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1. Introduction and Result.

In this paper we shall give a necessary and sufficient condition in order that
the Cauchy problem for second order equations with two independent variables is
C=-well posed.

Let us consider the following operator.

(L1) L=Di—A(t, x)D3+B(t, x)D.+C(t, x)D.+R(t, x)

where we assume that the coefficients are real analytic in a neighborhood of the
origin in R%. We are concerned with the following Cauchy problem,

(1.2) Lu(t, x)=f, x), Diu(t, x)=uyx), j=0, 1

We say that the Cauchy problem (1.2) is C=-well posed in a neighborhood of the
origin if there is a neighborhood W of the origin in R? such that for any
(to, x)€W and for any given C=-data f(t, x)eC(W), u;(x)eC> (WN {t=t,}), the
problem (1.2) has a C=-solution u(f, x) in a neighborhood of (¢,, x,).

Before formulating the condition of the hyperbolicity, we state some remarks
and notations. If we consider the second order operator for which {t=const.}
is non-characteristic and the Cauchy problem is C*-well posed in a neighborhood
of the origin, it follows from the Lax-Mizohata theorem [5] that the operator is
reduced to the one having the form (1.1) with non-negative A(¢, x). Therefore
we always assume that A(¢, x)=0 in a neighborhood of the origin.

Suppose that A(¢, x) does not vanish identically, then from the Weierstrass
preparation theorem and the non-negativity of A(f, x), A(¢, x) is written as
follows,

(1.3) AQ, x)=x" A, 2)EQ, x), A, x)———’ﬁ(t—ty(x)),

where E(0, 0)>0 and ﬁ(t, x) is the Weierstrass polynomial in t. If m=0, we
mean that A(f, x)=1. We set

F(A)={Rety(x), -+, Re tym(2)},
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where Ret,(x) denotes the real part of {,(x). If ﬁ(t, x)=1, we set F(A)={0}.
Then Ret,(x) is expressed by the Puiseux series of the real variable x>0, x <0.

Ret.(x)= %Cf,j(-_i-x)”p‘”’, C:,eR, p(v)eN
J

where the coefficient C},; (resp. C;;) corresponds to the expansion in x>0 (resp.
x<0).

Now we define the Newton polygon of f(t+Ret.(x), x) at (0, =0). Let
f(t, x) be an analytic function defined in a neighborhood of the origin in R2
For sufficiently small |x|, xR, we have

f(t+Ret.(x), x):,Zocf,i,jli(—i_-x)jfp‘”,
1, je
We define

(1.4) I.(f(t+Re t,(x), x))=convex hull of { :U 7, 7/p(w)+R%}.

€1, 570

For convenience sake, we set I.(f(t+Ret,(x), x))=¢, if f(¢, x) vanish identically.
We also denote by I'i’*(f(t+Ret.(x), x)) the set

{(a, YERL; 2a, 2B)e . (f(t+Re t.(x), x))}.

Using these notations, we have

Theorem 1.1. In order that the Cauchy problem (1.2) is C*-well posed in a

neighborhood of the origin, it is necessary and sufficient that the following two
conditions are fulfilled.

(L.5) A(t, x)=0 in a neighborhood of the origin,
(1.6) I.(tB@+¢(x), x)CTAlt+¢(x), x)), for all ¢(x)eF(A).

Remark 1.1. From the Weierstrass preparation theorem, one can decompose
f(t, x) in the following form uniquely.

ft, ©)=x"ft, x)e(t, x)

where (0, 0)+=0 and f(t, x) is Weierstrass polynomial or f(, x)=1. Then it is
easy to see that

T.(ft+Ret(x), x)=T.(x"F(t+Ret.(x), x)).

Remark 1.2. Formally, the condition (1.6) is similar to a necessary and
sufficient condition of the hyperbolicity of the operator AY*(D,, D,)+B(D,, D,).
See [8]. Especially, consider the case when A(t, x), B(t, x) has the following
form,

m 2 m-1 X
A, n={IL =200}, B, 0="5 Bix)t),
j=1 j=0
where A;(x) (real valued), Bj(x) is real analytic at x=0 and 2;(0)=0. Then,
applying the same reasoning in [4] (Proposition 5.1), we can conclude from (1.6)
that B(t, x) is expressed
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m

B(t, 9= 3 e(0) [T (1= 2.0x)
vij

with analytic c;(x). In the case when A(x)=a;x, a;ER, By(x)=bx™"'"/, b;eC,
this condition for B is a necessary and sufficient condition of the hyperbolicity of
the operator

1 (D—a;D.)+B(D,, Da).

