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Introduction.

The motivations of this paper come from our previous study (Kusunoki-
Maitani [7]) and the recent results due to 1. Guerrero [5] and H. Yamaguchi
[14]. In [7] we gave the first variational formulas for fundamental meromorphic
differentials on open Riemann surfaces induced by quasiconformal deformations,
where those differentials should have the boundary behavior subject to (complex)
behavior spaces and the “first” above suggests the first derivatives. While,
Guerrero [5] discussed the firft variational formula of Green’s functions on finite
Riemann surfaces by using the quasiconformal mappings and Fuchsian groups,
and he asked its generalization to arbitrary hyperbolic Riemann surfaces. And
Yamaguchi [14] showed the second variational formulas for Robin’s constants
and some other quantities under variational consideration for a certain analytic
family of Stein manifolds.

In this paper we shall study the variational formulas of various differentials
under quasiconformal deformations of arbitrary open Riemann surfaces, and give
an answer to Guerrero’s question and also show the second variational formulas
for various meromorphic differentials under quasiconformal deformations. Prac-
tically we develop our previous method by using the (real) behavior spaces of
Shiba’s type and obtain the similar formulas for wider classes of meromorphic
differentials than those in [9], which are applicable for Green’s functions,
Neumann’s functions and so forth. We also show a certain differentiability
property of their meromorphic differentials, which allows us to establish the
second variational formulas for those differentials under quasiconformal defor-
mations. If we take a specific kind of behavior space, we can obtain the second
variational formulas for Green’s functions, Robin’s constants and some others,
which have the similar forms as those due to Yamaguchi.

The author would like to express his sincere thanks to Professor H. Yama-
guchi at Shiga University for his genial encouragement.
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§1. Quasiconformal deformation and spaces of differentials.

1. We shall investigate the deformation of a Riemann surface R as follows.

Consider Beltrami differentials p(z, t)g on R with a complex parameter ¢ (¢

may be the set of parameters (¢, -+, t,)) varying in a domain about 0. We
shall assume the following condition A ;

1. p(z, t) is measurable, u(z, 0)=0 and
-, Dllw=ess sup|p(z, 1)| <1,
2. for every t there exists a constant M, such that
ez, 1+h)—plz, Dle=|h|M,
for sufficiently small h,

3. for almost all z&R, t—pu(z, t) is holomorphic.

For each ¢, denote by R’ (R°=R) the Riemann surface which has basic surface
R and the conformal structure induced by p(z, ¢). Let f, be the quasiconformal
homeomorphism from R to R® with Beltrami coefficient u(z, t). We express f.
sometimes as {=f,(z) in terms of respective generic local parameter z and { of
R and R’. Then uz, 1)=C(;/C..

In the present paper, such a family {R'} is treated as a deformation of R.
Now f,: R—R! defines the homeomorphism of differentials as follows; for any
first order differential A=adz+bdz on R, we denote by f#(A) the pull back
Ao f71, that is,

FH=[(a°fi)ze+be )2+ (@ fThze+(be f7)@)E1dE,
where the derivatives are taken in the sense of distribution. Note that (f;!)#
and (fu - f7Y)* are defined similarly and that (f, « f7)*¥=(f,)*<(fr)¥ and fF-(f;)¥

is an identity mapping. The f§ will induce a deformation of spaces of differ-
entials.

Let A=/(R) be the Hilbert space of square integrable complex differentials
whose inner product is given by

(A, Xz)n———SSRXl/\*2_2=iSSR(aldg-l—b152)dzd§,

where A;=a;dz+b,dze A(R), i=1,2 and *A,=—ia,dz+ib,dz is the conjugate
differential of 2, z being a local parameter. We regard the same set A(R) as a
Hilbert space over the real number field with another inner product

<21v 22>:Re(21y 12) y
where Re means the real part (cf. Shiba [13]). Hereafter we use this space and
write it A=A(R). The following subspaces of A will be used:

A:=A(R)={2€4; 2 is a closed differential},
Ay=A,(R)={2€ A ; 2 is a harmonic differential},
A=A R)y={2€ A, ; <A, w)>=0 for any we 4,}.
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2. We return to the mapping f#. The f{ gives an isomorphism from A(R)
to A(RY). because

