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Introduction. W e continue our study of com pact 4-dim ensional manifolds-
with-singularities which h av e  g lo b a l topological features in  common with the
complex projective p lane. In  [5] an  algorithm was developed fo r the  systematic
construc tion  o f certa in  such spaces X  w hich in  a d d itio n  su p p o rt a  complex
structure , and in  [8] this procedure was carried o u t in  detail to produce a  list
o f  examples o f  spaces o f  t h e  rational homology or cohom ology type of C P'
whose singularities a r e  rational double  po in ts. These spaces turn o u t  to be
degenerate Del Pezzo surfaces of the type studied by Du Val in [11], and in [2] all
representations o f such spaces a s  modified projective planes are characterized in
terms of certain "global extensions"  of D ynkin  diagrams (see also [ 7 ] ) .  In the
present paper we exploit more thoroughly the relations between the global topo-
logical properties o f X  and the analytic structure of the singular points to obtain
results that a re  much sharper locally than those o f  [5 ]  and [4 ], yet app ly to  a
more general class of objects than that considered in  [8 ]  a n d  [2 ] , a n d  without
requiring th e  tedious case by checking which th e  proofs o f  [8 ]  a n d  [2 ]  entailed.

There a r e  tw o  k inds o f  resu lts . O n  th e  o n e  h an d , w e show how global
hypotheses impose conditions on the singular p o in ts . F o r  example, we have the
following theorems.

Theorem A .  Let X  be a singular 4-m anifold of the integral cohomology type
o f  CP 2 ( t h a t  is, H*(X , Z)--'11*(CP 2 ,  Z )  a s  rings ). S uppose that X  supports a
complex structure 0 x  w ith  v an ish in g  g eo m e tric  g en u s. T h en  X  h as  o n ly  one
singular point x ,  and X  has the local structure a t  x  o f the space underly ing the
rational double point E 8 . T hat is, x  adm its a  neighborhood U in  X  w hich is
hom eom orphic to the quotient of C 2 modulo the action of the binary icosahedral
group S  L (2, 5). (Indeed, the norm alization of 0 x , x  is biholom orphic to E8.)

Theorem B .  Let X  be a singular 4-manifold of the integral hom ology  type
o f  C P 2 ( t h a t  is, H i (X, Z ) V i ) .  Suppose that X  supports a complex
Gorenstein structure Ox  w hich adm its an ef fective anticanonical div isor K *. Then
(X ,  x )  i s  a  projectiv e algebraic v ariety  birationally  equiv alent to CP' w hose
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singular point(s) i s  (are) the rational double point(s) associated to the Dynkin
diagram  " E k " , w here k = 9 - 1 0  and where "E k "  is  the graph obtained from  E 8

by deleting 8— k consecutive vertices, starting at the end of the longest arm.

O n the other hand, beginning with assumptions a b o u t th e  singularities, we
determine the global settings in  which they occur.

Theorem C .  L e t (X , x ) be a normal complex surface of the rational homology
type o f CP 2 . Suppose that each singular point of X  is  a  rational double point.
Then either

(a) X  is biholomorphic to C P' or to the singular complex quadric hypersurface
QgcCP3 ;

(b) X  is a rational projective surface derived from C P ' by blowing up some
number s - 8 points in relatively general position, then blowing down s  non-singular
rational curves, each with self-intersection —2; or

(c) X  is derived from  a minimal non-singular Enriques surface X.'  or f rom  a
m inim al non-singular projective surface X  of general type, with q(.g)-=p g (k)-=.0
and admitting s=b 2 ( 5 ) - 1  non-singular rational curves C i w ith  C 2= -2 , by blowing
down U C i .

Theorem D. Let r  be an integer, a n d  le t  k 1 , ••• , k ,. b e  positive
integers satisfying

(*) 412:1(ki+1)-=(9— k i )ti 2f o r  some integer n.i=1 i=i

Then there exists a normal rational complex surface X  o f th e  rational homology
type of C P ' possessing exactly r  singular points x l , •••  , x , with x i  the cone on a
lens space o f type (4E1, lei). Conversely , (*) holds fo r every such space X . X  has

the rational cohomology type o f CP 2 if and only i f k 1 =8.
ti=1

We also take th e  opportunity below to correct an error that appeared in  [5]
(see th e  remarks following theorem 9).

I. The structure of the singular points.

By a  singular 4-manifold we shall mean i n  th is paper a  se c o n d  countable
Hausdorff topological space X  of which each point x  admits a  neighborhood Us,
called a  spherical neighborhood, such that aU.z  i s  a  topological 3-manifold Ms,
and such that V  is homeorphic to th e  cone on U . If  U  can be chosen so that
au, is a  3-sphere, then x  is a regular point of X ; otherwise x  is called singular.

It is clear that under this definition the set S  of singular points of a singular
4-manifold is discrete. Thus we may assume that U ,.r U = Ø  for distinct points
x , y  E X .  A  singular 4-manifold i s  orientable i f  X— U  U ., i s  orientable as a

x E S

manifold w ith boundary. T his condition  is clearly independent o f  choice of
(sufficiently small) neighborhoods U,,. I n  this paper all singular 4-manifolds will
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be compact, connected, and o r ie n te d . T h u s  114 (X, and is presum ed to
have a  preferred generator p , the fundamental class of X .  In case X  is also a
complex analytic space, p  is chosen to be compatible w ith  the complex structure.
A ll hom ology and cohomology groups in  th is paper w ill be  assum ed to  have
integer coefficients, unless otherwise indicated.

