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Introduction. We continue our study of compact 4-dimensional manifolds-
with-singularities which have global topological features in common with the
complex projective plane. In [5] an algorithm was developed for the systematic
construction of certain such spaces X which in addition support a complex
structure, and in [8] this procedure was carried out in detail to produce a list
of examples of spaces of the rational homology or cohomology type of CP?
whose singularities are rational double points. These spaces turn out to be
degenerate Del Pezzo surfaces of the type studied by Du Val in [11], and in [2] all
representations of such spaces as modified projective planes are characterized in
terms of certain “ global extensions” of Dynkin diagrams (see also [7]). In the
present paper we exploit more thoroughly the relations between the global topo-
logical properties of X and the analytic structure of the singular points to obtain
results that are much sharper locally than those of [5] and [4], yet apply to a
more general class of objects than that considered in [8] and [2], and without
requiring the tedious case by checking which the proofs of [8] and [2] entailed.

There are two kinds of results. On the one hand, we show how global
hypotheses impose conditions on the singular points. For example, we have the
following theorems.

Theorem A. Let X be a singular 4-manifold of the integral cohomology type
of CP?* (that is, H¥X, Z)=H*(CP? Z) as rings). Suppose that X supports a
complex structure Ox with vanishing geometric genus. Then X has only one
singular point x, and X has the local structure at x of the space underlying the
rational double point Es. That is, x admits a neighborhood U in X which is
homeomorphic to the quotient of C* modulo the action of the binary icosahedral
group SL(2,5). (Indeed, the normalization of Ox r is biholomorphic to Es.)

Theorem B. Let X be a singular 4-manifold of the integral homology type
of CP*® (that is, Hy(X, Z)=H,(CP? Z)Yi). Suppose that X supports a complex
Gorenstein structure Oy which admits an effective anticanonical divisor K*. Then
(X, ©x) is a projective algebraic variety birationally equivaleni to CP? whose
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singular point(s) is (are) the rational double point(s) associated to the Dynkin
diagram “E}.”, where k=9—K® and where “E}” is the graph obtained from E,
by deleting 8—Fk consecutive vertices, starting at the end of the longest arm.

On the other hand, beginning with assumptions about the singularities, we
determine the global settings in which they occur.

Theorem C. Let (X, Ox) be a normal complex surface of the rational homology
type of CP® Suppose that each singular point of X is a rational double point.
Then either

(@) X is biholomorphic to CP?® or to the singular complex quadric hypersurface
Qiccp;

(b) X is a rational projective surface derived from CP? by blowing up some
number s=8 points in relatively general position, then blowing down s non-singular
rational curves, each with self-intersection —2; or

() X is derived from a minimal non-singular Enriques surface X or from a
minimal non-singular projective surface X of general type, with q()? ):pg(}? )=0
and admitting s=b2()?)—1 non-singular rational curves C; with Ci=—2, by blowing
down \JC..

Theorem D. Let v be an integer, 1=r=<4, and let k,, ---, k, be positive
integers satisfying

* 4]i[l(ki+1):(9— é}lki)nz for some integer n.

Then there exists a normal rational complex surface X of the rational homology
type of CP? possessing exactly r singular points x,, -+, x,, with x; the cone on a
lens space of type (kis1, ki). Conversely, (*) holds for every such space X. X has

the rational cohomology type of CP*® if and only if ;Elk’:&

We also take the opportunity below to correct an error that appeared in [5]
(see the remarks following theorem 9).

I. The structure of the singular points.

By a singular 4-manifold we shall mean in this paper a second countable
Hausdorff topological space X of which each point x admits a neighborhood U,
called a spherical neighborhood, such that oU, is a topological 3-manifold M.,
and such that U is homeorphic to the cone on oU. If U can be chosen so that
oU , is a 3-sphere, then x is a regular point of X; otherwise x is called singular.

It is clear that under this definition the set S of singular points of a singular
4-manifold is discrete. Thus we may assume that U.N\U,=@ for distinct points
x, yeX. A singular 4-manifold is orientable if X——}EJSU, is orientable as a

manifold with boundary. This condition is clearly independent of choice of
(sufficiently small) neighborhoods U,. In this paper all singular 4-manifolds will
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be compact, connected, and oriented. Thus H, X, Z)=Z and is presumed to
have a preferred generator yu, the fundamental class of X. In case X is also a
complex analytic space, £ is chosen to be compatible with the complex structure.
All homology and cohomology groups in this paper will be assumed to have
integer coefficients, unless otherwise indicated.