1+Fk
IFFDls 1 WAl for any A€ A(R),

where |u(-, 1)l«=k<1. Further, for any Dirichlet potential W, on R‘ the com-
posite Wy f, is also a Dirichlet potential (cf. [4]), henceforce f# gives an
isomorphism from A.(R) to A.(R*). Let P, denote the projection from A to A,
and (f,)% the composite mapping P, f§ from A(R) to A,(RY). Then, clearly
(fr0E={(f0)% *on A,(RY) and (f,)} gives an isomorphism from A,(R) to A,(R%).
The following lemma shows a correspondence by f§ between the inner products
in A(R) (A(R)) and A(RY) (A(RY).
Lemma 1. (see, [7], [9])

(f(wy), —*f1(*wy))pe=(w,, Wx)r for any w,, w,€ A(R),

(foi(or), —*(fOr(*o)re=(a1, 03)r  for any o,, 0.€ An(R).
We know f7(A(R))=A.(R"), because by Lemma 1

{fia), *wdre={o, *(fT)¥(@)>r=0

for s A(R), w€ A,(R"). Further we have the following.

Lemma 2. (cf. [10], [11]) The f§ and (f.)} preserve the periods of closed
differentials.

Proof. let yCR be a Jordan closed curve and V, be a ring domain such
that 7 is a component of the boundary oV, and is oriented so that V, is seen on
the left hand of 7. Take a C>-function S, on R—y such that the support of S,

isin V,, S,=1 on a neighbourhood of 7 in V, Note that (a, *dS,)sz for
7

C'-closed differential @ and C'-curve 7. Similarly, take a Sy, on R, for the
Jordan curve f.(y). Then Sy, °f.—S; is a Dirichlet potential on R, hence
d(Ss,n—SrefiEdeo(RY). Thus for a closed differential w on R,

(filw), *dSs,)re=(fE(®), *d(Ss,cn—S;° fT)+*A(S;o [T re
=(fHw), *fHdS)a=(w, *dS,)r .

Symbolically we can write as

SW = .

A closed differential o is said to be exact (semiexact) if it has a vanishing
period along every cycle (dividing cycle), i.e.,

(w, *dS,)=0 for any cycle 7 (dividing cycle).

Let A., As, Ane and A, be the spaces of exact, semiexact, harmonic exact and
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harmonic semiexact differentials respectively. By Lemma 2, these spaces are
preserved by f¥# or (f,)f. As was already shown, the locally exactness is
preserved by f#. On the other hand f#(*w) does not always coincide with

*f#w). This comes from the difference of conformal structures. We shall
observe the distortion by f¥.

Lemma 3.
| fEGFa)—*fF (a))ll<«/1 kzllwll for any we A4,

where |p(-, )|=k<1. The equality holds if and only if |p(-, t)|=k almost
everywhere on the support of w.

Proof. For any w=adz+bdze A, we have
I 1C0) = fr@ie=4il] (a|*+1b]9] 2] *dCdE

|2z]*

:4iSSR(|a 2+ [blz)ll—zl—ldzdz

k? .
<Ad; —
<ti 2 ([ el 1b19dedz =4 ol

The equality holds if and only if |zz/z;|=% on the support of w.

Proposition 1.

(1) [(fH ), [Hw))r— (w1, w)r| = loilllw.l for o), w.= A(R),

_lk

i) [((f)ie), fHw)p—(0, ®)r]| =

< 2okl for o€ AuR), we A(R),

where |p(-, DIZk.
Proof. (i) By Lemma 1,

[(FH@1), [H@Nre— (@1, w)rl =[(fE(@1), *(fE(Fwe)—*fF(@:)rt]
= [ fH @)l fE ) —* fE (o)
2k

= ——llwl .l .
<1y lodlo

(ii) Take the orthogonal decomposition of w;

O=0;+w;+*w;, W, € An, 0y, 0E Ao
Then we have

[(Fi(a), fi(@)ri—(a, @)r|=|((f)i(0), (f)rlwiF*0)+*(f )i wit*wy))]

=[(F RIS Oh(@i+*ws)+*(f )R K@i+ *ws))l

2k

<
—1—

5 lelllol .
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3. We investigate the variations of Green’s function, reproducing differentials
and some other fundamental differentials under our deformations. For the purpose
of systematic investigation of these differentials, we introduce behavior spaces.

