (A , B) is N.P.

It is easily observed that if (A , B) is locally N.P. then every ring C intermediate
between A and B is locally noetherian. Now we prove the converse of this statement.

The following lemma is immediate.

Lemma 1.5. Let (A , B ) be a  p air.  L e t  I be an ideal of  A  such that IB OB
and let C= A  + IB and S = 1+ IB .  Then

(i) S  is a multiplicative closed set of  the ring C.
(ii) C5 =A +1B 5

(iii) /85 c  rad Cs.
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In the following Q(D) denotes the quotient field of the integral domain D.

Proposition 1.6. Let (A , m) be a local domain with dim A > 0 .  Let (A , B) be
a  p a i r .  Suppose B  is not noe therian . Then there ex ists a rin g  C  intermediate
between A  and B such that C„ is not noetherian for som e m axim al ideal n of C.

Pro o f . Case I. W h e n  Q(B) is algebraic over Q(A), let J be an ideal of B which
is not finitely generated. Put / =J n A .  Clearly, 1 0 0 .  Let a be a nonzero element
of I . P u t  C =A +aB  and  S = l + a B .  Bs  is not noetherian. H ence by Lem m a
1.5, Cs  (=A  +aB s ) is a non-noetherian quasi-local ring.

Case II. When Q(B) is not algebraic over Q(A), take a transcendental element
x  of B. Let a  be a  nonzero element of in. Put C=A   + aA [x ] and S= 1 + aA[x].
Then Lemma 1.5 and the arguement used in the proof of Theorem 2 in [10] imply
that Cs  (=  A + a A [x ]) is a non-noetherian quasi-local ring.

Theorem 1.7. Let (A , B) be a pair. S uppose every C intermediate between A
and B  is locally  noe therian . Then (A , B) is a locally  noetherian pair.

Pro o f . Case I. W h e n  A  is not a field, it is sufficient to show that, for any
maximal ideal in of A, (A„„ B,,,) is a  noetherian pair. Now any ring intermediate
between A,„ and B„, is also locally noetherian. Thus A,„ is a local ring and (A,, B„,)
satisfies the assumption of the theorem . H ence, Proposition 1.6 implies the con-
clusion.

Case H .  Let A  be a  field. The conclusion is clear if B  is algebraic over A.
We, therefore, assume tha t Q(B) is not algebraic over A .  Take a  transcendental
element x of B and let A ' =A [x ]. Then (A ', B) is locally noetherian pair by Case I.
Thus, Q(B) is a  finite algebraic extension of Q(A') (Lemma 3, [10]). Krull-Akizuki
Theorem implies that (A ', B) is a noetherian pair. Also (A, A') is a noetherian pair
(Corollary 5, [10]). Therefore, (A , B ) is  a  noetherian  pair. T his completes the
proof of the theorem.

An example of a locally noetherian pair which is not a noetherian pair was men-
tioned in the introduction. We end this section with another such example.

Example. Let R  denote a noetherian integral domain whose derived normal
ring is not a finite R-module and that for each prime ideal p the derived normal ring
of R „ is a  finite R o-module (Example 8, p . 211, [9]). Set S=1 + x R [x ] and A =
R[x]s . Let B = A, the derived normal ring of A.

Clearly (A , B) is locally N .P. Now A  is noetherian and x is in rad A .  Thus,
BlxB is not a finitely generated A -m odule. Hence (A, B) is not an N.P.

2. Construction of locally noetherian pairs

Several of the results proved in [10] can be generalized suitably to the case of
locally noetherian pa irs. T he  following remark is immediate (cf. Corollary 5, [10]).

Remark 2. Let A  be an integral domain and x  an indeterminate over A .  The
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following are equivalent:
( i ) A  is a field.
( ii) (A , A [x]) is a noetherian pair.
(iii) (A , A [x]) is a  locally noetherian pair.

The following generalizes Corollary 6 in  [10 ] and  Gilmer's classification of
domains all of whose subrings are noetherian [7].

Proposition 2 . 1 .  L e t  B  b e  a  d o m ain  all o f  w hose subrings a re  locally
noetherian . L e t P  b e  th e  p rim e  rin g  o f  B . T hen (P, B ) is a noetherian pair.
Further,

(i) If  ch B =0 then B  is contained in a f inite algebraic extension of  the f ield
of rational numbers.

(ii) If  ch B OO then either B  is algebraic over P or B  is contained in a finitely
generated f ield F such that tr deg, F=1.

P ro o f . By Theorem 1.7 (P, B ) is locally N .P . Then Proposition 1.4 implies
that (P, B ) is in fact a  noetherian pair. The rest follows on  applying Corollary 6
in [10] itself.

Next we wish to construct locally noetherian pairs. This construction is  on
lines sim ilar to that of the construction of noetherian pairs.  L e t  u s  recall the
following from [10].

Definition 3. A  maximal ideal in of a  ring  R  is said to be low (resp. high)
maximal ideal according as ht = 1  ( r e s p . h t  >  1 ) .

Notation Denote A- =  n { A : m is high inaxiaml ideal of A}.

Lemma 2.2. If  A  is a noetherian ring, then (A , g) is a noetherian pair.

P ro o f . See Theorem 8 [10].

Lemma 2 .3 .  L e t A  b e  a  locally  noetherian r i n g .  T hen (A , g ) is locally
noetherian pair.

P ro o f .  If in is a high maximal ideal of A, then gm =A m .  If, however, in is a low
maximal ideal then A„, is a one dimensional noetherian r in g .  Thus it follows that
(A m ,  g m ) is a n  N .P . Hence (A , ,21-) is a locally noetherian pair.

Proposition 2 .4 .  L et (A , B ) be a  locally  noetherian p air.  L e t  C  be a ring
intermediate between A  an d  B . Then (C, B) is also a locally  noetherian pair.

Pro o f . C  is locally noetherian. Let COETŒB and in  a maximal ideal o f C.
P u t  =in n A .  Then T11,  is  a ring of quotients of T p a n d  therefore noetherian.
Hence (C, B) is locally N.P.

Remark 3. Theorem 10 in [10] is also generalized as follows:
"Suppose (A , B ) is  loca lly  N .P . L et T  be the integral closure of A  and B.

Then B c D. If, however, A is noetherian then dim B= dim A .  In case A has no low
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maximal ideals, B is integral over A ."

The following which is a generalization of Theorem 13 in [10], helps construct
new locally N.P.'s from known ones.

Proposition 2 . 5 .  Let R  be locally  noetherian and R c A where A is a f inite
integral extension of  R . If  (A , T ) is locally  noetherian pair then (R , T ) is also a
locally  noetherian pair.

P ro o f . Let B be a ring intermediate between R a n d  T  Since (A , T) is locally
noetherian pair, C= B [A ] is locally noetherian and a finite integral extension of B.
Using Theorem 2 in [5], B must be locally noetherian. An application of Theorem
1.7 now completes the proof of the proposition.
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