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Introduction.

The motivations of this paper come from our previous study (Kusunoki-
M aitani [7]) and the recent results due to I. Guerrero [5 ]  and H. Yamaguchi
[ 1 4 ] .  In [7 ] we gave the first variational formulas for fundamental meromorphic
differentials on open Riemann surfaces induced by quasiconformal deformations,
where those differentials should have the boundary behavior subject to (complex)
behavior spaces and the " first "  above suggests the first derivatives. While,
Guerrero [5 ]  discussed the firft variational formula of Green's functions on finite
Riemann surfaces by using the quasiconformal mappings and Fuchsian groups,
and he asked its generalization to arbitrary hyperbolic Riemann surfaces. And
Yamaguchi [1 4 ]  showed the second variational formulas for Robin's constants
and some other quantities under variational consideration for a certain  analytic
family of Stein manifolds.

In this paper we shall study the variational formulas of various differentials
under quasiconformal deformations of arbitrary open Riemann surfaces, and give
an answer to Guerrero's question and also show the second variational formulas
for various meromorphic differentials under quasiconformal deformations. Prac-
tically we develop our previous method by using the (real) behavior spaces of
Shiba's type and obtain the similar formulas for w ider classes of meromorphic
differentials than those in  [ 9 ] ,  which are applicable for Green's functions,
Neumann's functions and so  forth . W e also  show a certain differentiability
property of their meromorphic differentials, which allows u s  to establish the
second variational formulas for those differentials under quasiconformal defor-
mations. If we take a  specific kind of behavior space, we can obtain the second
variational formulas for Green's functions, Robin's constants and some others,
which have the similar forms as those due to Yamaguchi.

The author would like to express his sincere thanks to Professor H. Yama-
guchi at Shiga University for his genial encouragement.
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§1. Quasiconformal deformation an d  spaces o f  differentials.

1. We shall investigate the deformation of a Riem ann surface R  a s  follows.
d2Consider Beltrami differentials p(z, t)  o n  R  w ith  a  complex parameter t (tdz

m ay  b e  t h e  s e t  o f  parameters (t 1 ,  • ,  t a )) v ary in g  i n  a  domain about 0 .  We
shall assume the following condition A ;

1. p(z , t) is measurable, t ( z ,  0)=0 and

II [e( , t) II.= ess sup I te(z, t) I < 1 ,

2. fo r every t  there exists a constant Aft such that

p(z, t+h)— 1.1(z, 011-5_1 hl

fo r sufficiently small h,

3. for almost all t) is  holomorphic.
F or each t ,  denote by R t (R °= R ) the R iem ann surface which has basic surface
R  and  the  conformal structure induced by ,u(z, t). Let f t  b e  th e  quasiconformal
homeomorphism from R  to R t with Beltrami coefficient p(z, t). W e express f t
sometimes a s  C= f t (z) in  terms of respective generic local parameter z  and C of
R  and  R t .  Then p(z, t)=C i /C,.

In  the  present paper, such a  fam ily {R t} is treated a s  a  deformation o f  R.
Now Jet : R-->Rt defines th e  homeomorphism o f differentials a s  follows ;  f o r  any
first order differential 2= adz +bdi o n  R ,  we denote by  f ( A )  th e  p u ll back

fT 1 ,  that is,

fr(2)=[(a. f)zc+(b. fT')(2)c]c1C+[(a. fTl)zH-(b. f  T 1)(2)04 ,

w here t h e  derivatives a r e  taken in  th e  sense of d istribution. N ote  that ( f t
--1 )"

and ( f  ..fT 1 )" are defined similarly and that ( f t ' f  t ) = ( f °(f -t- ') '' and f r*(f T1)''
is  a n  identity mapping. T h e  f i  will induce a  deformation o f spaces o f differ-
entials.

L et 21=A- (R ) be the H ilbert space of square integrable complex differentials
whose inner product is given by

(Al, 22)R= 2 1 A *  2 2 = (a id 2+b ib 2)d2tU ,

w here 2,= a i dz +b,d2E il(R ), i=1, 2  a n d  *22 =- — ia,dz±ib,d2 i s  t h e  conjugate
differential o f 22, z  being a local parameter. We regard  the same set J(R ) as a
Hilbert space over th e  real number field with another inner product

22>=Re(22, 22),

where Re means th e  real part (cf. Shiba [13]). Hereafter we use this space and
w rite  it /1=A (R ) . T h e  following subspaces o f  A  will be used :

A c = A c (R )-= e A  ; A  is  a  closed differential} ,
A h =A n (R )= {2 A  ; A  is a  harmonic differential},
71,0 = A „(R)= {A A ;; <2, w>=0 fo r any wEA hl.
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2. W e return  to  th e  mapping f t .  The f t  gives an  isomorphism from A(R)
to  A(Rt), because

1+k Ilfr(2)11 1—k1t 112111 for a n y  2G A(R),
— 

where t)1100-.  k < 1 . Further, fo r any Dirichlet potential Wo o n  R t the  com-
posite  TVo of t i s  a l s o  a  D ir ic h le t potential ( c f .  [4]) , henceforce f i  g iv e s  an
isomorphism from A e o (R ) to Aeo (R t ). Let P h  denote the projection from A  to  A h

a n d  ( f t ) t  the  com posite  m apping Ph. f ?  from  A (R ) to  A h (R t ) .  T hen , clearly
f  1 (  f  - 1  on A h (R`) and ( f till gives an isomorphism from A h (R ) to  A h (Rt).

