
J. M ath. K yoto Univ. (JMKYAZ)
24-1 (1984) 1-26

On half-homogeneous hyperbolic manifolds
and Siegel domains

By

Kazufumi NAKAJIMA

(Received October 5, 1982)

Introduction.

Siegel domains of the second kind due to Pyatetski-Shapiro [11] are interesting
objects of research not only in complex analysis but also in  differential geometry.
It would be desirable to characterize complex manifolds which are holomorphically
isomorphic to Siegel domains among bounded domains in C " or among hyperbolic
manifolds. The present paper is an approach to this problem.

Let M  be a  hyperbolic manifold due to Kobayashi [3 ]  and let g(M ) be the
Lie algebra o f G (M ), th e  identity component o f  th e  group of a ll holomorphic
transformation of M .  W e say that M  is  half-homogeneous if  g(M ), (=the corn-
plexification of g(M)) is  " transitive " at every point of M  (see, 9  2 ). In this paper,
we shall study half-homogeneous hyperbolic manifolds satisfying a certain condi-
tion (C ). Let us denote by b°(p) th e  isotropy subalgebra o f  g(M), a t a point p
of M .  Then the condition (C) implies the existence of an element of b°(p) which
is mapped to the identity transformation of T p (M ) by the  isotropy representation
(see, 9 3 ) .  Of course, every Siegel domain of the second kind is half-homogeneous
and satisfies the condition (C ) ([9 ]) . We also introduce the notion of pseudo-Sigel
domains in 9 5. Now our main results are stated as follows :

( I ) Let M  be a half-homogeneous hyperbolic manifold satisfying (C). Then
M  is holomorphically immersed in a complex vector space as a pseudo-Siegel domain
D of the second kind in such a way that G(M ) acts on D equivariantly  (Theorem
7.4).

( I I )  L e t M  be a  half-homogeneous complete hyperbolic manifold satisfying
(C). Assume further that b°(p)#b°(q) i f  Then M  is holomorphically equi-
valent to a Siegel domain of the second kind. Conversely, every Siegel domain of
the second kind is a hyperbolic manifold having these properties (Theorem 8.2).

(110 Let M  be a homogeneous hyperbolic manifold. Then M  is isomophic to
a homogeneous bounded domain if and only i f  M  satisfies (C) (Theorem 8.3).

Recently, Kodama and Shim a [5] obtained other characterization o f  homo-
geneous bounded domains.

We now explain the  various sections. In  91, we construct for a hyperbolic
manifold M  and for a point p  of M , a  complex submanifold M (p) through p  by
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th e  same methods as in [10] and prove that m(p) is  a herm itian symmetric space
of the non-com pact type. We mention that once this is proved, all results in [9]
fo r bounded domains also hold for hyperbolic manifolds.

In  §  2 , w e reca ll the G (M )-equivariant mapping 0  o f  a  half-homogeneous
hyperbolic manifold M  into a certain complex coset space Ge l B constructed in  [9]
and  rew rite  Theorem 3.3 o f [9 ] in  m ore  detail f o r  la te r  u s e .  H ere G , denote
the adjoint group of g(M) c . Under th e  assumption o f  th e  half-homogeneity and
the condition (C), 0  becomes an  im m ersion . Moreover there exists an abelian
subspace 0- ' of g(M ), with dimo9 - ' =dim c M  and a holomorphic imbedding h, of
60 - '  into G C/ B . We show in § 3 that 0 (M ) is contained i n  h,(19- 1 )  a n d  hence
f i r ' . 0  is  an im m ersion of M  onto a  domain ...91 of

Next in § 4, we construct a fibering of .3.2 with the base space S  isomorphic
to  m (p ) . We shall show in § 5 that the fiber -9i, is isomorphic to a pseudo-Siegel
domain.

Since S is a herm itian symmetric space of the non-com pact type, S is real-
ized  a s  a  symmetric Siegel domain S .  After some preparations in  §  6 , we
construct in § 7  a pseudo-Siegel domain D  in  a  vector space Ad 5- 1 O- '  with an
imbedding ho : Ad B o  in  such a  w ay th at th ere  ex ists  a  canonical
fibering : D-->S a n d  that a  fiber Do is isomorphic to ,920 under a G r equivariant
holomorphic diffeomorphism : G,I B o —>G,I B .  H e r e  is  a n  element o f  G , and
B o = Ad 6- 1 B .  These being prepared, by taking a  subgroup A(S) o f Ad G(M)
which acts o n  S transitively, we shall see jo ho (D)= h i (n ).

Finally in § 8, we shall give characterizations of S iegel domains and  homo-
geneous bounded domains by using th e  results in  th e  previous sections.

Throughout this paper, w e  u s e  th e  following notations : F o r  a  hyperbolic
manifold M , Aut(M) means the L ie group o f a ll holomorphic transformations of
M  and g(M ) means its Lie algebra. For a real vector space o r  a  real Lie algebra
A , A , denotes its complexification. F o r any zE A C,  we denote by 2 ,  Re z  and
Im z, t h e  complex conjugate, t h e  r e a l p a r t  a n d  t h e  im aginary p a r t  o f  z
respectively. L e t  W  b e  a  vector space over K  (K = R  o r  C ).  We denote by
Gr(W ; r ,  K) the grassmann manifold consisting o f a ll r-dimensional K-subspaces
of W.

§ 1 . Hermitian symmetric submanif olds o f hyperbolic manifolds.

L et M  be a  hyperbolic manifold and let g(M) be the Lie algebra of Aut(M),
t h e  group o f  a l l  holomorphic transform ations of M .  We denote by X(M) the
space of all vector fields on M .  For X e g(M ), X * means th e  element o f  X(M)
generated by {exp t X }  t e R •  The correspondence : X—*X* can be naturally extended
to a  linear mapping of g(M ), to X(M) by setting

(X+ -V -11 ')*=X *+ J1 7 * f o r  X , Y  g(M ),

where J denotes th e  complex s tru c tu re  o f  M . By a  result o f  Kobayashi (Theo-
rem 1.4, C h. III, D I , th is m apping is in jec tive . L e t p  be a  poin t of M . W e
define subspaces bk(p) o f  g(M ), for any integer k by
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bk(p)---g(M), , if k  —1

bk(p) ,  {ZEg(M), ; jkp (Z*)-=01 if k

where .4 (Z * ) denotes th e  k-jet of the  vector field Z *  a t p. We then have

bi (P)Dfi j (P) if
(1.2)

[bi(p), bi(p)]Ehi+i(p) f o r  i,

Suppose that all derivatives o f  a  vector field Z *  a t  p  a re  zeros an d  that Zp,=0.
Then Z * = 0 .  Therefore we have

f l  b k (p)=0.
k=0

Let K 2, be the isotropy subgroup of Aut(M) at p  an d  le t fp  b e  its  Lie algebra.
We then have

(1.3) v(p)niT(T)= ( t,),
and hence

(1.4) Cho(p), bl (P)i (fp)c

T he subalgebra V(p) may be considered a s  th e  isotropy subalgebra o f  g(M ), at
th e  p o in t  p . L e t  u s  denote by p p  t h e  isotropy representation o f V(p), i .e . , for
every ZEb°(p), pp (Z ) is  a n  endomorphism o f  T p(M) defined by

pp (Z )v= [Z *, e], f o r  v  T p (./1/),

w h e r e  is  a  vector field  such that ep = v .  Then a n  element Z  of V(p) belongs
to to(p) if  and  only i f  pp (Z )= 0 .  Define a  subspace m(p) by

ni(p)—{Z+Z ; Z  bi (p)} .

Clearly in(p) is  Ad Kr -invariant.

Lemma 1.1 (cf. [1 0 ]) . (1 )  f p nm(p)=0.
(2) There exists a unique complex structure I p of  ni(p) such that (I,X)*=JX1;

and the correspondence: X --X -H /-1 .I n X gives a linear isomorphism between m(p)
and bi(p).