We will have need of the following purely algebraic facts about Abelian
groups.

1. Lemma. Let O—»A——)BiC—>D—>O be an exact sequence of finitely
generated Abelian groups, with D finite of order n and expotent e, and let {, ):
BXB—Z be a unimodular symmetric bilinear form.

(@) Suppose that A and B have equal rank t, and let a,, -+, a, and By, -+, B,
be bases over Z for the free parts of A and B respectively (that is, a,, -+, a; are
elemenis of A such that the cosets &, -+, @& mod the torsion subgroup Tors A
form a basis of the free group A/Tors A, and similarly for B). Then

[TorsBl.

|C|=|det({ fas, ﬁf>)||TTSA| n,

where det({fa;, B;7) is the determinant of the non-singular matrix of integers
{fai, B>, and | | denotes the order of a finite group or the absolute value of a
real number.

(b) Suppose instead that C is free with basis 7., -+, 7s. Suppose further that
B contains a free subgroup S with basis o, -+, g5, with det(o;, ¢;7)#0 and such

that the map g is given by g(p)= 2<,8, g7 NBEB. Then for each B€ B we
have an equation
8
epB=rfa+ iE:lmiai
for some integers m; and for some a€ A, where

_ det(<fay, faw)
g.c.d. [detl{fa, faw), <B, fan, -, <B, fav}

for any basis a,, -+, a, of the free part of A (g.c.d. is the greatest common
divisor).

p

Proof. For part (a), clearly
ICl=|Im g|-|D|=|B/Im f|-n.

To compute |B/Im f| we use the following commutative diagram with exact
rows and columns
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0 0 0

l | l

0—> TorsA —> Tors B —>Tors B/Tors A—> 0

l | i

0— A —> B —> B/lmf —>0

l |

B/Tors B
0—>A/TO['SA—>B/TOI‘SB—-> m 0
0 0 0
to conclude |B/Im f|=det(b; )||-’IM where fa;=3 b;;8;, Part (a) now
Y Tors A|’ ima tuby

follows from the condition that |det{B8;, 8;>|=1.

For part (b), since C is free f is an isomorphism on the torsion parts of A
and B. Thus we may assume without loss of generality that A and B are free.
Also, det({o;, ¢;7)#0 implies that SNS*+= {0}, where S*={8€ B|[<p, 0)>=0 Vo< S}.
But Im fCS*, for if a= A then 0=gfa=2j) {fa, apr;, whence independence of

the 7; in C guarantees that {fa, ¢;5=0VY . From this and injectivity of f we
have that the ¢+s elements fea,, -+, fa,, o, -, o, are independent in B and
form a basis of BXQ over Q. Moreover <, ) extends to a bilinear form on
B®AQ and is non-singular on (Im f/)®Q and SQQ separately. If f=B, write
,B:§ qifai-i—‘?j r;o; in B®Q for some rational numbers ¢;, #;, Then (B, fa,>

=3 ¢q{fa;, fary. Put ai={fa; fa,> and denote by (a}) the matrix of
rational numbers inverse to a=(a,;;). Then qi=; atipB, fax> and so Vi the

expression

_ * </9, fak>
pql_gdet(a)alk g.c.d. {det(a), <B, fa, -+, B, fa}

is an integer. Thus
*) Pﬁ:; lifai"‘é: u;o;

for /; the integer pg; and for u; the rational number pr;.

Now D has exponent e, so h(er;)=0 Vk and thus 33, B with g(8:)=ers.
That is, for j#k <oj; B:>=0, while <{g; B;>=e Vj. Applying <{-, B> to (*),
yields

(Pﬁ—‘; lifa, .3k>=§: ugeo;, Bro=euy.

Since pf—>l:fa; and B, are both in B, we conclude that eu,sZ for all k.

Hence

epﬁZfa-l-;mjaj
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for a=> el;a;= A and for m; the integer eu;. Q. E.D.