Let I'=I"(R) be the subspace of A(R) which consists of real differentials
and I,=Iw(R)=I"(R)NA,(R). For any subspace I:(R) of I,(R), we set

AA(R)=T3(R)+i*[o(R)*,

where *I(R)*={*1el}; (A w)=0 for any wel;}, i=+—1. We call such a
space A, a behavior space (cf. [7], [13]). Clearly A.(R) is a subspace of A,(R)
and /*4,(R) is the orthogonal complement of A, (R) in Au(R), i.e., A.(R)=
AHRY+i*A(R). Now (f)i[A(R)] is a subspace of 4,(R’) and is written as
A (RY). Then we have the following.

Proposition 2.

(fRD R I=Xf IR (R)D)*,
An(RY= A (RO)+i*A:(R"),

and AL (RY) is a behavior space.

Proof. For an wel%(R) and a o=[,(R)*, by Lemma 1, -
(fok@), =*(f)i(*o)r=(w, 0)r=0.

Hence *(f)i[I-(R)] is orthogonal to (f,)4[*I(R)*]. If c=lw(R") is orthogonal
to *(fIL(R)I+(f)i[*-(R)*], then for an welL(R)* 0=(f)i(*w), O)re=
(Yo, —*(f7)i(*t)r. Therefore (fiY)i(*r)elx(R) and *re(f)i[I%(R)]. Thus
=0 and the assertion follows.

Since Iyse=AnseN\Iw and Ine=Ar.NI, are preserved by (f.)f, the spaces
Iim=*hst and Iho=*I,.* are also preserved by (f.)i. Set A_,={0}+il%,
Ao=Thetilh, and A, =Tym~+il . Then (f)i[A(R)]=A4:(R"), i=—1, 0, 1. These
are important behavior spaces which are related to fundamental functions and
differentials on the surfaces. A canonical differential (a meromorphic differential
whose real part is a distinguished differential) has A,-behavior (cf. [13]). A
meromorphic differential whose real part is a differential of difference of the
Green’s (resp. Neumann’s) functions with different poles has A_,-behavior (resp.
Ay-behavior).

§2. Variational formulas of certain meromorphic differentials.

4. We shall show some variational formulas of specific kind of meromorphic
differentials. We begin with showing the continuity property of certain mero-
morphic differentials.

Lemma 4. A meromorphic differential ¢* on R' satisfing the condition
(¥ (@) —@°c A (R)+ Aeo(R) is uniquely determined by ¢°.
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Proof. Let a meromorphic differential ¢ also satisfy the above condition.
Then (fi)*(¢'—@)E A(R)+A(R) and ¢'—Fte A (RY)+A,o(RY). Therefore
analytic differential ¢‘—g¢‘ has no poles and belongs to A.(R'). Thus (¢‘—g3")
=i¥(g'—F)e A(RYN*A(R") and ¢'=4".

Proposition 3. Let {¢'} be meromorphic differentials such that (f7)*(¢")—¢°
€ AA(R)+Ae(R). If f. is conformal in a neighbourhood V of the poles of ¢°
then

. -1 ty__ 40 '\/—2_[2(& (]
I8 =8l "2 ) 167

where the Beltrami coefficient p(-, t) of f. has absolute values less than k(t)(<1).
Proof. Since A+ A, is orthogonal to /*(A,+ A.,), we have

NP )=, ([T (@) —8°)>=0.
Write
((fENHI)F*( [TV @)/ 2=w,

((FENHP)—*(fe) (g /2=0 .