The following lemma show s a  correspondence by f i  betw een th e  inner products
in  j (R ) (A (R )) and  j(R t) (A (R t)).

Lemma 1. (see, [7], [9])

(fr (oh ), — * .a ( * (02))Rt=((oi, (02)R f o r  any  oh, co,E A(R),

((f 1) (a 1), — *(f t)g(*a2))Rt=(0 - 1, 0- 2)R f o r  a n y  a  o-
2 E A h (R)

W e know fr (A c (R))= A c (R t), because by Lemma 1

<M O , *(0>Re=<a, *(fT 1 )"(a))>R=0

fo r  0- A (R ), coE  A e o (R t ) .  Further w e have the following.

Lemma 2. (cf. [10] ,  [ l l ] )  T he f i  and  ( f t )  Preserve t h e  periods o f  closed
differentials.

Pro o f . Let icR  b e  a  Jordan closed curve and  V , b e  a  r in g  domain such
tha t r is  a  component of the boundary ay, and  is oriented so that V , is seen on
the  left hand o f r. T ake  a  C- -function S, o n  R— r such that the support of S-

is  in  171, S1 =1 o n  a  neighbourhood o f  r  i n  V,. Note that (a), *d.S„)= .f w for

C'-closed differential w and  C'-curve r. Similarly, take a  S f , ( , ) o n  R 1 f o r  t h e
Jordan cu rv e  f t (r). T h e n  S f t ( , ) o f t —S r  i s  a  D irich le t potential o n  R , hence
d(S f ,,,, —S, fT 1 )E A eo (R t ) .  T hus fo r  a  closed differential w o n  R,

(f (w), *dS f t (r ))R t= (f (( 0 ), *d(S f i c1, —  S T . f i -1 )+*d(S,0 f T 1))Rt

=(fi(a)), * ft(dS,))R1=((0, *dSOR

Symbolically we can write as

f 1((0)= To) .

A  closed differential w is sa id  to  be  exact (semiexact) if  i t  h a s  a  vanishing
period along every cycle (dividing cycle), i.e.,

(w, *dS1)=- 0  fo r any cycle r (dividing cycle).

L et A e , A s, A h e  and  A hse be  th e  spaces of exact, semiexact, harmonic exact and
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harmonic semiexact differentials respectively. By Lemma 2, these spaces are
preserved by f i  o r  (f2)1t. A s w as already show n, th e  locally exactness is
p re se rv e d  b y  R . O n the other hand R (*w) does not always coincide with
*R (w ). This comes from the difference o f conformal structures. We shall
observe the distortion by R .

Lemma 3.
2k 

11 f t(*(0)—* f (o)Il
2

< 11(011 fo r any  coE A,— k

where 1 p ( , < 1 .  The equality holds if a n d  o n ly  if  1 ,a(• t )1  k  almost
everywhere on the support of co.

P ro o f. For any co= adz+bc12E A , we have

f N*(0)—* f t(0))111t =44 , t (  a 12 + I b 12 )1 zci 2c1C4

R(1 a12+1612) i z c v
iz c1

1
2
.z i2 dzd2

k 2k i  
4 i 1— k2 1?(Ici12+1b12)dzd2=4 1—k2 11(0112.

The equality holds if and only i f  1 z6 zcl =k  on the support of w.

Proposition 1.

i) 1(f l'((01), fr(c02)),—(,)„
2k

ilwiIII1, 0211 for oh, co E A(R),
1—k

(ii) I (( f Ma), ft(0)))Rt—(a, (0)RI
2k

1 —  k  
11 a 11 11(0 11 fo r

where p ( ,  t)115k.

P ro o f. ( i ) By Lemma 1,

1 (f t((01), f 1*(0)0)R , —(0) i , (02)RI =1(f t (0)0, *( f t(*0)2)—* f (0)2)))R, I
11 f (0)01111 fr(*(02)—* f Nooii

2 k  
-‹ 110)111110)211 •— 1—k

(ii) Take the orthogonal decomposition of w ;

(0=0)1+(02+*0)3 (01 A h >  ( 0 2 ,  ( .0 3 A e o  •

Then we have

1 ((f )(o), fr(w )) R t (0)R 1 = 1 (( f t)I1(0), (f t)(0),+*(03)+*(f t)P,(*(0)i+*0).))) I

=II(f t)g (0)1111( f t)(0,.+*(03)+*(f t),I(*(0),+*0)3))II

2 k  
1— k 1101111(011 •— 

a  Ah,(R), coE A(R),
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3. We investigate the variations of Green's function, reproducing differentials
and some other fundamental differentials under our deformations. For the purpose
of systematic investigation of these differentials, we introduce behavior spaces.