2. Proof of the sufficiency.

From [6], one can represent A(¢, x) in the form
@1 Al D= {1 A 0f e, 27, Al D= (=) 0L

where ¢(0, 0)#0, A.(x), ¢.(x) is analytic in 0<|x|<d, x€R and ¢,(x)=0. If
¢.(x) does not vanish identically, A,(x) is real valued. Here, we note that F(A)
coincides with the set {Re A;(x), ---, Re An(x)}. From lemma 1.1 in [6], the
function

2.2) alt, x):x"{ ﬁl A, x)}e(t, %)

is analytic in U\(0, 0) and continuous in U, where U is a neighborhood of the
origin in R%

Following [6], we introduce some notations. Renumbering, if necessary, we
may assume that

Re A, (x)=Re 4,(x)=< -+ =Re An(x), in 0<x<ad.
Let us set

s;(x)=2""(Re 3;(x)+Re 2;.,(x)), j=1, -+, m—1, sy(x)=—1(x),
Sm(x)=A(x), Q(X)2=4JZ‘Z:(IZJ(X)12+¢j(X))-
By w;, o(T) we denote the following region,
w;={(t, x); 0<x <0, sj-(x)=St=<s,(x)}, 7=1, -, m,
o(T)={¢, x);0<x<d, Ax)<t<T}.

Our aim in this section is to derive the following inequalities from the condition
(1.6).

(2.3 [(t—Re 2;(x))B(t, x)|=C|a(t, x)| in w; =1, -, m,
o { [(t—Re An(x))B{, x)|=Cla(t, x)| in &(T) if n=1,
) | B, x)| <C|D,att, x)| in w(T) if n=0,

where n is the non-negative integer in (1.3). If this is done, using the inequal-
ities (2.3), (2.4) and the inequalities of the same type obtained in x<0 (which
shall be proved by the same way), we can proceed following [6] and prove the



94 T. Nishitani

sufficiency of (1.6).
Now we shall proceed to the proof of (2.3). Fix j, (1<j,<m) arbitrarily and
suppose that

Re Z,-O_k_l(x)<Re on-k(x):"‘:Re Zjo(x):"‘:Re on+,(x)<Re 2_,-0+l+1(x)

in 0<x<d. We set A(x)=Rei;(x), ¢*(x)=2"'(Re Ajprrar(x)—A(x)), ¢~ (x)=
27Y(A(x)—Re 2;,-x-1(x)). If Re Ai(x)=Re An(x), we put @*(x)=2"1(A(x)—A(x)).
Similarly, ¢~(x)=2""(A(x)+4(x)) if Re 2;,(x)=Re A,(x).

Since j, is arbitrary, to prove (2.3) it suffice to show that

(2.5) [@—Ax)B(, x)|=Cla(t, x)] in @y,

where @;,={(t, x); 0<x <3, Ax)—¢~(x)<t=<Ax)+¢*(x)}.
For two functions fi(x), fu(x) we write f,(x)=f,(x) if and only if the fol-
lowing inequalities are valid in 0<x <4, with some positive constants C;, .

Cllfl(x)lz|f2(x)lgc‘2|f1(x)['

Proposition 2.1. For all v, 1=v=m, we have
CHIAx) = () |+ 1) 2 +0]¢*(x) [} 2 | A(A(x)+09* (x), x)]
2CA{1Ax) =) |+ 1gx) [ 2+ [ g*(x) [},
where positive constants C; do not depend on 0, 0=0=1.

Remark 2.1. If A(x)=Re A,(x) (resp. =Re A;(x)) the above estimate with
+0¢* (resp. —0¢~) is valid uniformly in 0=0.