Then (fi)*(¢")—¢"=w—¢"+0. Note that (w—¢°, ¢)=0 and azwy%. It fol-
lows that
lo—g’l=loll=k®|wlz-v,

1
< - 0 ,
lollz-v= 1—k@) ¢°Iz-v,

and

k
lo—gl=lo1 S 2 1l

Therefore
ICF* (@) —@la=llw—¢’[2+all
k() N2y ops
§2(‘1_—k(t)‘> °Iz-v -

This proposition convince us of the smoothness of ¢*.

Theorem 1. Let {¢'} be meromorphic differentials such that (f;")*(¢")—¢’€
A (R)+Aeo(R).  Assume that the Beltrami coefficient p(z, t) of f, satisfies condition
A and the support of p(z, t) does not meet an open set V including poles of ¢°.
Then for t=u-iv there exist differentials ¢}, and @ in A (R*)+ Aeo(R') such that

(fer fAH (BT —g"

. ot —

}"Erol i ¢“ Rt 0,
o f—1._\# iBy__ 4t

lim l (ft le-l.'o) 5¢t+ ) ¢ _¢1¢’ :0 ,

B0 |l 7 Rt

where # and ¥ are real. Further,
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gL —r*L=—i(ps—i*¢})

e 2 &
=T e e g
Proof. First note that the Beltrami differential v(Z, )—g on R!' of the

quasiconformal homeomorphism f,..f;' (from R’ to R‘*) is

dC wz, t+1)—pz, 1) C dC

Mo G TG e, 140 2L

and satisfies the similar condition as in A. Since

(¥ @D —(fi)¥ (e A(R)+ Aeo(R) ,
we have

(fee frt) (@) —¢Y)/ € A2(R)+ Aeo( RY) -

We show that ((f,f7ia)*(@'*%)—¢')/ii converges in A (RY)+ A, (R') as @ tends
to 0. Write

0z ={(feo [RDH @)+ (feo frta) (@M} /2,
oa={(fre fria) (@) —i*(foe fria) (")} /2,
then wz+os—¢'e A, (R)+ A.,(RY). For real # and ¥, we have
0=Lwatoi—¢")/ i—(ws+05—¢")/0, *(witoa—¢")/ i —(ws+o5—3")/ ).
By the same way as the proof of Proposition 3,

a9/ 2 —s—$)/ax= 70/ 30/l
< @i—gta—ws—gormmc, 0 |

+@a—g0:8, D—uC, 2/ ﬁ—g“m

@)/ a—u(C, v)/u)—C

For the second term, from condition A,

M,

o€, Dt 0/ (0|5 D

and by Proposition 3,

i1 S T e,

M, ||
1|z, Dl ’

| re-ve= @' — fE @) rt-ve+ | fED) I Re-pe -

For the third term we have also an estimation. Let v(, z) be holomorphic on

where kt(ﬁ)zsuptlv(c, = Vi=f,(V) and
ter
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7| <e. Then for |7, |#]|=e/2,

MG, il Dol =] (2D oD 0=

t(t—1@) <(z—7D)

SE= I L .

Irl=¢ T(T—ﬁ)(f'—ﬁ)

4Mt
(I=lllz, Dll)e

IIA

[—D|
Thus, if |74 =Ze/2,
Nwat+oa—@")/fi—(ws+05—0")/D| gt

=V 2 |(@a— 3"/ d—(@s—3")/D| re

'\/2 JMt 2kt(u) 4
1=k () 1—[p(z, t)llw\l kl(u)

A

=] )¢ lae-ve -

This proves that ((f.ofila)¥(¢'*")—¢")/i converges to a differential ¢4 in
AR+ A(RY) as @ tends to 0. In the same way we can get a differential o8
in A.(R")+A.(R") as
ll_)igg((fz°f?¢w)”(¢‘”“)—¢‘)/l7-

From our notations, ¢.\=lim(w;+0oz;—¢")/#, hence
a—0

. . O3
pL—i*¢y=2lim—=
u-0

i
=2 llm(w ¢ p(c ~) +¢z lJ(Cuu) gg
By the way
@ ¢ . dé k(2)?
\ vG, )—(E§| [ 1— k()“¢“mw
|| ( M, 2,
= 1—ky (@) \ 1—|| pelz, t)“w) N re-ve .
Therefore
B —i* gL, 2¢‘——p(c; e ogg
YR T I R 4
T o G e Vg
Similarly

Pr—i*ps=2¢" llm—u(C zv) dC

d¢

—22¢‘—V(C, oo T

Thus
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PL—i*pt=—i(Pt—i*Pt)
2 b ¢ dg

=9 e o MV

We shall write

d 1 . 9 1 ;
D= Ligimign ana Dgi=bpirioh.

