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Introduction. For e n tire  and meromorphic functions, the prim eness and
pseudo-primeness etc. have been considerably studied. In  th is  paper, tak in g  a
n ew  point of view, we shall introduce the concept of prim eness in  divisor sense
for an entire function and th a t  of primeness fo r  a  divisor (discrete countable
set), as well (see §1, Definitions 1 and 2).

Now, f o r  a  div isor, the concept of N P S  (non-trivial pre-image set) was
defined together with some other concepts ( [9 ] ) .  Note tha t, accord ing  to  their
definitions, a  divisor is not NPS if  it is (left-) prime.

Relating to the above concepts, it  is  one of the main purposes of this paper
to prove that the function ; P(z)+Q(ez) (P, Q : non-constant polynomials), which
is know n to be prime, is  fu rther prime in divisor sense (under certain conditions,
Theorems 1 and 2). In the proof of th is  fact, w e shall need som e additional
results (Theorems 3 and 4) w h ich  show th a t certain entire functions are prime
-or left-prime.

Also, we shall prove a  result (Theorem 5) w hich tells us explicitely th a t the
primeness in divisor sense is not necessarily q. c. invariant. More precisely, this
m eans that a  divisor D w hich is not pseudo-prime m ay be  m apped  by  a  quasi-
conformal mapping of C  onto itself to a  divisor 5  w hich is prime (see § 6).

1. Preliminaries.

For a meromorphic function F(z), the factorization under composition opera-
tion such as

F(z)= f og(z)=- f(g(z))  ( 1 )

has been  considered , w here  f  i s  meromorphic and g  i s  e n t i r e  ( g  m ay be
meromorphic, w hen f  is  a  ra tional function). Then, by defin ition , F  is called
to  be prim e (pseudo-prim e; right-prim e; lef t-prim e), if, for every factorization as
above, we can always deduce the following assertion : f  or g  is linear ( f  or g
is rational ; g  is linear w henever f  is transcendental ; f  is linear whenever g  is
transcendental, respectively).

W hen  F  is  e n tire  and both factors f  (left-factor) and g  (right-factor) of F
under (1) are restricted to entire functions, then it is called that the factorization
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is  to  be  in  entire s e n s e . Thus w e m ay use the phrase " p r im e  in  entire sense"
instead o f  " prime "  etc. I t  is  k n o w n  a n d  easily proved that any non-periodic
entire function is prim e if it  is  prim e in entire sense (cf. [811).

N ow , in constrast to  th e  above, w e define t h e  prim eness i n  divisor sense
(for entire functions) a s  follows.

Definition 1. A n  entire function F(z), w ith  zeros, is called  to  be prim e in
div isor sense (pseudo-prim e in divisor sense ; right-prim e in  divisor sense ; f t -
prim e in  divisor sense), if , fo r  every identical relation such as

F(z)= f (g(z))• e A ( ' ) , (  2 )

w here f ,  g  ( const.) and  A  are  entire functions, w e can deduce t h e  following
assertion :  f  has just one simple zero or g  is  a  linear polynomial ( f  has only a
finite number o f zeros o r  g  is  a polynomial ; g  is  a  linear polynomial whenever
f  h a s  a n  infinite  num ber o f  zeros ;  f  has just one simple zero whenever g  is
transcendental, respectively).

Definition 2. A  divisor D , a  discrete countable s e t  i n  C ,  is  c a lle d  to  b e
prim e (pseudo-prime ; right-prime ; lef t-prim e), i f  a n  entire function F(z) whose
zero-set is identical with D is  prime (pseudo-prime ; right-prime ; left-prime, resp.)
in  divisor sense, as in  Definition 1.