W e  w ill have n eed  o f th e  following purely algebraic facts about Abelian
groups.

h
1. L e m m a. Let 0-->A — >B — >C — >D — >0 be an exact sequence of finitely

generated A belian groups, with D f inite o f order n  and expotent e, and let <,>:
B x B -4Z  be a unim odular symmetric bilinear form.

(a) Suppose that A and B have equal rank t, and let a 1 , ••• , a t and Pi, ••• , Pt
be bases over Z for the free parts of A and B  respectively (that is, a ,  • • ,  a t are
elements o f A  such that the cosets a 1 , ••• , ei t  m o d  the torsion subgroup Tors A
form  a basis of the free group A lT ors A, and similarly fo r  B ) .  Then

!Tors B I IC1=1 det(<f ai, Pi>) I T ors A l n

where det(<f ai , p i >) is the determinant o f th e  non-singular m atrix  o f  integers
<f a f ,  13; >, and I d e n o te s  the order of a f inite group or the absolute value of a
real number.

(b) Suppose instead that C  is free with basis n ,  • • •  ,  y s . Suppose further that
B  contains a free subgroup S with basis o-

i , ••• , „ w ith det(<o- 6. ; >)*0 and such

th at the m ap g  is given by  g( 48)= ± <13, o- i >ri V  13GB . Then fo r  each 13eB  we

have an equation
iepfi=fad-imio-ii=

for some integers m i  and  fo r  some a E A , where

det(<f a i , fa k>) 
Pg. c. d. Idet(< f ai, f ak >), <P, f  cei>, • , f  a t>1

fo r any basis a 1 , ••• , a t of the f ree  part o f  A  ( g .c .d .  i s  the greatest common
divisor).

Pro o f . For part (a), clearly

ICI=1Imgl•iD1=1B/Imfl.n.

T o  c o m p u te  3/Im  f i  w e use the following commutative d iag ram  w ith  exact
rows and columns



0 —> A/Tors A — > B/Tors B —>

1
0

I
B/Tors B
A/Tors A

0 0

0
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0 0 0

1 1 1
0 — >  Tors A  — >  Tors B  — >Tors B/Tors A— * 0

1 i 1
0 — >  A — >  B B/Im f  — * 0

Tors BI
to conclude I B/Im f  = det(b,z) I Tors A I ' w h e re  fa ,= E b „1 3 ,. Part (a) now

- I 
follows from the condition t h a t  det<pi , Ai >  =1.

For part (b), since C  is  free f  is  an isomorphism on the torsion parts of A
and B . Thus w e m ay assume without loss of generality that A and B are free.
Also, det(<o.„ o-,>)# 0 implies that Sr1.51 = {0} , where S1 = BI <p, a>=0 Va E S}.
But Im f C S ' ,  fo r if a E A then  0=gfa=E <fa, ai >r,, whence independence of

the ri  in  C guarantees that <fa, cy,>=0Vj. From  this and injectivity of f  we
have tha t the t+ s  elements faz, •• • , f a t , ai, ••• , as a r e  independent in  B  and
fo rm  a  b a s is  o f BOQ o v e r  Q . Moreover <, > extends to  a  bilinear form on
B O Q  and is non-singular on (Tm f)0Q and SOQ separately. I f  43 E B , write
p=E qi fa z + E r ,a ,  in  80Q  for some rational numbers qi , r,. Then <13, fa >

=E qi<fce, fak>. P u t a,k=<fa t , fa k>  and  d e n o te  b y  (a W  th e  m a tr ix  of

ra tional num bers inverse t o  a=(ak s ). T h e n  gi=E a1Kk<)3, f  a k> and so  Vi the

expression
<13, fak> det( a)a 

g .  c .  d .  { d e t ( a ) ,  ( p ,  f a i > ,  • - •  ,  < 1 3 ,  f a > }

is  an in teger. T hus

(* ) ple—E /i fa i +E ui a;

for 1i the integer pq, and for u;  the rational number pri .
Now D has exponent e, so h (e lk )= 0  V k  and th u s  3 j3k B  w ith  g( ti k)-= erk.

T h a t  is , fo r j*k  < a ,, Pk> w h ile  <oh  1 3; > = e  V  j. Applying < • , Pk> to  (*).
yields

<pP — s  / J a i ,  Pk>= 1 1 ,<as, 1,>=. euk.

Since pi3—E l i fa i  and Pk are both in  B, w e conclude that eu k Z  for a l l  k.

Hence
ep13=fa+E 711
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for a =  el i cxi A and for m; th e  integer eus . Q. E. D.