Let F=F(R ) be the subspace o f A (R ) which consists o f real differentials
and T h =1-1(R)=-F(R)nA h ( R ) .  For any subspace T s (R ) of T h (R ), we set

A s (R )=Fs (R)-t-i*Es (R)i,

where * rx(R)i rh ; <2, w>=0 for an y  w e['} ,  i = - V - 1 .  We call such a
space A s  a  behavior space (cf. [7], [13 ]). Clearly A s (R ) is a  subspace of A h (R)
and i*A s (R ) i s  the orthogonal complement o f  A s (R ) in  A h,(R ), i. e., A h (R )=
A s (R)±i*A s ( R ) .  Now (f  t)g[A s(R )] i s  a  subspace of A h (R t )  and is written as
A s (R t) . Then we have the following.

Proposition 2.
cf A[* rs(R)L]=*((f oliTrx(R)])i,

A h (R t)=A s (R t)-i*A s (R t ),

and A s (R t) is a  behavior space.

Pro o f . For an co r.,(R ) a n d  a  e ['(R ) 1 ,  by Lemma 1,

(( f t)ll(w), — *(f t)t(*0-))ut=(0 ), o-)R =0

Hence *(f x [r x (R ) ]  is orthogonal to ( f A [*T x ( R ) '] .  If E r h (Rt) is  orthogonal
to  *(.f t)g[rs(R)i - Kf t)E*Es(R) 1] ,  then fo r an  w ET .(R )±  0 = V A (*w ), r) R t =
(* (1), — * (fT i )g(*r))R. Therefore u n t(* r )G  rx (R ) and *z- E(f  ) [ r x (R ) ] .  Thus
7=0 and the assertion follows.

Since r_ h3e= A hsenrh and /lc= A h e n T h  are preserved by (fa , the spaces
= *r h „ ,  a n d  T h 0 =*T h e l  a re  also preserved by (.ft)lt,. Set A_,={0} - Firn,

Ao=rn e - FiTho and A i = r 4 -7  r_ h se•  Then (f t )EA ,(R )]=A i (Rt), i= — 1, 0, 1. These
are important behavior spaces which a re  related to fundamental functions and
differentials on the surfaces. A canonical differential (a meromorphic differential
whose real part i s  a  distinguished differential) has A 1-behavior (cf. [13 ]). A
meromorphic differential whose real part i s  a  differential o f difference of the
Green's (resp. Neumann's) functions with different poles has A_ 1 -behavior (resp.
A0 -behavior).

§ 2. Variational formulas of certain meromorphic differentials.

4. We shall show some variational formulas of specific kind of meromorphic
differentials. We begin with showing the continuity property of certain mero-
morphic differentials.

Lemma 4. A  meromorphic dif ferential çbt on R t satisf ing the condition

f T1)4  (95 )̀—  0° E A(R)-1- A  „(R) is uniquely determined by 00.
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P ro o f. L et a  meromorphic differential ç-bt also  sa tisfy  t h e  above condition.
T h e n  ( f i 1 ) * ( 0 ` - 9 3 ` ) / 1 . , (R )+ A ,„ (R )  a n d  Ot --çPE Ax(R t )+Aco(R`). Therefore
analytic differential q5̀—ç-bt h a s  n o  poles and belongs to Ax (R t). T hus (¢` - - 53̀)
=i*(g5t —q3t ) eA.,(Rt)ni*A z (Rt) and i/.t ç t

Proposition 3. Let {0'} be meromorphic differentials such that (fT ')(q5i)-0 '
GA s (R)+A eo (R). I f  f t  is conformal in a neighbourhood V  of the poles o f  0'),
then

11( f- 1P  (0 t ) R - . \ /  

2  k ( t )  

 110°11R1—k(t)
where the Beltrami coefficient t) o f f t has absolute values less than k(t)(<1).

P ro o f. Since A s + Aeo i s  orthogonal to  i*(A.,+21„), w e have

1)(95`) - - 95°, i* ((fT 1)° (0`) — ¢° )>=0.
Write

((iV ) ° (95 )̀ - Fi* (fT 1)''(Sbc))12=co,

((fT 1)"(0`) — i* (fTT(95 e))/2=0' •

T hen  (fT') 5 (0 t)-0 °=o)-0 °+o-. Note th a t (a)-0°, a )= 0  and
lows that

11(0-0°11=-110. 11 k(t)11(011R–v
1 11(011R–v

1 — k (t )
110°11R–v •

and
k ( t )  

11(0—  04=11(1115_ 119511R-v •1—k(t)

11(fn(0 t ) - 0° 11
2

=110)- - 95° 112+11cf112

k (
k
t)

( t ) 00 111e–v •

This proposition convince us o f the  smoothness o f  Ot.

