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O . Introduction

The classical Paley-Wiener type theorem asserts that the Fourier transformation
is a topological isomorphism from C ( R )  to a space of certain kind of entire func-
tions on C ", identified with the  se t o f not necessarily unitary characters of R".
As this example suggests, the study of Paley-Wiener type theorem on a Lie group is
closely related to an  analysis o f non-unitary representations. M ore precisely, we
may understand that the study of Paley-Wiener type theorem contains at least two
main subjects:

1. To construct a  family of "non-unitary" representations, which should be
an "analytic continuation" of a continuous family of unitary ones, especially, those
appearing in the decomposition of the regular representation.

2. To show that the Fourier transformation is  a  topological isomorphism
from C  (G ) to a  space of certain kind of (operator-valued) entire functions on a
complex space.

If we succeed to obtain Paley-Wiener type theorem in this sense, we may consider
the constructed family as a "non-unitary" dual.

For semisimple Lie groups, we may take the so called elementary representations,
which a re  realized through bounded operators in  a  H ilbert space, cf. [18, 19].
Contrary to this, non-semisimple Lie groups make us encounter a  difficulty such as
nonunitary representations cannot be realized through bounded operators in
any Hilbert space, in  general. §1 gives a  sim ple  construc tion  o f non-unitary
representations for a certain kind of groups.

Examples of non-semisimple Lie groups, for which we have obtained Paley-
Wiener type theorem are not so many. They are motion groups [9, 10, 11], some
solvable Lie groups [1, 2, 3], and the oscillator group [14], fo r instance . Except
the last, they are all semidirect product with normal vector groups. In the case of
motion groups, Peter-Weyl theorem for compact groups plays an important role in
the proof of the papers [9 , 10 , 11]. But we show in this paper that a certain kind of
semidirect product groups, including motion groups, can be treated in a unified way
without using Peter-Weyl theorem. Our group G = N. W is a semidirect product of
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a vector group N with a  connected Lie group W .  We pose an assumption on the
action of W.

In §1 we consider a  a-Hilbert space (f with seminorms ll • llt(t e R), on which we
construct a family of non-unitary representations V ,  "induced" from ).e N*. W e
remark that they are not in general irreducible. For some familiar groups, however,
almost all of them are operator-irreducible. The group of affine trnsforrnations of
a  straight line, Heisenberg groups and the group of upper triangular matrices with
unities on the diagonal, these are such ones.

In §2 we consider a Sobolev space (f  W , which turns out a  subspace of
C °-functions. Now the Fourier transform T A ( f )  o f  a  function f e C(G) has the
following properties (1 0 )—(3°) (Proposition 8): (1') T I ( f )  is a  continuous operator
o n  r  whose range is contained in  r , .  T h i s  is expressed by a definite scale change
on r, cf. §1 (5). (2") Operators TA( f), /1e N*, corresponding to the same W-orbit
are similar each other, that is, 7' w= L„,.T•'.L-, by a  left translation L„,, w e  W.
(3°) Matricial coefficients of T'• are entire functions of /l e N*, the complex dual of N.

Our key Proposition 9 asserts the converse, to the proof of which §3 is devoted,
where Sobolev's lemma plays an  essential role. It may be worth while to recall
that for Euclidean spaces or compact Lie groups, Sobolev's lemma reduces to the
Fourier series expansion or Peter-Weyl theorem [16, 17, 18].

In §4 we state our main theorem, an alternative formulation of Proposition
9. Now let Q be a compact set on G and t— >TÀ(t)=TI(t; Q) be a  corresponding
scale change of WO E R), (cf. §1 (5)). F u r th e r , Let B =B (Q ) be the space of operator
fields T = (r)  on N*, having the properties (1°)—(3°) (Proposition 9):

(1 ° ) f o r  a n y  X  a n d  Y  in  U((5) there exists a  constant C(X, Y )  such that
0,.(X)- TA. ai(Y)(PlIt- C(X, Y)1149 11,Awfor any cp. e and teR,

(2 ° )  L a .V .L a -i = V a  (a  e W),
( 3 ° )  Matrix coefficients of T A  are entire functions on N*.