Proo f . Let xE  in (p )n fp . There exists YEg(M) such that X+-■/-1 Y belongs
to bl(p). Then pp (X-F-V —1 Y ) = 0 . It should be noted that Y  also belongs to
n i ( p ) r t .  Since Ifp  i s  com pact, there ex ists a  hermitian inner product g  of
T (M )  such that both pp (X ) a n d  pp (Y ) a re  skew-symmetric with respect to g.
For any v T ,(M ), there exists a local vector field around p  satisfying e p =v
and J = 0 .  W e then  h a v e  p p (A/-1 Y ) v=[ JY*, e]p=  KY* , e l,= [Y * , j ] p .
Therefore p 9 (-J - 1  37 )=J. p p (Y)-= p p (Y ).J . It fo llow s that pp(-V -1 Y ) is sym-
m etric w ith  respec t to  g  and hence p (X )= p (Y )= 0 .  T h is  implies X=Y=0.
The second assertion can be verified by th e  same way a s  in  [10]. q .  e .  d .
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We set
fp=fp+m(p).

Using Lemma 1.1, we get from (1.4)

(1.5) EX, Y1-1-[1 2 X, / p Y],=_.-0 (mod f p ) f o r  X, Y  m(p).

On the other hand, since 16 1 (p), b 1(p)1cW(p), we get

(1.6) [X , 17 ]— [1 9 X , I (mod m(p)) fo r  X, YE in(p),

(1.7)1 2 ( [ X ,  17 ]— [I 2 X , I „Y ])=EI,X , Y 1+[X , „Y ] f o r  X, }" ni(p).

From (1.5) and (1.6), w e have [m(P), 1n(P)]Cf 2  and hence l p  i s  a  subalgebra of
g(M ) . Let L , be the connected subgroup of Aut(M) corresponding to l p  and put

M (P)=  p • P •

By Lemma 1.1 and  (1.7), M (p ) is a  complex submanifold of M  with dimcM(P)
=dimcb i (P).

Let ZEbz(p). By using Lemma 1.1, we can write Z =X +-V -1 I 2 X , where
Xe tn(p). T hen  [Z , Z ]= 2A ,/ -1 [4X , X ] .  From (1.2), (1.4) and from Lemma 1.1
we have [b2 (P), P(P)iC(f2)enb 1 (P )= 0 . Therefore [1 2 X , X ]= 0  and hence R X
-FR I,X  is a  complex abelian subalgebra o f  g(M ) .  L e t L ' b e  the connected
subgroup o f Aut(M ) corresponding to R X +R I,X . T hen the orbite L ' • p is
a  complex submanifold of M  with a trivial Kobayashi-distance. This means that
L '• p =p  and hence X Œ fp . T hus w e get X = 0 and b2 (p )= 0 . Consequently,
[W (p), W (p)]=0. W e then have for an y  X, Y [X ,  Y ] — [ 1 2 X ,  1 2 17 ]=-0.
This combined with (1.5) tells us

Em(P), In(P)icfp

Now we can show by the same arguments as in [10 ] that M (p) i s  a  hermitian
symmetric space. Since there is no holomorphic mapping of C into M(p) except
constant mappings, every component of M (p) is  of the non-compact type. Let
us set

f(p)=Cat(p), ni(p)1

f(p)=f(p)+m(p).

we can show 1(p) g(M(p)) by the same way as in the proof of Proposition 1.1
of [ 9 ] .  We thereby obtain the following

Theorem 1.2. Let M  be a hyperbolic manifold. Then
(1) b2 (p)=0.
(2) M(p) is  a hermitian sym m etric space o f th e  non-compact type an d  the

subalgebra T(p) m ay be identif ied w ith g(M (p)). In particular, f(p) is semi-simple.

Remark 1. For any hermitian manifold M , w e can construct a  complex
submanifold 111(p) b y  th e  sam e w ay, changing Aut(M ) to th e group of all
holomorphic isometries. I f  M  i s  a  Kahler manifold, then w e can show that
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[m(p), itt(p)]cf, and hence M (p ) i s  a  hermitian symmetric space ([10]). But
this does not hold fo r  a  general hermitian m anifold. Indeed, let M  be a  con-
nected complex L ie  group with a  L ie  algebra in . W ith respect to any left
invariant hermitian metric, M  i s  a  hermitian manifold satisfying dimcb l (P)=
dimc M . Moreover nt(p)=m and M (p )= M . Therefore if  the  complex L ie group
M  admits a left inv ariant KCihler metric, then M  m ust be abelian because

m ]cf p nm -= 0. A s a  consequence, for any non-abelian complex Lie group M
equipped with a  left invariant hermitian metric, M (p ) (= M ) is not a  hermitian
symmetric space.

R em ark 2. By virture o f Theorem 1 .2 , all resu lts i n  §§ 2^-, 5  o f  [ 9 ]  for
bounded domains also hold fo r  hyperbolic manifolds. We shall frequently use
these results in the following sections.

§2. An equivariant holomorphic mapping P.

Definition. A hyperbolic manifold M  is called half-homogeneous, if for each
point p , T (M )=  { 2 1 ; z  g ( M )c }  •

L e t M  b e a  half-homogeneous hyperbolic m anifold. From the assumption,
dimcb l (P) is constant, say r„. Since T (M):fg(M)„Ifin(p), we have

(2.1) bl(p)— 1z '()°(P); g(m)cicv(p)}.

We define a  mapping 0  of M  into the grassmann manifold Gr(g(M),; r o , C) by

0(p)=b°(p) f o r  pE M.

Let G . be the adjoint group o f g(M) e . The group G , acts o n  Gr(g(M ),;r 0 , C)
i n  a  natural manner a n d  Aut(M) also acts on Gr(g(M), ; ro, C) by the adjoint
representation. It is clear that if a e Aut(M) and p E M, then 0(a• p)-= Ad a-0(p).
Moreover let q=Exp to Z*(p), where Exp tZ * denotes the one parameter group of
local transformations of M  generated by Z * .  Then 1)°(q)=exp(ad to Z)b°(p) and
hence exp(ad t0 Z )•0 (p )= 0 (q ). It is easy to see that 0  is holomorphic. In fact,
there exist Z1, ••• Z n  o f  g(M )c such that {(Z1) , •-• ( Z 4 ,1  forms a base of
T p (M ) .  Then there exist a  neighbourhood W of 0 in C  a n d  a  neighbourhood
U of p  such that the following mapping g , is a  holomorphic diffeomorphism of
W onto U ;

gi(zi, • • • , z,i) =ExP xiZP.Exp yl iZto ••• .Exp x „Z .Exp y .J . Z. (P)

Let g, be a  holomorphic mapping of W to G, defined by

g 2 (z 1 , ••• , z n )=ex p (ad  z i l i )• • • • • exP(ad

We then have 0(4)— gegV (q)•0(p) for q e U .  Therefore 0  is holomorphic.
By Theorem 1 .2 , 1(p) i s  a semi-simple Lie algebra corresponding to the



6 K . Nakajima

hermitian symmetric space M (p ) of the non-com pact type. Therefore there exists
a unique Z i ,  o f f(p) such that

ad Z „ X = I ,X f o r  XEm(p),
(2.2)

ad Z ,Y = 0 f o r  Y  f (p ) .

From Theorem 3.3 o f [9 ] ,  we know that fo r any p ,  q E M , there exists f  of Ge
such that f • ( p ) = ( q )  a n d  f(I(p))=1(q). W e recall its p roof a n d  verify  the
following

Lemma 2.1 . Let M  be a half-homogeneous hyperbolic manifold and let p , q
be tw o points of M . T h e n  th e re  e x is t  contineous m appings c 0 : [0, 1]—>M and
f , :  [0, 1]—>G, satisfy ing

(a) co = p , c i = q  and f 0 =1.
(D) f t • O ( p ) = 0 ( c t )  and f t(i(P ))= 1 (ct).

L et p, q E M .  There exist X 1 , • • •  , X ,E g(1 1 ), and  p o , ••• , p w,E M  such that

P0=-P, Pm="-q an d  p i =Exp Xt(Pi-i) for We put for < t <  
i+1 

in in

c t =Exp(t

g i =exp(ad(tm — i)X i + i)•exP(ad Xi)•••••exP(ad X1).