2. Lemma. Let X  be a (compact, connected, oriented) singular 4-manifold
w ith  Betti num bers b3 =0, 6 2 = 1 , and s u c h  th at  th e  cup product pairing
H 2 (X )x1-12 (X)—>H4 (X )---Z  is not identically  ze ro . L e t gEH 2 (X )  generate the
free part of H 2 (X ) (that is, its image in H 2 (X)/Tors(H 2 (X)) generates). As above
denote by S= {x 1 , ••• , x r }  the set of singular points of X and by  U x i  a  spherical
neighborhood o f x 1. Then Hi(aux,) is a f inite group fo r  each i, and

11P(X)1 2  

I 'Lou g - g l  
1 T o r s  H

2
( X ) 1  2

Pro o f . W e m ay assum e th a t t h e  Ux , ' s  have disjo int closures, so that
Y=X— Uri x , is a manifold with boundary. Since Y  is a  deformation retract of
X—S, the inclusion induces the isomorphisms H* (Y, S) and H*(Y, aY)

S), and hence by dimension

H k(X ) ---1-Ik (y, a y )  a n d  Tp(x) Hk(y, aY)
for k>1.

Using Poincaré duality and the universal coefficient theorem we have 1-11 (aY)
- - Free(1/ 2 (aY)), Tors(1-12 (Y ))-- Tors(1/ 3 (X))=H 8 (X), and Free(1/ 2 (Y))-Free(H 2 (X))

Z .  Thus the relevant part of the long exact sequence for the pair (Y, aY) is

h
IP-(aY) — > H 2 (Y , ay) H z(Y ) -->  H 2 (aY) —>

112 112 112
Free(H 2 (aY)) ZEBTors(H 2 (X ))  ZEBH 8 (X)

1-13 (Y, ay) 113(Y) --> 1-13 (aY)
112

113 (X)

Furthermore, since Hs(aY) is f r e e , i maps HA Y , aY ) onto Tors(1/ 3(Y))--:
Tors(H 2 ((X)).

To examine the map f ,  let giERAY, ay) and rt'eH 4(Y, aY) correspond to
g  and p .  Then

0 #  g 2  < g t  g , < f 8.1 >

so f g ' has infinite order in  H2 (Y ) .  Thus th e  im age  o f h  is fin ite , a n d  since
HAY , aY) - H 8 (X )  is also finite, it follows that 1/2 (aY) is finite and hence that
1/1 (aY )= 0 . Thus our sequence is

0 --> H 2 (Y, aY) ---> H 2 (Y) ---> H 2 (aY) — > 1-P(X)--> Tors(H 2 (X)) ----> O.
112 112

ZEBTors(H 2 (X ) )  Z e lig (X )

Of course, 11-13 (X)1= 1 ker i 1 1 Tors H 2 (X)1, and applying Lemma 1(a) to

H2(y, ay) H2(y) ' I v y ) ker i —> O,
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leads to the  equality

I 
1 1 2 ( a 1 7 ) 1  = l e i  

I Tors I/ 2 (X)1 2

Finally, the observation

H 2 (6Y )= H2(au si )1= n11-11(au ..)1

completes the  proof.

A  rich and particularly interesting source of examples of singular 4-manifolds
is provided by the class of compact two (-complex-) dimensional complex analytic
spaces (complex surfaces) with isolated singularities. T h e  reader is referred to
[ 5 ]  o r  [ 3 ]  f o r  a  review  o f  t h e  terminology of global invariants of complex
surfaces X  and  for some facts relating their global properties to the structure
o f th e  singular points. In  particular, in  the  lemma below q=dim c 1/1 (X, Ox ) and
p g =dim c H2 (X, Ox )  a re  respectively th e  irregularity and  geometric genus, while
b+ and b-  denote the dimensions of the positive and negative eigenspaces of the
intersection pairing.

3. L em m a. Let (X, Ox )  be a normal compact complex surface w ith B etti
numbers b 3 =0 , b 2 = 1 ,  and w ith singular points x i , • • , x r . Let 7r: 'X '—a be a
resolution o f  singularities w ith exceptional curve C=7: . - 1 ({x 1, ••• , x} ). Assume
without loss of generality  that the components C i ,  • • ,  C , o f  C  are non-singular,
that C i  and C;  meet, if at all, transversally  in a single point, and that there are
no triple intersections. Denote by the dual intersection graph  o f  C  and by
det(T) the determinant of the positive definite matrix  (—C i  •C ). T hen

(a) bi (X)=1:t i (k )=b,(2Z )=q(X )=-q()=p g (k)=0, b+()Z)=1, s, g 2 >0 for
g a generator of H 2 (X)/Tors(I1 2 (X)), "c1=-9—s fo r  Ei  the f irst Chern class of ;

(b) Ci  is rational V i, has no cycles, ± dim(10740x)., i =p,(X ), and det(T)
1113(X)1-=g 2 n2 fo r  n=the integer ; andTors 112 (X) I

(c) I f  X  admits a holomorphic line bundle L  w ith L 2 0, then  X  is a pro-
jectiv e algebraic v ariety  and g may be chosen to be the Chern class c(L o )  of an
am ple holom orphic line bundle L o . Furtherm ore, ev ery  line  bundle  f ,  on  k'
satisfies

E°P _=-_'7r*(LrnOT)0 A [C 1 ] , nii

a .2 n
for some integers m i  and some torsion bundle T, where p=

c1 
and m=-

^e( E ) • 7 r * g

d
n ,

for d the greatest common divisor of g 2 and t(r,)•7r*g, and where [C i ] denotes the
bundle of the divisor of Ci  on X . A lso , J i •Ir*g.=.-g 2 mod 2.