Natural seminorms o n  B  m ake it a Fréchet sp a c e . Final formulation states as
follows:

Paley-Wiener type theorem . F ourie r transformation f—*  TA(f) is  a  to  a  topol-
ogical isom orphism  from  C (Q ) onto the space B(Q), and so , it is  an isomorphism
from  C (G ) onto the inductive lim it of spaces B(Q).

Now returning to the beginning, we can say that our dual object is realized as
E N*IWI.

In §5 we show that the representations T; are operator-irreducible if the isotropy
WA in W at N* is trivial.

1. Construction of representations

Let G = N. W be a semidirect product group o f  a  real vector space N  with a
connected Lie group W, acting on N. J  denotes the dual space of N and N *  the
complexification of R: N* = NO R C .  For ) E N *  we put A(n)=exp n >  and
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in this manner N* is identified with the set of not necessarily unitary characters of
N . W acts on N* as follows:

A • w(n)=A(wnw - 1 ), A  E N *, n  E N.

First of all we realize unitary representations TA =IndgA (A G g) on L2 ( W, dr w)
as follows:

(1) P;cp(w)=A(wnw-1)(p(wv), f o r  g =nv.

These are not in  general irreducible. They appear in  the  process of decom-
position of the regular representation pa : This follows from the general theory of
induced representations,

pa = Indf:1=Ing Ine I=  In4 p„,= In a  AdA.

As for further procedure of decomposition into irreducible components, see [8].
The action of W G Won N coincides with the inner automorphism n—>wnw- ' of G.

In the vector space N we once for all fix an Euclidean norm and MwM denotes the
norm of the automorphism relative to this norm.

Now we construct non-unitary representations after the method o f  [1, 2, 3].
Put M(w)=max111 10, Clearly it holds for any n E N and A e N*

IA • w(n)I 6exP(M(w)11 111-1 AIIIInII).

For every t e R put H (t)=L 2 ( W, exp (tM(w))dr w) and let 11• 11, denote the norm  in
H (t ).  If t, then 11(Plis-114011t a n d  so  H (s )D H (t). The inclusion is continuous.
The dual space of H(t) is identified with H(—t) via natural dual pairing:

<9, tk>= 9(w)t1J(w)dr w , 9  e H(t ) a n d  tp e H(— t) .

Proposition 1. (i) The projective limit W=Ii.m. H(t) is a  Fréchet space with
a  system  of  seminorms II • Ilt. ( i i )  T he dual space W' of coincides w ith the
inductive limit: =lirt) H(t).

Pro o f . (i) Let (9„) be a Cauchy sequence in  W, we have for every real t
II(P. —  (PHA t —03 a s  n, m—*co. S in ce  ev e ry  H(t) is complete, there exists a unique
element 9, in  H(t) such that ço,— p .  From the inclusion relation H(s)DH(t) for

t, 9, must coincide with 9,.
(ii) Let F be an element of V . B y  the definition of the topology of W, F is already
continuous o n  some space H(t), tha t is , F e H(—t) by the natural dual pairing.

Q. E. D.

Proposition 2. I n  th e  space cg th e  ex pression (1 ) giv es a  representation
( 4  (f) also for every non-unitary character A  e N * .  It holds

(2) PPlitr-II(Plivt(t;9),

where the scale TA  is determined as follows: for g=n.w
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I M(w)(t +211 fm ID, if t ?, — 2111 A1111 1711
(3) TAO; g)=

M(w) -1 (t +211Im ).11111111), if t —211 1m 411'711

It is enough to note that

M(ww')__.<_M(w)M(W), M(w -  = M(w) .

When the group W  is compact, the function M(w) is continuous and so  the
space coincides w ith L 2 (W, d,.w). This is the case for the Euclidean motion groups
[11], Cartan motion groups [9] and motion groups [10]. Hereafter we are con-
cerned with the case when W is not com pact. We need, however, an assumption:

A ssum ption. For every x 1, the set { 14) W ;  MOO a} is compact.
We exclude, for instance, a case when a non-compact group W acts on  N through
a unitary representation. The universal covering group of two dimensional motion
group is an excluded o n e . F o r  this group Paley-Wiener type theorem is formulated
in a Hilbert space, cf. [13].

