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§ 1 .  Introduction

We shall discuss in this paper firstly the so-called piston problem of the form

p(x, t ) [  t ) + v   a
a
x  yl—  p  a

a
.: 2  v  K  a

a
x  pY ,

Opa
+ (p v )= 0 , (t>o, x  [0, 1(i)]),at ax

[7(t) -- l+ V(2)d T 0) (1, positive const.; V(t), suitably smooth function to be
clarified later); p, K, positive constants; y, const. ( 1 ) ;  p and y are model functions
for density and 1-dimensional velocity, resp.],

P(x, 0)=p0(x) (>0), y(x, 0)= y o (x)
( I .1)' t v(0, t) =0, v(l(t), t)=V(t), (t 0).

As a result, we shall demonstrate the unique existence of a temporally global solution
for (1.1)—(1.1)' or, rather, for a system of partial differential equations equivalent to
(1.1)—(1.1)', with conventional complementary conditions added.

Secondly, we shall consider the piston problem of the form which is the accurate
1-dimensional model of the fundamental system of differential equations for fluid,
i.e.,

p(x, t ) [  v(x, t)+ v  a
a
x p *   a

a
x2

2  —  a
a
x  (Rp0),

(1.2) Cvp [ 0(x, t)+ v  : x — R io   oax  v+ p* (L  vy,
a ap+ (pv)=0, (t>0, xe[0 , -1(0]),at ax

[0, absolute temperature (>0); R , gas constant; C i,, specific heat at constant
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volume (>0); p* =4p/3 (p, viscosity coefficient (>0))],

P(x, 0 ) =P0(x) (>0), v(x, 0)= vo (x), 0 (x, 0 )=0 0 (x) (>0) ;

(1.2)' v(0, t) = 0, v(/(t), t)= V (t), t) =Ox(/(t), t) =0,

where we assume for simplicity that Cv  and p* are constants. We shall treat (1.2)-
(1.2)' by transforming our problem into another equivalent one in the same way as
in the first case and obtain some a priori estimates for it.

The notation is the same as in [3 ], [4 ]. For example, HU)a and Hith e (0, 1),
Te (0, co)) denote Holder spaces H2+I and H P ,  resp., as RI in their definitions is
resplaced by I= [0, /] (cf. [2]). For reference, the definitions of H2 +" and H P  are:

(1.3) H2+% {f (x), defined on R ':ID T  f  1(o ) + l(") < 00} ,
nr=-0

( f r ,  the sup-norm; Ifli"), the Wilder coefficient of exponent cx off);

(1.3)' H P  {g(x, t), defined on R1 x [0, T]

2 2
E  I Din Dr gl (

7 .°)E I DDit'g 1(» < co  ,
2r-Fm=0 x 2r -Fm= x

sup ig(x,t)1; Ig{(? ) I g l .4 2 ) +10,4 )1; Ig I OE2 ) , the Wilder coefficient
( x ,t ) e R i  X  [ 0 ,T ]

of exponent a /2  concerning th e  tim e variable; igi (6 ,  th e  W ilder coefficient of
exponent a concerning the spatial variable).

§ 2. The first problem

W e express the problem (l.1)-(1.1)' w ith  a d d itio n a l c o n d itio n s  in  th e  v-
characteristic coordinates (x o , to ) as follows:

(2.1)
xc) 

Pt0(X0+ t())
P0(X0) (  4- 0.)

K  ( 7   Po
( X 0 , t 0 )  )xo Po \ \  1 +  CO I

CP- 1 )to=P6-1 Px0,
 (xoe I= [0, 1], 0) ,

(W(X0, t 0 ) 7  b  0(x 0, 2)d T ,  therefore p =pol(l +a))),

p(xo , 0)= v0 (x0 ) e HU - )I, Xxii, 0 ) = Pax()) e HMG'
(0 < fio a in fP o P o P= o2-- -1PolM < 0 0 ) ;

(2.1)' 40, /0= 0 , 11(1, t 0 ) —V(t0 ) (defined on [0, co) and belonging to H4foc:(,-21) for
an arbitrary Te (0, cc));

pva0)— Kyp6' - ' pO(0)= 0, pp 6 'v;(1) —  Kyp6 - 2 p(1)= V '(0) .