Theorem 1. L e t fçbtl be meromorphic differentials such that (fT') 0 (0 t )-0 °E
A x (R)+A eo (R ) . Assume that the Beltrami coefficient p(z , t) o f f t satisfies condition
A and the support of p(z, t) does not meet an open set V  including Poles o f  0° .
Then fo r t=u+iv there exist differentials çb a n d  Of, in  Ax(R t )-FA,„(R i ) such that

l
(ft° fT-N) 4 (95"- ) - 0` o t .  

Rt 
=0,

( f t ofT,Iiii )s'( ,75"- " ) - 0  ̀ =0,
Rt

Therefore

lim
-■1:1

lirn
ti -0

where it and t are real. Further,
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g — i*O t. = — i(çg — i*sg)

2 C, a ,
Otp c z ( c ) ,  or • • at Pvz.̀ .̀)' t) •

P ro o f. F irs t n o te  th a t th e  B e ltram i differential 1.)(C, 7) d: c o n  R t of the

quasiconformal homeomorphism f t„. fT 1 (from Rt to Rt+r) is

p(z, t+r)— p(z, t)c 1 C -
v(C, 7)

dc  = p ( z ,  t ) p ( z ,

and satisfies th e  similar condition as in A .  Since

(fTdi-fi) )— ( f i l ) st (0`) A x(R)d- A„(R) ,
we have

(( f t°  fa a )'(9 5 ' ) - 0 ` ) I f i E  Ax(R`)H-  A eo (Rt) .

We show that ((ft.fT.4)'(95" -- 9 -0 `)/ fi converges in  A x(Rt)+ A e o (R t)  a s  i t  tends
to O. Write

wfi= {(f t° fT-4)*'(Ot+9-Hi*(f to f - h - t ) ' (0 ` " )}  /2,

cru =f a r t ) * W t + 9 — i * ( f  f i .- 4 ( 0 ' 9 1  /2,

then u),-,-1-a,-,—OtEA x (R t)+A eo(R t ) .  For rea l 7̂1 and V, we have

° — <( ° ) /1± 6 1 1 - 0t)/Ît— (0 4 + a v— ç25t)11),

By the  same way a s  th e  proof of Proposition 3,

dC 
< ((wii- - gY)/g — (04 - 0 )̀/V)1)(C, V) dC Rt

dC 
±  ( 0 ) O t) (V (C 7  î t )  — 1 ) (CI '1)))1 171

dC  R t

0` ()(C, ri)/72 - 1)(C, V)/V)
d C  R t.

For the second term , from condition A,

(1)((, 171) - 1)(C, V))/V't

and by Proposition 3,

\ M t  
) 1— 11p(z , t) '

" " ) 1195̀11ret—vt11(°E—Øtll—
1—k(fi)

M t I where k t(re)=suP,Iv(C, i n I 1— 11 tt(z 0
v t , f , ( V )  and

11-cER.

110' II Rt-v t — f ?(0°)IIRt-vt+ II f  1:(95°)IIRt-vt .

F or the  third term we have also an  estim ation . L e t v(C, 7) b e  holomorphic on
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Then fo r  1D1, 1 /21 - 6/2,

12)(C, 77)/77- 2.4C, DVD 1 =
1 1-1(C, r)1 ) ( C ,  Z. )   )d 7

27r1 iir]=A  r(v— ) r(v— )

U" —7) v(C, r) dz-27ri 

4M, 
(1-11p(z, 011.0)6  •

(v(C, 0)=0)

Thus, i f  17)1 117 1- 6/2 ,

Haki+o-ii— çbWil — (wi3+0-f5- 0̀ )111Rt

=-N/ 2 11(wii - 0̀ )/ft" - - (04.— OWORt

•V 2 11//D 2k (u)4
+ 117 D1)11 11Re-vt

1—kt(D) 1-11p(z, t)11. 1 — 6

T h is  proves that ( ( f t ' f a i i ) s'(95 `+'-') - 0 ` )/ i i  converges to  a  differential OIL i n
A x (Rt)+ A e o (R t) as u  tends to O. In the same way we can get a  differential Of,
in A x(R`)+ A e o (R t )  as

li m((f t° fT-ii7)°(çb ' ' ) - 0 ` ) / i )  •

From our notations, g=lim(w il d-crt-i —Ot)15, hence

gitu —i*Oft -=2 lim 
U

=2 wfi- v(—Otd C ,t  ddCc-luino
-i(  ç , d c

 - 1- 9)

By the way
1 k,C11)2  cofi —Otd ‘ .  <  . 11q5'11Rt_vt

dC — 1 it 1 1 —k (u)

1  lt ) 1 1 0 . ) 2 1 1 0 t 1 1 R e - v t  .

Therefore

ott, —i*Oft =20' v(C, r)1,01

1 a
2çbt 1— I p(z, t) 1 2 • •  at ia\z' t/ (lc •

Similarly
41,(c, io—
c1Cb"—o v

a( l c
= 2 i0 , 1, (C, r)1D=0 •

Thus
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2 a c, dc• p(z, 0 — •—r  1—  I p(z, 01 2 at dc
We shall write

aa n d(01,at 2
a.
at
_ ot .y (sm,+zol,) •

aaThen by Theorem 1 0t=i* Ot and this is a  holomorphic differential on Rt.
ai

Here we give one of the first variational formulas.