Proposition 3. There exists an equivalence relation:

L--, = w e W, e N*,

where L }, is a left translation on W: Lw tp(W)=9(ww).

Let dn and cloy denote right Haar measures on N and W respectively. Take
d,.g=dndy w (g=nw) as a  right Haar measure on  G .  Moreover A w ( • ) and  AG ( • )
denote the modular functions on W and G: dr (vw)= A w (v)dr w for y e  W and so on.

Consider a  s e t  Q,Œ ={g = nw: Ijnjj y, M(w) a} , w hich  is  compact b y  the
Assumption.

Proposition 4. S uppose a  function fe L'(G, d g )  v an ish e s  o u ts id e  the set

Q .  T h e n  the Fourier transform  TÀ(f) o f f : T (f)= 1 .f(g )n d ,.g ; satisfies

(4) 11 MDT lit 5 II f  II Li11911 0 ,

where the scale t A ( t )  is  of the form

i f  t — 2Alma(t+2yllim
(5 ) TI(t)=TI(t;

ce '(t + 21111m ) ll), i f  t — 2 Y11 1 m 2 11

Pro o f . I t  is clear that

T'l(f)(P j
tG  If(9)111P;v1Ircirg

I f (g)1119 II t-to ,,,c1,g (by (3 )).
G

Since the support of f  is contained in Q ,  we have the result. Q. E. D.

It is easy to see that TA(f) has an integral kernel lq(w, 1)):
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K lf (w , v)= d G(w) -  1 1 f (w -  'nv)A(n)dn.

From this or from Proposition 3 it follows immediately

(6) lqa(w , v ) =  w (a)K } (nw , av ), a e W.

2 .  Differential operators

Let 0, 91 and /13 be the Lie algebra of G, N  and W, respectively. Each element
X e 0 defines differential operators X 1 and X , on G:

d dX  ,f(g)—  f(g.exp tX )1, = 0 , X ,.f ( g )—  
 d t  

f(exp (— tX)g)l f = o .dt

Moreover each element X  of 113 defines a differential operator a(x) on W:

d0(X)(p(w)= yo(w.exp tX)I i = 0 .dt

Further, a pair (2, X), 2e N *, X e 91; gives a multiplication operator Ax  by a function
Ax (w): 2x (w)=d1dt 0 4w.exp tX .w -  ').
The correspondence X•• X,. (or X I) extends to the enveloping algebra U(0) by asso-
ciativity, so also the mapping X -40(X ) to the whole U(9B). For the convenience of
the later use we introduce notations apc) and 8,00:

auo+ AG(X )  for X E 933,— 8 ( X )  f o r  X  E
(7) 0,.(X)=. 0,(X )=

fo r X e 91, Ax fo r X  e 91.

We extend these correspondences X  — 0,(X ), 0,(X ) to  the whole U(D3) by the asso-
ciativity. (z16 (X )= d/dtlt=o A (exp a) ) .

Proposition 5. For fe C(G) w e have
( i) T (X „-Y ,f )=0„(X ).T  (f ).0,(Y ) f or X , YE U(9SB),
(ii) T A (X r .Y ,f)= 0,.(X ).T 2 ( f  ) . ,(y) f or X , Ye U(91).

Proof is easy. The equality (i) should be considered on a subspace W. of W,
which consists of the functions 1,G on W whose distribution derivatives a(X)t// also
belong to W for any X  e U(9.13). The topology of the space W. is endowed with the
seminorms 114/1x = II a(x)011„ X e U(113), t e R .  W e state here tw o properties
concerning the space W., which is crucial in the next section.

Proposition 6. if „ Cœ(W).

Pro o f . Choose a  local chart (U; x„) on W  such  tha t U  is relatively
com pac t. B e tw een  tw o  sy stem s o f  tangent v e c t o r s  8/8x 1 ,..., 0I0x„ and

r  there exist relations

alax,= a( x ) 8 ( X ) ,  i  =1,..., n,
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where a i (x) are of C'-class. It is easy to show that any polynomial with constant
coefficients P(a/ax)=P(a/ax,,..., is written in a form

P(Olax)= EA Œ (x)a(X1), X  e U(W).

