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Introduction. For entire and meromorphic functions, the primeness and
pseudo-primeness etc. have been considerably studied. In this paper, taking a
new point of view, we shall introduce the concept of primeness in divisor sense
for an entire function and that of primeness for a divisor (discrete countable
set), as well (see §1, Definitions 1 and 2).

Now, for a divisor, the concept of NPS (non-trivial pre-image set) was
defined together with some other concepts ([9]). Note that, according to their
definitions, a divisor is not NPS if it is (left-) prime.

Relating to the above concepts, it is one of the main purposes of this paper
to prove that the function; P(z)+Q(e?) (P, Q : non-constant polynomials), which
is known to be prime, is further prime in divisor sense (under certain conditions,
Theorems 1 and 2). In the proof of this fact, we shall need some additional
results (Theorems 3 and 4) which show that certain entire functions are prime
or left-prime.

Also, we shall prove a result (Theorem 5) which tells us explicitely that the
primeness in divisor sense is not necessarily q.c. invariant. More precisely, this
means that a divisor D which is not pseudo-prime may be mapped by a quasi-
conformal mapping of C onto itself to a divisor D which is prime (see $6).

§1. Preliminaries.

For a meromorphic function F(z), the factorization under composition opera-
tion such as

F(z)=f-g(z)=f(g(2)) (1)

has been considered, where f is meromorphic and g is entire (g may be
meromorphic, when f is a rational function). Then, by definition, F is called
to be prime (pseudo-prime; right-prime; left-prime), if, for every factorization as
above, we can always deduce the following assertion: f or g is linear (f or g
is rational ; g is linear whenever f is transcendental; f is linear whenever g is
transcendental, respectively).

When F is entire and both factors f (left-factor) and g (right-factor) of F
under (1) are restricted to entire functions, then it is called that the factorization
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is to be in entire sense. Thus we may use the phrase “ prime in entire sense”
instead of “prime” etc. It is known and easily proved that any non-periodic
entire function is prime if it is prime in entire sense (cf. [8]).

Now, in constrast to the atove, we define the primeness in divisor sense
(for entire functions) as follows.

Definition 1. An entire function F(z), with zeros, is called to be prime in
divisor sense (pseudo-prime in divisor sense; right-prime in divisor sense; lefi-
prime in divisor sense), if, for every identical relation such as

F(z)=f(g(2))-e*?, (2)

where f, g (const.) and A are entire functions, we can deduce the following
assertion: f has just one simple zero or g is a linear polynomial (f has only a
finite number of zeros or g is a polynomial; g is a linear polynomial whenever
f has an infinite number of zeros; f has just one simple zero whenever g is
transcendental, respectively).

Definition 2. A divisor D, a discrete countable set in C, is called to be
prime (pseudo-prime; right-prime; left-prime), if an entire function F(z) whose
zero-set is identical with D is prime (pseudo-prime ; right-prime ; left-prime, resp.)
in divisor sense, as in Definition 1.

Remarks. 1). Prime entire functions need not be prime in divisor sense.
For example, even if p is a prime number (=2), the function z? (which is clearly
prime) is not prime in divisor sense:

Zp:(z,eB(z))p,e-pB(z)

for any entire function B(z).

Further, letting h(z), with A(0)#0, be an entire function such that the order
of h(e®) is finite and that h(z) has zeros of order n for all sufficiently large
natural number n and letting m be an integer, P(z) and Q(z) (¥const.) be
polynomials, then the function F(z) defined by

F(z)=h(e?)-exp[mz+P(e’)+Q(e?)]

is known to be prime (cf. [18]). While F(z) is clearly not pseudo-prime in divisor
sense (composite in divisor sense).

Also, entire functions which are prime in divisor sense need not be prime.
This is seen, for instance, by

F(z)=z-exp[z(e*+1)]=(ze*)-(ze?) .

2). If F(z) is an entire function whose zeros are all contained in a straight
line (a half line), then F is pseudo-prime (right-prime, resp.) in divisor sense.
These will follow from a Theorem due to Edrei ([3]);

Theorem A. Let f(z) be an entire function. Assume that there exists an
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unbounded sequence {a,} such that all the roots of the equations

f@=a, (n=1,2,-)
be real. Then f(z) is a polynomial of degree not greater than 2.

2. Let F(z) be an entire function with zeros {z,} such that the order of
N(r, {z.}) (cf. [10] around p. 16) is less than one and that there exist constants

r and w with [argzn—r|<w<% for all n. Then F is right-prime in divisor

sense. This is seen by applying a Theorem due to Kobayashi (Lemma 3 in §4)
or Tuzuki.

