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Introduction.

Siegel domains of the second kind due to Pyatetski-Shapiro [11] are interesting
objects of research not only in complex analysis but also in differential geometry.
It would be desirable to characterize complex manifolds which are holomorphically
isomorphic to Siegel domains among bounded domains in C™ or among hyperbolic
manifolds. The present paper is an approach to this problem.

Let M be a hyperbolic manifold due to Kobayashi [3] and let g(M) be the
Lie algebra of G(M), the identity component of the group of all holomorphic
transformation of M. We say that M is half-homogeneous if g(M). (=the com-
plexification of g(M)) is “transitive ” at every point of M (see, §2). In this paper,
we shall study half-homogeneous hyperbolic manifolds satisfying a certain condi-
tion (C). Let us denote by b°(p) the isotropy subalgebra of g(M). at a point p
of M. Then the condition (C) implies the existence of an element of 5°(p) which
is mapped to the identity transformation of 7 ,(M) by the isotropy representation
(see, §3). Of course, every Siegel domain of the second kind is half-homogeneous
and satisfies the condition (C) ([9]). We also introduce the notion of pseudo-Sigel
domains in §5. Now our main results are stated as follows:

(I) Let M be a half-homogeneous hyperbolic manifold satisfying (C). Then
M is holomorphically immersed in a complex vector space as a pseudo-Siegel domain
D of the second kind in such a way that G(M) acts on D equivariantly (Theorem
7.4).

() Let M be a half-homogeneous complete hyperbolic manifold satisfying
(C). Assume further that B(p)#b(q) if p+q. Then M is holomorphically equi-
valent to a Siegel domain of the second kind. Conversely, every Siegel domain of
the second kind is a hyperbolic manifold having these properties (Theorem 8.2).

() Let M be a homogeneous hyperbolic manifold. Then M is isomophic to
a homogeneous bounded domain if and only if M satisfies (C) (Theorem 8.3).

Recently, Kodama and Shima [5] obtained other characterization of homo-
geneous bounded domains.

We now explain the various sections. In §1, we construct for a hyperbolic
manifold M and for a point p of M, a complex submanifold M(p) through p by
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the same methods as in [10] and prove that M(p) is a hermitian symmetric space
of the non-compact type. We mention that once this is proved, all results in [9]
for bounded domains also hold for hyperbolic manifolds.

In §2, we recall the G(M)-equivariant mapping @ of a half-homogeneous
hyperbolic manifold M into a certain complex coset space G./B constructed in [9]
and rewrite Theorem 3.3 of [9] in more detail for later use. Here G, denote
the adjoint group of g(M).. Under the assumption of the half-homogeneity and
the condition (C), @ becomes an immersion. Moreover there exists an abelian
subspace 67! of g(M), with dim¢f-*=dim¢M and a holomorphic imbedding 4, of
6! into G./B. We show in §3 that ®(M) is contained in h,(-') and hence
hi'@ is an immersion of M onto a domain ¥ of -

Next in §4, we construct a fibering of # with the base space S isomorphic
to M(p). We shall show in §5 that the fiber ¥, is isomorphic to a pseudo-Siegel
.domain.

Since & is a hermitian symmetric space of the non-compact type, S is real-
ized as a symmetric Siegel domain S. After some preparations in §6, we
construct in §7 a pseudo-Siegel domain D in a vector space Add-'6-* with an
imbedding h,: Add 0 '—>G./B, in such a way that there exists a canonical
fibering: D—S and that a fiber D, is isomorphic to #, under a G.-equivariant
‘holomorphic diffeomorphism é: G./B,—G./B. Here ¢ is an element of G, and
By=Ad ¢ 'B. These being prepared, by taking a subgroup A(S) of Ad G(M)
which acts on S transitively, we shall see §eho(D)=h(H).

Finally in §8, we shall give characterizations of Siegel domains and homo-
geneous bounded domains by using the results in the previous sections.

Throughout this paper, we use the following notations: For a hyperbolic
manifold M, Aut(M) means the Lie group of all holomorphic transformations of
M and g(M) means its Lie algebra. For a real vector space or a real Lie algebra
A, A. denotes its complexification. For any z€ A, we denote by 2z, Rez and
Imz, the complex conjugate, the real part and the imaginary part of =z
respectively. Let W be a vector space over K (K=R or C). We denote by
Gr(W ; r, K) the grassmann manifold consisting of all »-dimensional K-subspaces
of W.

§1. Hermitian symmetric submanifolds of hyperbolic manifolds.