O n the other hand two measures dr w and clx=dx,...dx„ are mutually equivalent,
that is, dr w=d(x) - 'dx for a suitable Cm-function /1(x)>0. Then we have

(./IP(a/ax)t//(x)I2c/x<const. 1u 1A„(x)12 1a(x2 )0(x)12z1(x).4(x) - 1 dx

const. max (1/1(x)124(x) -  t ) E la (X ")0 (w )1 2drw,
xeU , a U

2

abusing the notations as tP(x)=1/0), etc.
This means that for any polynomial P(a/ax) we have P(a/8x)0 E L2 (U, d x ).  Ac-
cording to the Sobolev's lemma on a bounded domain of Euclidean space [12], we
conclude that tP e C"(U). Q. E. D.

As for the dual space of V e„, we have

Proposition 7. Every functional F on W'  has a form

(8) <F, tp>= hj(w)a(XJ)0(w)drw,

by  a f inite num ber of hi e and X  G
This is well known in the distribution theory [5, 6]. For the convenience of the

readers we give a  proof. It is obvious that the right hand side of (8) defines an
element of C „ .  Now let us prove the converse. From the definition of the topol-
ogy in  W „ for an arbitrarily given e>0 there exists a finite number of seminorms

and Si > 0 such that if satisfies 11011f„xi < 6 i, then IF(I/J)I < e .  Put r= max •

(deg X i ), t =min ti . Let Er(t) be the space of functions f  on  W, whose distribution

derivatives a(U)f  all be long  to  H (t) fo r any differential operators U e U(/13) of
d e g re e  U r . W e  in tro d u c e  an  inner product in  Er(t) as follow s. Take a base
X,,..., X„ of V .  Bikrhoff-Witt theorem asserts that monomials X" =

a„) form a base of vector space U( 13). We put

(9) (ço, 0)= E <a(xŒ)go,
IOE1 5r

where <, >, stands for the scalar product in H(t ) and lal = a , + ••• +a„. In this way
Er(t) becomes a Iiilbert space. Our functional F is a continuous linear form on the
E r ( t ) .  According to F. Riesz' theorem F is written in a form (8) with some ,p e Er(t).
Since (3(X)t/f e H(t) we have the result. F r o m  Propositions 3, 4 and 5 we deduce

Proposition 8. S uppose a function f e C (G )  has the support in a com pact
set

 Q .
 T h e n  the  Fourier transform  V =  T ( f )  h a s  the follow ing properties

( 1 ° ) —(3 ° );
(10 ). continuity: f o r any  X , YE U((S5) there ex ists a  constant C(X, Y ), inde-
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pendent of t and .1, and such that

ilar(x)• i( Y)(p11,- Y)114011,A(f), for any t e R,

where the scale vl(t) is given by the formula (5).
(20 ). equivalence relation: L„• TA • Lw_i=TA'w, WE W, 2EN*.
(3'). w eak  analy ticity : for any  FE (f) E W, and X , YE U(6),

matrix  element <F, 0,.(X).TA•0,(Y)(p> is an entire function of ) e N.*
The operators 0,.(X).TA.0,(Y) at first defined on the space extend to the

whole space W' and the extended ones have these properties.

P ro o f . By Proposition 5 ar (x).TA (f).3,(Y )=TA (X ,..Y ,f), the right hand side
is a bounded operator on cf by Proposition 2, so we can put C(X, Y)=11X,..Y

i f L i(2°) is a consequence of Proposition 3. In fact the left translation L„, is a continuous
operator on W, because

{14,9 II te x p  [ tM (w )]1 (p (a w )1 2 c/r w)i/2

W(a)-11211(PIIM(a)t, if

Aw(a) - 1 1 2 1I(PlItim(„) if t

Property (3°) is reduced to a special case <h, TÂ(f)(p>, h E cf by the aid of Propositions
5 and 7. Q. E. D.

Our main concern is that the properties above characterize the Fourier trans-
forms of the functions f e C ( G ) .  Precisely

Proposition 9 .  S uppose to each elem ent e N* there corresponds an operator
V - on the space W' with the properties (1°)— (3"), where (1°) is satisf ied for a given
scale vl(t)=T 2 (t; Q ), attached to Q .  Then there ex ists a  unique functions fE
C (G ) such that TA = TA(f) and the support o f f  is  con tained  in the compact set
12y,a •

Remark. W hen W is  compact, it is sufficient to require (3°) without using
differential operators, [9, 10, 11].