Pro o f . For (a) and (b), a l l  b u t  th e  last c la im  o f  (a )  a n d  th e  last claim
o f (b) are  proved in  [5 ], Proposition 3 .  The relation  Z -=- 9—s is then immediate
from t h e  Todd-Noether form ula (or from th e  Hirzebruch index theorem). To

i i i 2s( X)1
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compute det(r), first note that by normality of Ox  th e  s e t  o f  analytic singularities
coincides with th e  se t S o f topological singularities ([17]). Since th e  curves C,,
are  non-singular rational meeting normally with n o  3  in  a  p o in t  a n d  w ith  no
cycles in their graph, w e m ay take fo r the  contractible neighborhood o f x i

th e  im a g e  under 7  o f  a  tubular neighborhood o f  t h e  curve 7r- 1 (x , )c C .  By
Mumford's calculation [17] o f  t h e  fundamental group z i (aU x ,,) w e  h a v e , Vi,
Hi(aUx,,) = det(n), where i s  th e  component of corresponding to z - 1 (x i ).

Since g 2 >0, Lemma 2 applies to give

det(r)= det(F).= I Hi(aUx t ) I =8 . 2  • n2

a s  specified.
P art (c) is  an  exercise in  chasing the  diagram

H 2 (X, Ox) H 2 ()Z, Ot)

I 3
112 (X, Z)---+ I-12 ()Z, 1-12(C, 113(X, Z)—> H(X, Z)—> 0

I
H 1 (X, L11(S(', x * )

I
I-11 (X, Ox) --> 111 (k% Os),

(see [3], Lemma 1), where th e  rows are  induced by zu a n d  b y  the  inclusion of
C into X, and the columns by the exponential maps 0—>0*, and where MX, Ox*),

01-*) a re  identified with th e  P ic a rd  groups o f  (isomorphism classes of)
holormorphic line bundles o n  X , .^X.- . By part (a) above, Hl(C, Z)=1-11 (X, Ox)=

01)=- H 2 (X.',  O )= 0 , so th e  Chern c lass  m ap  ' is  an isomorphism, while c
and  r*  are  in jec tions. T he  ex istence  o f L el-1 1 (X, O x) w ith  L 2 #0 guarantees
that rank(H'(X, O x *))=rank(H 2 (X , Z))=1, whence, since 1-12 (X, Ox ) i s  torsion
free, c is  in  fact an  isom orphism . P ut L o =c - 1 (g ) .  X  is projective algebraic by
[3 ] ,  Proposition 6 , so  X  admits a positive (=ample) line bundle. Indeed, since
L o generates 111 (X, Ox*) mod torsion, either L a o r its dual is positive . Replacing
g  by —g if  necessary we may assume that L o i s  positive.

Now 113 (X , Z ) is fin ite, so  I-13 (X' , Z) Tors(H 2 (X, Z)) Tors(H 2 (X, Z ) ) ,  the
last isomorphism (7r*) holding because 112 (C, is  to rs io n  f re e . Thus im(5)

I 113 (X )1  is a  group N  o f order n=
T o

a n d  we haveI rs 1-12 (X)1'

.*7r*
0 ---> 112 (X, Z ) ---> 112(C, Z ) ---> N — ›  O.

T his diagram satisfies th e  hypotheses of Lemma 1, p a rt (b), fo r  S= the subgroup
of 112 (X , Z ) generated by th e  Poincaré duals o f th e  curves C i a n d  f o r  < , > the
intersection pairing . B y that lem m a, and using th e  isomorphisms c and e, we
conclude that every line bundle r, on X  satisfies
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i .p .e (L , )0  A
where

<7r*g •2r*g> g2n

g. c. d. {<7r*g, eg>, <2r*g, e."(E)>) n d
f o r  some integers mi a n d  some line bundle L L,TmeT (T torsion, m E Z ) on

i) • eg X .  Applying <•, 7r*g> to this equation shows that m= dn  a s  required

in  (c) above.
Finally, to check the relation g 2 ==-er2c*g mod 2, apply Riemann-Roch to the

bundle 7r*Lo:
1 1X(01(7r* L o ))—X(0x)= —
2  

(7r*g •e g -k t i • n- * g)= —
2  

(g 2 d •  * g )

to conclude that g 2 -Fe1 •Tr*g is an  even integer. T h is  completes the  proof.

4 .  C o ro llary . L et (X , Ox )  an d  7r: X-  —>X be  as  in  p art  (c ) of  Lemma 3.
Suppose f urther that .1-13 (X , Z )= 0 . Then i f  e 'e r  7r*g, Ox  i s  Gorenstein (that is,
the canonical dualizing sheaf  Qx on X  is locally  trivial). I n  p art ic u lar,  this is
true i f  8-2 =1 or 2. (The notation throughout is as in Lemma 3 and its proof).