R e m a rk s . 1). Prim e entire functions need not be p r im e  in  d iv isor sense.
For example, even if  p  is  a prim e number ( the function zP (which is clearly
prime) is no t prim e in divisor sense :

zP =(z • eB ( ' ) )P • e _" ( )

fo r any entire function B(z).
Further, letting h(z), w ith  h(0)#0, be an  entire function such that the  order

o f  h (e )  is  f in ite  a n d  t h a t  h (z ) has ze ros of order n fo r all sufficiently large
natural num ber n  a n d  le ttin g  m  b e  a n  in teg e r, P (z ) a n d  Q(z) ( const.) be
polynomials, then th e  function F(z) defined by

F(z)= h(e) • exp[mz+P(e)+ Q(e -  ')]

is know n to be prim e (cf. [1 8 ]) . While F(z) is clearly not pseudo-prime in divisor
sense (composite in divisor sense).

Also, entire functions which are prim e in  d iv isor sense  need  not be  prime.
T h is  is seen, for instance, by

F(z)= z • exp[z(ez+1)]=(zez).(ze 2 ) .

2). If  F (z ) is a n  entire function whose zeros a re  all contained in  a  straight
line (a  half line), then  F  i s  pseudo-prime (right-prime, resp .) i n  divisor sense.
These will follow from a  Theorem due to  Edrei ([3]) ;

Theorem A .  L et f (z) be an  entire f unction. A ssume that there ex ists an
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unbounded sequence {a n }  such that all the roots of  the equations

f (z )=a( n = 1 ,  2, •..)

be real. T hen f (z ) is a polynomial of degree not greater than 2.

2'). Let F (z) be a n  entire function with zeros {z„} such that th e  order of
N(r, Izn1) (cf . [10 ] around p. 16) is less than one and that there exist constants

r and w with !arg z„--71 <w<-- fo r all n .  Then F  is right-prime i n  divisor

se n se . T h is  is seen by applying a  Theorem due to Kobayashi (Lemma 3 in  §74)
or Tuzuki.

3). There exist periodic entire functions which a re  p rim e  in  divisor sense.
In  fa c t , p r im e  periodic entire functions exhibited by Ozawa in  [15 ] give these
examples.

4). Certain prime entire functions which are constructed by Liverpool ([12])
in  connection with Picard  set are  at the  same time prim e in  divisor sense.

g 2. Statement of m ain results.

Theorem 1. L et P (z ) be a polynom ial. Then the function

F (z )= z + P (e )

is prim e in divisor sense.

Theorem 2. Let P(z) and Q(z) be two non-constant polynom ials. Assume that,
f o r any  natural num ber k  and constant c, the function e-  k "•[Q(ez)-Ec] is non-
constant. Then

F (z)=P (z )+Q (e ')

is prim e in divisor sense.

Remark. The latter condition in Theorem 2 cannot be dropped, otherwise
th e  statement is not valid generally. To see this, it is enough to consider the
following identity :  [R (z )]'± ez ={ (w k -1-1).(R(z)•e - "k)} se', where R(z) is  a  poly-
nomial.

T he  following facts are  also v a lid . N o w , w e ca ll th a t f ( z )  i s  c-even, if
f (z + c ) is an  even function (i. e. f (— z + c )= f (z + c ) for any z).

Proposition 1. L et P (z ) and Q(z) be two non-constant polynom ials. Assume
th at [P (z )] 2 i s  n o t  c-even f o r  any  constant c and Q(z), w ith Q(0)*0, has only
simple z eros. T hen the function

F(z)=P(z)•Q(e")

is prim e in divisor sense.

T his is proved by th e  similar argum ent as in the proof of Theorems 1 and 2.
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R em ark . Let

F(z)=z 2 •(e2 -k1) , o r  F(z)=z 3 -(e 2 - 1 ) .

T h e n  F  i s  n o t  p r im e  in  divisor se n se . In  fac t, if  w e  p u t G(z)=F(z)•e - z, we
have G(z)=h(z 2 )  fo r some entire function h(z) with infinitely many zeros, since
G(z) is 0-even.

Proposition 2. Let F be an entire function of two variables z and w defined by

F(z, w )=(z+w) 2 —(e 1 ±ew) 2 .

Then F(z, w) is prime in div isor sense. (However, F  is reducible.)

T his means that, under

F(z, w)= f(g(z, w))•e w) ,

w here f(z), g(z, w ) and  A(z, w) a re  entire functions, i f  f ( z )  h a s  a t  le a s t  tw o
zeros, we can conclude that g(z, w)=a+bz-l-cw; linear.