Proof. We prove this proposition for ¢*(x). If ¢.(x) does not vanish identi-
cally, A,(x) is real valued, and then this means that

(2.6) | A(A(x)+09%(x), x)|*=]A(x)—Ax)+04*(x) |+ ¢.(x) .
First consider the case when Re ;(x)<Re An(x). If Re A(x)=Re 4; +14:(x),
the following is valid uniformly in d, 0=0=1,
[A(x)=2(x)+0¢*(x) | = | A(x)—A(x)].
Noting the inequality C|A(x)—A.(x)| = |¢*(x)|, (2.6) proves the desired inequality.
Next, if Re 2,(x)<2(x), the non-negativity of ¢*(x) shows that
[A(x) =2 (x)+0¢H(x) | = | A(x)—A(x) | +3] ¥ (x)].

Then, (2.6) gives the desired inequality. When the case Re 4;(x)=Re 2.(x), we
have Re A,(x)<A(x), for all v, and then the proof is the same as those of the

second case.

If we note that I} (A¢+¢(x), x)=I\(alt+¢(x), x)), (1.6) is reduced to
IL(tB(t+¢(x), x)CI.(alt+¢(x), x)). Moreover, in virtue of Remark 1.1, we may
suppose that
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@7 s B+ gx), o (x 1T Att+e(0), )

where B(Z, x)=x’_‘]§(t, x)E(, x) is the decomposition corresponding to (1.3).
We shall derive (2.5) from the condition (2.7),. We define e(v), (1=v=m),
¢ by
[A(x)=A(x) |+ () P=x5®,  gH(x)=x".

If |A(x)—A.(x)|+¢.(x)"? vanish identically, we set e(v)=oo.
Let

(2.8) eINZ - Ze(wD)>eze((+1)= -+ Zelvim)) .

From (2.8) and proposition 2.1, it follows that

Jj=l+1

(2.9) 1 | 4.0(((0)+067(x), 1) 2C TT 200,

where C does not depend on d, 0=0=<1. Similarly, from Proposition 2.1, we have

(210) II—I I/I,(j)(l(x)-l—égzi"(x), x)l ~ 1"[1(xs(z(j))+5xs)gcgpxpe+s(u(1+p))+~..+s(y(l))’
j=1 =

for »p=0,1, -+, L.
The other hand, the condition (2.7) implies that

Order {Di(x"B(a(x), )} Zn+ 3 i), for j=0,

i=j+2

whereii e(7)=0 if j=m—1. Especially, we get A=n.
=j+2

Proposition 2.2. There is a positive constant C which does not depend on d,
0<0=1, such that

|5¢’(x)xﬁl§(2(x)+0“¢i(x), x)| éClx”LlL:Il/l,(l(x)+5¢*(x), x)].

Proof. We prove this proposition for ¢*(x). First we rewrite B(A(x)+
d¢*(x), x) as a polynomial in 4.

B((x)+8¢*(x), X)= j.% Bi(x)d, Bjx)=(1)'¢*(x)VeiBA(x), x).
From (2.7), it follows that
(211) 5|¢+(x)| |5f¢+(x)fxﬁa{B(2(x), x)|écgjﬂxs(u(j+2))+~~~+s(v(m))+(j+1)s+n.

In the case when ;j+2=/, taking into account of (2.9) and (2.10), the second
term of (2.11) is estimated by

Co"j+1xn+s(>(j+2))+~-+s(v(l)) ]m[ x““‘”’éClx"ﬁA,(Z(x)+5¢+(x), x)[
v=1

Jj=1+1

In the case when j+2>/, noting the inequalities (2.9), (2.10) and

(J+De+ew(G+2)+ - +(um)=le+ew(l+1)+ - +e(v(m)),



96 T. Nishitani

we can estimate the second term of (2.11) by

calxnus ﬁ x“‘“‘j”5‘j"”"§C|x"i’:[l/l,(l(x)+5¢+(x), x)l

Jj=l+1

This completes the proof.

Now we derive the estimate (2.5). Let (¢, x)€@;,N {{=4(x)}, then there is
a 0, 0=0=1, such that t=2A(x)+0d¢*(x). Hence Proposition 2.2 implies (2.5). In
the region @;,N {{=4(x)}, the proof is the same. Next we derive the following

proposition from I'y(tx™ B(t-+A(x), x))CF+(x" f:[l A A(x), x)), Ax)=Re A,(x).