Theorem 2 .  Let Ot and O t be meromorphic dif ferentials on  R t  such that

(fT 1)*W `) - 0 ° a n d  (.tV ) 4 (0`) - 0 ° be long to  A x (R )+A eo(R ). Assume th at  the
Beltrami coefficient p(z , t) of f t satisfies the condition A and the support o f  p(z, t)
does not meet a neighbourhood of poles o f 0° and 0°. Then

a _  I (  ± t  _0° >R=lw. 0 ' 0 t )nt

ç
-bisbt —

a
,ti(z, t)Cdzd2,

2 at
where 0e --=g3tdC and 0t=0tdC.

Pro o f . Observe that

—
a

<(fT1)"(sist)-0°,.?>R

(f i- T (0 )̀, s7>R

um /  ( f t .  f au)95`+ 9
\

ot
2 *  f  N O ))

Rt

 

Since

-= <94, —i* f r (sT))>Rt
of, and fr ( )—ot belong to Ax(R`)+Aeo(R t ), we know

au 
<OETT(Ot )— 0°, 0 1)>R= <Of" Rt •

a

Similary
a

<c.fi- i)#(0t)-0°, > = <9g, sY>Rt

Therefore
a

--E <OETT(ot)-0° b°>R= - - sbt >ftt — z<9g, ST>Rt)•

On the other hand,

(1 . q 5 t  ç. 7 ) Itt= K4t ç b t  F )Rt - 1 “  9 S t  ç 7 ) Rt
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is  holomorphic, w e have ot, p) R ,=0. Thus

çbt' '—')Rt -= ( 1 çbt + ç bt ' P ) R t= < gYn' ç-b-i>"` '

aa a _ I  t

( 1. at 0 '' ÇT )R,— (i( at 0 ` ai 0 ,  0 )̀ -=<Of,

and
_ a --t0° >R—  / - -67- 0 '̀ 0  L .at

Further w e have

0 ) , = (g , gT)Rt= Otu, -07 ) Rt

= i*Otu, 091“ = (q5tV ( C ,  7 )1 r =0
' RI

= i ç Rt aa  V ( C, r)1,-odCdC

= R SV Ottt(z , t)C !c lz d 2

T his completes th e  proof.

Remark. Although 0 ° has po les, <(fT 1)4 (0 t )- 0 ° , (Y >R is defined by principal
value because the  integral vanishes i n  a  neighbourhood o f  p o le s . The notation
o f th e  inner product will be used also in  such a case.

Let p R  and V, be a  parametric disc about p  w ith  a local variable z. We
s e t  Vr = {p'G ;  z (P ' ) I  <r}  ( 0 < r 1 )  a n d  P .=  {P, 9} f o r  n=0, {p} for
Take a  q V 112 . Then there exist functions sn eC 2 (R — P) such that

I  log 
so= z—z(q)

0

sn={
1 1
n  

R e 

 z n

o n  V112

o n  R —V ,

on V 112

o n  R —V0

Denote d s = I Y .  Now since *crn=0, th e re  e x is ts  a  C1-closed
lz1=112 1:1=1

differential ern  s u c h  t h a t  ii o,=*a n  o n  (R —V 1)l.) V112. T h e n  un -F*Ji n E A  and
1n-F*a. -=0 on  (R — VDU V112. By the orthogonal decomposition we can write

A.rd Aeo ZiEi* A x-P* Aeo

Set g57,= a 7, — 2 .= L — * dn. Then O n  is closed and coclosed, hence O n  is harmonic
in  R— Pu . S in c e  i*On =i*;i„ on R —V 1, the meromorphic differential 0,,=Ond-i*gin
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has A r -behavior (cf. [7], [13]). The ç5o (resp. On , n 1 )  h a s  s in g u la r i t ie s
dz d z d z(

resp. ). Further note that
z z—z(q) zn+1

n)=15.—  rn+i(*0. —  n)= — 2n-Hi*):n)

and  On
 — (0.. -F ià„) b e lo n g s  to  /1 F A e o . Assume t h a t  V ,  d o e s  n o t m e e t the

support of p .  Similarly we can construct a  meromorphic differential o n  12' as
0, and denote it Of, n . Note th a t (f T1)4(sbtx,n) - 0,,E Ax(R)+Aec,(R). For a mero-
morphic differential Ot w ith  (f Ti )5(0̀)- 0°E A (R ) - f-  A e o (R),

< ( fT ) ( O t )- 0°, On>R - Vi

=—<(fT 1)"(0i )- 0°, i*(0n—(0. .-Fidn))>R-v i

=<(f t- T (0 - 0°, i*(0. — (u n- F i n))>Vi

=Re (r  o f t— r)Sbnay,

— 27 Re fgrt of  t (p)—Yriof,(q)—(T°(p)—P(q))1 f o r  n=0

Id" 
R e

i  d '

f t ( ) — gr°(p)
n ! dz" dz"

f o r  n

where Wt is  a primitive function of Ot o n  a  neighbourhood of f ,(17 i). Now let
lz1<s} U{ z; lz— z(4)1<z} . Then

urn (P °.f t— r)00
0 av,

= — 27 {(P ° f t ( p )— r (p ) )— (r  f t(q)—W°(q))}

Hence, even if the support of p  contains p and q, w e have

1: —  / / \

) 

# ( 0 t )  0 0 ,  s b o› R
161-1-0101 

= — 27 Re 1r ° f t(P) — P(P) — (r f  /(4 ) — r(9))} .