3). There exist periodic entire functions which are prime in divisor sense.
In fact, prime periodic entire functions exhibited by Ozawa in [15] give these
examples.

4). Certain prime entire functions which are constructed by Liverpool ([12])
in connection with Picard set are at the same time prime in divisor sense.

§2. Statement of main results.
Theorem 1. Let P(z) be a polynomial. Then the function
F(z)=z+4P(e?)

is prime in divisor sense.

Theorem 2. Let P(z) and Q(z) be two non-constant polynomials. Assume that,
for any natural number k and constant c, the function e **-[Q(e*)+c] is non-
constant. Then

F(2)=P(2)+Q(e?)

is prime in divisor sense.

Remark. The latter condition in Theorem 2 cannot be dropped, otherwise
the statement is not valid generally. To see this, it is enough to consider the
following identity : [R(z)1*+e’= {(w*+1)-(R(z)-e"?'*)} -¢?, where R(z) is a poly-
nomial.

The following facts are also valid. Now, we call that f(z) is c-even, if
f(z4+c¢) is an even function (i.e. f(—z+c)=f(z+c) for any z).

Proposition 1. Let P(z) and Q(z) be two non-constant polynomials. Assume
that [P(2)]* is not c-even for any constant ¢ and Q(z), with Q(0)#0, has only
simple zeros. Then the function

F(z2)=P(2)-Q(e?)

is prime in divisor Ssense.

This is proved by the similar argument as in the proof of Theorems 1 and 2.
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Remark. Let
F(z)=2z%-(e¥+1), or F(z)=2z%(e**—1).

Then F is not prime in divisor sense. In fact, if we put G(z)=F(z)-e %, we

have G(z)=h(z? for some entire function h(z) with infinitely many zeros, since
G(z) is O-even.

Propoesition 2. Let F be an entire function of two variables z and w defined by
F(z, w)=(+w)t—(e*+ev)%.

Then F(z, w) is prime in divisor sense. (However, F is reducible.)

This means that, under
F(z, w)y=f(g(z, w))-e** ™,

where f(z), g(z, w) and A(z, w) are entire functions, if f(z) has at least two
zeros, we can conclude that g(z, w)=a+bz+cw ; linear.

Note that, for any fixed w, F(z, w) is prime in divisor sense (considered as
the function of z) by Theorem 2. This is valid if we change z and w. Further,
putting w=2z (say), the function F(z, 2z) is also prime in divisor sense. Using
these facts, we can show the above assertion.

In connection with above Theorems, we may recall the following result,
proved in [19]: Let F(z2)=h(z)+H(z) and G(z)=k(z)+K(z), where h and k are
non-constant entire functions of order less than one and that A and K are non-
constant, periodic, entire functions with periods b, and b, (resp.). Assume that
the identical relation

F(z)=R(z)-G(z)-e4®

holds, where R(z) is a meromorphic function of order less than one and A(z) is
an entire function. Then we have necessarily that A and R are constant (and
b,/b, is a rational number) so that

Fz)=c-G(2)
for some constant ¢+0.
Hence, if the functions F(z) and G(z) as above have the (essentially) same
divisor, then they are identical up to a non-zero multiplicative constant.

§3. We shall show the following fact, to which the proof of Theorems 1 and
2 will be reduced, as is seen in §4.

Theorem 3. Let P(z) be a polynomial and H(z) be a periodic entirve function
of exponential type with period 2ni (i.e. H(z+2ri)=H(z)). Assume that, for any
integer k and constant ¢, P(z) is not c-even and e**-[H(z)+c] is non-constant.
Then, for any constant a, the function

F(z)=e**-[P(2)+ H(2)]
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s prime.

Remark. From the proof given below, it will be seen that the assertion of
Theorem 3 (primeness of F) is valid, even if the condition that P(z) is not
c-even is dropped, when H(z)=Q(e?) for a polynomial Q(z). Also, if P(z)=z,
then the non-constancy of e**-[H(z)+c] is needless.

Proof of Theorem 3. At first, we observe that the right-factor g of F
cannot be a non-linear polynomial. To see this, it will be sufficient to consider
the case where g is a polynomial of degree two, since the zeros of F(z) are
distributed very near to the imaginary axis.

