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0. Introduction

The classical Paley-Wiener type theorem asserts that the Fourier transformation
is a topological isomorphism from C§(R") to a space of certain kind of entire func-
tions on C”, identified with the set of not necessarily unitary characters of R”.
As this example suggests, the study of Paley-Wiener type theorem on a Lie group is
closely related to an analysis of non-unitary representations. More precisely, we
may understand that the study of Paley-Wiener type theorem contains at least two
main subjects:

1. To construct a family of “non-unitary’ representations, which should be
an “‘analytic continuation’’ of a continuous family of unitary ones, especially, those
appearing in the decomposition of the regular representation.

2. To show that the Fourier transformation is a topological isomorphism
from C¥(G) to a space of certain kind of (operator-valued) entire functions on a
complex space.

If we succeed to obtain Paley-Wiener type theorem in this sense, we may consider
the constructed family as a “‘non-unitary’’ dual.

For semisimple Lie groups, we may take the so called elementary representations,
which are realized through bounded operators in a Hilbert space, cf. [18, 19].
Contrary to this, non-semisimple Lie groups make us encounter a difficulty such as
nonunitary representations cannot be realized through bounded operators in
any Hilbert space, in general. §1 gives a simple construction of non-unitary
representations for a certain kind of groups.

Examples of non-semisimple Lie groups, for which we have obtained Paley-
Wiener type theorem are not so many. They are motion groups [9, 10, 11], some
solvable Lie groups [1, 2, 3], and the oscillator group [14], for instance. Except
the last, they are all semidirect product with normal vector groups. In the case of
motion groups, Peter-Weyl theorem for compact groups plays an important role in
the proof of the papers [9, 10, 11]. But we show in this paper that a certain kind of
semidirect product groups, including motion groups, can be treated in a unified way
without using Peter-Weyl theorem. Our group G= N.W is a semidirect product of
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a vector group N with a connected Lie group W. We pose an assumption on the
action of W.

In §1 we consider a g-Hilbert space ¥ with seminorms || - |, (¢ € R), on which we
construct a family of non-unitary representations T4, “‘induced” from Ae N*. We
remark that they are not in general irreducible. For some familiar groups, however,
almost all of them are operator-irreducible. The group of affine trnsformations of
a straight line, Heisenberg groups and the group of upper triangular matrices with
unities on the diagonal, these are such ones.

In §2 we consider a Sobolev space ¥, on W, which turns out a subspace of
C>-functions. Now the Fourier transform T4(f) of a function fe CF(G) has the
following properties (1°)~(3“) (Proposition 8): (1“) T*(f) is a continuous operator
on % whose range is contained in % . This is expressed by a definite scale change
on €, cf. §1 (5). (2°) Operators T*(f), Le N*, corresponding to the same W-orbit
are similar each other, that is, T#*=L_-T*L,-, by a left translation L,, we W.
(3°) Matricial coefficients of T* are entire functions of A€ N*, the complex dual of N.

Our key Proposition 9 asserts the converse, to the proof of which §3 is devoted,
where Sobolev’s lemma plays an essential role. It may be worth while to recall
that for Euclidean spaces or compact Lie groups, Sobolev’s lemma reduces to the
Fourier series expansion or Peter-Weyl theorem [16, 17, 18].

In §4 we state our main theorem, an alternative formulation of Proposition
9. Now let Q be a compact set on G and (—t*(f)=1*t; Q) be a corresponding
scale change of €(t e R), (cf. §1 (5)). Further, Let B=B(Q) be the space of operator
fields T=(T#) on N*, having the properties (1°)~(3°) (Proposition 9):

(1°) for any X and Y in U(®) there exists a constant C(X, Y) such that
104X)- T+ V)gll, S C(X, V)| @llixy for any ¢ € € and teR,

2°) L,T*L,-.=T* (aeW),

(3°) Matrix coefficients of T* are entire functions on N*.

Natural seminorms on B make it a Fréchet space. Final formulation states as
follows:

Paley-Wiener type theorem. Fourier transformation f—T*(f) is a to a topol-
ogical isomorphism from CZ(Q) onto the space B(Q), and so, it is an isomorphism
from CZ(G) onto the inductive limit of spaces B(Q).

Now returning to the beginning, we can say that our dual object is realized as
{Ti, Ae N*/W}.

In §5 we show that the representations T4 are operator-irreducible if the isotropy
W, in Wat le N¥ is trivial.