Hereafter, the singular integral (a), u)R  m eans the principal value lim(0), a)R-17-
i f  i t  h a s  a  fin ite  value. T h e  space  iA x=*Exi -F i r ,  is a lso  a  behavior space
which is denoted by  . If Ox  has  A r -behavior, then içbx  h a s  A i-b e h a v io r .

Proposition 4 .  Let (f i)* (0 1) -0 °  A .,(R)+A e o ( R ) .  Then

VT 1)"(0̀ ) - 95°, 01,0>R= — 2x Re fr° f  t(P) — r( P ) — (r° f  t(4) — P(4))1,

<(fi1 )°(i0`)—i0°, 02x1,0>R=27-c Im f  t (p)— r(p)— (r. f ,(0 —T0(0)}.

If the support o f p  does not meet V ,= {z ;1z1<s}

<(fT 1)'(0`) - 0 ° , 0,X,n›R

=  Ref d
d; f t(p) d

d
z
n„ w .(p)} for
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<(fT ')'(i0`) - z.0°, 0. , ,n>1?
27rr dn d"I m i

= r ' f " )P ( P ) }n! d e for 12.-1.

Thus, applying Theorem 2 we can get th e  variational formulas with respect
d '  to  P . f  t (p) and r ° f t(P).dzn

Proposition 5 .  L et (fT T (0`) - 0 ° E A x(R)± Aeo(R ). Under the similar condi-
tion as in  Theorem 2,

a
f  t (p) - Vrt M g)}  = - , ..ÇRÇ't(Otx ,0 +0,t,x 1, 0 ) t -a p(z , t)Odzd. ,

a
atf  t ( P ) ° f t(q)} =

a 
 4 7 r  f l O(Ots,0-çmx ,..0) p(z , t)Odzd2,

a cl"
n 1at d e r ' f  t(P)= 4  7 r 4 .Ls7jV x ,,,+s -Mx i, n ) p(z, t)C!dzd2 ,

a d '
(z, z .at,  zdzn r ' f  t (P )= .  47171r z. RSY(Otx,n 0!.ri n) 

a

If Fx=_* Pa: ,  then =0»cx—L, 7,  Hence we have the following by Proposition 5.

Corollary. L et A x - iA  x and (fT 1 )'(0 - 0°EA x (R )+A eo(R ). Then Wt. f t(P)
dn 

_ t o f t (q) and P .  f  t (p) are holomorphic w ith respect to  t (cf. [71).

5 .  Next we show one of the second variational formulas.

Theorem 3. Under the sim ilar condition as in Theorem 2,

a2

mat <(
f ' 1) ' ( 0 `) - 0 ° ' ç—b-') R = 1 G O `' aat ot ' aat0 ) )

a
— 21R ( 0 ;sb̀±otto t )t e c z  o o d z o

aw here at  95t=rAcIC and -g
a  Ot=0;c1C.

Pro o f . L e t  cut= (fT 1)* (95̀)H- i* (fTT(0`)=20`Czdz, a t =(f T ) S (sY )+NfTT(sb t )
-=20tC,dz. By Theorem 2, observe that

a a
a.—u• <( fz 1)' (0 `) - 0 ° ,

1 . d2= -11m -1 { (co up t (z , t+ii) —
d z  '  

crt+ ')R - (wt p,(z, t) d2
dz '

1 cot+fi_wt d2=  pt(z, t+ fi)  a t " )8 ;I-0 dz '
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+ ( w e  Pt(z, t+77) — t2t(z, t) d i t + ,,
dz' ) ,

d i  at+'
•

+ ( w t  P t ( z ' dz ' 72' )171
We know

t.+ i t  w t
hin =( f T.1) ° (00+ i * ( f T1) " (Otu)
ft - o u

limfi-o
a  t crt

=( f TT (sb ) - Pi*(f -T1 )"( )

 

and w rite them  2wf, and 2af, respectively. Hence

a a 
au . at < (f T ( o t)  o o,

= -
1

{(2u dz
tutet(z, t) d 2 , 20tC7:1,z) -F(20 tCz (z" t)d2 20tC dz)

8 at 

+(20"tCz ti t (z, t)di, 20`,4)R} •

Similarly we can get

a a
çb°'"

=-
3
.-{(2(of,p t (z, t) d

d
2
z , 20 tCzdz)R

- Fi(20`Cz k  p t (z, 20tCzdz)