Let g(z)=b(z—z,)*+d. Then, using w=z—2z, we have that F(—w)=F(w)
which is rewritten as

e 2. [P(—w—z)+H(—w+z))]=Plw+z)+Hw+z,).

Since P is a polynomial and H is a periodic entire function with period 2zi, by
comparing the growth of the both sides along the imaginary axis, we see at
first that a is a real number and further a=0. Then the above relation can be
written as

P(—w—+zo)—P(w+zo)=Hw+z,)—H(—w+z,) .

This implies that the left-hand side which is a polynomial is bounded on the
imaginary axis so that it is constant. Further, since it becomes zero at w=0,
it must be identically zero. Hence P(—w+z,)=P(w-+z,), that is, P(w) is z,-even,
contrary to the assumption. Note that, if H(z)=Q(e*), where Q is a non-constant
polynomial, then the identity H(—w-z,)=H(w+2z,) cannot hold (a contradiction,
as is to be shown. cf. Remark below Theorem 3).

Next, we must prove that F(z) is left-prime (in entire sense). To do so,
we'll consider the following two cases separately :

(i) a is an integer

(ii) a is not an integer.

It may be noted that for the case a=0 the primeness of F is already known.

The case (i). Setting a=m for an integer m, assume that
F(z)=e™*-[P(2)+ H(2)]= f(g(2)), (3)

where f is a non-constant entire function (and g is a transcendental entire
function, as is shown above). By the periodicity of e™* and H(z), we have

f(g(z+2mi))— f(g(2)=[P(z+2mi)—P(2)]-e™".
Hence we see that
g(z+27i)—g(2)=Q(2)-e",

where Q(z) (%0, since F is non-periodic) is a polynomial and b is a constant
(note that g is of exponential type). Here, taking a polynomial R(z) such that
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R(z+2x1)-e® ' —R(2)=Q(2) ,
we have
g(2)=R(2)-e"+K(z2), (4)

where K(z+42ri)=K(z) is an entire function of exponential type. Now, R(z)
may be constant, if Q(z) is constant and b is not an integer. Otherwise, R(z)
is non-constant.

By (3) and (4), we have the following identity

e™ -[P(2)+H(z)]= f(R(2)- e+ K(2)) . (5)

Since g, under (4), is transcendental, we see that the order of f is zero, by
a well-known Polya’s Lemma, so that, if f is transcendental, by using the
minimum modulus Theorem and comparing the growth of the both sides of (5)
along the imaginary axis, we obtain a contradiction (cf. [17], p. 108-109).

If f is a polynomial, we put

f(2)=coz"+ 12" -+ +cq, co#0.

Then, from (5), we see at first that nb=m and that |[P(z)|~|c,||R(z)|™ along
the imaginary axis. Hence R(z) is non-constant. Also, if P(z)=z, the latter is
possible only if n=1.

Assume now that e *-[K(z)+c¢’] is constant for some c¢’C. Then, we
may write the right hand side of (5) as f(R,(z)-e*?) with R,(z)=R(z)+const. In
view of nb=m, the identity (5) can be written as

[P(2)—coRy(2)™] - e™ —c i Ry(z)" te PP — oo —¢ 1 Ri(2) €™
—cptem™ - H(z)=0.

Here, b+0 (since g is transcendental) and R,(z) is non-constant (R(z) is so).
By applying Borel-type unicity Theorem, we conclude that this identity holds
only if P(z)—c,Ri(z)"=const.=¢” and c¢,= - =c,-;=0. This implies that
e™*.[H(z)+c”] (nb=m) is constant, contrary to the assumption. Hence
e %.[K(z)+c¢’] is non-constant for any c¢’€C.

Now, we can rewrite the identity (5) such as

e™” - {P(2)—coR(2)"+e " - (ncoK(2)+c1)- R(2)*'[14-0(1)]}
=co K@) "+, K(2)* '+ +cp—e™? - H(z), (6)

considering the equation on the imaginary axis. As noted above, the periodic
function e=%-(nc,K(z)+c,) is non-constant. Hence, if n=2, we can conclude
that the left hand side of (6) is unbounded on the imaginary axis. While, the
right hand side (periodic, with period 2z7) remains bounded there. This is not
in reason. Hence we must have n=1, which shows that f(z) is linear. Thus
F(z) is left-prime in entire sense.

The case (ii). In this case, we can prove the following fact, which shows
that F is also left-prime in entire sense.
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Theorem 4. Let P(z) be a non-constant polynomial and H(z) be a non-constant,
periodic, entire function of exponential type with period 2mi. Assume that acC
is not an integer, then the function

F(z)=e*-[P(z)+H(z)]

is left-prime in entire sense.
To prove Theorem 4, we shall need the following result due to Ozawa.