Proposition 2.3. We have in o(T), with small T,

B, )ISCE |2 TL A, 0l 1(t—Re 2n(x)B(, 0 SClxm [T A, 2)1.

Proof. From Remark 2.1 and the proof of Proposition 2.2, it is clear that
|0¢*(x)x™B(A(x)+0¢*(x), x)léclx"ﬁl/h(l(x)-i-w*(x), x)|

is valid for 0=0, A(x)=Re A,(x). Let (¢, x)=w(T), then one can write with some
0=0 so that t=2A(x)+0¢*(x). Hence this shows the second inequality in proposi-
tion 2.3 immediately. Moreover, it is easy to see that

t—Re An(x)=t=[t—2.(x)| +¢.(x)"2,

for all vy, 1=v=<m, in w(T). Thus, the second inequality in Proposition 2.3
implies the first one in w(T).

Proposition 2.4. In w(T) with small T, the following is valid.

> [x* 11 At x)|=|D.at, x)|.
g=1 vEQ

Proof. Since the inequality |D.a(t, x)| gc%l s {1 4.6, 01, is easy, it
q= v#q
suffice to show the inverse inequality. It follows from the expression (2.2) that
m m
aata=x2"v§ (t—Re 4,(x)) {glA#(t, x) 1% lelz-l—xz"(ace'e)};lll/l,l(t, x)|2
The other hand, in w(T), we know that
t—Re A (x)=c| A, x)|, 1=v=m,

with positive ¢. Then remarking 4,(0, 0)=0, we get this proposition.

Now, combining Proposition 2.3 and 2.4, the estimate (2.4) follows immedi-
ately.
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3. Some remarks on the dependence domain.

In this section, we limit our considerations in the region {t>0, x>0}. In
another region, there is no difference in the reasoning.

Let |#(x)|=x", yeQ* and we assume that #(x) does not vanish identically.
We denote by <.(A) the set of all functions ¢(») which is real valued and
expressed by the Puiseux series of the real positive variable », satisfying the
estimate |@#(r)| <Cx’, in a some interval (0, #(¢)) with a constant C.

o(r)= E] e’ ;= (@ER, p=p(HEN.

Also we define o*(¢) for p=46.(A), %0, by ¢(r)zx"+‘¢’. The definition of
I \(f@+¢(x), x)) with analytic f(t, x) is clear.
We set
D(r, M)={(, x); 0<x<r, 0<t<M«xT},

AE, %;00=1{, x); ¢—D+c ' x—£] =0, 0=<i<7},
then from the proof of lemma 2.2 in [6], it follows that
3.1) |A(t, x)| SC(M)%? for (t, x)eD(@, M).
Let us put p(M, 7, £)=C(M)'@M)™ " if y=1 and C(M)7'CM) 127 if r<1,
then we get
Proposition 3.1. One can find a positive constant T(M, 1) so that if

({, £)eD(pM, 1, %), M), 0<E<T(M,7)
then we have
A(E, £; CM)u(M, 1, £)TD((M, 7, £), M).

Proof. By a simple calculation.

Remark 3.1. From (3.1), we know that | A(t, x)| =C(M)*u(M, 7, %)? for (¢, x)
€D(u(M, v, %), M), and then Proposition 3.1 implies that A(¢, £ ; C(M)u(M, 7, %))
is the dependence domain of (f, £) provided that 0<£<T(M, 7), 0<i<M4#". In
other words, from Lu(t, x)=0in A(f, & ; C(M)p(M, 7, %)), u(t, x)=0 for t=0, we
can conclude that u(f, £)=0.

Next, we consider the coordinate transformation associated with ¢€g,(A).
Let T4; UN{x>0=>WN{x,>0}, be a diffeomorphism defined by
xX1=t—@(x), x,=x

where U, W is a neighborhood of the origin in R} ;, R% ., respectively. Denote
by Ly the operator transformed by T, which is defined in W {x,>0}. Then

Proposition 3.2. Let ¢(x)€G.(A), ¢(x)>0. Then there are positive constants
M, T(M, 7, ¢) (ST(M, 1)) such that for any (f, %) satisfying 0<£<T(M, 7, @),
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HR)V<E<MET, with M=M,, one has
To(d(E, % ; CIM)p(M, 7, 2T {(x1, x2); 0=x<{—(£)}.