It is clear that (c o  g , )  satisfies the  properties o f th e  lemma except the  equation
g 1(1(p))=1(c 1). U s in g  (2 .1 ) , w e  g e t g 1 01(p)=b 1(c 1). W e  se t E t --- V  —1 Z 1 a n d
A l= {g m (M ) 0 ; [E o . X ]= 2X 1 for 2 G R . By Lemma 3.4 o f [9 ], g (M )=  E
an d  as  in  the  proof o f Theorem 3.3 o f [9 ] , we get

V 'E 1 -- =-E0+ E  a ( t ) ,  a 2(t)E A ,.
0<21

L et 2, denote th e  smallest positive number 2 satisfying .71. 2 =O. By a direct com-
putation, we have

exp(
1   

ad a 2 1 (t))•gz' • E t = E 0 -1- E  a ( t ) ,  a ( t )  A  •2
1 2 1 < 2 5 1

Since A 2 c W ( p )  fo r  2>0 (Lem m a 3.4, [9]), repeating this process, we obtain
h t E G , such that /4=1 and

(2.3) gTi• E, - --=E 0 a n d  ht• v . '•W (ct)= V (P )•

Notice that i f  E t depends contineously o n  t, then  so  does h,. From ( b )  of
Lemma 3.4 o f  [9 ] and  (2.3), we have

h 0•gT l •01 (c1 )= b 1 ( P )  a n d  h t • gT 1 •61 (c t) = b 1 (P) •
Hence we get

(2.4) h1•gTl•f(c0)0=f(1,)0 a n d  ht•gT i .m (ct)c=m(P),.

We set u(t)=ht.gT'(f(ct)-E-V-1m(c,)). Then u(t) is a compact real form o f 1(p)0
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for any t. Let u t be the conjugation of l ( P ) ,  w ith respect to 1(t). Then (Joao
is  a n  automorphism of 1(p)0 . Let a o be the positive definite hermitian form on
1(p)0 defined by ao(X, Y)=—a(X, o -

oY ) for X, Y  l(P )c , where a  denotes the
killing form of f(p),. By a direct calculation, we know that a t oo-0 i s  hermitian
symmetric with respect to ao . Recall that the  space of all hermitian symmetric
endomorphisms is diffeomorphic to that of all hermitian symmetric linear trans-
formations with positive eigenvalues under the exponential mapping. Therefore
there corresponds a herm itian symmetric endomorphism H(t) of f(p), such that
exp H(t)=(o- t o ao) 2 . We set Pf-=exp sH (t). In view of the proof of Theorem 7.2
in Ch. III of [1 ] , we know

(2.5) P 1"tr(0) =u(t) .

Moreover for any t, S E R  is a one parameter subgroup o f  automorphisms of
the semi-simple Lie algebra 1(p) 0 . Hence there exists uniquely x(t)Ef(p), such
that H(t)= ad X (t ) .  Since E o A ,/ -1  u0.(70(E0)=Eo. T h is  means l lE o =E c,
and hence [X (t), E 0] = 0 .  Form this equation, we get x(t) f(p)0. We now set

f t = g t • h l • e x p ( 171 ad  X (t)).

Clearly f t b°(p)=-V(c t ). By (2.4) and (2.5), we have

f t • 1(p)c(gt•hTi•u(t))n1(ct)0=1(c,),

f t • ni(P)E (g t • h i '.  / i i  u n n m ( c  t ) e = m ( c t )  •

We also know from (2.4), d i m A c t ) = d i m R f f p )  and dimRm(c t)=dimRm(p). Therefore
we get f t •f(p)=f(c t ) and f t • m(P)= m(c t). We thereby proved Lemma 2.1 except
showing that f t is  contineous. W e have already proved that for any p ,  qEM,
1(p) and 1(q) are isomorphic to each other. In particular dimkm(P) and dimAP)
are constant. To complete th e  proof of Lemma 2.1, it is sufficient to show the
following

Proposition 2 .2 .  (1) The correspondences: p — m ( p )  and p — l ( p )  are differ-
entiable mappings of M into Gr(g(M); r,„, R) and into Gr(g(M); r k , R ) respectively,
where r,,, =dimR1n(P) and r k=dimuf(P).

(2) The correspondence p—>Z, is a differentiable mapping o f  M  in to  g(M),
where Z ,  is  the element o f f ( p )  defined by (2.2).

Pro o f . We recall that if f  G ,  and f •V(p)=V(q), then f.1) 1 (p)=b 1 (q) because
of (2.1). Therefore we can show by the  same way as in the case of the mapping

10, that the assignment : p —hi(p) is holom orphic. Since dim c b10)=  —
2

dimRln(P),

w e  c a n  t a k e  f o r  a n y  p o in t  p , locally defined differentiable mappings
wi(P'), ••• o f a  neighbourhood o f  p  into g(M ), in  such a  way that
{wi (p'), • , tu rn it ,(p')} forms a base of b'(p'). We write w1(p')-=u,(p')+ ,V-1v,(p '),
where u i (p ') , v ,(p ')E m (p ') . Then th e  se t Itt,(p'), v , ( p ' ) } 1 5 ) S r m 1 2  forms a  basei ,  

of m (p ') .  Since 1(p 1)=Ein(p'), m(P')] and since dim it l(p ')  is constant, we can take
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a  base  fei(P'), ••• , er k (P')}  of t(p ') in  such a  way that e,(p') depends also differ-
entiably o n  p ' .  Thus we get (1).

By using a  b a se  fit,(p'), v .,(p')} is represented by a  m atrix Q
which is independent to p'. L e t  u s  write Z p

,2 . ( p ' )  e ( p ') .  A s an  endo-

morphism of m(p'), each ad e,(p') is represented by a matrix Q,(p') with respect to
a  base  fu(p'), v,(p')} Then Qi (p'), ••• , k (p') are linearly independent.
Now Ivi(P 1), • •• v r k(P

151 ,157 - m /2.

is a unique solution of the equation E v i (y ) Q (y )= Q .

T h is  implies that v (p ')  is differentiable and we get (2). q. e. d.

§  3 . A  holomorphic immersion.

L et M  be a  half-homogeneous hyperbolic m anifold and let pp  be the isotropy
representation o f b°(p). We consider th e  following condition :

( C )  There exists H , of b°(p) such that p,(11,)=1.

By th e  half-homogeneity, if  M  satisfies (C) at a point p , then M  satisfies at any
point of M .  In  what follows, we fix a  poin t p  of M and assume that M  satisfies
(C). Put

0 2 = { X g (M ),;[1 1 „, X ]=- 2X}.

We then have (Lemma 4.1, [9])

g (m) , = _0-1 + 00+ 01, [ 9 2 ,

(3.1) V(p)=-0°+ 0 1,

bi(p)=0 1 .

Since M  is half-homogeneous, we have dimc, 0 - 1 =dim c M . Moreover we may
assume (Lemma 4.2, [9])

bi(p)c8-1.

L et r  denotes the  radical of g(M) and put

1=[r, f(P)i.

We also define a  subalgebra a  o f  g(M ) by

a=  1XE g(M) ; [X, I(p)]=0}.
I f  we put

1+—W(p), 1_=bi(p) and Z , ,

we then have from Proposition 2.4 o f [9],

g(M)=1(p)-1-1±a (vector space direct sum)

e - i---i + + tcn e - i+ a cn o - ' (vector space direct sum)

(3.2) 0°=f(P)c± tcned-aenO ° (vector space direct sum)

tc=1,n0 - ' ± t cnO°

ac = acrl 6 - 1 + acne
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and
rc=  E  (re ) ,z_1<2<1

(3.3) ten e - l =  E  ( 1:,)2 , tcn6"--- E (rc).1-1<2<0 0<2<1
a1 nO - 1 =(r,)0(10 - 1 ,

where (r,),1 = {XE r c ; X ]=2X}.
L et B be th e  subgroup of the adjoint group G, defined by

B= IfE G, ; f .6°(P)=v(P)}

Since g(M), is  centerless (Lemma 5.1 , [9]), th e  L ie  algebra o f  G , is identified
with g(M) 1. It is easy to  see that under th is identification, the Lie algebra of
B coincides with b°(p). T h e  homogeneous space Ge /B i s  t h e  Go-orbit o f  v(p)
i n  Gr(g(M ),;r o , C ).  L e t  0  be the holomorphic mapping defined in  §  2 . Then
O is an immersion of M  onto an open subset o f  Gc IB  (Propositions 3.1 and 5.2,
[9]). L e t  h, be the holomorphic mapping of to Gc IB  defined by

121 (z)=7r 1 •exp z f o r  z E

where 7 1  denotes the projection of G, onto G C/B. It is easy to see that h, is  a
holomorphic imbedding o f  0- '  onto an open dense subset o f  Ge l B  (cf. Proof of
Theorem 1, [8]).

Lemma 3 .1 .  Let X _,E - 1 . and X o E 0 0 . T h e n  exp X 1 (resp. exp X o )  leaves
J ( û ')  invariant and induces a translation (resp. a linear transformation) of û_l.