1. Construction of representations

Let G=N-W be a semidirect product group of a real vector space N with a
connected Lie group W, acting on N. N denotes the dual space of N and N* the
complexification of N: N¥*=N®zC. For Ae N* we put A(n)=exp./—1{4, n) and
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in this manner N* is identified with the set of not necessarily unitary characters of
N. W acts on N* as follows:

A-w(n)=Awnw-"), AleN* neN.

First of all we realize unitary representations T*=1Ind§i (A€ N) on LAW, d,w)
as follows:

(N Tip(w)=Awnw~ " o(wv), for g=nv.

These are not in general irreducible. They appear in the process of decom-
position of the regular representation pg: This follows from the general theory of
induced representations,

pe=1nd61 =Ind§ Ind? [ = Ind§ py = gn Ind§ AdA.

As for further procedure of decomposition into irreducible components, see [8].

The action of we Won N coincides with the inner automorphism n—»wnw =1 of G.
In the vector space N we once for all fix an Euclidean norm | - || and |jw| denotes the
norm of the automorphism relative to this norm.

Now we construct non-unitary representations after the method of [1, 2, 3].
Put M(w)=max (||w|, [[w='|]). Clearly it holds for any ne N and Ae N*

|4-w(n)| Sexp (M(w)[Im A[/[in]).

For every te R put H(t)=L*W, exp(tM(w))d,w) and let || - ||, denote the norm in
H(t). 1If s<t, then ||@|,Z| ¢l and so H(s)=> H(t). The inclusion is continuous.
The dual space of H(t) is identified with H(—1) via natural dual pairing:

o, ¥>= Sw e(wW(w)dw, @eH(t) and YeH(—1).

Proposition 1. (i) The projective limit € =lim. H(t) is a Fréchet space with
a system of seminorms | -|,. (ii) The dual space €' of € coincides with the
inductive limit: € =lim H(t).

Proof. (i) Let (¢,) be a Cauchy sequence in %, we have for every real ¢
l@n—@ull,—0 as n, m—oo. Since every H(t) is complete, there exists a unique
element ¢, in H(t) such that ¢,—¢,. From the inclusion relation H(s)>H(t) for
s=<t, ¢, must coincide with ¢,.

(ii) Let F be an element of ¢’. By the definition of the topology of %, F is already
continuous on some space H(r), that is, Fe H(—t) by the natural dual pairing.
Q.E.D.

Proposition 2. In the space ¥ the expression (1) gives a representation
(T%, %) also for every non-unitary character A€ N*. It holds
g9

(2) ” T;(p”té ”‘P”t*(!;g)*

where the scale 1* is determined as follows: for g =n.w
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MW)(t+2) Im2|||n]),  if 2 =2 ImA|]n],
3 ™(t; g)= )
Mw)='(t+2][ Im 2[[{|n]), if ¢< 2| ImA||[ln].
It is enough to note that
Mww)SMWM(w'), Mw-Y)=MWw).

When the group W is compact, the function M(w) is continuous and so the
space % coincides with L2(W, d,w). This is the case for the Euclidean motion groups
[11], Cartan motion groups [9] and motion groups [10]. Hereafter we are con-
cerned with the case when W is not compact. We need, however, an assumption:

Assumption. For every a2 1, the set {we W; M(w)<a} is compact.

We exclude, for instance, a case when a non-compact group W acts on N through
a unitary representation. The universal covering group of two dimensional motion
group is an excluded one. For this group Paley-Wiener type theorem is formulated
in a Hilbert space, cf. [13].

Proposition 3. There exists an equivalence relation:
L, T} L,-=T}v, weW, ieN*,
where L, is a left translation on W: L o(w")=@(ww’).

Let dn and d,.w denote right Haar measures on N and W respectively. Take
d,g=dnd,w (g=nw) as a right Haar measure on G. Moreover 4y (-) and 44(-)
denote the modular functions on Wand G: d,(vw)= A4y (v)d,w for ve W and so on.

Consider a set Q,,={g=nw: |n|<y, M(w)<a}, which is compact by the
Assumption.

Proposition 4. Suppose a function fe LX(G, d.g) vanishes outside the set

Q,. Then the Fourier transform T*(f) of f: T‘(f)=SGf(g)T;}d,g; satisfies

C)) IT* Ol S Ul Lill@lcacy
where the scale t(t) is of the form

a(t+2y[ImAl),  if =2 -2y[Imi|,
) H)=11; Q)= _

a~ Y (t+2y) ImA)), if t=—-2y]|ImAi|.