Proof. Let usset co=0*(¢)>0. First we note that the following inequality,
[¢(x)—p(B)=Clx—2x]|%]|°7?, for 0<x, £<0=0(p), |x—%£|=27'|£|. The other
hand, if r<1, (¢, x)ed({, £; C(M)p(M, 7, £)) implies that |x—%£|<2"!|%]|, and
thus, taking into account of o=y, we get this proposition. When the case y=1,
the inequalities |@(x)—@(2)|=C|x—2%|, for 0<x, £<d=0(¢), and o=y show this
proposition.

Denote by E(M, 7, ¢) the set

{(x1, x2); 0<x2<8o, 0<x; < Mxl—h(x2)}.
Proposition 3.3. Suppose that the Cauchy problem (1.2) for L is C-well

posed in a neighborhood of the origin. Then there are a neighborhood of the
origin W in R% ., a constant C and an integer | such that the inequality

(3.2) sup |u|=C sup |D*Lgul,

0szsT 0sz,sT,lalsl
is valid for any T>0 and for any ueCy(WNEWM, 7, ). Where M=M, and
D*=D{Dg2, D;=D.,.

Next consider the coordinate transformation T,

To; y1=p%%x,, y,=p%x,.

We assume that g, p, g=Q* and
3.3 p=rg.

Let u=Cy({y,>0, y,>0}), then one can find M (=M,) and p, so that

supp(uT;)\CWNEWM, 1, ¢)  for p=p,.

We denote by Lg4,, the operator obtained from L4 by the transformation T,
then, from (3.2), it follows that
(3.4) sup_|u|=Cp*@Peb  sup | D§(Lg, ou)l,
0sy 1Sy 0sy1syg, 18ISt
for any ¥,>0.
For the later use, we prove the following simple proposition.

Proposition 3.4. For any ¢(x)€g.(A), we have
YA+ ¢(x), x))Cceonvex hull of {((m, n)+RINJ(0, n+1)+R3)}.

Proof. From Remark 2.1 and (1.3), it follows that

A+, )=T2(x 1 +p00—1x) .
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One can find #,(x), from the definition of #(x) such that ¢, (x)=7#(x), and this
shows that Clt,(x)|=|@(x)—t.(x)| for all v, 1=Sv<m. Consequently we have

raa(xen T e g—t0) L2 (en 1T (-4, (00)

The other hand, from the proof of lemma 2.2 in [6], we know that |#, (x)*™]
<C|x?|, and this completes the proof.

4. Proof of the necessity.
Let
L= 2231 AUD()D,D+ é} B9(x)D+F(x),
i, j= i=

where D,»———Dzj, and ¢€g,(A). First we write down the coefficients of L,
explicitly. If we denote by fy(x) the function f(x,+¢(x.), x.), the coefficients
are written as follows

ACP(D=1= AP (1} ATP(0)=2A4(0PP (x2), A (x)=—Ag(x),
BO(x)=By(x), BO(x)=—iAg(x)p®(x)—By(x)p P (x)+Cy(x), F(x)=Ry(x),

where ¢ (x,)=(d/dx,)¢(x3).
From (1.3), A(t, x) and B(¢, x) are expressed as follows

Alt, X)=x"{P " ay(x) " e t aam (X} EC X)
B(t, x)=x {t™"+b, ()™ 4 - +ba(x)} Et, x).
Therefore if ¢(x,)=4.(A), one can write

Ag)= X Acp0)xixf(14+0(x1'7),

(a, BYEM (&)

By(x)= 3 Bas(x)xfxd(1+0x3/?),  peN.

(e, HHEM ()

Here we note that

lim A, s(x)=A4, 5(+0), if (a, Bl eM(g),

ZTo=+0, 120

lim OB,,,ﬁ(x>=B,,,p(¢0>, it (a, Bem(g).

Ty—+0, L=
Consequently, it follows that

I (A(@+¢(x), x))=convex hull of {m Uv(¢)(a, B+ R},

AE

ﬂ)KEJﬂ(¢)(a, B)+R3}.