It is easy to see that operators e(X). T1 .0( Y) extend uniquely to the whole space
cg, cf. [I , 3].

3. Proof of Proposition 9.

The key point of the proof consists in showing that the point evaluation t/J--+O(w)
is continuous on cf,. Sobolev's lemma plays an essential role.

Lemma 1. (Sobolev's estimation)[12, 15]. L et l p<oo and s be an  integer
such that ps>dim W . For each compact neighbourhood K  of  e in  W there exists
a constant CI( such that

(10) If(01-5- C K  E (1 I a (X œ) f (W )I P  drW )
icel.4s K

l i p
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for differentiable functions f  on W.

Proposition 6 asserts that T 2 9(w) is a differentiable function of w for any cp e
We can apply Lemma 1, to  Pcp, putting p =1 we have

I T2 9(w0)1 cK E la(r ) T 1 9(w)ldrw,

K

where K  is a compact neighbourhood of w0 .
From this we deduce immediately

I rço(w0)1 CI; E Ile(r) • TÀ911, e—IM(w)drW)laL6s

5 CK,t114011v10). (Property (1°)).

The constant CK , t  depends on t but not on cpeW. Hence for any  t e  R  point eval-
uation q)-47'2 9(wo )  is  a  continuous linear form on  H( r), r = t 2 (t). According to
F. Riesz' theorem there exists a  unique function K 2 (wo , •) e H( such that

(12) P19(w0)= 1 0, Kl(w o , w)9(w)d,.w.

Lemma 2. KA(wo , w) is a differentiable function of w when wo and A  are fixed.
P ro o f . By Proposition 6  V .0 (X )9  is differentiable for any  X e  U ( lB ) . Ap-

plying (11) we have

I T A a(X )4 9 (w0)1 C K , t  ; s 1180(a). aaA011,

<_...const.11(p11,,k( t ) . (Property (1 0 ))

Hence th e  linear form  o n  H( r ) :  -r=v'(t), (p—TÂ.O(X)9(w o )  is continuous. B y
Riesz' theorem we have

(13) TAO(X)(p(w0)= K§(wo , w)9(w)d rw,

where Kk(w o , • ) is unique in H(— t).
On the other hand if cp e Q°(W ) we have from (12)

(14) VO (X )9 (w 0)= Iv w)(0(X)9)(w)drw.

Since formulas (13) and (14) must be identical, we conclude that /q (w o , •) is a dis-
tribution derivative of K 2 (wo ,  ) ,  the former belonging to H(— 2) for any T, especially
to L2 ( W ) .  Hence, as shown in Proposition 6 K 2 (wo , • ) is differentiable.

Here it is worth while to note that the proof of the existence of an integral
kernel and its differentiability still remains valid even when W is compact. As for
the support the next lemma gives us an answer.

1/2

Lemma 3, Suppose a f unction  ço v anishes alm ost ev ery w here outside a
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compact set {w e W; t7... M ( w ) . . } .  Then tit -=T ) -(p vanishes outside a com pact set
{w e W;

This is derived by a similar argument as in [1] from the continuity property (1°).
From this lemma it follows easily that the kernel function K 2 (tv0 , • ) vanishes

outside a set a -  iM(w0 )__ M(w);cxM(w o ), in particular, the support of IV . (e, •) is
contained in M(w)._ a, compact by our assumption.

Let Sa (w) be the delta-function on W concentrated at w = a.

Lemma 4. (  i) There exists a f inite number offunctions (p a  e W and X a eU(9.B)
such that b a = E  8(X 1 ).9 1 .(ii) 6 „ is  a continuous linear form  on W ..

P ro o f . L e t  e C (W ) and (U; x„) be a local coordinate system around
the point a  such that x i(a)= O, 1= 1 , . . . , n .  In  this chart consider a  small set D=

i =1,..., n; and take a C°-function p such that p (a)= 1 and the support of
p  lies in D .  P ut D(6)----{x; — 0} and  fo r multi-index a =(a i ,..., an ) =
aki I aX11 ...04 , jal +•-• +a„.