Proof. It is clear that

ITHNel= { 1f@NITieldg

= /@Il swads by G).

Since the support of f is contained in Q, ,, we have the result. Q.E.D.

It is easy to see that T(f) has an integral kernel K%(w, v):
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Ki(w, v)=45(w)~ ISNf(w‘ nv)A(n)dn.

From this or from Proposition 3 it follows immediately

(6) Kia(w, v)=Ay(a)Ki(aw, av), aeW.

2. Differential operators

Let ®, 9t and 2 be the Lie algebra of G, N and W, respectively. Each element
X € ® defines differential operators X, and X, on G:

Xif@)= - 1@exp Xlmo, XS (@)= - flexp (= 1X)g)] 00

Moreover each element X of I defines a differential operator 4(X) on W:

AX)P(9)= S p(w.exp X, -o.

Further, a pair (4, X), A€ N*, X e 0; gives a multiplication operator Ay by a function
Ax(w): Ax(wy=d]dt|,- o A(w.exp tX.w~").

The correspondence X — X, (or X)) extends to the enveloping algebra U(®) by asso-
ciativity, so also the mapping X —0(X) to the whole U(W). For the convenience of
the later use we introduce notations 9,(X) and 0,(X):

A(X)+44(X) for X e, —d(X) for Xe,
(7 0 X)= 0(X)=
Ax for X e N, —Ax for XeN.

We extend these correspondences X —d(X), d,(X) to the whole U(¥B) by the asso-
ciativity. (4g(X)=d/dt|,- dg(exp tX)).

Proposition 5. For fe CF(G) we have
() THX, Y [)=0(X)T}f)-0(Y) for X, Ye U(W),
(i) THX, Y, [)=0/X)-T*f)-0(Y) for X, Ye UR).

Proof is easy. The equality (i) should be considered on a subspace ¢, of ¥,
which consists of the functions ¥ on W whose distribution derivatives d(X)y also
belong to % for any X € U(2B). The topology of the space %, is endowed with the
seminorms ||Y||, x = 18X, XeUMB), teR. We state here two properties
concerning the space € ., which is crucial in the next section.

Proposition 6. €, < C®(W).

Proof. Choose a local chart (U; x,..., x,) on W such that U is relatively
compact. Between two systems of tangent vectors 0/0x,..., 0/0x, and
d(X),..., 0(X,) there exist relations

8]0x;= ig"l ay()AX,), i=L,...n,
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where a;;(x) are of C*-class. It is easy to show that any polynomial with constant
coefficients P(d/0x)= P(8/0x,,..., 0/0x,) is written in a form

P(3]0x)= T A(x)d(X%), X% e U(W).

On the other hand two measures d,w and dx=dx,...dx, are mutually equivalent,
that is, d,w=A4(x)~ 'dx for a suitable C*-function 4(x)>0. Then we have

SU | P(3/0x(x)|2dx Sconst. ¥ SU | A0 100 )W) 2A(x)Ax) 1l

< const. max (|A,(PA(0 O {100 W,
xeU, a JU
abusing the notations as y(x)=y(w), etc.
This means that for any polynomial P(é/0x) we have P(d/0x)y € LA(U, dx). Ac-
cording to the Sobolev’s lemma on a bounded domain of Euclidean space [12], we
conclude that yy € C®(U). Q.E.D.

As for the dual space of ¢, we have

Proposition 7. Every functional F on €, has a form
®) Fopy=3 (s wondw,
J

by a finite number of hje € and X ;e UQR).

This is well known in the distribution theory [S5, 6]. For the convenience of the
readers we give a proof. It is obvious that the right hand side of (8) defines an
element of ¥,. Now let us prove the converse. From the definition of the topol-
ogy in €, for an arbitrarily given ¢>0 there exists a finite number of seminorms
[ ll,.x, and ;>0 such that if ¢ satisfies ||, x,<J;, then |F(y)|<e. Put r=max-

. r . . . 'I.
(deg X ), t=mi1n t. Let E"(t) be the space of functions f on W, whose distribution

derivatives d(U)f all belong to H(t) for any differential operators Ue U(IB) of
degree U<r. We introduce an inner product in E"(t) as follows. Take a base
X, X, of W, Bikrhoff-Witt theorem asserts that monomials X*=X%1.. X%n,
oa=(a,..., a,) form a base of vector space U(2}). We put