We note that there is essentially no difference between the study of (1.1)-(1.1)' and
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that of (2.1)-(2.1)' as an independent system of partial differential equations. There-
fore, we shall here deal with the temporally global problem of (2.1)-(2.1)'. It goes
without saying that, fo r  some Te (0, co), there exists a unique solution (t, p)e

x B M  of (2.1)-(2.1)'. We give without proof:

Lemma 2.1. Take a n  arb itrary  Tea oo) and f ix  it. L e t  (11, p)e H f  x
D ).14 1

(1) satisfy (2.1)-(2.1)'. T hen, 11 I1Y M
 is estimated from the  upper by C(I1+

co r 1(1 + coy

In the proof of the above lemma, remark the relation

(2.2) X0X0 = exp [- kiP+1)-col  deo x

x ie x p  [Y '  k P° dtif l  0 1 + 0 ) ° J1 L (1+ co)Y-1

(k  K lu ).

Let T a n d  b e  the same as stated in the above lemma. Then,

bx0( K (   P o  (2.3) I  p002dx0 = pov6dx0+ Y  - K a6 ' )
2 2 o 1+w1 +  co

to
V (T)dt - 1

1
0
° p  1 7°‘.0 cix odt + K1 1 0 [(  1

1_)i_ow Y  - a61Dx .dx0dr,

(0 podx0)•

Now, we define 0(s) (s> 0) by

(2.4) ik(s) (a-6' - v)d
a (.7

T), where C is monotonically increasing in each argument.

+ Po+  co)idt;0

aas - +

 

(s- r" - a6 -1 ) (y> 1)y - 1

ao (s- as') -log (ao s) = 1) ,

[N .B .: ill(a ) =0; t1/(s)=a6 -s - Y >0(s> aV), -0(s= aV), <0(s <a)].

We note that the following relations hold:

(2.5) ( P o l f r ( 1 + w [ a °  ( 1 P o  Y ) x° 'atoP o +

(2.5)' Çoo f_:°0) )7 - 41P,codxodto  - dxo St° a  (P h0  u t

=  P h ( P V ) d X 0 POO (  
1 + w

 )dXO.

Thus, from (2.3) we have

1 +  ))d
t

Po
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b21(2.6) poP2 dxo  + K Pokt361(1- +(.0 )) dx 1-to + 1 +x°0) d xo dr =

=E o +1(1//0 + o
ti) i (  P o   ) 7 41

 i!Ex°0 )K L 111+ co xo=i• 
1/(r) dr,

(Po Potk(961) d xo, Eo Po v(i dxo) •

Next, we define y(xo , to) by

cto px o

(2.7) Axo, to) =  - )0 L w

- [P(4), to) -  v 0 (x ')]c ix .
o

Note the following relations concerning y(xo , t0 ):

+ 1 P-1-1  +  k  (  1+'

k P6 (1  -" W '  (y>
(2.8) ± w)to + yto(1 co=

Y 

kp o (Y =1) ,

+ (on 0 + YYto(
1 + COP = ykpl, (y?_-1).

Hence, we have

(2.9) (1 + co)Y = e- vY(xo• + ykpl)(xo) S
g t .  

eYY( xo, ' ) .
0

This shows that, in order to solve the global problem of (2.l)-(2.1 )' , it suffices by
Lemma 2.1 to have a priori estimates for lyq(

), ) .
Now, according to the definition of y(xo , to), we obtain, for the 3rd term of the

right-hand side of (2.6),

(2.10)
to

k [ ( 11 .°0)7- a6}1x o _ I V(T)Cit =( 1 +

=/1 1to to
o  

ka6 V(r) 'AT - z15 
o  

h(1, r)V (T)dt =

= likal, t °  V(T) cl-r - py(1, to)V(to) + p f °  y(1, 1-)V'(-r) dT.
Jo o

Moreover, we note that

(2.11) ly(x0, t0)1_1.) , (1, t0)1 +1y(1, t0)—y(x0, t0)I,

and that, by (2.6),

(2.11)' ly (1 , to) - A xo, to)I = Pp° d x ;I j 0  

1/215_ it - 1 (2fioi) 1/2 —

2  
Po02 dxo) 5

k (  P o1+w ) 1  d t,.=, 
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A 1 [E 0 + KT 0 + ,ukal,S o
f °  V (r)d to)V (to)+