2. Lemma. Let X be a (compact, connected, oriented) singular 4-manifold
with Betti numbers b;=0, b,=1, and such that the cup product pairing
HY X)X H(X)>HYX)=Z is not identically zero. Let g H*X) generate the
free part of H¥X) (that is, its image in H¥X)/Tors(H* X)) generates). As above
denote by S={x,, ---, x,} the set of singular points of X and by U., a spherical
neighborhood of x;. Then H\(0U:,) is a finite group for each i, and

[H*(X)|®

LL 10U )1 =188 {Forg e [+

Proof. We may assume that the U.’s have disjoint closures, so that
Y=X—UU,, is a manifold with boundary. Since Y is a deformation retract of
X—S, the inclusion induces the isomorphisms Hy(Y, 0Y)= H(X, S) and H*(Y, dY)
=~H*(X, S), and hence by dimension

H,(X)=H,(Y,0Y) and H*X)=H*Y, oY)
for £>1.
Using Poincaré duality and the universal coefficient theorem we have H(0Y)
=Free(H*(dY)), Tors(H¥Y))=Tors(H*X))=H%X), and Free(H¥Y))=Free(H% X))
=~Z. Thus the relevant part of the long exact sequence for the pair (¥, dY) is

h
HYoY) — H¥Y, aY) —f—> HXY) — H*0Y) —
iR IR R
Free(H*0Y)) Z@Tors(H*X)) ZPBH (X)

7
H¥Y, oY) — H¥Y) —> H3@Y)
R
H¥X)

Furthermore, since H3@Y) is free, i maps H*Y, dY) onto Tors(H¥Y))=
Tors(H*(X)).

To examine the map f, let g’€ H¥(Y, dY) and p’'€H,(Y, 0Y) correspond to
g and p. Then

0$g2:<gl.gl’ ﬂ’>:<fg/y g’mﬂ/>,

so fg’ has infinite order in H*Y). Thus the image of h is finite, and since
HXY, 0Y)=H*X) is also finite, it follows that H*@dY) is finite and hence that
H'@Y)=0. Thus our sequence is

0— H¥Y, oY) —f—> H¥Y) — H¥@Y) — H*X) —Z> Tors(H* X)) —> 0.
I IR
Z®PTors(HYX)) ZDH(X)

Of course, |H*X)|=|keri||Tors H%X)|, and applying Lemma 1(a) to

f :
0 — H%Y, 0Y) —> H¥Y) —> H*0Y) —> keri —> 0,
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leads to the equality
| HX)|*
2 — 2 _
]H (ay)l _Ig | ]TOI‘S Ha<x)|2’
Finally, the observation

H¥@Y)= 1T | HX0U .,)| = 1T | Hy0U )

completes the proof.

A rich and particularly interesting source of examples of singular 4-manifolds
is provided by the class of compact two (-complex-) dimensional complex analytic
spaces (complex surfaces) with isolated singularities. The reader is referred to
[5] or [3] for a review of the terminology of global invariants of complex
surfaces X and for some facts relating their global properties to the structure
of the singular points. In particular, in the lemma below g=dim¢H (X, @x) and
pe=dimcH* X, Oy) are respectively the irregularity and geometric genus, while
b* and b~ denote the dimensions of the positive and negative eigenspaces of the
intersection pairing.

3. Lemma. Let (X, Ox) be a normal compact complex surface with Betti

numbers by=0, by=1, and with singular points x,, -, x,. Let nw:X—X be a
resolution of singularities with exceptional curve C=n"'({x,, -+, x,}). Assume
without loss of generality that the components C,, «--, Cs of C are non-singular,

that C; and C; meet, if at all, transversally in a single point, and that there are
no triple intersections. Denote by I' the dual intersection graph of C and by
det(I") the determinant of the positive definite matrix (—C;-C;). Then

@ bi(X)=bi(D=by(X)=q(X)=q(X)=p,()=0, 1" X)=1, b(X)=s, £*>0 for
g a generator of H*X)/Tors(H¥X)), ¢3=9—s for ¢, the first Chern class of X;

(b) Ci: is rational Vi, I has no cycles, Zrldim(R‘n*Ox)Ii:pg(X), and det(I")
7o
[Tors B¥X)] * "¢
() If X admits a holomorphic line bundle L with L?*#0, then X is a pro-
Jective algebraic variety and g may be chosen to be the Chern class ¢(L,) of an
ample holomorphic line bundle L,. Furthermore, every line bundle L on X

satisfies

=g®n® for n=the integer

Ler=ax(LE"@TIQ @ [C.1oms
i=1
2 (T ok
for some integers m; and some torsion bundle T, where p= gd_n and m= C—(%n,
for d the greatest common divisor of g* and E(Z)-n:*g, and where [C;] denotes the
bundle of the divisor of C; on X. Also, & -n*g=g®mod 2.