) (o, )= IaIZSr@(X“)% AX Wi,

where <, ), stands for the scalar product in H(¢) and |a| =0, + -+ +a,. In this way
E*(t) becomes a Hilbert space. Our functional F is a continuous linear form on the
Er(t). According to F. Riesz’ theorem F is written in a form (8) with some i € E(1).
Since (X)W € H(t) we have the result. From Propositions-3, 4 and S we deduce

Proposition 8. Suppose a function fe C§(G) has the support in a compact
set Q,,. Then the Fourier transform T*=T*(f) has the following properties
1°)~@3°):

(1°). continuity: for any X, Ye U(®) there exists a constant C(X, Y), inde-
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pendent of t and 2, and such that
16X)- T*- (Yo, S C(X, V)|l aq), foranyteR,

where the scale (1) is given by the formula (5).

(2°). equivalence relation: L,,- T*-Lw-=T*%, we W, Le N*.

(3°). weak analyticity: for any Fe€w. 0 €%, and X, Ye U(®),
matrix element (F, 0(X)-T*0,(Y)p) is an entire function of A€ N.*

The operators 3,(X)-T*d,(Y) at first defined on the space ¢, , extend to the
whole space % and the extended ones have these properties.

Proof. By Proposition 5 0,(X)-TAf)-0(Y)=T4X,-Y,f), the right hand side
is a bounded operator on € by Proposition 2, so we can put C(X, Y)=|X,-Y,fll.:.
(2°) is a consequence of Proposition 3. In fact the left translation L,, is a continuous
operator on €, because

1Ll = exp MO ]iptaw)dw)2

éAW(a)_I/ZH(p”M(a)H lf tgov

S Aw(@) V2@ llyma if 1=<0.

lIA

Property (3°) is reduced to a special case <h, T*(f)@), h € € by the aid of Propositions
5and 7. ' Q.E.D.

Our main concern is that the properties above characterize the Fourier trans-
forms of the functions fe CP(G). Precisely

Proposition 9. Suppose to each element A€ N* there corresponds an operator
T* on the space € with the properties (1°)~(3°), where (1°) is satisfied for a given
scale T4(t)=14t; Q,,), attached to Q. ,. Then there exists a unique functions fe
C(G) such that T*=TA*(f) and the support of f is contained in the compact set

Qs

Remark. When W is compact, it is sufficient to require (3°) without using
differential operators, [9, 10, 11].

It is easy to see that operators d(X)-T*d(Y) extend uniquely to the whole space
%, cf. [1, 3].

3. Proof of Proposition 9.

The key point of the proof consists in showing that the point evaluation y—y/(w)
is continuous on ¥ ,. Sobolev's lemma plays an essential role.

Lemma 1. (Sobolev's estimation)[12, 15]. Let 1<p<oo and s be an integer
such that ps>dim W. For each compact neighbourhood K of e in W there exists
a constant Cg such that

1/p
(10) r@i=ce 3 (§, 10005 mrd)
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for differentiable functions f on W.

Proposition 6 asserts that T*¢p(w) is a differentiable function of w for any p € ¢
We can apply Lemma 1, to T*¢, putting p=1 we have

Tl Cx 3 | 1AX)THp0ld,w,
la|ss JK

where K is a compact neighbourhood of wy.
From this we deduce immediately

1/2
(11) IThp(we) SCx S ua(xa)-rhpn,(g e,
| K

a| Ss
SCxll @l cagey (Property (1°)).

The constant C, depends on t but not on pe%. Hence for any teR point eval-
uation ¢— T*@p(w,) is a continuous linear form on H(t), t=14t). According to
F. Riesz’ theorem there exists a unique function K*(w,, -) € H(—1) such that

(12) Tip(wg)= | Kiwo, w)o(w)d,.

Lemma 2. K*wq, w) is a differentiable function of w when wy and A are fixed.
"Proof. By Proposition 6 T*d(X)e is differentiable for any X e U(2B). Ap-
plying (11) we have

IT*- d(X)p(wo)| = Ck,e la;Ssllﬁ(X“) T aX)el,

<const. |@ |l 2. (Property (1°))

Hence the linear form on H(tr): t=1tX1), ¢—T*d(X)p(wy) is continuous. By
Riesz’ theorem we have

(13) TH(X)p(wo) = SW Ki(wo, w)p(w)d,w,

where K%(w,, -) is unique in H(—1).
On the other hand if ¢ € CF(W) we have from (12)

(14) T (X )p(wo) = Sw K4 (wo, w)(A(X)@) (w)d,w.