Note th a t, fo r any fixed w, F(z, w) is  prim e in divisor sense (considered as
the function of z) by Theorem  2 . T his is valid if  w e change z an d  w . Further,
putting w =2z (say), the function F(z, 2z) is  a lso  prim e in divisor s e n s e . Using
these facts, w e can show  the above assertion.

In  connection w ith  above Theorem s, w e m ay recall t h e  following result,
proved in  [19] : Let F (z )=h (z )+H (z ) and  G (z)=k (z)+K (z), w here h a n d  k are
non-constant entire functions o f order less than one and th a t H and  K a re  non-
constant, periodic, entire functions with periods b, and  b2 (resp.). Assume that
th e  identical relation

F(z)=R(z)•G(z)•eA(z)

holds, where R(z) is  a  meromorphic function o f order less than one and A(z) is
a n  en tire  func tion . T hen  w e have necessarily that A  an d  R  are constant (and
b1 lb 2 i s  a  rational number) so that

F(z)-- c • G(z)
fo r some constant c  0.

H ence, i f  t h e  functions F (z) and  G(z) a s  above have  the  (essentially) same
divisor, then they a re  identical up to a non-zero multiplicative constant.

§ 3. W e shall show  the following fac t, to  w h ic h  th e  proof o f Theorems 1 and
2 will be reduced, a s  is seen in  § 4.

Theorem 3. Let P (z ) be a polynomial and 11(z) be a periodic entire function
of exponential type w ith period 27ri (i. e . H(z+27ri),==_H(z)). Assume that, fo r  any
in teger k  and constant c, P(z) is  n o t c-even and ek'-[H(z)d-c] is  non-constant.
Then, fo r any  constant a, the function

F(z)==ea'•[P(z)+H(z)]



Certain entire functions 131

is prime.

Remark. From the  proof given below, it will be seen that the assertion of
Theorem 3 (primeness o f  F)  i s  v a lid , even if  th e  c o n d itio n  th a t P(z )  is not
c-even is dropped, when H(z)=Q(ez) for a polynomial Q (z ). Also, if P(z ) z,
then the  non-constancy o f  e"•[11(z)H-c] is needless.

Proof  o f  Theorem 3. A t  f irs t , w e  observe th a t t h e  right-factor g  o f  F
cannot be a  non-linear polynom ial. To see this, it will be sufficient to consider
th e  c a s e  w here g  i s  a polynom ial of degree two, since th e  zeros o f F(z) are
distributed very near to th e  imaginary axis.

Let g(z)=b(z— z 0 )2 4 - d .  T hen , using w=z— z 0 , w e  h a v e  th a t F(— w)=F(w)
which is rewritten as

e - 2 "•[P(— w ±z 0)+1 -1(— w+z0)]=P(w4 - zo)±11(w±z0)•

Since P  is a polynomial and H  is  a  periodic entire function with period 2Tri, by
comparing the  growth o f th e  both sides along t h e  im aginary a x is , w e see at
first that a  is a  real number and  further a =O. Then the  above relation can be
written as

P(— w+z0)—P(w+zo)=-H(w+zo)— H( — w+zo).

This implies that th e  left-hand side which is a polynom ial is bounded on  the
imaginary a x is  so  that it is  c o n s ta n t. Further, since it becomes zero at w=0,
it must be identically z e ro . Hence P(— w±z0)=- P(w ±z0), that is , P(w ) is z o-even,
contrary to th e  assumption. Note that, if H(z )=Q(e), where Q  is  a non-constant
polynomial, then th e  identity H(—w-hz 0 )=H(w 4-4) cannot hold (a contradiction,
a s  is to be shown. cf.  Remark below Theorem 3).

N ext, w e m u st prove that F(z ) is left-prime (in entire se n se ) . To do so,
well consider th e  following two cases separately :

( i ) a  is a n  integer
(ii) a  is not a n  integer.

It may be noted that fo r the  case  a= 0 th e  primeness o f F  is already known.