Proof. For (a) and (b), all but the last claim of (a) and the last claim
of (b) are proved in [5], Proposition 3. The relation #&2=9—s is then immediate
from the Todd-Noether formula (or from the Hirzebruch index theorem). To
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compute det(]"), first note that by normality of Oy the set of analytic singularities
coincides with the set S of topological singularities ([17]). Since the curves C;
are non-singular rational meeting normally with no 3 in a point and with no
cycles in their graph, we may take for the contractible neighborhood U, of x;
the image under m of a tubular neighborhood of the curve z'(x,)CC. By
Mumford’s calculation [17] of the fundamental group =,(0U.,) we have, Vi,
| H,(0U ;,)| =det(I), where I5 is the component of I' corresponding to z~'(xy).
Since g?>0, Lemma 2 applies to give

det(I= 1T det(I)= I I Hi@U )| =g*n®

as specified.
Part (c) is an exercise in chasing the diagram

H¥X, 0x) — H¥X, O%)

T ]

HYC, Z)— H¥X, Z) — H¥X, Z)— H*C, Z)— H¥X, Z) —» H'(X, Z) -0

T T

HY(X, 0x*) = H'(X, 02*)

T T

HY(X, 0x) = H'X, 03),

(see [3], Lemma 1), where the rows are induced by z and by the inclusion of
C into X , and the columns by the exponential maps ©—0©*, and where H(X, Ox*),
H’()?, Oz*) are identified with the Picard groups of (isomorphism classes of)
holormorphic line bundles on X, X. By part (a) above, HY(C, Z)=H'(X, Ox)=
H‘()?, o x)=H2()?, 03)=0, so the Chern class map & is an isomorphism, while ¢
and z* are injections. The existence of Le HY(X, ©f) with L?#0 guarantees
that rank(HY(X, Ox*))=rank(H* X, Z))=1, whence, since H*X, Ox) is torsion
free, ¢ is in fact an isomorphism. Put L,=c %(g). X is projective algebraic by
[3], Proposition 6, so X admits a positive (=ample) line bundle. Indeed, since
L, generates H'(X, Ox*) mod torsion, either L, or its dual is positive. Replacing
g by —g if necessary we may assume that L, is positive.

Now HYX, Z) is finite, so H%X, Z)=Tors(H¥X, Z))=Tors(H¥X, Z)), the
last isomorphism (z*) holding because H*C, Z)=Z*® is torsion free. Thus im(d)

. _HNX))
is a group N of order n= [Tors H(X)|” and we have
T* 7* P

0 — H¥X, Z) — HX, Z) —> H*C, Z) — N —> 0.

This diagram satisfies the hypotheses of Lemma 1, part (b), for S=the subgroup
of HXX, Z) generated by the Poincaré duals of the curves C; and for {,> the
intersection pairing. By that lemma, and using the isomorphisms ¢ and ¢, we
conclude that every line bundle L on X satisfies
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[or=ax(L@ Q0™
where
p (n*g-m*g) ~ 'n:Azi
g.c.d. Kx*g, n*gd, <w*g, &(L)>} d’
for some integers m; and some line bundle L'=L{™"QT (T torsion, mEZ) on
E(l~,)-7r*g
d

X. Applying <-, #*g)> to this equation shows that m= n as required

in (c) above.
Finally, to check the relation g*=¢,-x*g mod 2, apply Riemann-Roch to the
bundle n*L,:

1 . 1 .
UO(n*Lo)—XO2)= 5 (x*g 7*g+C1n*g)= 5 (g"+ ;- 7*g)
to conclude that g®4¢,-n*g is an even integer. This completes the proof.

4. Corollary. Let (X, Ox) and =: X-X be as in part (¢) of Lemma 3.
Suppose further that H¥X, Z)=0. Then if g*|&,-n*g, Ox is Gorenstein (that is,
the canonical dualizing sheaf 2x on X is locally trivial). In particular, this is
true if g*=1 or 2. (The notation throughout is as in Lemma 3 and its proof).