Since formulas (13) and (14) must be identical, we conclude that K(wy, ) is a dis-
tribution derivative of K*(w,, -). the former belonging to H(— ) for any 1, especially
to L2(W). Hence, as shown in Proposition 6 K*(w,, ) is differentiable.

Here it is worth while to note that the proof of ‘the existence of an integral
kernel and its differentiability still remains valid even when W is compact. As for
the support the next lemma gives us an answer.

Lemma 3, Suppose a function ¢ vanishes almost everywhere outside a
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compact set {we W; n<M(w)<{}. Then y=T*p vanishes outside a compact set
{weW; a " In=M(w)<al}.

This is derived by a similar argument as in [1] from the continuity property (1°).

From this lemma it follows easily that the kernel function K*(wq, -) vanishes
outside a set o~ IM(wgy) < M(w)<aM(w,), in particular, the support of K* (e, -) is
contained in M(w)<a«, compact by our assumption.

Let 8,(w) be the delta-function on W concentrated at w=a.

Lemma 4. (i) Thereexists a finite number of functions ¢, € € and X ,eU(2B)
such that §,= Y, 0(X*)-@,.(ii) b, is a continuous linear form on € .

Proof. Let ye CX(W) and (U; x4...., x,) be a local coordinate system around
the point a such that x(a)=0, i=1,...,n. In this chart consider a small set D=
{x; x| £8;, i=1,..., n} and take a C*-function p such that p (a) =1 and the support of
p lies in D. Put D(§)={x; —6;=x;=<0} and for multi-index a=(ay,...,®,) D*=
olal[dx3t...0x%n, |a| =0y + -+ + 0.

The next is obvious ‘

vy =p@p@={ T 2/ox,x)p(x)dx,
. . D(d) j=1 - ‘- . .
after differentiation we can write this as follows
(15) W)= S S D7Y(x)- R(x)dx. R,e Ce-class.
lalZn J Do)

Let x(x) denote the characteristic function of the set D(6). Then in the sense of
distribution derivatives we have

(16) b= 3§ v (= DR () - A) A0
The term with differentiation D* can be transformed into a form X DACy(x), where

functions Cj, are all in €. As in the proof of Proposition 6 we substitute d/0x; by

a(XJ): a/ax,'= Z a,l(x)a(XJ) or a/ax,-= z 6(XJ)'aU(X) _b,'(x), i=1,..., n, and by

induction we call1 write D*= 3 6(X?)-h, wijth a finite number of smooth functions #,.
7

Thus

Y(a)= ES Y(WIA(X?) (h,Cp)(W)d,w.

By JW

It is easy to see that 1,Cy,€ . Thus we have the desired result. (ii) comes from
Lemma | immediately.

Lemma 5. K*w, v) is an analytic function of € N* for fixed w, ve W.
Proof. The property (2°) yields us the relation:
K*a(w, v)=Adw(a)K*(aw, av), for aeW,
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so we have K4w, v)=d4y(w)"1K*%(e, w™'v). Since the transformation A—i-w
(we W) is analytic, it is enough to show K*(e, w) is analytic with respect to 1e N*.
As shown already, K*(e, w) is a CZ-function, so we can apply Lemma 4 just proved
to this function:

K’ (e, a)=3% S K*(e, W)X ) (w)d,w.
14

Y

Each term of the right hand side is nothing but the value of a function T*9(X7)e,
at e, that is,

(17) K#(e, a)=% (6., T*- A X",
Y
which is analytic with respect to 1 € N* by the Property (3°).

Remark. Operators T*9d(X), generally 0(X)-T*d(Y), have two meanings for
pe¥. The one is a unique extension firstly defined on €, or on CP(W), the another
is taken in the distribution sense as just above. The possibility of the extension is
assured by the Property (1°) and the validity of the latter is assured by the fact that
T* has a Cg-kernel K*(v, -).