T he case (i). Setting a= 711 fo r an  integer in , assume that

F(z)= en" • [P(z)± (z)]= f (g(z)) , (3)

w here f  i s  a  non-constan t entire function (a n d  g  is  a  transcendental entire
function, a s  is shown above). By th e  periodicity o f e n  and  H(z), w e have

f (g(z+27i))— f(g(z ))=CP(z+27z)— P(z)1•em '.

Hence we see that
g(z+27i)— g(z)=Q(z)•0',

where Q(z) since F  is non-periodic) is a  po lynom ia l and  b  i s  a constant
(note that g  is o f exponential ty p e ). H e re , taking a polynomial R(z) such that
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R(z+27ri)•e 2 ' 1 —R(z)=Q(z),
we have

g(z)=R(z)•e b z+K (z ), ( 4 )

where K(z+27ri)=-K(z) i s  a n  entire function o f  exponential ty p e . N o w , R(z)
m ay b e  constan t, if  Q(z) is  constant and b is not a n  integer. O therwise, R(z)
is  non-constant.

B y (3) and  (4), we have the following identity

eniz•[P(z)+H(z)]= f(R(z)-e b z+K (z )). ( 5 )

Since g ,  under (4), is transcendental, we see that th e  order of f  is  zero, by
a  well-known P o lya 's  Lem m a, so  that, i f  f  is transcendental, by using the
minimum modulus Theorem and comparing th e  growth o f th e  both sides o f  (5)
along t h e  imaginary axis, we obtain a contradiction (cf. [1 7 ], p .  108-109).

I f  f  is  a polynomial, w e put

f(z)= coz ' +  cizn - 1 + • • • +c, , O.

T h e n , from  (5 ) , we see at first that nb=m and th at IP(z)1"-, ic0l!R(z) I 7 '  along
th e  imaginary a x i s .  Hence R(z) is  non-constant. Also, if  P(z) z, th e  la tte r  is
possible only i f  n=1.

Assume now  that e '• [K (z )+ c i ]  i s  c o n sta n t fo r  some c'E C .  T hen , we
may write the  right hand side o f (5) a s  f (R i (z )•e") with R i (z)=R(z)+const. In
view o f  nb=m, th e  identity (5) can be written as

CP(z)—  col? i(z)n] • e '— c iR i ( z ) n
- lecn - ubz _ œcn_iRi(z)-e'

_ e n + e nbz,H(z ) . = 0 .

H ere , b (since g  is transcendental) a n d  R i (z ) is  non-constant (R (z) is  so).
By applying Borel-type unicity Theorem, we conclude that this identity holds
o n ly  if P(z)—c o R i (z )n=const.=c" a n d  c1 = ••• =c._ 1 = 0 .  T h is  implies that
enbz•[H (z )+c"] (nb=m ) is  co n s tan t, co n tra ry  to  t h e  assumption. H e n c e
e- bz•[K (z)+c'] is  non-constant for any c'E C.

Now, we can rew rite  the  identity (5) such as

e . {P(z) — c0R(z) n +e - b z •(nc0K(z)+ci)•R(z) - 1 i1+0(1)i}

-=c 0 K(z)n+c i K(z)n - 1 +•••+c.—en b z • H(z), ( 6 )

considering the  equation o n  th e  imaginary a x is .  A s  noted above, t h e  periodic
function e- b '•(nc o K(z)+c i ) i s  non-constant. Hence, i f  n _ 2 ,  we can conclude
th a t t h e  left hand side o f (6) is unbounded on  the  imaginary a x is .  While, the
right hand side (periodic, with period 27ri) remains bounded there. T h is  is not
in  reason. H ence w e m ust have n = 1 , which shows that f (z ) is linear. Thus
F (z) is left-prime in  entire sense.

T he case (ii). In  this case, we can prove th e  following fact, which shows
that F  is also left-prime in  entire sense.
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Theorem 4. Let P(z ) be a non-constant polynomial and H(z) be a non-constant,
periodic, entire function of exponential type with period 27ri. Assume that aEC
is not an integer, then the function

F(z )=ea'•[P(z )+H(z )]

is left-prime in entire sense.

To prove Theorem 4 , w e shall need th e  following result due to Ozawa.