Pro o f . For any zE 19- ', we get

exp X_ 1 •h1 (z)=7r 0 (exp X_,• exp z)= hi (X_ i +z),

exp Xo • hi (z)= r i (exp X o •exp z• (exp X X  • exP X0)

= h i (Ad(exp X o )z) . q. e. d.

L et L , K , L „  K „  L , and L .  b e  th e  connected subgroup o f  G, correspond-
in g  to  the subalgebra t(p), f(p), f(p)c, f(p)c, I+ and I_ respectively. Recall that
O is  a n  imbedding o n  M(p) (Proposition 3.2, [9]). Then 0(M (p))=-LIK . It is
well known that th e  mapping :

1,><K1 x,L_B(a, b, c) —> a b cEL,

is  a holomorphic diffeomorphism onto an  open  se t o f L , and  that

LcL,•K,• L .

Therefore 0(M(p)) is contained in  h0 (1+ ). We set

S=  hT'00(M(p)) .

i s  a  symmetric bounded domain in  I+  a n d  is known as the Harish-Chandra
realization o f M (p ). We now prove th e  following
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Theorem 3 . 2 .  L e t M  be a half-homogeneous hyperbolic manifold satisfying
the condition (C). Then 0(M ) is contained in  h 1 (0 - 1 )  and therefore /2,7'4  gives
a holomorphic immersion o f M  onto an open set of the vector space O.

P ro o f. L e t  R ,  denotes t h e  connected subgroup o f  G , corresponding to
(t+ a ) ,  ( = ( r + a ) ,) .  N o te  th a t (H -a ) , i s  a n  ideal o f  g (M )e . Therefore every
element of G, induces an automorphism of g(M)/(I-F-a). Since g(M)c=f(p),+(t+a)c,
t h e  group R ,  i s  t h e  identity component o f th e  kernel o f this correspondence.
Therefore R , is closed. Clearly Gc=Re•Le.

L e t  q  be any point of M  and  le t (ct, f )  be a s  in  Lemma 2.1. We denote
by r the projection of G, onto G C/R C . The restriction of r to L , gives a  covering
mapping o f  L , onto G C /R C. Therefore there exists a contineous curve s t i n  L,
such that r ( s ) = r( f ) an d  s 0 = 1 .  We se t r t = f t •sTl. Then r t i s  a contineous
curve contained in R .  C learly

(3.4) a X _ X  (mod (t+a),) f o r  X E I ( P ) c  and  a E Re.

It follows that f o r  any X i ( P ) , ,  f ex s ,X  (mod (i+ a )c ) .  Since f t XEg(.111) for
any xE i(p ), we know

stxEg(m)ni(p)c—i(p).

Notice that L  is a n  identity component of the  subgroup o f  L , which consists of
all elements o f  L , leaving T(p) in v a r ia n t. It follows that s , is contained i n  L.
Consequently, s i • 0(p) is contained in  h i (S ) . Since (i+ a ), is contained in 0 - 1 + 0°,
we get by Lemma 3.1,

0(q)= f  • O(p)E Rc• hi(S)Ch 1(0 q. e. d.

T h e  next theorem gives a  characterization of hermitian symmetric spaces of
the non-compact type among half-homogeneous hyperbolic manifolds.

Theorem 3 . 3 .  Let M  be a  half-homogeneous hyperbolic manifold. Then M
is a hermitian symmetric space if and only if  there exists H , in  -N,/-1 1 2,  such that
p,(14)=1.

Proof. Suppose th a t 1-12, E ,N / - 1 1 ,  satisfying p 2. ( 1 4 ) =1 .  Then 0 - '=t9 1 .
Therefore dim c e91 = d im c M . Since ei=bi(p), this im plies that y(p)=A1 and
hence M  is a herm itian symmetric space. The converse is clear , q .  e .  d.

§ 4. F ib e r in g s  o f M and / i 1 ø(M ).

L et M  be a  half-homogeneous hyperbolic manifold satisfying (C ) . We set

3i=hT 1 00(M ).

Every element of A ut(M ) leaves O(M ) in v a rian t an d  hence induces a n  auto-
morphism o f  th e  domain In  this section, we study the action of the group
G(M ), t h e  identity component of A ut(M ), and construct fiberings of M  and <5i
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with S as base spaces.
For convenience, let us set

t_=tcno° a n d  it=cre t- ,0 - :.

Since (Tc) =(rc)-,z, we get from (3.3),

(4.1) t+= f_

and from Proposition 2.4 of [9],

(4.2) 1 + = [ t - ,  1 + 7 ,  i - = D + ,  I-1.

Since [E 9 , f(p)]=0 and since r e is contained in 0- 1 +60 , we get from (3.1) and (3.2)

(4.3) [f(P)c, r*] i± , [LF, -1-,-] = 0  a n d  [L , t_ ]=0 .

Lemma 4 .1 .  (1) [L., L]=-[t + , t+ ]= 0  and D+ , t_lcit.
(2) [I, u]=0.
(3) [t, [t, t]]=0.

P ro o f. I f  — 1<2<0 a n d  0< v <1, then (re)2c 0 - '  and (r c 0 ° .  Therefore
Urch, (re)ice9 - i n (re )2+ , On the other hand

[(re)2, (rc),<] [(tc)-2, (re),]E(tc)-(2+,,)(1 0 - 1 .

I f  2 + v# 0 , then  (re)-(2 + ,,) n0 -1 c 8 ° b y  (3.3). It fo llow s that if A + u 0 ,  then
[(re)2, (rc),<]=0 and [(re),z, (re)-;]C(re)0r10 - 1 . Therefore [t+ , L ] c i t .  If 0<v, p<1,

then [(re),„ (rc)p]=C(re)-,, (re)-pi. Since (re )._, and (r,) , are subspaces of 0- 1 , we
get [(r e)„ , (r , )]= 0 . This implies [L , t_ ]= 0 . If 0<p <1, then [(r,),, 0 - 1 n (r c )p
=0 by (3.3). Since [t + , t+ -1-u]= 0, w e get (1) and (2). Consequently,

Et, [t+ , L ]ic [t,  u ]= 0 .
Hence we get (3). q. e. d.

Let us denote by )7, the projection of itx t+ x f ,  (=0 - ')  o n to  L . In  view  of
the proof of Theorem 3.2, )71 ./W .O (M )=6 . Therefore the domain 52 is an open
set of uxt + x S .  Let g E L .  Then g  induces an automorphism of S  which will
be denoted by g s . In what follows, for every w t,, we denote by w+ a n d  by
w_ the  t+ -  and the L-component o f w respectively.

Lemma 4.2. Every gE L leaves hi (uxt + xS ) invariant and hence induces a
holomorphic transformation ofo f uxt + X S . L e t "g(u, w, z)=(u', w', z'). Then

z '= g s (z),

w'=(Ad gw),.—[z', (Ad gw)_] ,

1u '= u — [w ',  Ad gw].

Using Lemma 4.1, this lemma can be verified similarly as Lemma 4.5 of [7].
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Let R  denote the connected subgroup of G, corresponding to t+ a . If f E R,
then f  induces an affine transformation of  uX lX I 4  by Lemma 3.1. If 1(u, w, z)
= (u ', w ', z '), then z= z i by (3.4). This combined with Lemma 4.2 leads u s  to
the following

Proposition 4.3. Ev ery  g E G (M ) induces automorphisrns g j i  o f  -91 an d  g s

of  S  in such a w ay  that the following diagram commutes:

hv o o

i l l  
h-,-10

.31

We set for zES

(4.4) M,=(271. 00 ) - ' ( z )  a n d  -922 =)2T 1 (z).

Since L  acts on S transitively, we get from Lemma 4.2 and Proposition 4.3 the
following

Proposition 4.4. L et z ,  z 'e S .  Then the f ibers M, (resp. n z ) and M, , (resp.
are holomorphically isomorphic to each other.

Remark 3 . Both (M, S , 771 0h.V.0) and (i 1, S , 77,) give fiberings w ith  base
space S .  These a re  not holomorphic fiber bundles. But real analytically, we
have M S  X M o and  5hSx.5l1 0. In fact let qE M  and z=)7 i ohï 1 . 0 (q ) .  Since
the mapping 13 : X-4(exp X) s  .0 gives an analytic diffeomorphism of m(p) onto S,
we get a  real analytic diffeomorphism of M  onto Sx M o  defined as follows :

MD q (z, exp (3- 1 (z) • q) E SxMo.