Proof. First note that a normal surface is always Cohen-Macauley, so 24
is defined. Also, H¥X, Z)=0=H?* X, Z) is torsion free. Denote by Kz the
canonical line bundle of holomorphic differential 2-forms on X. If we take L=Ky
in part (c) of Lemma 3, the condition g?|& -n*g (together with H*(X, Z)=0),
implies that for this bundle the integer p of Lemma 3 is equal to 1, and thus that

Ky =r*(L§™@ & [C.I*™
1=0
—51‘7T*g ®m . « .
for sz, m;eZ. It follows that 23 =0x(L®™) and so is locally trivial.
Now if g?=1 then surely g*|¢,-n*g whatever ¢,-zr*g may be. If g?=2,
the last part of Lemma 3 shows that &,-7*g is even, so g*|¢,-7*g in this case as
well. This completes the proof.

We turn now to an examination of the singular points. For a discussion of
the rational double points A;, D, and E, the reader is referred to [1], [9], or

[10]. We have found it a useful notational convenience to introduce, for any
°

| .
integer £=0, the label “E,” for the Dynkin diagram e—e—e—---—@ (% vertices
) )

. | P |
in all, each carrying weight 2). Thus “E,"=D;: e—e—e—e, “E,”=A,: 0—0—@,

“EJ=A,+A,: o—e@ ., “E,)=2A,: ® ., “E=A;: ., and “E,”=the empty
graph (cf. [7], where a slightly different convention was adopted for =1 and
2. The graph “E,” will not occur in this paper.)

Rational double points x& X are defined by the property (R'z«Qg).=0 and
Z*=—2 for r: X—X the minimal resolution, R! the first right derived functor,
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and Z the fundamental cycle ([1]). They are characterized by the condition
that the canonical bundle Kz is trivial in a neighborhood of the exceptional
curve, and thus Ky=n*Ky for some holomorphic line bundle on X ([11]). If
x€ X is a rational double point with Dynkin diagram I'=A,, D, or E,, then, as
in the proof of Lemma 3, the order of the first homology group of the boundary
of a contractible neighborhood U, is determined by |H,(0U,)|=det(I"). Direct
calculation (or an examination of presentations of the corresponding finite sub-
groups of SL(2, C)) establishes the well-known facts det(A,)=k+1, det(D,)=4,
det(E,)=9—Fk. This last relation continues to hold for the graphs “E,”, k=3,
4, and 5. Conversely,

5. Lemma. Let I be a k-point Dynkin diagram, not necessarily connected,
with no multiple edges and satisfying det(I")=9—k. Then 3<k<8 and [=“E,".

The proof is by inspection of the graphs A,, D., and E,.

6. Corollary. Let (X, Ox) be a complex surface with b;=0, b,=1, and
admitting an ample holomorphic line bundle L, whose Chern class g generates
H¥X, Z) mod torsion. Suppose that each singularity x; of X is a rational double
point, denote by I the Dynkin diagram associated to x;, and put I'=UI; and
s=|I'|. Let n: X—X be the minimal resolution of singularities and write Kg=
a*(L§™RT) for some integer m and some torsion bundle T, As above, put

_ [H¥X)|

| Tors H¥(X)|"

(a) m?g?=9—s=0

(b) det(I)=g?n? and

(¢) mgt=g?mod 2.

Then we have

The only possibilities for the integers g*>0, s=0, and m allowed by these equa-
tions are

(=) m=0, s=9, g% even;

(i) m==1, s<8, g*=9—s;

(ii) m==%2, s=1, g*=2; and

(iii) m==+3, s=0, g*=1.

Proof. (a) m*g*=K}=0t=9—s, (b) det(/")=g?n?, and (c) mg*=Kg-n*L,=
—¢,-w*g=g? mod 2 follow respectively from parts (a), (b) and (c) of Lemma 3.
Verifying the list (—)-(iii) of integral solutions is trivial.

It is now easy to establish the main results of this section, which extend
and augment the ideas of [5] and [4].