Then by Theorem 1 %q&‘:i*%gﬁ‘ and this is a holomorphic differential on R*.
Here we give one of the first variational formulas.

Theorem 2. Let ¢' and ¢* be meromorphic differentials on R* such that
(FiV¥ (@ —¢° and (fiV¥(@P)—¢° belong to A(R)+Ae(R). Assume that the
Beltrami coefficient p(z, t) of f. satisfies the condition A and the support of p(z, 1)
does not meet a neighbourhood of poles of ¢° and ¢°. Then

0 -1 t (U _1 0 t 7t
¢, Pon=o (59 T),,

- %Sgkqwt% plz, DCdzdZ,
where ¢'=¢'dl and ¢'=¢'dL.
Proof. Observe that

? _
STV~ Pon
=lim = (fAD*@ )~ (T, P
TR = D L i e PP
=lim( - , 1))

-0

Rt

=@, —1*fHPWre .
Since ¢4, and f#(@°)—¢* belong to A, (RY)+A.(R"), we know

B @I, Por= s Pomi.
Similary

2 @I, For=Coh, Pome.
Therefore

PG, Pormg (Bl Pom—ilPh Toa0).

On the other hand,

%Sﬁt’ 97[)Rt=<%¢t’ SF>Izt“‘i<i%¢l’ W)m’
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Since —%q&‘ is holomorphic, we have (—aaTqS‘, 97’7)3;:0' Thus
0 — 0 0 — —
(58 P a9 378" F) om0 Pome

and

f«f D*($)—¢", §r= (at 8. &),

Further we have

0 — — 1 ) . —
(59" 7),,= (0% Pore= 5 (Biti*gitii*dl, Pone

ro| —

B, Pra=($ 2k, Do e, F),

B ¢7 v(C )] -=odCd

ot ai (z, 1)2dzdz .
This completes the proof.

Remark. Although ¢° has poles, {(f7)*(¢")—¢°, ¢*>r is defined by principal
value because the integral vanishes in a neighbourhood of poles. The notation
of the inner product will be used also in such a case.

Let peR and V, be a parametric disc about p with a local variable z. We
set V.={p’eV,;|z(p")|<r} (0<r=1l) and P,={p, q} for n=0, {p} for n=1.
Take a gV ,,. Then there exist functions s,=C*R—P,) such that

So:[ g‘ z—2z(q) on Vi
O on R‘—Vl,
—}—Rein on Vy,

Sa= n z (n=1).
0 on R—V,

Denote ds,=o,. Now since S ,*""ZS *06,=0, there exists a C!-closed
lzl=1/2 12]=1

differential &, such that ,=*s, on (R—V,)UV,, Then ¢,+*3,=4 and
,+%3,=0 on (R—V,)UV,, By the orthogonal decomposition we can write

0n+*&n:2n+§n ’ 'InE AJ:"‘Aeo , I,,EZ.*AZ—F*AM .

Set ¢n=0,—A,=An—*G,. Then ¢, is closed and coclosed, hence ¢, is harmonic
in R—P,. Since i*¢,=i*, on R—V,, the meromorphic differential D=0 +i%0,
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has A,-behavior (cf. [7], [13]). The ¢, (resp. ¢, n=1) has singularities

dz dz ( dz

resp. F) Further note that

z  z—z(g)

Sbn—(gn'{_l.&n):gbn_an+i(*¢n_&n): _ln'i"l*):n) ,

and ¢,—(o,+id,) belongs to A,+ A, Assume that V, does not meet the
support of p. Similarly we can construct a meromorphic differential on R as
¢» and denote it ¢% ,. Note that (fi)*(¢% »)—¢n€ A(R)+Ae(R). For a mero-
morphic differential ¢* with (f7)*(")—¢°E A(R)+ Aeo(R),