Pro o f . First note that a norm al surface is always Cohen-Macauley, so  Dx
is defined. A lso, .1-13 (X , Z )= 0 1 -12 (X , Z ) i s  to r s io n  f re e . Denote by K x  the
canonical line bundle of holomorphic differential 2-forms on :Xv . If we take 1: =K1
in  p a rt (c) o f Lemma 3 , the  condition  g 'It i • e g  (together w ith I-13 (X , Z)=0),
implies that fo r this bundle the integer p of Lemma 3 is equal to 1, and thus that

for in g2

Now i f  g '= 1  then  sure ly  g 2 I ei.7r*g whatever „•2r*g may b e .  I f  g 2 =2,
the  last part o f Lemma 3 shows that t.1 -2-r*g is even, so g 2 1r,•2r*g in this case as
w e ll. T h is  completes th e  proof.

We turn now to an  examination o f th e  singular points. For a discussion of
th e  rational double points Ak, Dk and E k t h e  reader is referred to [1], [9], or
[10]. W e  have found it a  useful notational convenience to introduce, f o r  any

•
integer k_0, the label "E  k ”  fo r  th e  Dynkin diagram •—•—•—•••—• (k vertices

•, •
in all, each carrying weight 2). Thus "E,"=.13 5 : 0-41-1— • , "E 4 "=114 : e—■—•,

• •
"E 3 "=./12 +-A i : 41—*

*  

, "E ,"= 2 A i :  •  ,  " E i "= A i : ,  and  "E o"= the  empty
graph (cf. [7], where a  slightly different convention was adopted for k =1 a n d
2. T he  graph "E 2 "  will not occur in  this paper.)

Rational double points xE X  a re  defined by the  property (R'Ir*Ox).r=0 and
Z'-= —2 fo r  7 :)Z - 4 X  the minimal resolution, th e  first right derived functor,

P=

—er7r*g

K1 -=71-*(Lr90A[ciionii

m i . z .  It follows that Qx-:=Ox(am) and  so is locally trivial.
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a n d  Z  t h e  fundamental cy c le  ( [ 1 ] ) .  T hey a re  characterized by the condition
that the  canonical bundle K  is t r iv ia l  in  a  neighborhood o f  t h e  exceptional
curve, a n d  thus If i z=7*K x  f o r  some holomorphic line bundle o n  X  ( [1 1 ]) . If
x e X  is a  rational double point with Dynkin diagram F=A k , D k o r  E k , then, as
in  the  proof o f Lemma 3, th e  order of the first homology group of the boundary
o f  a  contractible neighborhood U,, is determined by IH 1 (au x )1 = d et(T ). Direct
calculation (or an  examination o f presentations o f  th e  corresponding finite sub-
groups o f SL(2, C)) establishes th e  well-known facts det(A k )=k +1, det(D k )=4,
det(E k )= 9— k. T h is  last relation continues to hold fo r the  graphs "E k " , k=3,
4 , and 5. Conversely,

5. Lemma. L e t , r  be a k-point Dynkin diagram, not necessarily connected,
with no multiple edges and satisfy ing det(r)= 9— k. Then 3 k 8 and ['=" E ;'.

T he  proof is by inspection of the graphs A,,, D,,, an d  E,,.

6. Corollary. Let (X , Ox ) b e  a  complex surface w ith b 3 -=0, b 2 =1 , and
adm itting an am ple holom orphic line bundle L o whose Chern class g  generates
H 2 (X , Z ) mod torsion. Suppose that each singularity  x , of X  is a rational double
point, denote by  r i  th e  Dynk in diagram associated to x i ,  and put r= vri and
s = r i .  Let zr: j?'—a. be  the minimal resolution of singularities and w rite K x =
z r*(L r'e)T ) f o r  som e integer m  and som e torsion bundle T o . As above, put

I 1-13 (X )1  n= Then we haveI Tors H2 (X)1 •
(a) m2 g 2 = 9 — s
(b) det(T)=g 2 n2 ,  and
(c) m g 2 =, g 2 mod 2.

The only possibilities for the integers g 2 > 0 ,  s ( ) ,  and in allowed by these equa-
tions are

(— ) m --0, s=9, g 2 even;
(i) m=H-1, g2=9—s
(ii) m = + 2, s=1, g 2 =2; and
(iii) s= 0, g 2 =1.

Pro o f . (a) m2 g 2 =K i---e1=9— s, (b) det(T)=g 2 n2 ,  and (C ) 7lig 2 = K x - •7 * L o =
*g==-g2 mod 2 follow respectively from parts  (a ), (b) an d  (c) o f  Lemma 3.

Verifying th e  list (—)-(iii) o f integral solutions is  trivial.

It is  now  easy  to  estab lish  the m ain results o f this section, which extend
and augm ent the ideas o f  [5 ]  and  [4].

7. Theorem (main theorem on cohomology CP"s).

Let X  be a singular 4-manifold whose integral cohonzology ring is isomorphic
to that of the complex projective plane. Then

(1) Each singular point x  o f X  has perfect local fundamental group iri(aUx)-
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(2) I f  X  supports a normal complex structure O x  adm itting  a non-trivial
holomorphic line bundle, then (X, OA- )  is a projective algebraic veriety and each
singular point is Gorenstein.