The case of .51 is  similar.

Remark 4 .  In the case where M is  a Siegel domain of the second kind, the
mapping 0  is  an imbedding (Corollary 5, [8]) and the fibering M -45  corresponds
to the realization of M  as a Siegel domain of the third kind constructed in [7].

§ 5. The structure of the fiber .310.

L et Hp  b e  a s  in  § 3. We can decompose Hp as Hp=H 1 +112 .+H ', where
E f(p)c, rizEt_ and H'E ac ne °.  Since [Hp, i(p )c ]a l(p )„ we have [H2, l(p)]=0

and ad 111X=ad HpX -= ad E X  for any X E  i(p) e . T herefore  H 1 -= E  and by (3.3),
H2 = 0 .  Thus we can write

(5.1) (H 'Eacn8°).

Let E' (resp. A) be the real (resp. the imaginary) part of H '. We can decompose A  as
A=v r -I-F , where vr ea,(10 - 1  (=n ) and Fen c nO °. Then H'=E/4-V-1(v,±1/).

)21

721
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Lemma 5 .1 .  Both v., and I' are in a  and [v r , I ']=0.

Pro o f . By direct calculations,

[E ', A ]=[H ', A ]=[14, A ]= — v r ,

[E', v r ]=[11 ', v r]— \/-1[P, —1E1', vi-]•

From the  first equation, we have vr Eg(M) and hence v,, /'E a. T h is  combined
w ith  the second equation implies [/', v r ]c g (M )n ,V-1 g(M)=0. q. e. d.

By Lemma 5.1 and  (5.1), w e have

A d(exp(--V -1 vr ))11'=E' +-\,/ —11',
(5.2)

Ad(exp(— A /-1 v r ))11,=E '+-V -1(P+Z  p ).
If w e set

0"= Ad(exp(— v,.))0°,

then w e have from  (5.2)

ad (E '+ ,./ —1 P)= —1 on
(5.3)

ad(E' +-V —1 /')=0 o n  ae n 0 "

Since I '  is  con ta ined  i n  fp  a n d  since [I', v r ]= 0 ,  a d  I ' leaves u  and  ac n e "
invariant and every eigenvalue o f  ad I' is  pure ly  im aginary . H ence  i f  w e  set
fo r 2ER,

L P= {XEu ; [2E', X ]=2X }

V 2 = { X Ea c ne" ;[2E ', X ]=2X } ,
then w e have

it =  E U A  a n d  cte n O "= E V A.
A elt 2ER

Lemma 5 .2 .  ( 1 )  u=U - 2 +U - 1  and ac nt9"=V - 1 +V °.
(2) ad(21')='\/ — 1 on U - 1 , ad (2 P)=-- -V -1 o n V  and ad(21')=0 onU - 2 +V °.

Pro o f . Let vE U À . By (5.3), ad(2P)v =(2+2)-V -1v . Hence

(5.4) ad(2P)D= —(2+2)-V-1T).

W e w rite f =v i+X , w here v' E u and X E  ac n e" .  C learly v 'E L P  a n d  XE V '.
Therefore by (5.3),

(5.5) ad(2P)i1=-(2+2)-V —1 y' a n d  ad(2I')X =24/-1  X .

It follows from (5.4) and (5.5), (2±2)v'=0 and (2+1)X=0. Hence if 2 * - 2 ,  —1, then
v= 0 . If 2 = -1 , then ad(21')v=—V —1 v and if 2 = -2 , then  ad(21')v =O. Similarly,
w e h av e  V = O  if  2# - 1 ,  0  a n d  ad (2 1 ')=--V -1  on  V  a n d  ad(2I')=0 on V°.

q. e. d.
A s an  immediate consequence o f  Lemma 5.2, w e have
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Lemma 5.3 . (1) a= a - 2 + a- ' + a°, where 02 = {XG a ; [2E', X]=2X}.
(2) ad(2I')=0 on 0 - 2 +00 and  (ad(211) 2 =- —1 on 0- 1 .
(3) ac n 0 - 1 =a 2 -Fa+ an d  ac (10"=a_-Fa, where

a± =r {XE ; [21', X ]=± /— IX } .

I t  is  c le a r  th a t  t h e  subspace f  i s  invariant b y ad a. We investigate the
eigenvalues o f  ad E ' on I.

Lemma 5.4 . (1) ad 2 E '= -1  on f.
(2) f.,= {XEf, ; [2(Zp+T), X ]= ± . / - 1 .

Pro o f . Notice that vr Ea - 2 . Therefore by (2) o f Lemma 4.1 a n d  b y  (3) of
Lemma 5.3, we have [f, v 7-] = 0 .  It follows that 1+  a n d  L  are  invariant by ad X
fo r  any XEa c n O " .  Hence 1+  a n d  L  are  invariant by ad E ' a n d  by ad(P±Zp).
Since F ± Z ,  is  in  fp ,  a ll eigenvalues o f ad 2(F-1-4 )  a r e  purely im aginary and
both 1+  a n d  f_ are  decomposed into th e  sum o f eigenspaces o f  a d 2 (r+Zp ). Let
y E t +  satisfying

(5.6) ad 2 (I ' Z  p )v=2-./ —1 y f o r  2ER.

Then

(5.7) ad2(1'+4)D=-2-\/-1D.

B y (5.2), (5.6) and  (5.7), w e have

ad(2E ')y=(-2+2)v a n d  ad(2E')ti=—AD ,

because i t .  T h u s  w e  g e t (2 -1 )v = 0 . Consequently, i f  v # 0 , then 2 = 1  and
ad(2E')v=—v. Considering w e get (1) and  (2). q. e. d.

By Lemmas 5.3 and  5.4, we have

E
0
-1,E t ,  t1 a -2,

(5.8)
Ca- 2 , fl = ECI-1 111 = [a -2 , a- 1 ]= 0 .

L et n o b e  th e  fiber defined by (4.4). By Remark 3, n o is connected and by
Lemma 5.3, .5/ 0 is regarded a s  a  domain o f  c 2 X(a++4).

Lemma 5.5. The domain al o is  invariant under the following transformations
o f  0-,- 2 x(a+-Ft+).

( a )  (z, w)-4(z+a, w) f o r every a
1( b )  (z, w)—(z+—Ce c1+[, w +c) f o r every cEa + + 4 .2 '

1Pro o f . Let X = c + J . By using (5.8), we get exp X =exp c•exp •exp-
2

cl.

W e claim  that is contained i n  0°. In  fac t, by Lemma 5 .3 , a _ c 0 " . Since
ra_, a_cA d(exp '\/-1v ,-)0"=0°. Therefore Jea_H-f_CO". It follows
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1exp X•h,(z, w)-=7c,(exp c•exp c]•exp z • exp Ad(exp J)w)

= h , ( z + -1 [J , c ]+ [J , w ], w + c ).

Therefore n o i s  invariant under the transform ations of the form (b). For any
O 2,  th e  following equality holds clearly :

exp a- hi (z, w)=h,(z+a, w). q. e. d.
We now set

{y a 2 ; (A/-1 y, 0)E .-91o}
(5.9)

Fr(w, w')= 2 '[w  ip '] fo r  w , w 'E a + +L ..

Then Q , is  an  open  se t o f a- 2  containing vr  a n d  Fr  i s  a n  a 2-valued hermitian
form o n  a+ + t+ .

Definition. L et D  be an open connected cone in  a  real vector space V  and
le t F  be a V a -valued hermitian form o n  a  complex vector space W  such that the
condition " F (w , w )=0" implies w = 0 . A pseudo-Siegel domain D  of the second
kind associated with D  and  F  is  a  domain in  V, x W  defined a s  follows :

D= {(z, w)G17  xW  ;Imz—F(w, w)E ,f21

A pseudo-Siegel domain D  o f  th e  se c o n d  kind is a Siegel domain of the
second kind if  Q  is a  convex cone containing no entire straight lines a n d  F  is
an D-hermitian form, i. e., F(w, w) is contained in  th e  closure o f  D.