Lemma 1 .  (1141). L e t F(z )  b e  an entire function of  f inite order w hose
deriv ativ e F/(z ) has an inf inite num ber o f  z e ro s . Assume that the number of
common roots of the equations

F ( z ) =c  and F'(z )=0( 7 )

is f inite fo r  any constant c. T hen F is lef t-prim e in entire sense.

W e w ish to check the conditions in Lemma 1.

N ow , for F(z ) in  Theorem 4 , w e  have

F'(z )= laP(z )+P(z )± aH(z )±11' (z )}  ea'.

Since a  is no t a n  integer, both aP(z )+P(z ) an d  aH(z)-FH'(z) are non-constant.
H ence it w ill be clear that F'(z ) has infinitely many zeros.

A ssum e th a t  th e re  e x is ts  a n  unbounded sequence {z„} each  m em ber of
which satisfies (7). In  what follows, we consider the  case  c# O . ( I f  c= 0 , then
w e  h a v e  that P ( z ) = — H ( z )  a n d  P'(z n )=— H '(z .)  s o  t h a t  P'(z „)IP(z .)=
H '(z )1H (z ), w hose left hand side tends to zero while th e  right hand side tends
to  a non-zero value as n  tends to infinity, a  contrad ic tion .) By assumption, we
have

F(z,j)=eazn[P(zn)+H(zi.)i=c ( 8 )

F'(z n )-=eaznIa[P(z 7 i )-1-H(z„)]+P'(z„)+H'(z„)}

P'(z„)+11/(z 7,)=d ad -
P ( z ) +H ( z )  } =o .

Hence
P'(zi,)+11/(zn.)  _

( 9 )P(z )+H (z ) a
so that

H'(z.„)+ aH(z)-= —  aP(z)— P/(z)--400 (as n—>co),

because a  is  no t an  integer (in  particular a0 0 )  and  P(z ) is  a non-constant poly-
nom ial. S ince H(z) is periodic with period 27i and  o f exponential type, we can
write

H(z)= e k e" (c„,#0 o r  C
k —  rn

and
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H '(z )= k ke k '
k = -777

fo r  a  natural number in. Hence we conclude, taking a  subsequence if  necessary,
that

e' , —>00 or (as n—co).

In either case, w e  have
H(z)—o9 (as n—K>0). (10)

T hen, from  (9), w e have

P'(z „)IH(z„)± H 1 (z )/H(z .) lim
P (z )/ H (z )+ 1

=  a . ( 1 1 )

From  this, w e see that th e  following limit exists ;

lim P (z )/ H (z )= b  (#  —1). (12)
n

In fact, noting that the non-zero lim it o f  H'(z )111(z „) exists, w e see at first that
13 (z „)IH(z „) remains bounded w. r. t . n  a n d  fu r th e r  th a t  t h e  lim it  e x is ts  (note
a # 0 ) . T hen  it is  c lea r tha t th e  lim it value b cannot be —1.

Returning to (8), w e have

P C z  H (z „ )+ 1 = - c 1(eazn • H(z,i )) . (13)

In  view o f (12) and  (13), we have

lim ea, .•H(z n ,) = A  (# 0 ) .
-•os

Hence, if  expizni—co (n—>co), then

lirn e on,+a).= B (=- Al cm-7=0) (14)

o r  if  exp[z.1-4) (n —K)0), then

iiM e ( - + a  71=  B = A /C , #0). (15)

Using these, we wish to deduce a contradiction.
Assume th a t (14) is  v a lid .  Then

lim Re {(m + a)z} =log I B I (16)

W hile, we have
Re {(m+ a)z,i } = (m +Re a) • Re z n —Im a •Im z„ (17)

Note here  tha t, in  th is case, Re z i,—“Do (n---Kx)) and th a t Im z„ is unbounded (the
latter w ill be seen by using the  equation just under (9)). If md-Re a =0, then by
(16) and  (17) w e have also Im a =0, which implies that a  i s  a n  in teger, a  con-
tradiction.