(3) (Theorem A of the introduction.) If X  supports any  com plex  structure
Ox  w ith v anishing geom etric genus p g =dim c l-P(X, Ox ), then either X  is non-
singular, or else X  has exactly one singular point x  and the germ  o f x  in  X  is
homeomorphic to that of the rational double point Eg.

Proof . (1) is immediate from Lemma 2. Namely, by hypothesis 113 (X )=
Tors(1-12 (X))=0 and g 2 =1 fo r  g  a  generator o f H 2 (X ), so

1113 (X) I H  I II i (au ,)! =g 2= 1 .
T o r s ( H

2 ( X ) ) 1 2 

Thus V x n- i(aUx)/(commutor subgroup)=H 1(0Ux )=0, an d  7-4- 1(aU ) is perfect.
(2) follows from Lemma 3 and Corollary 4, fo r the  sequence 0—>I-11 (X, Ox*)

—412 (X, together with g 2 0, show s that a non-triv ial line bundle L  on
X  necessarily satisfies L 2 #0.

F o r  (3 ), l e t  pr' : X'—>X b e  t h e  normalization o f  X .  B y  th e  definition of
singular 4-manifold, X — S(X ) is locally connected, hence X  is locally irreducible
at each singular point, so 7I '  is a homeomorphism ([141, Prop. 3.3, [12], Theorem 19,
page 116). Also, p g (X')-5_Pg (X ), so p g (X )= O p g (X')=0, which in  turn implies
the existence of a non-trivial line bundle on  X ' b y  t h e  sequence I -11 (X', 01.)—>
H 2 (X ', Z )-4). T h u s  X '  is  G orenste in  by C oro llary  4 , w h ile  the  re la tion
E(R'7r*os)x=pg(X ')=0 of Lemma 3 shows that each singularity is ra tiona l. Since
among rational singularities only double points are Gorenstein ([151), and  since
among rational double points only E s has perfect local fundamental group, each
analytic singularity of X ' is a n  E s. But then the  number s  o f exceptional curves
in  th e  m in im a l resolution is a m ultiple of 8. Since s 9 by Corollary 6, there
are only two possibilities : either s=0 and X ' is non-singular o r  s=8  and  X ' has
one point of type E s and no other singularities. Since the topological singularities
o f X  are  exactly th e  analytic singularities o f X ', this completes th e  proof.

8. Theorem (m ain  theorem o n  homology CP"s).

Let X  be a singular 4-manifold of the integral homology type of C P', with
112 (X ) generated, say, by g. Suppose that X  supports a normal complex structure
Ox  w ith vanishing geometric genus. Then

(1) I f  g 2 =1  we are in the situation of the preceeding theorem and either
(a) X  is non-singular (the singularities are of type "E o ") or
(b) X  has one singular point, a rational double point of type E s.

(2) I f  g 2 =2  then X  has precisely one singular point, either
(a) a rational double point of type A l  ("E 1"), or
(b) a rational double point of type E 7.

(3) I f  g 2 *1, 2 , and if Ox  is Gorenstein, then 3 - g 2 - 6 and X  has singularity
type "E,," for k=9— g 2 . That is , if g 2 =3, 4, or 5 , then X  has one singular point

XES ( X )
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of type "E k "  and no other singularities, w hile i f  g 2 =6, X  has two singular points,
one of type A 2 and one of type A l.

P ro o f .  I n  each  c a se  (by Corollary 4  i f  g 2 = 1  o r  2  a n d  by assumption
otherwise) X  is  Gorenstein. A s above, then, p 2 (X )=0 implies that each singu-
larity o f X  is  a  rational double point. Also, since Tors(H 2 (X ))=0 th e  integer m
o f  Corollary 9  cannot be 0 , le s t  t h e  canonical sheaf D1=0 1 (11m) be trivial,
contradicting p g =0 via Serre duality. Putting n=1  i n  Corollary 6  show s that
the  only possibilities are

( i ) m =  + 1 , d e t(F )= g 2 =9—s
(ii) m = +2, g 2 = 2 , s= 1 , and
(iii) m = ± 3, 2 - 2 =1, s=0.

(iii) and (ii) are  respectively cases (1) (a) and (2) (a) above, while Lemma 5 shows
that ( i ) (1) (b), (2) (b), o r (3), T h is  completes the  proof.

Theorem B of the introduction is  a n  immediate corollary, f o r  i f  t h e  anti-
canonical bundle ICI= L r - m) ad m its  a section, then m <0 and K x  is negative.
T hus p g (X )=O a n d  X  is  ra tio n a l ([5]). If m = - 1  ( s o  t h a t  K x  generates
111 (X, Mc )) we are  in  the  case  where the singularities are  o f type  "E,",
(cf. [8 ] and  the  last sentence of [5 ] ) . If  m= —2 then X  is  biholomorphic to the
singular complex quadric hypersurface W E C P', while if  m = —3 (the non-singular
case) X  is biholomorphic to CP 2 ([5]).