7. Theorem (main theorem on cohomology CP?’s).

Let X be a singular 4-manifold whose integral cohomology ring is isomorphic
to that of the complex projective plane. Then

(1) Each singular point x of X has perfect local fundamental group =,OU ;).
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(2) If X supports a normal complex structure Ox admitting a non-trivial
holomorphic line bundle, then (X, Ox) is a projective algebraic veriety and each
singular point is Gorenstein.

(8) (Theorem A of the introduction.) If X supports any complex structure
Ox with vanishing geometric genus py=dimcH* X, Ox), then either X is non-
singular, or else X has exactly one singular point x and the germ of x in X 1is
homeomorphic to that of the rational double point E..

Proof. (1) is immediate from Lemma 2. Namely, by hypothesis H*(X)=
Tors(H¥X))=0 and g®=1 for g a generator of H*(X), so

|HXF

.ze;[;{X) l Hl(aU.z‘) I :gZ]Tors(Hz(X))lz -

Thus Vx 7,(06U.)/(commutor subgroup)=H,(0U ;)=0, and =,(0U) is perfect.

(2) follows from Lemma 3 and Corollary 4, for the sequence 0—H(X, Ox*)
—H*X, Z)=Z, together with g?+0, shows that a non-trivial line bundle L on
X necessarily satisfies L%s0.

For (3), let n’: X’—X be the normalization of X. By the definition of
singular 4-manifold, X—S(X) is locally connected, hence X is locally irreducible
at each singular point, so 7’ is a homeomorphism ([14], Prop. 3.3, [12], Theorem 19,
page 116). Also, p(X)=p(X), s0 p(X)=0=p,(X")=0, which in turn implies
the existence of a non-trivial line bundle on X’ by the sequence HY(X’, 0% )—
H¥X’, Z)—0. Thus X’ is Gorenstein by Corollary 4, while the relation
(R0 z).=p (X )=0 of Lemma 3 shows that each singularity is rational. Since
among rational singularities only double points are Gorenstein ([15]), and since
among rational double points only E, has perfect local fundamental group, each
analytic singularity of X’ isan E, But then the number s of exceptional curves
in the minimal resolution is a multiple of 8. Since s<9 by Corollary 6, there
are only two possibilities: either s=0 and X’ is non-singular or s=8 and X’ has
one point of type E;and no other singularities. Since the topological singularities
of X are exactly the analytic singularities of X’, this completes the proof.

8. Theorem (main theorem on homology CP?’s).

Let X be a singular 4-manifold of the integral homology type of CP?, with
H¥X) generated, say, by g. Suppose that X supports a normal complex structure
Ox with vanishing geometric genus. Then

(1) If g*=1 we are in the situation of the preceeding theorem and either
(a) X is non-singular (the singularities are of type “E,”) or
(b) X has one singular point, a rational double point of type Es.
(2) If g*=2 then X has precisely one singular point, either
(a) a rational double point of type A, (“E,”), or
(b) a rational double point of type E.,.
3) If g*+#1, 2, and if Ox is Gorenstein, then 3=g*=<6 and X has singularity
type “E,” for k=9—g% That s, if g*=3, 4, or 5, then X has one singular point
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of type “E,” and no other singularities, while if g*=6, X has two singular points,
one of type A, and one of type A,

Proof. In each case (by Corollary 4 if g®=1 or 2 and by assumption
otherwise) X is Gorenstein. As above, then, p,(X)=0 implies that each singu-
larity of X is a rational double point. Also, since Tors(H* X))=0 the integer m
of Corollary 9 cannot be 0, lest the canonical sheaf Qy=0Ox(L®™) be trivial,
contradicting p,=0 via Serre duality. Putting n=1 in Corollary 6 shows that
the only possibilities are

(i) m==1, det(I)=g*=9—s
(ii) m==+2, g?=2, s=1, and
(iii) m==+3, g*=1, s=0.

(iii) and (ii) are respectively cases (1) (a) and (2) (a) above, while Lemma 5 shows
that (i)=(1) (b), (2) (b), or (3), This completes the proof.

Theorem B of the introduction is an immediate corollary, for if the anti-
canonical bundle K}¥=L%"™ admits a section, then m<0 and Ky is negative.
Thus p,(X)=0 and X is rational ([5]). If m=—1 (so that Ky generates
HY(X, 0%)) we are in the case where the singularities are of type “E,”, 3<s<8
(cf. [8] and the last sentence of [5]). If m=—2 then X is biholomorphic to the
singular complex quadric hypersurface Qi CP?, while if m=—3 (the non-singular
case) X is biholomorphic to CP? ([5)).