--1-(2çb`Ctet(z, t)d2, 2(4)4

where 2a4= (f 2 6 ,,=(fT i n N ) - Fi* (fT 1)4W It,). Therefore

a2
-

a -ta t 
<(.t. 1)#(0t)-0 0, çb7)>R

1
= ---, f { (0 . - Pi(o)ttc(z, t) —

d z  S V (,dz ) - E(93 `Cztit(z, Od2, 0- ii+iaDR}

-= t)Odzd2

te,(z, t)
1-1p(z , 01° C i  ' ' L L C

a=

1{ (4 t- o`' 0 L— z*0 )R t+ ea -o t' oft—i*oft)Rt} (by Theorem 1)

_  y  a  At a i *  a  ,,,t) + (  a ,ht a i *  a 
2 at at Rt al at Y-R t

21 { ( adt ° t ) Rt -
F ( çbc' aat çbt)Rt}-

Corollary F or t=.(t i , •• • , tn)
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a2< fn"(0')-0°, sb°>Rat,at,

I (  a d.,\,  (   a  d.a
at i 5̀1 ),,t - r al;  Y't• at i v t )Rtf

(siitt sit +sitt sit)  a t o  t)( 2dzd2
•

2 R at, z

§ 3. Remarks for the case of behavior space A_,.

6. Here we observe Theorem 3 for A = A - 1 = {0} ±irh. Then our formulas
have similar forms as Yamaguchi's corresponding ones (cf. [141). First note that
Of, (resp. Of,) belongs to A_ i +A „ and can be written Oft =ico+wo , (.e) rh, coo A eo

(resp. E rh , 0 - o 11,0). Hence
a1

o t +   - sbt=—(wo+wo-H6rod-iao)GAeo).at at 2

a — a— (   a6 )Therefore a( - O t , 0 5 =  \  at r t ' atat at Thus we have the following.

Theorem 4 . L et (fT 1)"(g5t )-0 °  and (fT 1) s(0`) - 0° belong to A,(R )+A e o (R).
Under the sim ilar condition as in Theorem 2,

a2
„ (  f _T ( 0 ,) 0 0, 0 0) __ i(  a  A t  a  ,,,,) a t ,  
at i at, - 2 at ; ' at; at, r  R t

Further, i f  Ot is holomorphic in  Rt, then

a t
1

<(fT1)5(0t)-0°, sb°>R-- v b  x s b ) „ , , t = ( t ,  • •• ta).

Next we have a variational formula with respect to the inner product.

Theorem 5. L et 95t and Ot be holomorphic differentials such that ( f ' ) 5 (95t)-0 °
and (fT 1)5 (0`)-0° belong to il_ i (R)+ A e o (R). Under the sim ilar condition as  in
Theorem 2,

a t i  
çb< t , 2  o t, a _ t )  + ( t  o t) Ra

Rt

a2

al,at1<g5 t . Ot > R t = (  aat j çbti  çbt ) Rt
±

(  aai i ght a ati 0 1 ),,t ,

Pro o f . By Lemma 1 and the property of behavior space,

<¢t , Ot >R1— <0°, 0°>R

t = (t ,  • • •  ta).

<(fTl)5 t 00, i*(f ((it )>R + <00, pic(f T1) ( sb t _00>R

=<(f i-1 )5 (0`) - 0° , i'V>R+VT 1)"(0 t )— sb°, i*0 ° >R •

Since 95°4--9-5° and 0̀ ) +0° belong to Th , it holds that
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<9V, sbt >ra— <0°, 0° >R
< (f 1 ) ( 00, 00>R  <( f -t-1) t ) 0 0 , 00>R

Thus by Theorem 4 the assertion follows.

7. Now we will apply these theorems to some specific kind of differentials.
Then we can get some variational formulas with similar forms as Yamaguchi's.
Let C° be a cycle on R, f 2 ( C o )  and a c t  be the period reproducing harmonic

differentials on IV , i.e ., (w, *o-
c t)R t=

c ,
co for C1-differential wŒr(R t ), where C'

is a  closed curve which is homologous to Ct . Then a c t  is represented as a c t=
dSc t+a o, w here S t is the one as in the proof of Lemma 2 and c o r ' eo .  Hence
sbte=uct±i * act satisfies that ( f i -1 ) 5 (O t c ) -0 E  — i(R )+  A eo (R).

Formula 1.
a a 

at ,10 2 — ( o t c , - 0 0at,
a2 aa

k a t ,  otc112= 2( at, o 'c' a7 , 0 0Re

and hence 110',112 i s  plurisubharmonic.

Note that II o- ct112 is equal to the extremal length 2 (0 ) of the fam ily o f curves
homologous to C t. Thus

Formula 2.

2(0 )= 17(02c)2aa
t i  p(z, t)Ciclzd2 ,

a 

a a 
k a t ,  2 ( c t ) =(aT i otc' a7,

and hence 2(Ct) is plurisubharmonic.