LIV PN~ Gndrov,
=TV~ K Pr—(oaT TG,
= T)HP)— 4, K Pa—(aaTi5a)r,
—Re igavl(ll“o F=U,
—2z Re {Wte fu(p)—Wo )~ (p)—T ()} for n=0

dn
P W"(p)} for n=x=l1,

= 2 dr
N n_!Re{ dz" Utefu(p)—

where ¥ is a primitive function of ¢* on a neighbourhood of f,(V,). Now let
V.={z; |zl <e}Ulz; |z—z(¢g)| <e}. Then

lim igaﬁ Wte fo—U0)P,

= =27 (U £ )P~ £g) =)
Hence, even if the support of z contains p and ¢, we have

lim ()@=, Foda-,

=2z Re (U £ p)—¥(p)—(F"+ [ (g) =¥ g} .

Hereafter, the singular integral (w, o)z means the principal value lim(w, 0)z-7,
if it has a finite value. The space i4,=*[;*+i[, is also a behavior space
which is denoted by A.;:. If ¢, has A.-behavior, then i, has A.,.-behavior.

Proposition 4. Let (f;)* (@) —¢°€ A(R)+ Aeo(R). Then
VPN~ Pror=—2m Re{¥'e fu(p)—°(p)— "= fulg)—T ()},
VP —id, Plas,odr=2r Im{W f(p)—Up)— T flg)—T(g))} .

If the support of p does not meet V.={z; |z| <e},

fENHP) =, P20

2 d» ?Ft°fc(p)'_

i Re{ o d’

dz"

W"(p)} for nz=1,
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LT —id®, Pt nor
_2r 2” {d W f(p)— (p)} for n=l.

Thus, applying Theorem 2 we can get the variational formulas with respect

° fi(p).

to ¥t. ft(P) an
Proposition 5. Let (f;)# (¢ )—¢°c AL(R)+ A o(R). Under the similar condi-
tion as in Theorem 2,

0 ] I 2 0 <
W{ll“"ft(p)—l”“fc(q)} :—4i§§3¢‘<¢z,o+¢z“,o>—at—y<z, Cdzdz,

8t TS (p)—Te f<q>}—4—§§ FPh 0 Par )2 = e, dzdz,

0 d» .., o
ot dz* G Ve fun)= S Ln)=Ar at mz, 1)(idzdz,
0 d° — N 3 -
of dz" Ve fup)= Sgngjjt(sbg-n_‘/’ir*.n)a—t#(a $)¢2dzdz.

If I=*I1, then ¢% ,=¢ti,1 ,. Hence we have the following by Proposition 5.

Corollary. Let A=id, and (f7)*(P)—@°E ALR)+ Aeo(R). Then Ute f,(p)

—¥iefi(g of(p) are holomorphic with respect to t (cf. [7]).

5. Next we show one of the second variational formulas.

Theorem 3. Under the similar condition as in Theorem 2,

-1 0 770 t d i t
atat<(f‘ @)= ¢" $or= {(6t¢ at¢) (a_igbt’ at¢)m}
=2 {( @49+ 9199 2 e, 02020z,
where —= 95‘ $1dC and ai eI

Proof. Let o'=(fi")*(@)+*(fi)*(#)=2¢'Cdz, o'=(/)*(P)+i*(fi)¥ (")
=2¢'(,dz. By Theorem 2, observe that

d o0
¥ LTV () —¢°, Pr
—%hm {(w””pl(z t+u)——, o) p— (@' pe(z, t) ‘)R}

=l1im{<£—w#c<z t+”)_’ ),

#%-0
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ez, t0)— iz, t) dz —=
+< : i “dz ot )R

&z g
t —_
+(0) ﬂt(z) t) dZ’ a )R} .
We know
. w +a_
1_1m—7— =(fTO¥ (L) (f ) (),
. ottt—gt )
llrgl — =(fiO¥ (T (L)
and write them 2w’ and 2¢% respectively. Hence
0