4.1)
I \(B@+¢(x), x))=convex hull of {(

Put 0=0%(¢)>0, then from the expression of the coefficients, we obtain with
some teN
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AC(x)=— 3 A s(0)xfxf(14+0(xi),

(a, BYEM ($)

ASD()=2 B ¢ Ag p(X)xExEHOD(140(x1)

(a, BYEM ()

42 AP(R)=1= 8 i p(x)xfef O (14+0(x9),

(a, BYEM ()

B®(x)= 3 B gxfxf(1+0(x3),

(a, BYEM (¢)

BO()=—i 3 g p(x)xfxf 0 (140(x4)

(a, BYEM ()

— B aBag()xfx§ P (14-0(x} 7)) +Cy(x) .

(a, HEM ($)
Next, we consider the operator Ly, ,.
PP Ly, o= A V(DI AL ()% *P Dy Dyt AP () p*0- 207 D
+ B (9)p D+ B (9)p% P Dy 4 F ()07,
where we denote by f,(y) the function f(p-°?y,, p~%y,). Let us set
TP, = {(a, e M) ; (a+1)p+pg<1},
M) p, )= (e, B)e M(@) ; ap+Bg<2},
0(p, =  min  2"Yap+Bq+(1+p)}},

(a, YEH ) (P, )
oi(p, =0(p, )(1—0(p, ), &(p, =(1+p—q)7"
Then we have
Proposition 4.1. Suppose that
MNP, +D, MP)p, 9=D, pzoq 1>¢(l—0).
Then we can find pQ*, p=p=1, so that
MP)D, )+ D, M@)Nb, =@, 0<ai(p, 9)<I,
a:(p, )—08(h, ¢)go—146(p, ¢)p<0.

Proof. We follow the proof of theorem 7.1 in [3]. Set
H(p, ={(a, B); 2¢(1—0a)<ap+Bg+1+p)}.

In the case when (@) p, )T K(p, q), we take p=p. The inequality 0<8(p, q)
<1 is trivial. Remarking the equality

ai(p, 9)—0(p, ¢)go—1+0(p, @)p=0(p, ¢){g(1—a)—0(p, )},

the desired inequality follows from M($)(p, Q)T KX(p, g), and o(p, ¢)=1—q(1—0)
>0. The other hand, since p=oq, we have 0(p, ¢)>q(l—o)=qg—p, and this
implies that 0<a(p, ¢)(1—6(p, )< 1.

Next consider the case when M(¢)(p, Q)T K(p, g). Denote
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f(p, B=p"A—Bg—p), g&(p, B)=p""{2¢(1—0)—1—p—Bq},

then we see f(p’, B)—g(p’, B)=2{1—¢(1—a)} >0, for og=p'<l. Take Z,=
(ay, BEMP)p, 9\K(p, q). Since g(p, B), f(p, p) depend continuously on p
and g(1, B)<0, one can find p,€Q, p<p=1 so that Z,€ MP)(p:, YK (p1, ).
If H(P)ps, Q)T HK(py, q), it suffice to take p=p,. Otherwise there is Z,=
(a3, B2)E HM(P)(p1, 9\ K(p1, ¢), and by the same reasoning, one finds .€Q,
p1<p.=1 such that Z,& H(p)(ps, )N\ K(ps, ¢). This procedure ends after the
finite times. If not, there is a sequence {Z;}5-.C M(P)(p, g) satisfying

4.3) Z ;1€ M(P) Dj, O\K(ps, ), Zj+1e~m(¢)(pj+1, ONK(Dj1, @) -

If we show that Z;+Z; for i#j, the proof is complete, because HM(P)(p, ¢) is a
finite set. Suppose that Z,=Z; and i>j. Then from (4.3) it follows that
Z=Z;€ M) ps-1, P\HK(pj-1, ¢). The inclusion K(p;, ¢)C H(p:-,, ¢) implies that
Z;=Z:€ X(p;, NM(p;, Q)T K(pi-1, g), but this contradicts to (4.3). The proof
of the rest part is the same as in the first case.

Take ¢=@.(A), p, g=Q* which satisfies the hypotheses of proposition 4.1.
Then from this proposition one can find p, o,=0(p, q), 0=06(p, q), 6=0(p, q).
In the following, we write p=p. Choose r€ N so that 70, ¢p, zq, tag, 7o, tfEN,
where (a, B)e M(P)\IM(¢p). With this 7, (4.1) is valid clearly.