The next is obvious

111(a)=t11(a)p(a)=-- irla I aX0(X)p(X))C1X,

after differentiation we can write this as follows

(15) tk (a)= E DŒlk(x)• ROE( x )d x , 12„E q?-class.
laiSn 0 (6)

Let x(x) denote the characteristic function of the set D (6 ) . Then in the sense of
distribution derivatives we have

(16) (14a)= E tp(x)( — 1)1.1DI(R,,(x)x(x)) • A(x)4(x) -  'dx
12."

The term with differentiation DI can be transformed into a form E  DaCf l(x ), where
fi

functions C ,  are all in W . As in the proof of Proposition 6 we substitute a/ax i by
c iax,= E a1 (x )3 (X ) o r  a/ax i = E a(x . ).au ( x )  — bi(x ), i =1 .....  n ,  a n d  by

induction we can write D2  = E  acxo.hy with a finite number of smooth functions h.? .
Y

Thus

tii(a)= E 0(w)a(XY)(11,,C 0 )(w)d r w.
P O ' W

It is easy- to see that hy Co . e W . Thus we have the desired result. (ii) comes from
Lemma 1 immediately.

Lemma 5. Kl(w, 13) is an analytic function of N* for fixed w, v E  W.

P ro o f . The property (2°) yields us the relation:

V a(w , v )=A w (a)KÂ(aw, av), f o r  a e W,



626 Shoichi Ando

so  w e have KA (w, v)=1 w (w) - 1 KA'w(e, w -  'v). Since the transformation
E  W ) is analytic, it is enough to show K'''(e, w) is analytic with respect to  ). e N*.

As shown already, KÂ(e, w) is a  CW-function, so we can apply Lemma 4 just proved
to this function:

a)= E KA(e, w)e(X1")(p y (w)dr w.
y IV

Each term of the right hand side is nothing but the value of a  function 7'2 43(XY)9 7

at e, that is,

(17) .1(2(e, a)= E <5, 7 . 2  • a(XY)9 7 > .
Y

which is analytic with respect to A e N* by the Property (3°).

Remark. Operators P•a(X ), generally a(X)-TA.a(Y), have two meanings for
yoeW. The one is a unique extension firstly defined on W  or on C,T(W), the another
is taken in the distribution sense as just above . The possibility of the extension is
assured by the Property (1°) and the validity of the latter is assured by the fact that
T A  has a C -kernel 10(v , ).

Now we examine the exponential growth of the kernel function 1Q(e, a). To see
this we treat each term 1//y = TA.a(XY)cpy . Since T y  E  W , SO  11/y e C o . W e  p roceed
as in the proof of Lemma 5. Let (U: x 1 ,..., x„) be a local chart around the identity
e such that x i ( e )=0 , i=1 ,.. . ,  n . Exchange in (15) a/ax i b y  a(Xi ) we arrive a t the
following expression :

ifry (  ) =  E R„(x)•(v(),(x)4(x)•A(x)-Idx,
1.15 ,, D( )

where ROE(x) is sm ooth. B y the Schwarz' inequality

1/2
11Py(e)1 E II a(x.)111,11t e-m(w)dr w) max (Ra(x)L1(x)) •D , , , xeD(6)

Recall that I I v = T 2.0(X °')9 7 and the property (1 '), so we have

Ilaçx'.)0,11,=11a(x.)• 0(X 2 )(p; ,i1,<C (X ', X Y )11(P7 11,A(1),

where the constant C(X 7 , X ") does not depend on il. Thus we obtain

\ 1/2

(18) 07(01 5 C(Y)II (PM vt(t) 0 1 ) ( 6 1 e- t  m ( w ) tirw ) •

Now put t= —2y then TA W  = 0 .  As to  the integral I of the right hand side
we have

/ e x p  Cy II MI /1 11 m ax M(w)] vol D(5).
weD(6)

Since M(w) is continuous, we can choose for arbitrary s> 1 a  small 5> O such that
M(w)_.Ç.E in D(5), so we have
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(19) I qi7 (e)I const. exp [BY II 1m All] •

combining this with (17) we conclude

(20) I K Â(e, a)I C(g) exP EgY II Irn All] > 1)

the constant C(E) being independent of A E N*.
Repetition of the above argument shows that the operators of the form LI <),.w,

E 91, w e W), are integral operators with kernel 11 <2.w , Y i >Pi K A W ,

Formula (20) is valid also in this case, so we have

Ill <A, Yi >PJ 10(e, w )1 C(e) exp [Ey Im .