Now we examine the exponential growth of the kernel function K*(e, a). To see
this we treat each term y,=T*0d(X")¢,. Since ¢,€%, so ¥,e¥,. We proceed
as in the proof of Lemma 5. Let (U: x,,..., x,,) be a local chart around the identity
e such that x(e)=0, i=1,..., n. Exchange in (15) d/0x; by d(X;) we arrive at the
following expression:

W (e)= R(x)- A X* 0 (x)A(x)- A(x)™ dx,

%)
la|Sn JD(S)

where R, (x) is smooth. By the Schwarz’ inequality

172
1S T 1axe ([ ememdw)™ max (R4

D(d)
Recall that = T*.9(X?)¢, and the property (1°), so we have
||a(xl)l/jy”1= o(X?)- T. P(Xa)(p,”ré C(X>, Xy)”(p‘y“t;'(ljw

where the constant C(X*, X7) does not depend on 4. Thus we obtain

1/2
(18) WAl SCOI @l (§ | eetw)™.

Now put = —2y|ImA||, then t4(t)=0. As to the integral | of the right hand side
we have
I<exp [yl Im | max M(w)] vol D(J).
weD(d)

Since M(w) is continuous, we can choose for arbitrary ¢>1 a small §>0 such that
M(w)<e in D(5), so we have
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(19) [¥,(e)| = const. exp [ey|| Im 4[],
combining this with (17) we conclude

(20 |K*(e, a)l = C(e) exp [ey[ ImA[], (e>1)

the constant C(g) being independent of A e N*.
Repetition of the above argument shows that the operators of the form [ {4-w,
J
Y, 3P T* (Y;e M, we W), are integral operators with kernel [ {A-w, Y;3PiK4(w, v).
J
Formula (20) is valid also in this case, so we have

ITT<4, Y;>P- KXe, w)| < C(e) exp [eyll Im A]|].

Taking a base Y;,..., Y, of N and putting A;=<4, Y;>, A2=A71... A}~
(21 |APK*(e, w) < C(e) exp [ey]| Im 2], (e>1).

Moreover operators T*d(X); X € U(2B), with integral kernel —a(X),-K*(w, v) must
satisfy the inequality (21), so

(22) AP - 3(X),- KXe, v)| =C(p, X, &) exp [ey[ Im A]].

Now we can restore the desired function f(nw) as follows:
F(w)= gn K (e, wA(n)dA.

The classical Paley-Wiener theorem guarantees that the function f thus defined is
infinitely differentiable and the support lies in Q, ,, completing the proof of Prop-
osition 9.

4. Main theorem

Let B, , be the space of operator fields T=(T*) on N*, T* being operators on €
with the properties (1°)~(3°). We introduce in B, , a system of seminorms | - ||x y:
ITly,y=sup supsup |0(X)-T* ()@l /Il@lca-
AeN* 1eR ¢ev
Space B, , with these seminorms becomes a Fréchet space. If y<y’ and a<a' then
0,.<Qy o and so t4(t: Q, ,)<1X(t; Q, ,) for any teR, hence B,,=B, , and the
inclusion is continuous. Let B denote the inductive limit: B=\U B,,. Our main
Y.
theorem says
Paley-Wiener type theorem. Fourier transformation f-TXf) is a topol-
ogical isomorphism from CF(Q,,) onto B, ,, so also from CF(G) onto the space B.

Proof. First of all note that the usual topology in C3(G) coincides with the one
given by the seminorms || X,Y,fll1G.uq: X, YeU(®).  This follows from the
Sobolev’s estimation (Lemma 1). Proposition 9 and its proof show that the Fourier
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transformation f—T#(f) is a surjective continuous mapping from C3(Q,,) to the
space B, , and that this correspondence is injective. Hence, by the inverse mapping
theorem [5], this is an isomorphism. Q.E.D.

5. On the irreducibility

The following is the main concern of this section.

Proposition 10. Let W, be the stationary subgroup at e N¥: W,;={we W;
Jow=4}. If W, reduces to the identity, the representation 2*=(T*, &) is operator-
irreducible.

The proof rests on the kernel theorem just as in [4, 7].
Now proceed as in [1, 3]. We prepare a few lemmas.

Lemma 6. A pair of representations 2* and 2* has a T*x T*-invariant
bilinear form iff A-w= —JA" for some we W.