Denote o,=%/7, 1=t<7r—1, and define o;=(¢+1—j)/7, j=1, -+, %, u™(y)=
exp{z’(/,epyz—l—élf(y)p"f)}, 0=n=¢t, u’(y)=exp{ippy:}, where u is a real param-

eter of which signature will be determined in later.
Here we remark that if (a, B)e M(@)'(p, ¢) the following equality holds,

(4.4) 1—adp— fog+069g—20p=20, .

If (a, BYEMP)Np, P\M(P)(p, ¢), we have 1—adp— pdg+0g—20p<20,. Where
M@)(p, g)={(a, B)E MP)D, q); ap+Bg+(1+p)=26}.

Proposition 4.2. Suppose that p, q, 0, o, o, satisfy the hypotheses of proposi-
tion 4.1. Then we have

(W) o P Ly o(uh)=p* [ Di(y, p; 15)+0(07 )],
where Oy(y, p; 1y )=0 (y)*+p > Ba,ﬂy;‘yﬁ .

(a, HHEM () (p, 1)

Proof. We consider each term separately. Since M(g)(p, ¢)=@ and

1>¢(1—o0), it follows that —dap—08g+20¢(1—0)=—d(ap+ fg—2q(1—a))<0. This
shows that

(4.5) pZO,AK()l,1)(y)=p2o,(1+0(p—1/r)) .
From M(¢)p, ¢)=@ and proposition 4.1, we get

—dap—0Bq+0g—dp+1+0,—dgla—1)
=202—ap— Bq)+(0,—dgo—1+6p) <0,
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and this implies that

(4.6) I AL D (5)=0(p 117

The other hand, it is easy to see that

4.7 PP AL (y)=0(1).

Next consider the term p?"#P*'B{®(y). From (4.3) and (4.4), it follows

4.8) PUEPHBE()=p* L 3 Bagyiyf+0(e ).

(a, YEH ($)0(p, )
In virtue of M(¢)(p. 9)=¢@ and proposition 4.1, it is easy to see that
—dap—0Bg—0q(c—2)—dp+o,
=—d(ap+pg—2)+(o,—0go—1+dp)—1<—1,
for (a, B)e M(¢), and from (4.3), (4.4) and proposition 4.1 it follows that
—bap—389—dqla—1)—dp+a,
=(—0ap—0Bq+0q—20p+1)+(0p—0go+0,—1)<20,
for (a, Ble M(p). These inequalities show that
4.9) PP IB(y)= 02 ).
(4.6) through (4.9) complete the proof.

Starting from proposition 4.2, by the standard method of constructing an
asymptotic solution, we can get the following lemma (See [3] and [2]).

Lemma 4.1. Suppose that g€ G.(A), p, ¢€Q*, p=0*(P)q, 1>q(l—0o*($)) and
M) p, =@, H@)p, )+ D. Then for any given §=(91, §»), 9:>0, a neigh-
borhood U(9) of $ and an integer N, one can find 3€U(9), a neighborhood Y of
¥ (YCU(9)) and analytic functions 1’(y), va(y), 1=7=%, 0=n=<N defined in Y so
that

(E(y. p))~1p—25pL¢‘pup___o(p?,ﬂl—(5+N+l)/r> in Y.

Where E(y, p)=exp z'[jﬁ_})l"(y)p”f], u(»)=E(y, p)ﬁovn(y)p‘””. Moreover, one
can assume that Im ['(¥)=(y,— 52)2+0(y1— F1) in YN {3, =3,} with 6,>0, vo(F)=1,
va(5)=0, nzL.

Proposition 4.3. Suppose that ¢=g.(A), ¢>0, p, q€Q*, p=c*(g)g, 1>
q(l—o*(@)) and the Cauchy problem for L is C*-well posed in a neighborhood of
the origin. Then we have

MP)D, V=D  if M(g)Xp, @)=

Proof. First note that p=oc*(¢)g, $¢=4G.(A) imply p=rg. Suppose that
M(@)p, )= and M(P)(p, ¢)#@. Then from lemma 4.1, we can construct the
asymptotic solution u, for Ly ,. Now take X(y)eCg(Y) which is identically
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equal to 1 in a neighborhood of ¥, and consider U,(y)=X(y)u,(y). Then it is
easy to see that

(4.10) sup ]D"(L¢_ pUp)l §C1p201+25p+l+1—(7—+N+1)/.—, IUp(y‘)l =1,

0sy1sY ,lalsl

when p—oo. For sufficiently large N, this inequality contradicts to (3.4).