0 —
S (S04, P

= H(2atnte, 0°E, 5T, (202 pte, D0z, 2Tz,

+@FHCaplz, 142, 207} -

Similarly we can get

25 =4, P
=5 {(otutz <, ﬁt@)RJri(zqatc,% pulz, dz, 2TAz)
+@4C ez, 1Z, 25D}
where 2w§=(/T)H@)+*([ TG, 205=(f) @Y+, Therefore
TG, T
— H(wttiohpt, 05, FTE), +@ Gtz 062, TTFToDa)

=2{[ (tg+ ptoomtz, Dirdzdz

2t At At 7t #t(zy t) Cz
WSO T T £ dgdg

¢, ¢‘—Z*¢‘) +( 57 9 Pu— *¢‘) } (by Theorem 1)

t t '*a t t t__
57 a5 ) (az¢ at¢ )t
2

2
2 . 0
=%{(—af¢" ﬁ‘ﬁ”‘)m““(’az“ﬂf"’ w")m} :

Corollary For t=(t,, -, tn)
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%«ﬁl)”(sﬁ‘%w P
A C AR Oy
_ %SSR@%,«/J‘M%@‘)'% pz, D2dzdz .

§3. Remarks for the case of behavior space 4_,.

6. Here we observe Theorem 3 for A,=A4_,={0}+:I%. Then our formulas
have similar forms as Yamaguchi’s corresponding ones (cf. [14]). First note that
¢y (resp. ¢f) belongs to A_;+ 4., and can be written ¢4 =iw+w, @<}, W€ Aep
(resp. Pt=io+aco, o<€l}, o, 4.,). Hence

S gt gt wptartioe i A,

Therefore (—%9&‘, —a%-gb‘):—(—gf—gb‘, % ‘). Thus we have the following.

Theorem 4. Let (f7)*(¢")—¢" and (fi)* (") —¢° belong to A_,(R)+ Ao (R).
Under the similar condition as in Theorem 2,
_a_z___—latv_o_o___iizit iziz
o, JEVHP0—0" §r= 2{(az‘j¢' aii¢>m+(az,.¢’ 57 )l
Further, if ¢* is holomorphic in R*, then
0 —u;t_o'—o____l_tit — (1, o
G UGO8 Poa=— (94 g 6'),, 1= ).
Next we have a variational formula with respect to the inner product.

Theorem 5. Let ¢ and ¢* be holomorphic differentials such that (f7")*(¢')—¢°
and (fe)*(P)—¢° belong to A-,(R)+ Ae(R). Under the similar condition as in
Theorem 2,

3,0 9om=g {8 390,40 ),

35;—“@‘, ¢L>m=<£:¢t, ‘aaf‘,ﬁ“)kﬁ(a%‘ﬁ”’ aitgé) t=(ty - 1),
Proof. By Lemma 1 and the property of behavior space,
(@, POr—<P°, PO
=P —¢°, K[ (PWrFLP, ([N (P)—¢Dr
=¥ (@) —9°, *Or+HLST (P —¢°, i*¢Dr .
Since ¢°+¢@° and ¢°+¢° belong to I}, it holds that
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(@', P Ort—<P°, R
=—L(fTV* (@) —@°, P Dr—L [TV —¢", §r.
Thus by Theorem 4 the assertion follows.
7. Now we will apply these theorems to some specific kind of differentials.

Then we can get some variational formulas with similar forms as Yamaguchi’s.
Let C° be a cycle on R, C'=f,(C° and o¢: be the period reproducing harmonic

differentials on R’, i.e., (o, *Gct)Rt:Sc'Q) for C'-differential weI'(R*), where C’

is a closed curve which is homologous to C®. Then o.: is represented as o¢c=
dS¢i+0,, where Sg: is the one as in the proof of Lemma 2 and ¢,=1,,. Hence
t=goi+i*oc: satisfies that (f7)*(P)—¢ie A ((R)+ Ao(R).

Formula 1.
a — t a t
s lot=(gt 5-9t).

0*
g 04 =2 0 508)

and hence ||Ptl1® is plurisubharmonic.