II. Global constructions.

The question of actually producing complex surfaces of the type under dis-
cussion, a n d  with specified singular points, was undertaken in  [5 ] (see also [8]
and  [ 7 ] ) .  Somewhat restated, the m ain result o f  [5 ] is a s  follows :

9. Theorem (main theorem on surfaces of the rational cohomology type
o f CP 2 ).

Let X-„-L. CP 2 b e  a  compact two (-complex-) dimensional complex space each of
w hose singularities is a rational double point. Suppose that H*(X , H * ( C P 2 ,  Q )
as rings, with 11 2 (Y  , Z ) torsion free and generated by  an analy tic cocycle (that is,
by  an effective Cartier divisor). T h e n  X  is  a rational projectiv e v ariety  deriv ed
f rom  C P 2 by  b low ing  up 8 points (including inf initely  near points), then blowing
down 8 non-singular rational curves, each with self-intersection — 2. X  is homotopy
equivalent to CP 2 <=>H 2 (X , Z )=0.

In  [1 ] an d  [2], Daniel Drucker, G eert C. E. Prins, a n d  th e  present writers
derived the  complete list o f all such constructions. The singularities that occur
a re  E 8 ,  E 7 H- A i ,  E 6 -1- A2 , D 5 4 - A3 , 2A4, A5+ A2+ A i, A ,- - A i, D8, A2, D6+2111, 2D4,
2A2 +2A 1 ,  a n d  4A 2 ( c f .  D uV al [11]). Each of the spaces X  so constructed is
regular with vanishing geometric genus, with 111(X , Z)=0, and with H2(X,
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and generated by an effective anti-canonical divisor K * .  References [8 ] and [2]
a lso  g iv e  s im ila r  constructions for surfaces X  o f th e  rational homology type of
G P', but w ith e > 1 , for g  a  generator of I-12 (X ,  Z ) .  These spaces a re  examples
o f  "degenerate Del Pezzo surfaces", which arise  in  connection with th e  study of
3-dimensional rational singularities and  sim ple  elliptic singularities, and  whose
singular points have been investigated in  such works as [11], [6], [18], [16], and
[19]. I n  [5 ] ,  h o w ev er, it w as a ssu m ed  in  error that these  surfaces a ll have
I -13 (X , Z)=0 and thus a re  homotopy equ iva len t to  C P ' .  B u t Lem m a 3  above
show s t h a t  i n  fact H a(X , Z )1=det(F), for P  the  associated Dynkin diagram.
O f the  three examples o f  [5 ], then, only the  second h a s  th e  c o rre c t  homotopy
type ;  examples 1 and  3 are surfaces of the rational cohomology type of C P' but
with third integral cohomology groups isomorphic respectively to Z , and to ZoEIDZ2.

A s a n  a p p lic a tio n  o f  th e se  re su lts  w e  in se r t he re  a  theorem o n  singular
4-manifolds whose singularities are  cones on  lens spaces-a  topic  o f  some inde-
pendent interest. S ince th e  rational double point A k  is topologically th e  cone on
a  len s sp ace  o f  ty p e  (k +1 , k ) , those exam ples o f  [ 2 ]  w hich  have  only -4k
singularities a re  spaces o f  th is type.

1 0 .  Theorem (Theorem D of the introduction). Let r, k ,, • ,  k ,  be posi-
tiv e integers, w ith r - 4. T hen the relation

(*) 4 H (k i + 1 ) = ( 9 -  k i )N 2

i=1

f o r  som e in teger N , is necessary  and sufficient for the existence of a normal
rational complex surface X  of the rational homology type o f C P ' possessing exactly
r singular points x 1 , ••• , x „ w ith x i the  cone on a lens space of type (k i +1, k i ).

Such a space X  has the rational cohomology type of CP'<=> E k i =8.
i= 1

P ro o f .  Suppose th a t X  e x is ts . T h e n  t h e  singular p o in t  x i  i s  a  rational
double point of type Ak e  f o r  A k , , i s  t h e  o n ly  norm al com plex s tru c tu re  on  a
lens space o f type  (k 1 +1 , k ,)  ( [9 ] ) .  Since X  is rational with only rational double
p o in ts  a s  singularities, t h e  plurigenera P /(X)=dim H°(X , O x (K F ) )  identically
vanish for 1>0, where K  L r ` O T ,  is  th e  "canonical bundle" a s  in  Corollary 6.
(In fact, T 0 = 0  since I-12 (X )  is  torsion free for norm al rational su rfaces.)  Thus
m  0 .  Since X has a t least one singular point, Corollary 6  show s that in = -1
o r  - 2  and m ' det(T)=(9-s)n 2 ,  w ith notation as in that C orollary. S ince det(T)

= fI (k c+-1) a n d  s =  k 1 , t h e  equation (*) holds for N =n  o r N =2 n  according

a s  to w hether m -= -2 o r  -1 .
Conversely, an  enumeration of all choices o f  unordered r-tuples (k 1, •-• ,

produces t h e  fo llow ing  list o f  possibities fo r  which the condition (*) is
satisfied : (1), (2, 1), (4), (3, 1, 1), (5, 1), (2, 2, 2), (7), (5, 2), (3, 3, 1), (8), (7, 1),
(5, 2, 1), (4, 4), (3, 3, 1, 1), and (2, 2, 2, 2). To complete the proof we must produce,
for each (k 1 , ••• , k ,) o n  th e  lis t, a  rational surface of the rational homology type
o f  C P ' w ith  singu la ritie s A 1 1

1 ,- ••• +A k r . F o r  (k 1 , ••• , k )=(1), t h e  singular
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quadric surface Cn provides a n  exam ple. T h e  remaining choices o n  th e  list all
appear among th e  examples o f  [11], o r o f  [2].