Remark 4.1. In the case when ¢ is identically zero and p, g=@Q* satisfy
14+p>g, we have the same conclusion as that of proposition 4.3, from theorem
7.1 in [3].

5. Final remarks.

In this section, from proposition 4.3 and Remark 4.1, we shall prove the
next lemma and complete the proof of the necessity.

Lemma 5.1. Suppose that the Cauchy problem (1.2) is C -well posed in a
neighborhood of the origin. Then we have

LL(tB(+¢(x), NCLYHA(t+¢(x), x))  for all p=g.(A).

Proof. Denote by {(7, (¢, 7))} i, (B(p, m)=n), {(J, 7(¢, I, (r(@, Mm)=7)
the set of vertices of Iﬂﬂt(ﬂc”y];[mi A+ o(x), x)), I'(B(t+¢(x), x)), respectively.
Set

(g, N=B@, ;—1)=P(p, 1), 1=j=m, 6(p, N)=1(@, ;—1)—7r(p, 1), 1<j<7m.

Since the set of vertices of I.(tB(t4¢(x), x)) consists of {(j+1, 7(¢, )N}, to
show this lemma, it will be suffice to prove that

(5.1) 7@, N=P(, j+1),  for j=0.
Let

(6.2) (g, D= - ze(g, N=20*(@)>e(g, I+1)= - 2e(g, m),

and let ap(y)+pg(j)=1 be the equation of the line through (;, (¢, /)) and
(7—1, 7(¢, 7—1)). Then it follows from (5.2) that p(;)/q(y)=¢e(d, ))=a*(P),
1=7=!, and consequently one of the hypotheses of proposition 4.1 is satisfied.

The other hand, from proposition 3.4, it is easy to see that S=1/¢(j)=n-1,
at a=0, and this implies that ¢(;)<1. Taking into account of o*(¢)>0, we
have 1>¢(j)(1—o*(¢)). Therefore, from proposition 4.3, it follows that the
I \(B(t+¢(x), x)) lies in the right side of the lines (a+1)p(;/)+Bg(/)=1, 1=5=,
and this fact shows that

(5.3) 7(p, N=P(@, j+1),  0=j=</—1.

In the case when n=1, noting Remark 4.1, we apply proposition 4.3 with ¢=0,
g=s/n, p=1—s)/m, (s11, s€Q). Then we get Ai=n, and from this inequality,
it follows that
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(5.4) (g, Nzazn=4(¢, j+1), m—1=j.
It remains to show that
(5.5) 7(p, NZP@, j+1), for ISj<m—2.

Now assume that there is at least one j, /<j<m—2, such that r(¢, ))<B(¢, 7+1).
Let jo=max{s;r(d, ))<B(#, 7+1)}, then from the definition, we see that
7=0(g, jot1)<e(@, jo+2)<o*(p). Take HEG,(A) so that o*(p)=ce(@, jo+2).
Since o*(g—@)=0*(¢), (@, jo-+1)<a*(¢), the following equalities are easily
verified that d(¢, 74+1)=0(¢, 7+1), j=j,. Thus we have

(5.6) 1. jo=, 3 @, irti= 3 3@, D+a=r, o).

Jj=jot+
Next, inequalities o*(¢)=e(@, jo+2)= -+ =e(@, m), imply that e(p, )=e(d, 1),
Jo+2=j7=m. Then it follows that

6.7) B, it )= 33 e, tnz 3 e(g, Dn=pig, jotD.

From the inequalities e(¢, )= o*(P)=0*(Pp—¢), 0=7=7,+2, we have &(¢, J)
=0*(¢p) for 0=5=j,+2, and then the same reasoning obtaining (5.1) shows that

(5.8 7, D=, 7+,  0=;=j,+1
Now, combining (5.6), (5.7) and (5.8), we have
7(d, JO=1(¢, J0)2 B, Jo+1D=B(@, jo+1),

but this contradicts to the assumption, and the proof is complete.
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