Now assume th a t in+Re a # 0 .  T hen Im a * 0  and

Im z n /Re z„—qm-FRe a)/Im a  (=c i (sa y ) . #0),
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a lso  i n  v iew  o f  (16) a n d  (17). Hence I Im z.1 1 c11 I Re z .1 so  th a t  I  z . I ̂ -•
(1+0) 112 - I Re z n, . Then

I P(z.)111(z.)1^'c-1.z.I P /(1c7.1 . exp[m(Re z .)]) — ' 0  ( n — >0 0 ),

where deg P=p.
Hence from (12), b= 0 , w hile  from  (11 ) a n d  (12 ), w e  h a v e  bz/(b+1)= —a.

T hus a=— m ; a n  integer, which contradicts th e  assumption.
In the case w here (15) is  valid, w e have  a  similar contradiction.
Thus we've checked that the conditions of Lemma 1 are  all satisfied. There-

fore F is left-prime in  entire sense.

Hence we have th a t F(z ) (in  Theorem 3) is  prim e in  en tire  s e n s e . Since F
is non-periodic (as is easily seen), F  is  a lso  prim e (cf. [81). T hus th e  proof of
Theorem 3  is now complete.

R em ark . A  discrete countable se t D  is called N PS  if  th e re  ex is ts  a t lea st
o n e  non-linear function f ( z )  a n d  a  fin ite  ran g e  se t T  of distinct values with
1T  2  (w h e re  I  T I denotes th e  cardinality o f  T ) such  that f - 1 (T )=- D , including
multiplicities ([9]).

T h e n , Theorem 3  t e l ls  u s  t h a t  t h e  set :  D= Iz IP(z )+H(z )=0}  cannot be
N PS (non-trivial pre-image se t) , if  P(z ) is  a  polynom ial and H (z ) i s  a  periodic
entire function o f exponential type such that, fo r any in teger k  and constant c,
P(z ) is  no t c-even an d  th e  function e '•[H (z )d-c] is  non-constant.

§ 4. P roof o f Theorem 1  and 2.

W e use the follow ing Lem m as. Now, fo r a n  entire function f ( z ) , we shall
d en o te  b y  p ( f )  (p ( f ) )  t h e  o rde r ( low er o rd e r, resp .) o f  f  and  b y  p*(f ) the
exponent of convergence of the ze ro s o f  f ( z )  ( th is  is  e q u a l to  t h e  o rd e r of
N(r, 0, f)).

Lemma 2  (P O . Let f (z ) and g(z) be tw o transcendental entire functions. I f
0*(f ) is positive, then p*(f (g)) is infinite.

Lemma 3 ([11 ] ). Let f (z ) be an entire function of low er order less than  1
(more precisely , lim inf T (r, f ) /r-=0 ). Assume th at  th e re  e x is ts  an unbounded
sequence { w .}  such that all the roots of the equations

f (z )=w . (n 1)

lie  in a half  plane, then f (z ) is  a polynomial of degree not greater than 2.

Lemma 4  ( [2 0 ] ) . Let f (z ) be an entire function of f in ite  order and of posi-
tiv e  low er order. Suppose that g(z ) is  an entire function of order not greater than
1/2 and g€E11 i.e.

• log log M (r, g) lim mf =co .
log log r (20)
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T hen p*(g(f (z)))= 00.

Lemma 5 (cf. [2 0 ]).  Let f(z ) be an entire function of f in ite  order. T hen i f
gE (j. e. the lef t hand side of (20) is f inite), the low er order p (g (f(z )) is f inite.

Lemma 6 (cf. [2 0 ]).  L e t  f (z )  b e  an  e n tire  f u n c tio n . If  th e  low er order
p(ef" ) )  is f inite, then f  is  a polynomial.

Lemma 7  ([5 ]).  L e t  F (z ) b e  an entire  f unction  o f  f inite order such that
3(a, F )=1 fo r som e a co, w here a( , F ) denotes the Nevanlinna deficiency . Then
F (z ) is pseudo-prime.