Finally, fo r rational surfaces of this type it is easy to  show  that m=2 only

fo r X =Q L  In  all other cases g 2 = 9 —  k i  f o r  g  a  generator o f  112 (X ), so X  isi=1
a  rational cohomology CP 2 4=> k i =8, a s  claimed.

So  f a r  a l l  o f  th e  spaces considered in  this section have been ra t io n a l. To
complete the  program we m ust consider th e  non-rational c a s e .  T h is  turns out
to be surprisingly easy :

1 1 .  Theorem (main theorem on surfaces of the rational homology type
o f C P', Theorem C of the introduction). Let (X , Ox )  b e  a  normal complex
surface w ith only  rational double points as singularities and w ith Hi(X,
H 1 (CP2 , Q ) V i. Then either

(a) X =CP 2 or
(b) X  is a rational surface obtained from  C P' by  blow ing up som e number

.s- 8 points, then blowing down s curves, as in theorem 9, or
(c) X  is derived from a minimal non-singular Enriques surface 2 ,  or from

a minimal non-singular projective surface 2  of general type w ith q(2)=1),(2)=0,
by blowing down s=b 2(2 )-1  non-singular rational curves, each with self-intersection
—2.

Pro o f . P u t Kx= Lrn . ®To a s  above, fo r L o a positive generator of 111 (X, 01)
mod torsion and for T o a  t o r s io n  bundle. I f  m <0 then  Kx  is  n e g a t iv e  and
either (1) o r  (2) obtains by [5 ], Theorem 1. Otherwise, le t  7 c: 2—>X be the
minimal resolution o f  singularities. Then K2=7r*(Kx)=7*(Lrt®T o ). If m=0,
K 1 i s  to rs io n . Since q(2)=p ,(2)=0 by Lemma 3, the  c lassifica tion  o f non-
singular surfaces 0 3 1  shows that X  is a projective Enriques surface (i.e., that
K 1 *0  b u t  K2 (3'2 = 0 ).  I f  m> 0, then (since positivity o f  line bundles on  an
algebraic surface is a  topological property) Kx  i s  ample and PI(K1)=P i (Kx ), - ,4 2

for large / . Hence .k is  o f general type.
To show th at 2  is  minimal, assume contrariwise that )Z admits an exceptional

curve D  o f th e  first kind. Then by adjunction,

(*) —1=K 1 • D -=m(n- * L 0) • D=m L 0 • 7r* D .

Since L e r is positive for any effective 2-cycle r, (*) i s  an  absurdity i f  m#
Thus in  particular .k is  minimal if 2  i s  an  Enriques surface or of general type.
Since 7 r  is  the minimal resolution o f rational double points, each curve C, blown
dow n by 7  is non-singular rational w ith q = —2, and by Lemma 3 there are
s=b - (2) -- - b2(2 ) -1  o f th em . T h is  completes th e  proof.

T h e  results o f this paper can conveniently be summarized by th e  following
ch a rt. T h e  n o ta tio n  is  a s  in  Corollary 6.
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Complex surfaces of the rational hom ology type of CP 2

w ith only  rational double points as singularities

m r s g2 det(r) X'

—3 0
(X  is non-singular)

0 1 1
(F =0 )

X=2Z---CP2

—2 1 1 2 2
(F—Ai)

X=Qg
.g=the rational
ruled surface S2.

— 1 -.n-, 4 3 - ,s .8 9—s (9—s)11--P(X)12
(s=3, 4, o r 5

113 (X , Z )-0.
112 (X , Z)=-0

l'="Es".)

Rational Del Pezzo
surface of degree
9—s

0 1-_r_-_9 9 even, >0 g2n2 Minimal Enriques
surface (K # 0  but
10 2 =0)

1 1 7.-. 8 3_- .s 8 9—s (9— s)n 2

(s =3, 4 , o r 5
n = 1 / "= "E ," )

Minimal of

General Type
2 1 1 2 2

(T= A i , n=1)

3 0
(X  is non-singular)

0 1 1
(r =  0 ,  n=1)

X  has th e  rational cohomology ty p e  o f  CP 2 4 =a is non-singular o r  m=-E
and  s=8.

9—s
X has the integral homology type of CP 2 m #0, det(r)= , and l '="E s ".ni 2

X  has th e  integral cohomology type of CP 2 X  is non-singular, or m = ± 1 and
E 8 .
I f  H 2 (X ) is  torsion free, then th e  last two implications are equivalences. In

particular, this is the case if X is  ra tio n a l. X  is  rational<=>m<0<=>H2 (X ) is  torsion
free and generated by an effective d iv iso r. m <0, n=1 and s=- 8 X is homotopy
equivalent to CP 2 . The assertion  r 4 fo r m= —1 is shown in  [19] an d  in  [2].
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