Proof. Recall that the space € contains CF(G) and that T2 is a right translation.
Hence a bilinear form, if it exists, restricted to the functions ¢, ¥ € CF(W) is of the
following form by the kernel theorem:

Blo, = (@Ow). pww w1,

where w(w) is a suitable distribution, [4, 6, 7].
The invariance by n € N means

ax), fixy)p(xy)) =4 (¥ ax(x), p(xy))  forany yeW,

where fA(x)=exp {(J-x, n). Now consider the set S#*(n)={xe W;exp (Axy, n)=
exp {A"-y, n) for any y e W}. Then the distribution w(w) is concentrated on the set
SH¥ =\ S&¥(n). The set S44 is not empty iff A-w+2'=0 for some we W.
Moreover, if w and w’ lie in S#*', we have A-w=2.w’, thatis. w'e W;-w. Thus, only
the following two cases are possible;

case I; S*% isempty. So Aand —A’ are not conjugate under W. Distribu-
tion w does not exist.

case 2; S** =W,-w,, a single coset, so it holds Z-wo+2'=0. Since we
assumed that W, =(e), w is concentrated at one point w,. It is clear that the next
bilinear form is certainly invariant by T4x T for any g€ G:

B(¢p. )= const. Sw e(wowl(w)d,w, (@, Y €¥). Q.E.D.

Lemma 7. Suppose a distribution w(w) is concentrated on wg; that is, A-wg=
— /', and satisfies a relation: .

a(x), fHxPe(xy)=f"(ya(x), @(xy)>, for any yeW, neN. Then
w(x)=const. J,,(x), Dirac’s delta function.

Proof. Let (xy,..., X,) be a local coordinate system around the point w, such



Paley-Wiener type theorem 629

that x,(wg)=0. As w is concentrated at wy, {w(x), ¢(xy)) can be written in a form
Y azXP@(y) by a finite number of X#e U(2), where X# are considered as right
B

invariant differential operators. Hence, we can write it as {w(x). @(xy))=
Y bgDPo(y). The condition for @ becomes as follows:

[]

L b.Dfio) (=177 () %ﬁ byD*e(y)  forany yeW and ¢eCg(W).

Summation runs over the set K={a=(a;); 0=i= p} of multi-indices.

We want to show that except a=(0,..., 0) all the coefficients b, are equal to 0.
Let us introduce in K an order <: a<f iff ;< f; for every i. As a notation put
7:=(J;;). Consider the set L={xe K: b,#0}, and let « be a maximal element in L
relative to this order such that |«| is maximum. If a#0, then «’=a~7;€ K for some
j. For a so chosen, we once fix a function ¢e CF(RP) such that Dfp(0)=0 for
B#a’ and D*@(0)=1. So the terms in the following are not zero only when

B—y=a":
2 bpsC,D7 f1(0)- DP~7¢p(0) = b,
B,y

where 4C, is the number of choice. As |af is maximum in L, by=0 if |8|>[af. So
the summation runs over the set |y|=1, that is, y=y;,...,7,. Since D" is the dif-
ferentiation by the i-th variable, we have D?if4(0)={4.X,, n), X, is the corresponding
tangent vector. At last we have for any ne N

<)" i ba’+yg¢Cy,~Xia I’l> =0,
1

p
and so A X b, 4,0 4+5,C,, X belongs to W;, consisting of only 0. Since (X;) forms a
1
base of 2B, we have b,.,, =0 for every i. Especially, b,=b, ., =0, contradicting
the assumption. Hence, b, =0 except a=0.

In the next lemma we assume that the isotropy W, is trivial.

Lemma 8. Suppose a continuous linear operator A on € interwines repre-
sentations 9* and 2% : A-Ti=T%-A for any geG. Then (i) A=0 if A and ¥
are not conjugate under W, or (ii) when A-wy=2" for some (unique) w,, A=cont.L

wo*

Proof. Consider a bilinear form B(¢, V) =SWA<p(x)t//(x)d,x. This is invariant

by T4x T,* for any g€ G. According to Lemma 6, this form is not trivial only
when A-wo=24' for some wye W. If this is the case, Lemma 7 asserts that B(g, y)=

const.S e(wowh(w)d,w. Comparing two expressions, we conclude A@(w)=
w
const.@(wew), the desidred result.

Proposition 10 is a special case when A=A/, so the proof is completed.
For the groups treated in [1, 2, 3] the situation is as follows: For Ae N lying in
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general position, the isotropy W, at A is trivial. Hence, if A=2, +./—14,(4;€ N) and
at elast one of J; lies in general position, then the isotropy W, is trivial.

One more example is G=R2.SL(2, R), where W=SL(2, R) acts on N=R?
through a natural linear mapping. In this case the isotropy W, is trivial for generic
Ae N*.
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