Proposition 5.6. The f iber n o is  holomorphically equiv alent to the pseudo-
Siegel domain of the second kind associated with Q,. and Fr  def ined by  (5.9). In
f ac t, n o is represented as

no=  {(z, w ) a -i .2 X (4-1-4) ; lin z—F,-(w, w)H-vrE

Pro o f . Let y E Qr . T h en  (-V-1(y—v a ), 0) . 3 t o . Using Lemma 5.3, we have

exp tE' • 12,(-V —1(y — v,), 0)

=71- exp(Ad(exp ,V -1  v,) - 't(IP—A/-1I'))•expN/-1(y—v r )

=- rci .exP( — A7 —f v,-)•exp t(IF—A/ —1 I')•expA/-1 vr  • exp-V —1 (y — v,)

=71.exP( — v r )  •  exp Ad(exp t(H' — —1 I'))A/ —1 y

=h,(--N,/ —1 v, e - t-V —1 y, O),

because H'—  — 1 I '  belongs to 8°. Therefore (A/ —1(e -  y—v,), o) n o.  This
implies e- ty S2,. for any tE R , proving that D r  is  a  cone.

B y  a  suitable tran sfo rm atio n  as  in  Lemma 5 .5 , every point (z, w) can be
translated to (-V-1(Im z—F,-(w, w)), 0). Therefore (z, w)E34 0 i f  a n d  on ly if
Im z—F r (w, w)-kv,,(2„.. Now n „  is  diffeomorphic to a 'x  p a x (a+ -1-4 )  under the
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following mapping :

w) ---> (Re z, Im z—Fr (w, w)Ea-2x Q,X (a++1+) •

Therefore D r  is connected.
A ssum e th a t  F r ( w , w ) =0 . L e t  X= w-E-0 a n d  Y = A / - -  ---\/-10. We

define a  mapping 0 o f  C  into M  by

0(z)=exp xX•exP YY(P) f o r  z= x ± ,V-1  y .

Since [w, W]=0, w e get from  the  proof o f  Lemma 5.5,

y w )=(0, z w ).

Since hT1 . 0 is  an immersion, 0(z) must be holomorphic. This means that 0(z)--p
fo r any zEC and hence w=0, completing th e  proof. q. e. d.

§ 6. The symmetric Siegel domain S isomorphic to M (p) and the structure
of I.

It is w ell know n that the hermitian symmetric space m(p) of the non-compact
type is holomorphically isomorphic to a  symmetric Siegel domain S  of the second
k ind . T here fo re  by  Kaup-Matsushima-Ochiai [2], th e re  ex is ts  E ,  o f 1(p) such
that

(6.1)
.??2 -= 1XE f(p) ; [E „ X ]=2X } .

N o te  t h a t  dim0 - 2 =dim0 2 a n d  dim0 - 1 =dim0 1, because 1(p) i s  semi-simple.
Moreover there exists I , of such that

ad 1.
8 = 0  on

(6.2)
(ad 1 )2 = - 1  on

Define linear transformations P and P of by

P(X)= —
1

(X—V=f[I,, x])
2

P(X)=---
1

(X-1-A/-1Ers,2

and set
Oi- 1 = M + P W 1 )
0( =P0 - 1 )+?,2-FP0 1 )

C=P(V)+7,
1Hs = —
2

(Es4--V —1 I- s) •

By (6.1) and  (6.2), w e have
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t(p),=0 -ii+En+0;
(6.3)

ad H , X = 2 X  f o r  X E

The Siegel domain S  is regarded a s  a  domain i n  -,- '-j-P(?) - ' )  defined by

S= {z±w ; Im z—Fs(w , w ) Qs } ,

where Q , is  an open convex cone in 2  containing no entire straight lines and
_F, is  an Q s-hermitian form on  P ( - ' )  given by Fs (w , w ')= [w , w '] (Tanaka2

[1 2 ] ) .  By Lemma 2 .1  o f  [ 7 ] ,  f o r  every v  o f  Qs , there exists a unique f)
such that

(6.4) [0, v]=E, .

We then have (see, § 2 of [7])

(6.5) [v,.?>2]1 a n d [D ,  - 2
] ] f o r  v  Qs .

We may assume that th e  p o in t p  o f II/1(p) corresponds to A /-1 7 ) , o f  S  where
vs E Qs . T h e n  b y  Proposition 2.4 of [7],

1
(6.6) Zp= —

2
(I s +v s —D,) .

We put

58 ,--expA/-1 v s •exp A /
2
- 1  V , .

Using (6.1), (6.2) and (6.4), we get

1(6.7) Ad 5,T1 Z , = -
2

(i s — A /-1  E,)=— A/ —1 H,.

Therefore by (6.3) and (6.7), w e have

(6.8) Ad D ,6 '= + , A d  3,6 - - f ( p ) „ Ad 5,01—f_ .

L et Bs be th e  closed subgroup o f  L c defined by

Bs= -WE L c ; a(ON-19)=0-1-011.

It is easy to see that Bs is connected and

(6.9) Ad 5,B s=K c • L_ .

Define a holomorphic mapping h , of to L,1 Bs by

h,(z)=7.c,•exp z for zE OT 1 ,

where 7 r s  denotes th e  projection :  L,—>L,1 B s . T h e  mapping h , is  a n  imbedding
of OT' onto an open dense subset o f  L c /Bs and  under th e  natural a c t io n  o f  L
o n  S ,  th e  re s tr ic t io n  o f  h ,  to S  is  L-equivariant (Tanaka [ 1 2 ] ) .  Let be a
holomorphic diffeomorphism of 1.,113 3 onto L e l l( c • I._  given by
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o,
L c 113s2g13'  g3;11(e• L_ .

T h e  mapping is  L c -equivariant. It should be noted that 1,,(113-=K c •L _ .  We
then have the following commutative diagram:

LC/B' LelKc•L_c_- G,IB

(6.10) izsl jsoh,(S)=//1(,3).

0; 1 S = s  c C O '

We now consider th e  decomposition of Î  (= [r , 1(p)]) into th e  sum o f  eigen-
spaces o f  ad E,.

Lemma 6 .1 .  ( 1 )  i=1 - ' +0-1-1 1 ,  where t'-={XE1; [E „ X ]=2X } .
(2) 1- ' =[1', 1),] and ti =[1 - 1 , DJ.
(3) D', and [1',

Pro o f . Since E ,  is  a  real diagonal element of the  sem i-sim ple  L ie  algebra
1(p), w e have by Lemma 1.5 o f  [6],

1=  E t', t ; [E ,, X ]=2X } .
2ER

L et 21) e 1 2 . Then by Lemma 5.4, we have w-=w+ -Fw_, where

w (w T -2 V -1 [/ '± Z ,, w ]).- 2
For any X e ,

1
A d ii,X = X + V - 1[v,, X ]—  —

2
[7)3, [ y s ,  X ]]  .

By using (6.6),

2w _= w +2V -1[F , w ]+ -V -1r/s, w 14-V -1[v„ w].

'Since [A d 5,X , w _]=0 by (4.3) and (6.8), w e get by considering th e  1"-com -
ponent o f  [Ad 6,x, w_], [x ,  [O s , w ]]=- 0  an d  Kys, Ds, X JJ, [ y s ,  w ] ] = 0 .  These
show  that H O  w], ?) 2 ]= 0  and  [ [ y,, w], ?, - 2 ]= 0 , because o f (6.5). Therefore we
have proved [[t, Oa ?,2 ]= 0  a n d  C[t, v s ] ,  - 9 =- 0. From (6.5), we also know that

?)°1 and ()]. It follows that

?2], [Ds, .°]]

E[[[t, 0.91 [D, os]=0

S im ilarly  w e get [[t, .e.,- 2 ] = 0 .  L e t  21 ( r e s p .  AO be the  m ax im al (resp.
th e  m in im a l)  2  su ch  th a t 12 # 0 .  T h en  [ 0 1 ,  2] = 0 .  Therefore i f  w e  set

..2]+ 2,  then  12 1.-E[tÀ1, - '2]  i s  a n  a d  -invariant subspace. Since
E s ED - 2 , . 21, the  trace  o f ad E ,  on --21 is equal to zero. Therefore
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(6.11) 21(dimR0I+dimR[01, ?, - 2 ])=2 dim R [i '1,

It follows that 2 ,<2 . Similarly we have 22 > - 2 .  Consequently, [01 - 2 ,

because 2 , - 4 < - 2 .  Then 01+01 - 2  a n d  [01- 2 ,  1 2 ] _ _ F t 2 1 - 2  a r e  ac
Hence we have

21(dimR0i+dimR01-2)=2 dimR 01 - 2 .
(6.12)

21(dimu[1 2 1 - 2 , . 2 1-FdimR12 1 - 2 )=2 dim,t 21-2.