Lemma 1. ([14]). Let F(z) be an entire function of finite order whose
derivative F’(z) has an infinite number of zeros. Assume that the number of
common roots of the equations

F(z)=c and F’(z2)=0 (7)
is finite for any constant ¢. Then F is left-prime in entire sense.
We wish to check the conditions in Lemma 1.
Now, for F(z) in Theorem 4, we have
F'(z)={aP(2)+P'(2)+aH(z)+H'(2)} -e®.

Since a is not an integer, both aP(z)+P’(z) and aH(z)+H’'(z) are non-constant.
Hence it will be clear that F’(z) has infinitely many zeros.

Assume that there exists an unbounded sequence {z,}{ each member of
which satisfies (7). In what follows, we consider the case ¢#0. (If ¢=0, then
we have that P(z,)=—H(z,) and P’(z,)=—H'(z,) so that P’(z,)/P(z,)=
H'(z,)/H(z,), whose left hand side tends to zero while the right hand side tends
to a non-zero value as n tends to infinity, a contradiction.) By assumption, we
have

F(zn)=e*"[P(z,)+ H(z,)]=c (8)

F'(zn)=e*n{a[P(za)+H(za)]+P'(z2)+ H' (z,)}

_ P'(z,)+H'(z2) | _
ot B g 10
Hence
P'a)+H'z)
PlantHGz) ~ ° (9)
so that

H'(zn)+aH(z,)=—aP(z,)—P’(z,)—0 (as n—o0),

because a is not an integer (in particular a#0) and P(z) is a non-constant poly-
nomial. Since H(z) is periodic with period 27i and of exponential type, we can
write

H(z)=k=m2mc,,e’” (cm#0 or c.p#0)
and
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H'(z)=k£) keyet?

for a natural number m. Hence we conclude, taking a subsequence if necessary,
that

e’n—oo or e‘n—( (as n—oo),
In either case, we have
H(z,)—o0 (as n—oo). (10)
Then, from (9), we have

im L @)/ Hzn) + H'(z0)/ H(z0) _

e P(z)/Hizn)+1 (1
From this, we see that the following limit exists;
li£n P(z,)/H(z,)=b (#-—1). (12)

In fact, noting that the non-zero limit of H’(z,)/H(z,) exists, we see at first that
P(z,)/H(z,) remains bounded w.r.t. n and further that the limit exists (note
a+0). Then it is clear that the limit value b cannot be —1.

Returning to (8), we have

P(z,)/H(zp)+1=c/(e"*n-H(z,)) . 13)
In view of (12) and (13), we have

lim e%*n-H(z,)=A (#0).

n—+c0

Hence, if exp[z,]—oc (n—o0), then

lime™*®in=B (=A/cn#0) (14)

=00

or if exp[z,]—0 (n—co), then

limet-m*®m=B (=A/c.n+0). (15)

n—oo

Using these, we wish to deduce a contradiction.
Assume that (14) is valid. Then

lim Re{(m+ a)z,} =log| B|. (16)
While, we have
Re{(m+a)z,} =(m+Re a)-Rez,—Ima-Imz, (17)

Note here that, in this case, Re z,—c0 (n—c0) and that Im z, is unbounded (the
latter will be seen by using the equation just under (9)). If m+4Re a=0, then by
(16) and (17) we have also Im a=0, which implies that a is an integer, a con-
tradiction.

Now assume that m+Re a+#0. Then Im a+#0 and

Im z,/Re z,—(n+Re a)/Ima (=c¢, (say), #0),
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also in view of (16) and (17). Hence |Imz,|~]|c,|-|Rez,| so that |z,|~
(14+c»)'2-|Rez,|. Then

| P(24)/H(zz)| ~c 2| ?/(|cm]| -explm(Re 2,)])=0  (n—00),

where deg P=p.

Hence from (12), b=0, while from (11) and (12), we have m/(b+1)=—a.
Thus a=—m; an integer, which contradicts the assumption.

In the case where (15) is valid, we have a similar contradiction.

Thus we've checked that the conditions of Lemma 1 are all satisfied. There-
fore F is left-prime in entire sense.

Hence we have that F(z) (in Theorem 3) is prime in entire sense. Since F
is non-periodic (as is easily seen), F is also prime (cf. [8]). Thus the proof of
Theorem 3 is now complete.