+125
 t o

Y(1,0
)V '(r)dT P12 (A 1 —= P- 1 (2 fio1) 1 1 2 ) •

Thus, in  order to estimate y(x o , to ), we have only to estimate y (l, to ). Directly
from the 2nd equality of (2.8), we have by integration and by the definition of

(2.12)
t°

/0
(1 + co)10dx0 d to + y10(1 + co) dxo dto =

o c

= Pok ( 1  +
P o

cod x o  d to — k(Y —  l) ci
tu P o V 1 ( 1 - 1 -

p o
w  )dx od to+

+ kyayt o — 1 i °  k(y — 1)4 7 (r )d r  (y  l ) ,

w here it is to be noted that, for y=1, the extreme right-hand side gives ka o lt o .
Also, we have,

(2.13) the extreme left-hand side o f (2.12)= 1
0  

V(r)dr +

+7(to)YU, to) + (xo + /0 v(xo , r)dr)  P ° dxo —Joo it

— S
o  

V (r)y(l, T)12IT
to

1t° P° P 2 dx0 dt o .
o  o  p

Thus, noting the relation

0
to

+ qx o , r) clor 57(to),

we obtain from (2.12)

ria
(2.14) 1001A/, V(t)ld't + 7(t0) P ° II dxo +

+1 1 0  
v(-01 1.14/, t)i (it + 1f° po   p2 dx, dto+kYaUto +o kt

+414y — i)\  (1 (t)d -r+ k(y — t'D P o P  ( 1 ± dxo dto
JO o 1 Po

(0_t 0 y . 1 ) .

Hence,

to
(2.15) IY(1, 1'0)15  [T+ ly(1, T)Iclti+ A 10 1 -12- p o 02  dx0 ) 1 /  2 +  -L (T ) 0

+ L(T) - P °  P 2  dx
°
 dt

°
 +ka (y1-1-(y —1)1110T+Jop  2 
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+k (y -1 )r ° P O '  (  1 +  t °  )dx 0 dto l ,0 r Po

T max I V( 10)I, I 'IT is similarly defined;
OLS. toST

L(T)_= min 1(t0)).ost o s r

Furthermore, it holds by (2.6) that

(2.16) T2 - I[ . . . ] i  ( y  — 1   ) [

E0T+KIP0T+KaôIVIr--,it it
r ( r

+p(IVITH- Ir l r ) ) iy(1, T')I dT'idt +0

+ka6[y1+(Y - 1 )17 1r]T

Also, we have

(2.17) poD2 dxo 5[E 0 +KW 0 + Ka6IvI T T+

+Y(1VITly(1, to)I +IVIT o
(o IY(1,

2,,„} 2 (v,>0).

Now, take /1= [A 1 i(1 + I VIA  - 1 • Then, (cf. (2.12))

(2.18) A i Of  j2-PoP 2 d x o r 2 A t n -  - ]2 +  A4/3 A1fittIVITIY(1, t 0 )1

+ A  )61E0 -FK wo + Ka61 VIT T+ I VIT 
t o

 I Y (1, r) I d r 3 + 4 1
- 11(1- FIvIT)---

IVIT 
1+ M T

 ly(1, to)I+ A ,fi [...] 3 + A l it( 1 +1V1r).4

Hence, from (2.15) it follows that

(2.19) IY(I, t0)1 1,1- 1 [*•]3+ ATP(1+ VI T )2 +L(T) - 1 (1+ VIT)E - Ji +

+L(T) - 1 .(1 +111r) I VIT(T+ 1 0
g0 ly(/, r)I dr)

Io
C i (T)+ C 2 (T)[1 0  (Iy(1, 1)1+ (10  d r i ,

t o  T ) ,

where C i (T) (>0) and CAT) 0); remark the case of V(r)-= 0) are monotonically
increasing in T .  Thus, it follows that
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ly(I, to n °  __C3(T).---_C1(T)e( I  + C 2 ( T ) 1 T  (/ ' as T /).(2.20)

Hence, we have:

Lemma 2 .2 .  I f  (0, p) TIM  x 13347) satis f ie s  (2.1)-(2.1)', then the following
inequalities hold in an a priori w ay :

11 + 0)1(19 ) -- 131(iYi (7.9), T )  ( / '  as each argum ent / ) ,{

Finally, we obtain:

Theorem 2.1. There ex ists a unique solution (0, p) of (2.1)-(2.1)' such that it
belongs to Hi-11 ) x 134.-tr ) f or an arbitrary  T E (0, (X)).