II. Global constructions.

The question of actually producing complex surfaces of the type under dis-
cussion, and with specified singular points, was undertaken in [5] (see also [8]
and [7]). Somewhat restated, the main result of [5] is as follows:

9. Theorem (main theorem on surfaces of the rational cohomology type
of CP?).

Let X#+CP® be a compact two (-complex-) dimensional complex space each of
whose singularities is a rational double point. Suppose that H¥(X, Q)= H*(CP? Q)
as rings, with H¥Y, Z) torsion free and generated by an analytic cocycle (that is,
by an effective Cartier divisor). Then X is a rational projective variety derived
from CP* by blowing up 8 points (including infinitely near points), then blowing
down 8 non-singular rational curves, each with self-intersection —2. X is homotopy
equivalent to CP*sH¥ X, Z)=0.

In [1] and [2], Daniel Drucker, Geert C. E. Prins, and the present writers
derived the complete list of all such constructions. The singularities that occur
are Ey, E;4 A, E¢t+ A, Ds+A;, 24, As+ A+ A, A+A,, Dy, Ag, D24, 2D,
2A;+2A;, and 4A, (cf. DuVal [11]). Each of the spaces X so constructed is
regular with vanishing geometric genus, with H¥(X, Z)=0, and with H¥ X, Z)=Z
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and generated by an effective anti-canonical divisor K*. References [8] and [2]
also give similar constructions for surfaces X of the rational homology type of
CP?, but with g*>1, for g a generator of H%(X, Z). These spaces are examples
of “degenerate Del Pezzo surfaces”, which arise in connection with the study of
3-dimensional rational singularities and simple elliptic singularities, and whose
singular points have been investigated in such works as [11], [6], [18], [16], and
[19]. In [5], however, it was assumed in error that these surfaces all have
H*X, Z)=0 and thus are homotopy equivalent to CP2?. But Lemma 3 above
shows that in fact |H*X, Z)|=det(I"), for I the associated Dynkin diagram.
Of the three examples of [5], then, only the second has the correct homotopy
type; examples 1 and 3 are surfaces of the rational cohomology type of CP? but
with third integral cohomology groups isomorphic respectively to Z, and to Z,PZ,.

As an application of these results we insert here a theorem on singular
4-manifolds whose singularities are cones on lens spaces—a topic of some inde-
pendent interest. Since the rational double point A, is topologically the cone on
a lens space of type (k+1, k), those examples of [2] which have only A,
singularities are spaces of this type.

10. Theorem (Theorem D of the introduction). Let #, &y, ---, k. be posi-
tive integers, with r<4. Then the relation

*) 411 (kA1) =(9— 3 k)N

for some integer N, is necessary and sufficient for the existence of a normal
rational complex surface X of the rational homology type of CP? possessing exactly
r singular points x,, -+, x,, with x; the cone on a lens space of type (k;+1, k).

Such a space X has the rational cohomology type of CPZ(:)i}i_,‘1 k;=8.

Proof. Suppose that X exists. Then the singular point x; is a rational
double point of type A, for A, is the only normal complex structure on a
lens space of type (k;+1, k;) ([9]). Since X is rational with only rational double
points as singularities, the plurigenera P, (X)=dim H°(X, Ox(K$")) identically
vanish for />0, where Ky=L{™XT, is the “canonical bundle” as in Corollary 6.
(In fact, Ty=0 since H*X) is torsion free for normal rational surfaces.) Thus
m=0. Since X has at least one singular point, Corollary 6 shows that m=-—1
or —2 and m?det(]")=(9—s)n? with notation as in that Corollary. Since det(/")

= fI(kH—l) and s= Er) k;, the equation (*) holds for N=n or N=2n according
i=1 i=1

as to whether m=—2 or —1.