Remark. A discrete countable set D is called NPS if there exists at least
one non-linear function f(z) and a finite range set T of distinct values with
|T|=2 (where |T| denotes the cardinality of T') such that f-*T)=D, including
multiplicities ([9]).

Then, Theorem 3 tells us that the set: D= {z|P(z)+ H(z)=0} cannot be
NPS (non-trivial pre-image set), if P(z) is a polynomial and H(z) is a periodic
entire function of exponential type such that, for any integer 2 and constant c,
P(z) is not c-even and the function e*:-[H(z)+c] is non-constant.

§4. Proof of Theorem 1 and 2.

We use the following Lemmas. Now, for an entire function f(z), we shall
denote by p(f) (,g(f)) the order (lower order, resp.) of f and by p*(f) the
exponent of convergence of the zeros of f(z) (this is equal to the order of
N(», 0, f).

Lemma 2 ([4]). Let f(z) and g(z) be two transcendental entive functions. If
0*(f) is positive, then p*(f(g)) is infinite.

Lemma 3 ([11]). Let f(z) be an entire function of lower order less than 1
(more precisely, lim inf T'(r, f)/r=0). Assume that there exists an unbounded
sequence {w,} such that all the roots of the equations

f@=w, (nz1)

lie in a half plane, then f(z) is a polynomial of degree not greater than 2.

Lemma 4 ([20]). Let f(z) be an entire function of finite order and of posi-
tive lower order. Suppose that g(z) is an entire function of order not greater than
1/2 and g<H i.e.

lim inf 128 108 Mr, &) _

Tesoo log log » (20)
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Then p*(g(f(2)))=o0.

Lemma 5 (cf. [20]). Let f(z) be an entire function of finite order. Then if
g€ H (i.e. the left hand side of (20) is finite), the lower order B(g(f(z)) is finite.

Lemma 6 (cf. [20]). Let f(z) be an entire function. If the lower order
p(e? ) is finite, then f is a polynomial.

Lemma 7 ([5]). Let F(z) be an entire function of finite order such that
d(a, F)=1 for some a+oo, where d6( , F) denotes the Nevanlinna deficiency. Then
F(z) is pseudo-prime.

Now, consider the generalized factorization :
F(2)=P(2)+Q(e")=f(g(2))-e*?, (21)

where f, g (%const.) and A are entire functions. Note that F has an infinite
number of zeros which are all simple except at most a finite number of them.
Also note that the zeros of F are all contained in a half plane such as {Re z=c}.
Further, since we have Re z,—oo (n—c0) with the zeros {z,} of F, g(z) under
(21) cannot be a non-linear polynomial.

If f has a finite number of zeros, as we may assume that f is a polynomial
with at least two zeros, we see p(f(g))=1 so that A(z) is linear.

If f has an infinite number of zeros, assuming f is the canonical product
constructed by the zeros (we may do so), by Lemma 2 we have p(f)=p0*(f)=0,
since g is transcendental. Naturally we have p(g)=<1. Further, by applying
Lemma 3, we see p(g)=1. Then, noting p*(F)=1, we have by Lemma 4 that
fe H so that by Lemma 5 we have o(f(g)) is finite. Hence, by Lemma 6, A(z)
is a polynomial. In this case, rewriti—ng the identity (21) as

[P(2)+Q(e*)]-e 4 = f(g(2)), (22)

and then applying Lemma 7 to the above (noting f and g are transcendental),
we conclude that ¢4 is of order 1 so that A(z) must be linear.

As we may put —A(z)=az, from Theorem 3 (Remark there), we have that
the left hand side of (22) is prime. This implies that f(z) has just one simple
zero or g(z) is a linear polynomial, which is to be proved. Thus the proof of
Theorems 1 and 2 are complete.

§5. Here we wish to note the following fact.
Theorem 5. For a sequence of point-sets {A,|n=1, 2, -~} with A,={a.;};%
(1£m, =) and a sequence of mutually distinct prime numbers {p.}7T with p,=3,

let F(z) be an entire function whose zero-set be \J A,. We assume the following
n=1
conditions ;

(i) the order of the zero-point a,; of F(2)is equal to p, for j=1, -, my.
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(ii) there exists a half plane H such that A,CH (n=1). .
(iii) the order of N(r, A,) isless than 1 (n=1), while the order of N(r, }J‘An)
s not less than 1.

Then F(z) is left-prime in divisor sense.