Now, consider the generalized factorization :

F(z)=P(z)+Q(ez)= f (g(z))• e A " ) , (21)

where f ,  g  ( const.) and A  are entire functions. Note that F  has a n  infinite
number o f zeros which are all simple except at most a  finite number of them.
Also note that the zeros of F  are all contained in a half plane such as {Re z_c}
Further, since we have Re z - 0 0  (n—>00) with the zeros {z } o f  F, g(z) under
(21) cannot be a  non-linear polynomial.

If f  has a  finite number of zeros, as we may assume that f  is a polynomial
with at least two zeros, we see p (f(g ))= 1  so that A(z) is linear.

If f  has an infinite number of zeros, assuming f  i s  th e  canonical product
constructed by the zeros (we may do so), by Lemma 2 we have p (f)= p * (f )= 0 ,
since g  is transcendental. Naturally we have p(g) 1. Further, by applying
Lemma 3, we see p(g) 1. Then, noting p*(F )=1 , w e have by Lemma 4  that
f G H so that by Lemma 5 we have p (f (g )) is finite. Hence, by Lemma 6, A(z)
is a polynomial. In this case, rewriting the identity (21) as

[P(z)± Q(ez)] • C A ( z ) = f ( g ( z ) )  , (22)

and then applying Lemma 7 to the above (noting f  and g  are transcendental),
we conclude that e ' of order 1 so that A(z) must be linear.

As we may put — A(z)=az, from Theorem 3 (Remark there), we have that
the left hand side of (22) is prime. This implies that f (z ) has just one simple
zero or g (z ) is  a  linear polynomial, which is to be proved. Thus the proof of
Theorems 1 and 2 are complete.

§ 5 . Here we wish to note the following fact.

Theorem 5. For a sequence of Point-sets { A  n =1 ,  2, ••.} w ith A n = laniritl
(1.- mn 00) and a sequence o f m utually  distinct prime num bers {Pn}r with

let F (z) be an entire function w hose zero-set be U  A n . W e  assume the following
n= i

conditions;

( i )  the order of the zero-point a n ;  of F (z) is equal to p n  for j=1, ••• , 777,
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(ii) there exists a half  Plane H such that A n c H
(iii) the order o f  N(r, A n ) is less than 1 (n.1), while the order of  N(r, U  An)

n=1
is not less than 1.

Then F (z ) is lef t-prim e in  divisor sense.

Pro o f . Let
F(z)= f (g(z)) • 

e A  ( z )

where f  (*const.), g  (transcendental) and A  are  entire functions.
Assume th a t f  has a t least tw o  zeros. W e deduce  a contradiction. N ow ,

w e have
p(g) l . (23)

Indeed, if f  has a n  infinite number o f zeros, then noting the  assumption (ii) and
applying Lemma 3, w e have p (g ).1  and if f  has a  finite number o f zeros, then
noting th e  la tter condition of (iii), w e see (23) is  valid.

W e show a t f irs t tha t th e  number of the m ultiple zeros o f  f ( z )  is  a t  m o s t
o n e .  Indeed, i f  f  h a s  tw o  z e ro s  b , and  b, with multiplicities q, and  q, (>1,
resp.), then

41=P7,1 and q2= 2

f o r  som e n , a n d  n , such that zeros of g(z)—b, are  all contained in A (n )  and
simple ( j=1, 2). Thus

N(r, b 1 , g)+N(r, b,, Ani)+N (r, A . 2 ). (24)

The left hand side o f (24) is  o f  order a t least 1 b y  (23) except possibly for a  set
E  o f finite linear measure, while th e  righ t hand  side  is  o f order less than 1 by
the  assum ption. T h is is  a contradiction.

N ext, w e show th a t th e  number of the sim ple zeros o f  f (z )  is a lso  at m ost
o n e .  I n  f a c t ,  i f  f  h a s  tw o  simple zeros b, and b2, then  th e  zeros o f g(z)—b,
have multiplicities at least 3 b y  th e  assum ption so that 0(b„ g )  is not less than
2/3. Hence

e(bi, g)+6(b 2 , g)>1 (25)

T his is  impossible, since g  is en tire  ([10], p . 43).
T h u s  it  is  o n ly  n e c e s s a ry  to  ru le  out the case  w here f  has one multiple

zero b, a n d  o n e  s im p le  z e ro  b2 . N o te  th e  fa c ts  (23) a n d  t h a t  t h e  o rd e r  of
N(r, b 1 , g )  is less than  1 (cf. (24)), whence we have th a t b, is  a Borel exceptional
value of g (z ) .  H ence t h e  low er o rd e r o f  g  is  no t le ss than  1 . Then clearly
0(b 1 , g)=1 and , naturally, 0(b 2 , g)_2/3 so  tha t th e  inequality (25) is also valid,
a contradiction.