From (6.11) and  (6.12), we get 01- 2 = [0 1 , - '2 ]  a n d  if  21 #0, then 01=[01 - 2 ,
Assume 2 ,*0 . Then using (6.5), we have

Eva, Ds, ?,1111c1It'1, va Eva, ,f,2JI -FEv3, t'ij

°E D '', v s ],  vsl+[v„ t 2 1]

=[va, t2 1].

Therefore 1"1- 2 = [v 3, 01 ]. Similarly, 0 1 -=[0 1 - 2 , Ds ]. I t  follows that dimR 0 i=
dimR 01- 2  a n d  hence 2 ,=1 . By th e  same w ay, we can sh o w  22 = - 1  o r 0 .  We
h a v e  proved that i f  12 #0 , then a n d  t1 =[0 3 , 1- 1 ]  a n d  1- 1 =[v 3, 11].
Consequently, i f  —1<2<1, then  [1 ', 2 .d- - 2 ]= 0  a n d  hence [0 , ? ,]=0 . This
means 2=0.

It remains to sh o w  th at [t°, 11 +1 - 1 ] = 0 .  Recall that [t, t]Ca b y  (1) of
Lemma 4.1. Since ad E3 = ± 1  o n  [1', 1' 1], this means [t°, t - 1 -1-11]=0. q.e.d

Next we shall prove th e  following

Lemma 6.2. L et 1+  an d  t_ be as in § 4. Then

f+ = A d  3ti--Pt + r14

L = A d a8 td - t- n4 .

P ro o f .  Every element o f  ?,° leaves 0  invarian t because [E s , e ']=0 . In
particu lar, [I s , 0 ]c t 2 . Since I s is contained  i n  t h e  isotropy subalgebra at

//„ we can decompose and 116 a s  follows:

E ,V= {XEt i  ; [I s , X ]=2A 7-1- X} ,
2 ER

T 1 , 71= { X Et; [I „ X ]=2-\/ — 1 .
;.ER

Note that T i 1 =T : 1
2 a n d  T1=TL 2 . From (6.7), we have

E 9 = A/ —1 Z p =  A d 58(Es--H/ —1 I i .

L et u . T » .  Then
1

[E r .  Ad —
2

(2+1)Ad ôsu

and
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1[E r , Ad 331-11= —
2

(2-1)Ad 88 u.

T his implies —1<2<1 and  hence —1< —
2

(2 - 1 ) ,  - -
1

(1+1 )<0 . It follows from
2

1

(3.3) that u  and  Ft a re  contained in  t+ . Therefore Ad 53ta- ic t + . W e can  show
Ad 5,1 ct_ s im ilarly . L et w Elea'. T h e n  w=w + -Ew_ where

1
w± = (w -T 2 V -1 [Z ,+ / /, w]).

By Lemma 6.1, w-= Ad 63w .  Therefore

[Z r , w ]= -
2

Ad as[I s —  — 1 E 3, w1-= —
1

[1 ,, w ]E t.
2

1

This show s that 1.1), E 4 .  Hence we get Ig=t + nt2-Ft_nt. q. e. d.

§ 7. R elization  o f  52 as a pseudo-Siegel domain.

We put

and define an open set D o f  V by
1

S 2={ a+b+c; a EQ,, c E a - 2, ,

w here clE?,2 g iv e n  b y  (6.4). M aking u s e  o f  t h e  uniqueness, we know that
1

ta=- —
t

a fo r any t> 0 .  Hence D is  a  cone. N ext we put

W=P( - ')+4n1++a+ .

Since [t°, - ']C 1- -1 , w e  h a v e  [W, W]OEV,. Thus w e can define a  Va -valued
hermitian form F on  W by

F(w, w ')= [w , ] f o r  w, w'ETV.
2

By using D and F, define an open set D o f V a x W by

D= {(z, w)El ' e xW  ;Im z— F(w , w ) S21.

—A/L et 3= exp-V-1 v, • expA/— ly, exp where ya a n d  y ,  a r e  th e  elements of
2

S2, and D, a s  in  § 5 and  § 6 respectively. It is easy to see that

Ad (3(17 c +W )=.

Therefore Vc-l-W is  abelian. Let us put

B 0 = Ad 6 - 1 13

and  define a  holomorphic mapping h, o f V c -I-W to C C/ B a by

1 1
W e know from  (3.2) and  (3.3) that i f  u#0, then —1< —

2
(2-1)

'  
- -

2
(2+1)<1.
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h0 (z)=7r0•expz,

w here r o denotes th e  projection : G,->G 2 /Bo . Then ho i s  an  imbedding. It is
clear that Bs=L c n B o and the restriction of ho to 2 + P ( - 3 )  coincides with hs.
We shall examine the action of A(S) on ho (D ), where A(S) means the connected
subgroup o f L  corresponding to ?,- 2 .- - 3 4 - e .  In what follows, we represent a
vector of 17 ,-+W by a  system of vectors (z1, z2, z 3, wl, w2, w 3) under the identifi-
cation:

172--F1V X t• - lx a 2 xP(?, - 1 ) x (4nt + ) x 0+ .

Lemma 7.1 . Let f_ 3 =exp f_i=exp c_, and f o =exp co , where c_ 2 E - 2 ,
and c 0 E e .  Then f ; leaves h o (V c + W ) invariant and induces an affine

transformation I ;  of V c +W as fo llow s (j= -2 , -1, 0):

2 (Z I , z2 , z3 , W ly w3, W  3 )  =  ( 2 1 ± C -  2 ,  2 2 1  2 3 ,  W I ,  w2, w3) ,

z2, z3, w 3 ,  w2, w3)=(z'1, 4, 4, w ,  w;, w's)

1
4 = z i+  -

2
[P (c -i),

4=22±[P(c-1), w2]

4=2 3

w;=w i + P (c , )

74=w2

'v = w3

z2, 23, w 3 ,  w2, w3)=-(Ad fozi, Ad foz 2 , z 3 , Ad fo iv i, w 2 , w 3 ).

P ro o f. The assertions for f 2  a n d  f  a re  obvious. W e shall prove for
th e  c a se  o f  f 1 .  S i n c e  c_1=P(c-1)-i-P(c_1) a n d  s in ce  D - 1 ,

, 1 „,
f -i= exP P(c-i)•exP P(c-i)•exP -

2  
Lt(c-i), t 'lc_ i)]. Therefore

f -  1 z 2 , z3, w 1 ,w 2 ,  w 3 )

1
=  • e x P (z i+  -

2  
[P (c -, ), P (c _,)])• exp P(c_ i )•exp z3 •exp z3 •exp w,

X exp P(c_ i )•exp wi•exP w2

H ere w e used [P(c-3), z2] < k  i l ]E t 2 = 0 . Since exp 15 (c_2)EB0 a n d  since
[P(c,), [P(c-i), w 2]]E t 2 =0 , w e have

exp .15 (c 3 )•exp iv, • exp 102

=exP(w3+CP(c-3), w1l•exP(w2+[P(c-3), ic2])

=exp w i •exp[P(c_,), wi]•exp w2•exP[P(c-3), w2] (mod BO.

It follows
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f --i•ho(z„ Z 2 , Z 3 , w l, w 2 ,

1
exp( z i + P ( c-1)1+CP(c- 1), w a •exp( w i+P( c -i))

x exp(z2+[P(c-i), w2]) .exp ' e x p  z3 -exp w 3( m o d  DO.

q. e. d.

Next we verify

Lemma 7.2 . L e t  f 2 ,  f 1  a n d  f o  be as i n  Lemma 7.1. Then J( D ) =D
(j= -2, -1, 0).

P ro o f. (a) The case of f_ 2 . Clear.
(b) T he case o f f Let z=z 1 ±z 2 +z 3 a n d  le t  w=w1+w2-kw3. Then

F(w, w)=F(wi, w1)+F(w2, w2)+F(w3, w3)+F(w1, w2)+F(w2, w 1 ). By Lemma 7.1,
w 0H -F(w , w i)=F(w i, w 2)+F(w 2, w i)+F(P(c-i), w 2)+F(w 2, P(e_ i )) and

Im 4=Im z2+Im[P(c-1), w2]=lin z2+F(P(c-2), w 2)+F(w 2, P(e-i)). It is clear that
w 1). Since 4 = z 3 ,  u4=w 2 and /6=w 3, combining

the above equalities we get Im z '-F (w ', w ')=Im z -F(w , w ) , where (z ', w ')=
w).