Proof. Let
F(2)=f(g(2))-e*®,

where f (sconst.), g (transcendental) and A are entire functions.
Assume that f has at least two zeros. We deduce a contradiction. Now,
we have

plg)=1. 23)

Indeed, if f has an infinite number of zeros, then noting the assumption (ii) and
applying Lemma 3, we have p(g)=1 and if f has a finite number of zeros, then
noting the latter condition of _(iii), we see (23) is valid.

We show at first that the number of the multiple zeros of f(z) is at most
one. Indeed, if f has two zeros b, and b, with multiplicities ¢, and ¢, (>1,
resp.), then

q1=Dn, and ¢.=pa,

for some n, and n, such that zeros of g(z)—b; are all contained in A(n;) and
simple (y=1, 2). Thus

N, by, @)+N(, by, =N, An)+N(r, As,). (24)

The left hand side of (24) is of order at least 1 by (23) except possibly for a set
E of finite linear measure, while the right hand side is of order less than 1 by
the assumption. This is a contradiction.

Next, we show that the number of the simple zeros of f(z) is also at most
one. In fact, if f has two simple zeros b, and b,, then the zeros of g(z)—b;
have multiplicities at least 3 by the assumption so that @(b;, g) is not less than
2/3. Hence

This is impossible, since g is entire ([10], p. 43).

Thus it is only necessary to rule out the case where f has one multiple
zero b, and one simple zero b,. Note the facts (23) and that the order of
N(r, by, g) is less than 1 (cf. (24)), whence we have that b, is a Borel exceptional
value of g(z). Hence the lower order of g is not less than 1. Then clearly
O(b,, g)=1 and, naturally, @(b,, g)=2/3 so that the inequality (25) is also valid,
a contradiction.

Therefore f(z) must have just one simple zero, which shows that F is left-
prime in divisor sense.

Remark. If we put certain additional assumption on A,, then F(z) in
Theorem 5 becomes to be prime in divisor sense. Hence, it will be clear that
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F(z) considered in §6 is prime in divisor sense.

§6. We note here that the primeness of a divisor need not be quasiconformally
invariant. This is shown explicitely as follows.
First of all, we recall the following fact due to A. Beurling and L. V. Ahlfors

(cf. [1D);

Theorem B. There exists a quasi-conformal automorphism of the upper half
plane with the boundary function h(x) (x€R) if and only if

< h(x+t)—h(x)
<~ <)
h(x)—h(x—t)

for some constant p (=1) and for all x and t (+0).

Actually, if the condition (26) is satisfied, there exists a mapping whose
maximal dilatation is not greater than p® This mapping is given, for instance,
by the function ;

flz)= 21yS h(x+s)ds+i- —S ChA(x+s)—h(x—s)]ds 27
with z=x-7y, y>0, and a certain positive constant r,.
Now, we consider the function h(x)=x? on the real axis. Then h(x) satisfies
the condition (26) for some p. Hence h is the boundary function of a quasi-
conformal mapping F defined by (27). In this case, we have

F@)=x+xy*+i-rabx*+y)y/4 (28)
with z=x-+7y (y>0). We extend this function to the lower half plane by the
right hand side (replacing y by —y). Now, these are suggested by the work of
Shiga ([16]).

Note that the point set {a+2nri|neZ} with a=C is mapped by 7 to the

point set whose exponent of convergence is less than one.
Here, we consider the composite function;

G(z)=h(e?),
where
hnd Z \Pna
h@= 11 1—a—n)
or

il Z \Pn Z \in
h(z)= (1——- ex[ — —) ]
@= (1= 2) e[ 2t ot ()
with ¢,=1 such that {a,} with a,—co (n—c0) is an increasing sequence of
positive numbers and {p,} is a sequence of mutually distinct prime numbers =3
and assume that the exponent of convergence of {log a,} is not less than 3.
Then the divisor ;

E,={z|e*=a,} (including multiplicities p,)
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is mapped to the point set A, (n=1) which satisfy the condition (iii) in Theorem

5. Thus an entire function F(z) with zero set \J A, considered there is prime
n=1
in divisor sense, while G(z) above is naturally composite in divisor sense.
Hence, the divisor D=\JE, is composite, while the divisor D=\J A,,
n=1 n=1

which is the image of D under a quasi-conformal automorphism 7: C—C, is
prime. This shows that the primeness of a divisor is not q.c. invariant.

Remark. It will be easily seen that, for an entire function, the primeness
in divisor sense (as well as the primeness) is either not invariant under locally
uniform convergence.
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