Taking a base )(,. of N  and putting Ai = <A, Yi >, =

(21) 1AP w)I C(E) exP E8Y11 , ( E> 1).

Moreover operators V .0(X ); X e  U (0 ) , with integral kernel — a(X ),,-KA (w, u) must
satisfy the inequality (21), so

(22) IAP • a(X )„. K l (e, 1))1 C(121, X, e)exP [eI In) All] •

Now we can restore the desired function f (nw ) as follows:

f (nw )= KA(e, w)/1(n)c1.1.

The classical Paley-Wiener theorem guarantees that the function f  thus defined is
infinitely differentiable and the support lies in  completing the proof o f Prop-
osition 9.

4 .  Main theorem

Let B y ,  be the space of operator fields T = ( r )  on N * , V  being operators on W'
with the properties (11 ,-- (3'). We introduce in B y ,„ a system of seminorms II . II X ,Y

= s u p  sup sup T •2 i.:) ,( Y )(Plita(PLAMnx, Y
A E N . (ER  o e 's ' 

F ) 100

Space By ,,, with these seininorms becomes a  Fréchet space. If y and then
Q7 ,„c and so TA(t ; Q )_ T A (t; for any t e R, hence B By ,„, and the
inclusion is continuous. Let B  denote the inductive limit: B =U  B r a . O u r  m a in

Y
theorem says

Paley-Wiener type theorem. Fourier transform ation f— >TA (f) is a  to p o l-
ogical isomorphism from C ( s 2 )  onto so also from C ( G )  onto the space B.

P ro o f. First of all note that the usual topology in C ( G )  coincides with the one
given by th e  seminorms II X  Y f II■, - - r - L 1(G ,■ 14): X ,  Ye U((). This follows from  the
Sobolev's estimation (Lemma 1). Proposition 9 and its proof show that the Fourier
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transformation T A ( f )  i s  a surjective continuous mapping from C ( Q )  to the
space B  and that this correspondence is injective. Hence, by the inverse mapping
theorem [5], this is an isomorphism. Q. E. D.

5. On the irreducibility

The following is the main concern of this section.

Proposition 10. L et W A  be the stationary  subgroup at Â e N *: W  ,= {IV E W;
)..w =) ,} . If  W , reduces to the identity , the representation 9 2 =(V , W ) is operator-
irreducible.

The proof rests on the kernel theorem just as in [4, 7].
Now proceed as in [1 , 3 ]. We prepare a few lemmas.

Lemma 6. A  p air o f  representations 9 ).  and gÂ " has a x 'P . -invariant
bilinear form (ff  ),.w= for som e we W.

P ro o f . Recall that the space W' contains C (G ) and that 7', is a right translation.
Hence a bilinear form, if it exists, restricted to the functions 9 , t// e CO (W) is of the
following form by the kernel theorem:

Mg), tP)= 34, (0 )1w) , 49 (wW)//(W)d,W,

where co(w) is a  suitable distribution, [4, 6, 7].
The invariance by n e N means

<0)(x), f ',1(x y)(p(xy)> =f A " (y)<(0(x), cp(x Y)> for a n y  Y

where f ( x ) = exp n > .  Now consider the set S'-':(11)= {x e W; exp n> =
exp </V.y, n> for any y e W I. T hen  the distribution w(w) is concentrated on the set
SI , A" = S'' '(n). T h e  se t SA, '." is  no t em p ty  if  + 2 '  = 0  f o r  some w e W.
Moreover, if w and w' lie in V , 2 ", we have 2..w =2-w', that is, w' e W,-w. Thus, only
the following two cases are possible;

case 1; S I , À: is em pty. So 2 and —2' are not conjugate under W . Distribu-
tion a) does not exist.

case 2 ;  S À : = W,..•wo ,  a  s ing le  coset, s o  it  h o ld s  2.w0 + 2' = O. S in c e  w e
assumed that WA—(e), w is concentrated at one point wo . It is clear that the next
bilinear form is certainly invariant by T 1

g  x for any g e G:

B(9, tk)= const. 9(w 0 w)0(w)d,.w, (9, í  e 4f). Q. E. D.