§ 3 .  The second problem

W e express (1.2)-(1.2)' with conventional additional c o n d itio n s  in  th e  y-
characteristic coordinates in the same way as in §2:

tt
* ( P i c o  R P o °  

P ax ()) \ 1+ co(x0 , 10 ) po \ 1+ a)
(3.1) KO x o _     I) x 0 +   i t *

 Pio  
Cypo \1+ (1) ixo C v P 0  1 +  (0 Cvp0 1+ co

(P -1 )e.= P6 1(5x0, (xoel, t

N.B. : 1 + > 0 ,

0(x0 , 0)= vo  e 1/61-
)x, 0(xo , 0)= 00 E H2(j)2 (0 0 > 0),

P(xo, 0) = pc, E Mil3œ < Po < ;

to=0,,„(1, to= 0, 0(0, t o )= 0, b(I, to)=V(to)

(which is the sanie as in (2.1)'), (to 0 )  ;

p*va0) - R(p 0 00 )'(0)= 0.

V' (0) -   1 2 *  v " ( l ) R  (PoOor(1).
Po(1) ° Pal)

On the basis of the same notation as mentioned in §2 we shall discuss (3.1)-(3.1)' as
an independent system of equations, derive a lemma and give a particular solution.

3 . 1 .  A lemma on (3.1)-(3.1)',
Take an arbitrary T e (0, co) and fix it. L et (0, A) e  Hitt) X H it h x  /33.-th

satisfy (3 .1 )-(3 .1 )'. We obtain easily the following equality from (3.1)-(3.1)'.

(2.21)
1(1 + 0.0- 1 11P - B2(IY1(7-9) , ( / as each argum ent / ) .

f) to (X o, to) —

0,0 (xo, to) -

(3.1)'
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(3.2) Po 2— (x 0 , to ) dx oC y p 0 0 ( x 0 , to ) dx0 =

I 2 Ix0.,,V(tO dt'o .= 5
1  
—2-- Povo dxo + CPoOo dx0 +v 11'410+7,1:NO 

We define Y(x o , to) by

(3.3) Y ( x o , to ) =- — P° r i)(x , to ) —  (x )] dx'o +Jo
to+ Et +(.0(0, (01— tE—bx0(0, rot+ k*po (0)6(0, t;)] dt(') , (k * 1 1 * )  •o

Y(xo , to ) satisfies

fo (x o , to ) bx°± kk*P°  —   Yx0 k* Po
° 

1+ w(x o , to) 1+w  P o  xo1 + w

(3.4)
Y  =  P °x0 11

Y(x o , 0)=0.
Hence, it follows that

(1 +0 ,0+11;0(1 +(o)= k*PoO,

I (1 +co)(x o , 0)=1.

The above relation is an  ordinary differential equation of the 1st degree in  1 +co
for each fixed xo . Thus, we have

10
(3.6) (l+w)(xo, t o ) =e - Y(x°' 1°)E1+ k*p o0 ( x 0 , t)er (x ° '"  d t] .

Moreover, by (3.4), the equality (3.2) can be written in the following way:

(3.7)
p 2

(PO —
2  

+ CvP130)(x0 , to) dx o = El—
to

 y* 17 1 (1, r)V (T) dr =
o

= E, — p* Y(1, t0 )V (t 0 ) + ti* 1
0  

Y(1, T)Vt-'e dT,

(E 1 _=. ( p o
 : )1)^ 2  +Cy /V W  dx0)•2

In the same way as in § 2 (cf. (2.11), (2.11'), we have

(3.5)

(3.8) Y(xo, t o )I .Af (P o r 2

\ 2 I - +1Y (1, )1 •-1,(1)

  

(At =- p* -  1 (21 )1 /2 ).