Conversely, an enumeration of all choices of unordered r-tuples (ky, ---, k),
r=<4, produces the following list of possibities for which the condition (*) is
satisfied: (1), (2, 1), (4), (3,1, 1), (5, 1), (2,2, 2), (7), 5, 2), (3,3 1), (8, (7, 1),
(5,2, 1), 4, 4), (3,3 1, 1),and (2, 2, 2, 2). To complete the proof we must produce,
for each (k,, ---, k,) on the list, a rational surface of the rational homology type
of CP? with singularities A, ~+"-- +A,,. For (k,, -+, k)=(1), the singular
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quadric surface @ provides an example. The remaining choices on the list all
appear among the examples of [11], or of [2].
Finally, for rational surfaces of this type it is easy to show that m=2 only

for X=@Q2 In all other cases g*’=9— Zr; k; for g a generator of H*X), so X is

a rational cohomology CPZ‘E’ZI k;=8, as claimed.
P

So far all of the spaces considered in this section have been rational. To
complete the program we must consider the non-rational case. This turns out
to be surprisingly easy:

11. Theorem (main theorem on surfaces of the rational homology type
of CP?, Theorem C of the introduction). Let (X, Ox) be a normal complex
surface with only rational double points as singularities and with HY(X, Q)=
H{CP?, Q) Vi. Then either

(a) X=CP:? or Q},

(b) X is a rational surface obtained from CP? by blowing up some number
SZ8 points, then blowing down s curves, as in theorem 9, or

(¢) X is derived from a minimal non-singular Enriques surface X, or from
a minimal non-singular projective surface X of general type with q()?)z pg()?)zo,
by blowing down szbz()? )—1 non-singular rational curves, each with self-intersection
—2.

Proof. Put Ky=L§"QT, as above, for L, a positive generator of H'(X, 0%)
mod torsion and for 7, a torsion bundle. If m<0 then Ky is negative and
either (1) or (2) obtains by [5], Theorem 1. Otherwise, let r: X—>X be the
minimal resolution of singularities. Then Kg=a*(Ky)=a*(L$"RT,). If m=0,
Kz is torsion. Since q()?):pg()?)zo by Lemma 3, the classification of non-
singular surfaces ([13]) shows that Xisa projective Enriques surface (i.e., that
K3z+0 but Kz®=0). If m>0, then (since positivity of line bundles on an
algebraic surface is a topological property) Ky is ample and P;(Kg)=P,(K x)~![?
for large /. Hence X is of general type.

To show that X is minimal, assume contrariwise that X admits an exceptional
curve D of the first kind. Then by adjunction,

*) —1=Kg-D=m(n*L,)-D=mL, 7D .

Since L,-7 is positive for any effective 2-cycle 7, (*) is an absurdity if m=—1.
Thus in particular X is minimal if X is an Enriques surface or of general type.
Since z is the minimal resolution of rational double points, each curve C; blown
down by = is non-singular rational with C?=—2, and by Lemma 3 there are
s=b-(X)=by(X)—1 of them. This completes the proof.

The results of this paper can conveniently be summarized by the following
chart. The notation is as in Corollary 6.
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Complex surfaces of the rational homology type of CP?
with only rational double points as singularities

m ‘ r ‘ s l g? i det(I") ' X
-3 0 0 1 1 X=X=cpP?
(X is non-singular) I=p)
—2 1 1 2 2 X=Q:
(I'=A4,) X=the rational
ruled surface S,.
1 <4 3<s<8 | 9—s | (9—s)|H X[ o .
| _ ational Del Pezzo
. (SE:?E ;} gr)=50=> surface of degree
| H(X, Z)=0= |9~
[ I—’:“Es?’.)
0 1 1=r=9 9 leven, >0 gn® Minimal Enriques
[ surface (K+#0 but
[ K®2=0)
1 | 1=r=8 | 3<s<8 | 9—s 9—s)n?
(s=3, 4, or 5=
n :lér::tEs”)
Minimal of
2 1 1 2 2
(IF'=A4, n=1) General Type
3 0 0 1 1
(X is non-singular) I'=@, n=1)

X has the rational cohomology type of CP?*=X is non-singular or m==+1
and s=8.

X has the ¢ntegral homology type of CP*=m+0, det(F)=9n;lzs, and [=“E,".

X has the integral cohomology type of CP*=X is non-singular, or m==+1 and
I'=E,.

If H%*X) is torsion free, then the last two implications are equivalences. In
particular, this is the case if X is rational. X is rationalem <0 H?*(X) is torsion
free and generated by an effective divisor. m<0, n=1 and s=8=X is homotopy
equivalent to CP? The assertion »<4 for m=—1 is shown in [19] and in [2].
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