Note that |oc:)|? is equal to the extremal length A(C') of the family of curves
homologous to C!. Thus

Formula 2.
8 o (0 _
A== | oo pe nidez,

5
T (at ¢ 55 9”)

and hence A(C") is plurisubharmonic.

Let G, be Green’s function on R* with pole at f,(p) and ¢5,=dG,+i*dG}
3
'
then (f7)* (L) —¢se A_(R)+A(R). We know

VP — 4% Pra=2m(Gy(fg)—Gylg)  for g(#p)EV,
LFEVHPH)— 95, Porr=2a(r(p)—7"(p)) -

—=-GLdL. If a neighbourhood V of p does not meet the support of u(z, t),

where 7‘(p)—%gl - Gy(f. (z))—— (z is a local variable in V about p, for which
the singularity of ¢} is written as ——) The 7%(p) is called the Robin’s con-

stant at p on R:.

Formula 3. For p+#g¢q
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Ot =1{ 2 Gy G- iz, D0z

- 4_171'(8—1,6[};’ 97é)}zt’
0
T;th(ft(q)P—%{(%gbg, 5§:¢é)Rt+(%¢‘t” 5%90;’)1”} :

Remark. This formula is valid on an arbitrary hyperbolic Riemann surface,
and so gives an extension of Guerrero’s result on a finite Riemann surface (cf.

£50).
Formula 4.
0 7 0 L] -
2 TB)= ?{SL(% G5’ - e, ez
1,9 .
:E(a_t,.‘/’é" Sl’fu)m
* gy Ll¢d , 0
A = ol

and t—74(p) is plurisuperharmonic.

Let R% be Royden’s compactification of R (see [4]) and A‘{) be real valued
continuous Dirichlet function. We know that f, has an extension to a homeo-
morphism f, from R% to R% (see [12]) and A%(%) has a continuous extension A
to Rk Let Hf, be the solution of the Dirichlet problem on R% with boundary
value h* (cf. [4]). For h'=h°«f7', set ¢h=dH%+i*dH%,. Since H,of,—
is a Dirichlet potential, the holomorphic differential ¢} satisfies that (f71)*(¢0%)—¢%
ed_+A..

Formula 5.

IIdH 2=~ SL(F%H;.‘,)%% iz, DCdzdz

= %(SMI’ 3?1 SML)M

0? 0 0
e I4H (az,. ¢4, ;Ew.)m

and ||dH},|* is plurisubharmonic.

Remark. If A® is a characteristic function on the boundary, then H, is
called a harmonic measure. Hence Formula 5 gives variational formulas of
harmonic measures.

Further note that
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[, Hiy= (%, $ms,
[ 1465 Gy ==t gt~ gt s
Hf )~ Hya )= o (TG~ T

Formula 6.

Formula 7.

0 0 0 0
%Zsu*dc?:%{('gg% )t G 2 3795) )

Formula 8.

0 t .___i i ¢ 3 2
i Hi o=\, 55 Houg G D e, nazaz

_%(gb;,, _aaTiSb%)m’
aia,.;t HeW(f (p)= {( a? % o ¢,,) (aazj ot a%gbz)m}.

At last we refer to Bergmann kernels. Let A,=A.,, Aw;u=id_;, and ¢, ,

and ¢*,1 1 be the meromorphic differentials with pole % at p as in §2, 4. Set

(¢ —¢iz1,,) (=£'dz). It is known that «* is a Bergmann kernel and for

o(= wdz)eAa(R‘) (w, £Y)=a(p), particularly £'(p)=(«*, £*)>0. Then we have the
following formula.

Formula 9.

“(p) (x ’at B
ﬁ;;tl #(p)=3 {(%gbé,l, —0‘% L) (o at Ghoin, 8‘3 o) |
~(5 )t L 3 L)

(¢fr,1+¢£xl.1)) ,

(where Lt= %

0* 1 0 0, o ,, 0O
at 0t log &(p)= £H(p) {(bf—jl{t’ a—fix )R[’{EL ’ a—fiLL>Rt}
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0
— %;;)2(5{;“’ Kt)[gt(xt’ aifixt)}u'

2

0t .0 "
Hence thtimi—x (»)=0 and thti—amlogx (p)=0.
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