Therefore f (z ) m ust have just one simple zero, which shows th a t F  is  lef t-
prime in  divisor sense.

R e m a r k . I f  w e  p u t c e r ta in  additional assum ption o n  A n , t h e n  F (z ) in
Theorem 5 becomes to be prim e in  divisor s e n s e . H en ce , it w ill b e  c lea r th a t
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F(z) considered in § 6 is  prim e in divisor sense.

§ 6. W e note here  tha t the  primeness o f  a  divisor need not be quasiconformally
in v a rian t. T h is  is shown explicitely a s  follows.

F irst o f a ll, w e recall th e  following fact due to A. Beurling and L. V. Ahlfors
(cf. [1])

Theorem B .  There exists a quasi-conformal automorphism of the upper half
plane with the boundary function h(x) (xER) if and only if

1 <   h(x+t)—h(x)  <
p h(x)—h(x—t) — 9

fo r  some constant p (..1) and fo r a ll x  and t (*0).

Actually, if the condition (26) is  sa tis f ie d , th e re  e x is ts  a  mapping whose
maximal dilatation is not greater than p2 . T his m apping is given, for instance,
b y  th e  function ;

- 1 Y rh
f(z) — H  h (x + s )d s -k i• — v [h (x+s ) s)lcis

2 y  -y 2y 0
(27)

w ith  z = x + iy , y > 0 , and a certain positive constant r h .
Now, we consider the function h (x )=x 3 on the real a x is .  T h en  h(x) satisfies

the condition (26) for som e p .  Hence h  i s  t h e  boundary function o f  a  quasi-
conformal mapping J defined by (27). In  th is case, w e  have

A z )= x 3 +xy 2 ± i• r h (6x 2 -1-y2 )y14 (28)

w ith z = x + iy  (y > 0 ).  W e extend this function to th e  low er half p lane b y  the
right hand side (replacing y  by — y). Now, these a re  suggested by th e  w ork of
Shiga ([16]).

Note th a t th e  p o in t se t {a±2n7ciinEZ} w ith  a E C  is  m a p p e d  b y  J  to  the
point set whose exponent of convergence is less than one.

Here, we consider the composite function ;

G(z)=h(ez),
where

or

with q72 1

-
h(z)=

n = i

h(z)= (1 Z  

n = i an) PL

such that {a n } with a„--*00

z r
an

Z+  1 1  Z n

an q . \an)

(n—K)o) i s  an increasing sequence of
positive numbers a n d  {N } is  a  sequence o f mutually distinct prime numbers
and assume th a t th e  exponent o f convergence  o f {log a n }  is  n o t  le s s  th a n  3 .
T hen  th e  divisor ;

E n =lzlez=a n } (including multiplicities pn)
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is mapped to the point set A .  (n 1) which satisfy the condition (iii) in  Theorem
00

5. T h u s  a n  entire function F(z ) w ith ze ro  se t U A 7,  considered there is prime
n=1

in  divisor sense, w hile G(z) above is naturally composite in divisor sense.
—

H ence, t h e  d iv isor D=U E n  i s  composite, w h ile  t h e  d iv isor ri= 1J A.,
n=1 n=1

w h ic h  is  th e  im a g e  o f  D  under a  quasi-conformal automorphism C—>C, is
p rim e. T h is show s th a t th e  primeness o f  a  divisor is not q. c. invariant.

R em ark . It w ill be  easily  seen  tha t, fo r an  entire  function, t h e  primeness
i n  d ivisor sense (as w ell a s  th e  primeness) is either not invariant under locally
uniform convergence.
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