Lemma 7. Suppose a distribution w(w) is concentrated on w o ; that is, )..w 0 =
and satisfies a relation:

<w (x), f„(xy )9(xy )> =f;•'"(y )<w (x), 9(xy )>, f o r any  y  e  W , n  E  N . T hen
co(x)= const. (S 0(x ), Dirac's delta function.

P ro o f . Let (x 1 ..... x )  b e  a local coordinate system around the point 1+, 0  such
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that x1(w0 )= O. As co is concentrated at wo , <co(x), 9(xy)> can be written in a form
E ap V q )(y ) by a  finite number of XP e U(9J3), where XP are considered a s  right

invariant d iffe ren tia l opera to rs. H ence , w e  can  w rite  it a s  <a)(x). (p(x y)> =
E bp Dficp(y). The condition for w becomes as follows:

E bŒDŒ(R(P)(y)---- f ; '( y )  E bpDfiT(Y) for a n y  y e  W  a n d  yo E C ij ( W ) .
2 fi

Summation runs over the set K= {a =(2 1); of multi-indices.
We want to show that except a 0) all the coefficients I), are equal to O.

Let us introduce in  K an order : 1-0  i f  f o r  every i. As a notation put
yi =(6 i) . Consider the set L =  E K ; b,( 001, and let a be a  maximal element in L
relative to this order such that lal is m axim um . If Œ O, then a' = a —yi  e K for some
j. F or a  so chosen, we once fix a  function Te C (RP) such that DP9(0)=0 for
/30 a ' and DI' cp(0)= 1. S o  th e  term s in  th e  following a re  n o t zero only when

— y =ce:

E bp p C7 DY.g(0)• DP - 1 (p(0)= be .

where p C, is the number of cho ice . As lad is maximum in L, b f l =0 if > 11. So
the summation runs over the set lyl = I, tha t is, y=y,,.•., y p . Since Du , is  the dif-
ferentiation by the i-th variable, we have DY (0)=<.1.•X,, n>, X i is the corresponding
tangent vector. At last we have for any n e N

<).• Eb C X, n> =0,
Y `

and so A- E be , , , , , , c ,„x ; belongs to WA, consisting of only O. Since (X 1) forms a

base of 03, we have be .,_ y, = 0 for every i. Especially, h, =- be .,..7 i =0, contradicting
the assumption. Hence, b 2 = 0 except Œ=O.

In the next lemma we assume that the isotropy WA is trivial.

Lemma 8 .  S uppose a continuous linear operator A  on interwines repre-
sentations g'• and .9A ' : A •T = -A  f or any  g e G . T h e n  ( i )  A = 0  if  a n d
are not conjugate under W, or (ii) when 2.w 0 =2' for some (unique) 14,

0 , A = cont.L„,..

Pro o f . Consider a bilinear form B(q), 1,0= .Ç
w

Aq)(x)IP(x)dr x. This is invariant
by 7- ; x for any g E G .  According to Lemma 6, this form  is not trivial only
when 2.w0 = A! for some wo e W . If  this is the case, Lemma 7 asserts that B(ç), tp)

const. y o (w o w)0(w)dr w . C om paring tw o expressions, w e conclude A9(w)----

const.go(wo w), the desidred result.

Proposition 10 is a  special case when 2=2', so the proof is completed.
For the groups treated in [1, 2, 3] the situation is as follows: For 2 e Si lying in
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general position, the isotropy WA at A is trivial. Hence, if /I.=  + \/ -1■1-) and
at elast one of Ai lies in general position, then the isotropy WI  is trivial.

One m ore example is G = R2 .SL(2, R), where W= SL(2, R) ac ts o n  N =R 2

through a natural linear mapping. In this case the isotropy W, is trivial for generic
N*.
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