Let Gtp  be Green's function on Rt with pole a t  f t ( p )  and Otp =dGtp -Fi*dGtp
a
ac Gtp d C . If a neighbourhood V  of p  does not meet the support of p(z, t),

then (fT 1)"(Otp ) -0°,E A_,(R)+A eo (R ) .  We know

<(f -t-1 )5 (Otp) - 0°p, OVR=27(G tp(f t(4)) — q,(g)) fo r  q(#p) V,

<(.fi- T(O tp)— Sn, 039> R= 2 7 (r t (P) — 7° (P)) •
dz1  where r t(p ) —  

2 i
G t  ( f  t (z)) iz  s  a  local variable in V about p ,  for which

2-c P dz\
z

stant at p  on Rt.

Formula 3. For p#q

Ct,

the singularity of Otp is  w ritten  as The r t (p )  is called the Robin's con-
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a
Gti3(ft(q))=1  a Gt a ro, oclazd2

R ac P ai q  ati

417r aati Pt

a2

kat,
f,  aa  tG t p c f , ( 0 ) —  47, A ati oti„

\
aii0q)Rt (aati g '  aati OtP)Rt} -

Remark. This formula is valid on an arbitrary hyperbolic Riemann surface,
and so gives an extension of Guerrero's result o n  a  finite Riemann surface (cf.
[5]) .

Formula 4.
a

—a t i rt(p)= 1- ( 1 -Gt) 2 P ( Z  t)( 2dzd2
R  a c  P  at, "

1 / a _
SYP47r atiP ) R ,

a2  
kat, r t(P)=  21-7r aat, çbPt ' a ati  °Pt ) R t

and t—qt(p) is plurisuperharmonic.

Let 14 be Royden's compactification of Rt (see [4 ])  and hg(C) be real valued
continuous Dirichlet function. We know that f  has an extension to a homeo-
morphism f t from .121, to 14 (see [12]) and WM has a  continuous extension fit
to n  Let Htl i t  be the solution of the Dirichlet problem on R .  with boundary
value fie (cf. [4 ]) . For Et =ii 0./T1, set O t

h =d1--Pv +i*dl-Pii ,. Since Wil t. f
is a Dirichlet potential, the holomorphic differential Oth satisfies that (f -

t
- ')°(sbeh )-0°,

E  A _1 + A e..

Formula 5.
a

.1102  a
a
t i p(z, OCWzd2

= 21 ( çbth '  aati Oth)R,

a2/   aa
IldIPA,t112=A a i, A , V b th)R ,

and  IldH;v112 is plurisubharmonic.

Rem ark. I f  fit i s  a  characteristic function on the boundary, then IPA , is
called a  harmonic measure. Hence Form ula 5 gives variational formulas of
harmonic measures.

Further note that
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*UP- t= 1—<(Pth' ODRt,ct h 2 

*dGt *dG° = - < ( f i -1 )°(Otp)--- 0 °
p, R

Ct P C P

1Hth„(f t(p))—Hzo (p)= 2 7 r <C fiT(A ) - 071, R •

Formula 6.

a, ri a a i a a  *dlit t = - O th, -  O tc) - O tc, - sbii) •at i att Jct 2 at, at i R t at, at, 11,

Formula 7.

at  a t )a2* d G t  —  1  -{(
a o t  

a
a_ +   _  6  — 6ai j a t , c t P 2 at, 13' t , )R i  (at., at z

, P  R t

Formula 8.

a .rit,t(ft(p))=±-7 j .ÇR .Pc  it(z , t)Odzcl2

/ a \
= -47rV P ' —at i A )Rt'

aza   „  a t\ a t a  t )  t
k a t i

 H  ht" ( f  " ) ) =
r/

4 7  at 9'"'
(

ati çbhiRti

At last we refer to Bergm ann kernels. Let A s = A_,, A -=M -1, and Ox.1

and 6. x 1, 1 b e  the meromorphic differentials with pole dz 
oz2

 a t p  as in  § 2, 4. Set

K
-= —

lçrx ( = -V d z ) .  It is known that Kt is a Bergmann kernel and for

w(=ciklz) ;1- a (R t ) (w, e )= 6 (p) , Particularly kt (P)=(e, tr,t)>0. Then we have the
following formula.

Formula 9.

a ,a  , t )
at ia t i Rt

at aa  
1

{ (

a
at t a- O tx i )  + ( atii at i

( P)8 7 r 2a t ; '' at i '  Rt Ot

a a 
ai. ;  K t ' a ti

(where Lt=
1

(0 tx  1+0 ,t,x1,1))47r
at a  , t  a  t \ a a 

at i at i
 l o g  kt(P)—

r/
t(p) ai ;  '  ai t  ) R t +  

/ 
 at, at1 L )Rti

)

a
-  L t

 a - IA
Rt \  at; a t ,  /nt ,
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1 a K t  K t  \ /K t , a_ K t \
kt(p) 2 a t ) R t ati t r y

a° a2'Hencet i t - (p) 0 and E t,1,  atiati log kt(p) O.at i ati
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