(c) The case of f o . Let (z ', w ')=-10(z , w ). It is clear that Tm z '-F(w ', w ')
=Ad f o (Im z -F (w , w ) ) .  Therefore it is sufficient to show that Ad f o Q=Q.
Let y=v 1 +v 2 +y 0, where y1 E?7- 2 , y 2 Ef -1  and y3 E a '.  W e  set Ad f 0 v 0 =11,. Since
f  is an automorphism of S , v ; belongs to 0 , if y, belongs to Q, and b y  (6.4),
f-=A d  f o i),. Therefore if y1 ES23, then

1
-1 CD "  v 2 = v 3 - -

2

C[Ad f0r2, Ad f oPi], Ad f0r21
2 " 

1
=y 3 - .[Ev2. 2)2] •

This means Ad f o v  Q  if vwQ. q. e. d.

We set

Do = {(z1, Z 2 /  Z 3 , W 1 , W 2 , W 2 )E p  z1 = / - 1  y, and w1 =0}.

L et 220 denote the projection : (z 1 , z2, z2, 1,02, w2, w 3 ) - ( z 1 , w 1 ) .  Then ri o (D)=-S.
By Lemmas 7.1 and 7.2, every f E A (S )  induces an automorphism fp of D such
that fs.720=220of , 8, where f  s  denotes the automorphism of S  corresponding to f .
It is w ell know n that A (S ) acts on S  transitively. Since Do=r2V(-■/-1/8,
we have

(7.1) A (S)•h0(D0)=h0(D).

We define a  G2-equivariant holomorphic diffeomorphism (') of G,113 0 onto Gc IB  by

6̀'
G2 1133 ,g- B 0   g5-1B G,IB



L c / B '

1141 s=hs

02(7.2)
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Considering (6.10), w e get the following diagram :

Lemma 7.3. 5- ho(D0)-= h i(n )).

Pro o f . Let u=(•■/-1 vs, z2, z3, 0, w2, w ,) .  Then

jh o (u)= exp(— A/-1 v r )•exp z 3 exp w,•exp w, •exp z, • expA/ vs•■V

=71. exP( —  A/-1 v r ) • exp z, •exp w,• exp W  •  exp 22 .

Here we used the fact exp-V-1 v s 5 iic K c • L _. Notice that

1Ad 3 s z 2 = —
2

(z2+ A/-1[O2, z2])

and
1 z2])= Ad as ( 2 [v2, z 2]) E  A d (38Q .

Hence by Lemma 6.2,

1 1
exp z2=exp-

2
(z2-1-••/-1D 2, z21).exp —

2
(z ,--V -1 [D s, z2])

1
x exp [z2—  A/-1  Le,, z2], z 2 + - 1  [Ds, z2]]

---exp(Ad 5 8z2)-exp [z2, [Vs, z2]] (mod B).A/-1
4

From the above equalities, we get S. h o (u)-= h i (u ')  for some u ' c q 2 x (a + + 4 ) .  If
we write u '=(z ', w'), then

(7.3) 4 z2]]

w '=w 3 + A d 32z 2 --1-w 3 .

It is not difficult to see that conversely for any u'ect 2 x(a + -Ff+ ), there exists u
of the form  u =(•V— 1 v„ z 2, z 2 , 0, w 2 w3) such that Ô.h. o (u)=h i (u'). Note that
[ W 2 , A d  8z2]=Ew2, Ad 5,z21=0 by Lemma 6.2. Using this equation and using

1Ad 52z 2 = —
2  

Ez2- H/ - 1[V3, z2]), we get from (7.3),

11m z'— Fr (w ', w /)+v r =lm  z 3 — —
2  

Min z2, D s], Irn z2]—F(u'24 - 7/23, w2+1,v3) •
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This show s u ED o i f  a n d  only if u ' 3 r10 .  e. d.

Since A(S) acts transitively on S, so on  S. It follows from Proposition 4.3,
121 ( 3t)=A(S)-h 1 (.320 ). Since th e  m ap p in g  commutes with th e  a c t io n  o f  A(S),
considering the  diagram (7.2), w e get by (7.1) and  Lemma 7.3,

ho (D)= un).
We thereby proved that D  is  holomorphically isomorphic to .511. In particular, D
is connected and so is Q  (cf. Proof of Proposition 5 .6 ) .  L et w=w 1 d-w 2 -1-w3 and
suppose F(w, w)=0, where w1 EP( -1 ), w 2E l + n l °,  and  w2 E a+ . T h e n  Fs(wi, w1)
= 0 .  Since Fs is an Q,-hermitian form, we have w1 = 0 .  Hence F(w, w)=Fr(w, w).
Therefore w2 =w 3 = 0 .  We have proved th e  following

Theorem 7.4. Let M  be half-homogeneous hyperbolic manifold satisfy ing the
condition (C) in § 3. Then M  is immersed in a complex vector space as a pseudo-
S iegel dom ain D of the second k ind in  su c h  a w ay  th at G (M ) ac ts  on D
equivariantly.

§ 8. Characterizations of Siegel domains.

L et D  be a pseudo-Siegel domain of the  second kind associated with a  con-
nected cone Q in  a  real vector space V and a -17,-va1ued hermitian form F  on W.
We prove

Proposition 8.1. A  pseudo-Siegel domain D of the second k in d  is  a Siegel
domain of the second k ind if and only i f  D  is a complete hyperbolic manifold.

Pro o f . A ssum e th a t  D  is com p lete hyperbo lic . L e t  (z , w )E D , where
z E V , a n d  w  E W . T hen (A/-1 (Im z—F(w, w)), 0 )E D . Therefore i f  w e  set
D i = D n (V e X OD, then D i # 0  and E  ;  IM  E S21. By Theorem 3.4 , Ch.
V  o f [3 ] ,  D  is  holomorphically c o n v e x . We then have from th e  proof o f Prop-
osition 1.1 in  [13],

(a) (z, w )ED implies E (z, 0) E Di.
(b) Q is  convex.

Suppose th a t  D  contains a line. Then D , contains a  complex line which
contradicts t h e  assumption that D  is hyperbolic. Therefore Q  i s  a  convex
cone containing n o  en tire  stra igh t lin es. F or any y E Q an d  w EW, we know
(-V -1 (v+ F (w , w )), w )E D . Therefore from  (a), v+F (w , w )E ,Q . Since y  is
arb itrary, F(w , w ) i s  i n  t h e  closure o f  Q . T his implies F  is  a n  D-hermitian
f o r m . Hence D  is  a Siegel domain of the  second k in d . T he  converse  follows
from Theorem 4.15, C h. IV  of [3]. q .  e .  d .

A s an  immediate consequence o f Theorem 7.4 and Proposition 8.1, we have

Theorem 8.2. L e t  M  be  a  half-homogeneous hyperbolic manifold. Assume



Half-homogeneous hyperbolic manifolds 25

the followings:

(a) M  is complete hyperbolic.
(b) M  satisfies the condition (C) in  § 3.
(c) b °(P)#b°(g) i f  p * q .

T hen M  is holom orphically  isom orphic to a S iege l domain of the second kind.
Conversely, every Siegel dom ain of the second k ind is a half -nom ogeneous hyper-
bolic manifold satisf y ing (a), (b) and (c).

The converse follows from Theorem 4.15, Ch. IV  of [3 ], Corollary 5 o f  [8]
and from Proposition 6.2 o f [9].

In  the case w here M  is  a  homogeneous hyperbolic m anifold satisfy ing (C),
t h e  equivariant immersion 0  becomes a  covering m apping. Then by Theorem
4.7, Ch. IV of [3], the  corresponding pseudo-Siegel domain D  is complete hyper-
bolic. Applying Proposition 8.1, D  becomes a  homogeneous Siegel domain of the
second k in d .  In  p a r tic u la r , D  is  sim ply  connected . C onsequen tly , 0  i s  a
holomorphic diffeomorphism o f  M  o n to  .51. T herefore  M  i s  holomorphically
isomorphic to D  and hence isomorphic to a  homogeneous bounded dom ain. Thus
we obtain th e  following

Theorem 8.3. A  hom ogeneous bounded dom ain i n  C n  i s  a  homogeneous
hyperbolic m anifold satisfy ing the condition (C) in  § 3.
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