Also, in order to obtain a priori estimates f o r  YIÇT/ ) , it suffices to have thcise for
I Y(1, to )I. 'There follows from (3.5) an equality
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(3.9) dX0 CO)todto + d X 0  Yto (1+ (0 )dto =
5oio o

= k*1dto11 po Odxo , (VT E [0, T ]).
J0o

Referring ourselves to (2.13) and (2.14), we have

c i  n

(3.10) 7(T)IY(/,T)I   IP(X0, T)1dX0 +15 r V 00)1d t0
0  P 0

2 E t f i k* 
+ 1 I1

700)I IY(19 t0)Idt0+  dtip P ° P2dx0+ 43,1 CvPohlxol •
/.1* 0 J O  2 o o

By (3.2), it holds that

(3.11) I Y(/, r)I A I [E i  + Y(/, "c)I I V(T)I +

+ ) lY  ( 1 , t0)11r (t0 )ld t0 r 2 + L(T) - 1 [5t

IV(to)i dto+

et et
-1-) 0 1v(to)11Y(1, t o )I dt o + A2

o
dto

1 ( e l) D2 + Cy  )906 dx01,o 2

2 k*(O 'r +

We define E 1(t) by

(3.12) E,(r)=E , +fel V(T)I I Y(/, T)II  Y (l. to)i 1/V101dt0-

Then, we have

(3.13) I Y(/, T)I <AIE 1(T)112 + L(T) - 1 [TI VI T  + I VIT5T
o l Y(l, to)I dto +1:Ei(to) dtol

By using the inequality E1(t)'/ 2 flE1(T)+ 4
1
/3  (V,6> 0) as in §2, after all, we obtain

(3.14) I Y(/, '01 + C 2(T) 1:LI 17 (1', to)i + 1 0
to  Y(/, t) I d t61 dto , (0 T  T),

where C i (T )( > 0) and e 2 (T ) are monotonically increasing i n  T .  Thus, the
following lemma holds:

Lemma 3 .1 .  (i) For Y(x o , to ) defined by (3.3), we have in an a priori way

(3.15) Y(x0, ta r  131(T) (/ a s  T i ) .

(ii) For p and 0-  t, we have a priori estimates

1131P5_-B2(T) (/ as T / )  (cf . (3 .6 )),

(3.15)' c  10 - 1 Ir  B3 (T )  (/  as T / ) ,  ( d e riv e  th e  equation w hich 0- 1  satisf ies

from that which Ô does).
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We have not as yet a priori estimates from the upper for O. If we can have such
estimates, then we shall have a clue to settling the temporally global problem of (3.1)-
(3.1)'.

3 .2 .  A particular solution

Here, we add that there exists a particular solution of (3.1)-(3.1)' such that

b(x0 , t0 ) =ax 0  (a, const.), a t ,

(3.16) P(xo, t0 )= p0 (1 +at0) - 1 , (P o ,  const. > 0) ,

0(x0 , t0 )=0 (t 0 ),

where 0(t0 ) satisfies an ordinary linear differential equation of the 1st degree

f  Cy p0 0'(t0 )+ ( 1+at 0 ) -  lek*ap 0 0(to )=W a 2 (1+at 0 ) - 1 ,
(3.17)

1 0(0)=0 0 (const. > 0).

We can easily solve (3.17), that is,

(3.17)' 0(t0)=  + ( o n -   aft*  )0  + a t o r R i c v .
R p oR p o  I

Let us consider the three cases of a = 0, a> 0, and a <O.
(i) a=0.

(3.18) = 0, O= 0 0, = po .

(ii) a> 0.

= axo

(3.18)' 0(t0) (t0-+00),Rp o

=p 0 (1 + a t0 ) - 0  ( t 0 --. oo).

We note that, if 00 = att*(Rp 0 ) - ', then 0(t0) ----

(iii) a <O.

13= ax0 , [3,0 =a, P .,., 0 =0,

(3.18)" P= po (1 + a to r œ (to — a

0 =0(t 0 ) — 4  0 0  (t I0  .  7  —a

It is of much interest that and 6, as they say, blow up in a finite time - .

Ke-4if UNIVERSITY OF COMMFRCE
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