Let M be a hyperbolic manifold and let g(M) be the Lie algebra of Aut(M),
the group of all holomorphic transformations of M. We denote by ¥(M) the
space of all vector fields on M. For Xeg(M), X* means the element of ¥(M)
generated by {exp tX},cr. The correspondence: X— X* can be naturally extended
to a linear mapping of g(M), to ¥(M) by setting

(X4~ —1Y)y=X*4]Y* for X, Yeg(M),

where [ denotes the complex structure of M. By a result of Kobayashi (Theo-
rem 1.4, Ch. Ill, [4]), this mapping is injective. Let p be a point of M. We
define subspaces 0*(p) of g(M), for any integer & by
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o*(p)=g(M)., if k=-—1

(1.1)
\ b¥(p)={Z €g(M).; j45(Z*)=0} if k=0,

where _;;’;(Z*) denotes the k-jet of the vector field Z* at p. We then have
0i(p) Db (p) it i<y,

(1.2) ] ) o
[o°(p), B(p)ICH*™*(p)  for i, jEZ.

Suppose that all derivatives of a vector field Z* at p are zeros and that Z}=0.
Then Z*=0. Therefore we have

[jobk(p)zo.

Let K, be the isotropy subgroup of Aut(M) at p and let f, be its Lie algebra.
We then have

(1.3) (PN (p)=(t,)c
and hence
(1.4) [0'(p), D(p)IC(E,). .

The subalgebra 1°(p) may be considered as the isotropy subalgebra of g(M). at
the point p. Let us denote by p, the isotropy representation of 0°(p), i.e., for
every Zeb(p), pp(Z) is an endomorphism of T ,(M) defined by

0p(ZWw=[Z* &1, for veT, (M),

where ¢ is a vector field such that §,=v. Then an element Z of 0°(p) belongs
to b'(p) if and only if p,(Z)=0. Define a subspace m(p) by

m(p)={Z+Z; Z<b(p)}.

Clearly m(p) is Ad K,-invariant.

Lemma 1.1 (cf. [10]). (1) f,Nm{p)=0.

(2) There exists a unique complex structure I, of m(p) such that (I ,X)*=]X%
and the correspondence : X— X+ «/?1 I1,X gives a linear isomorphism between m(p)
and B(p).

Proof. Let Xem(p)Nt,. There exists Y €g(M) such that X++/—1Y belongs
to 6'(p). Then pp(X—I-«/:l' Y)=0. It should be noted that Y also belongs to
m(p)Nt,. Since K, is compact, there exists a hermitian inner product g of
T (M) such that both p,(X) and p,(Y) are skew-symmetric with respect to g.
For any veT (M), there exists a local vector field & around p satisfying &,=v
and £:]J=0. We then have p,(v/—1Y) v=[JY* &],=]J[V* &],=[V*, J&],.
Therefore p,(vV/—1Y)=Jcp,(Y)=p,(Y)e]. 1t follows that p,(~—1Y) is sym-
metric with respect to g and hence p,(X)=p,(Y)=0. This implies X=Y=0.
The second assertion can be verified by the same way as in [10]. q.e.d.
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We set
L=t+m(p).

Using Lemma 1.1, we get from (1.4)

(1.5) [X, YI4+[I,X, I,Y]=0 (modt,) for X, Yem(p).

On the other hand, since [0'(p), b'(p)]C0'(p), we get

(1.6) [X, YI-[I,X, I,Y]1=0 (mod m(p)) for X, Yem(p),

(1.7 ICX, YI-[I,X, I,YD)=[I,X, YI+[X, I,Y] for X, Yem(p).

From (1.5) and (1.6), we have [m(p), m(p)]C!, and hence [, is a subalgebra of
g(M). Let L, be the connected subgroup of Aut(M) corresponding to !, and put

M(p)=L,-p.

By Lemma 1.1 and (1.7), M(p) is a complex submanifold of M with dimcM(p)
=dim¢b(p).

Let Zeb(p). By using Lemma 1.1, we can write Z=X-++/—1 I,X, where
Xem(p). Then[Z, Z]=2+/—1[I,X, X]. From (1.2), (1.4) and from Lemma 1.1
we have [0%(p), B¥(p)]1C(1,).Nb(p)=0. Therefore [[,X, X]=0 and hence RX
+RI,X is a complex abelian subalgebra of g(M). Let L’ be the connected
subgroup of Aut(M) corresponding to RX+RI,X. Then the orbite L’-p is
a complex submanifold of M with a trivial Kobayashi-distance. This means that
L'-p=p and hence Xef,. Thus we get X=0 and 5*(p)=0. Consequently,
[o'(p), 6'(p)]=0. We then have for any X, Yewm(p), [X, YI-[I,X, I,Y]=0.
This combined with (1.5) tells us

Cm(p), m(p)ICt,.

Now we can show by the same arguments as in [10] that M(p) is a hermitian
symmetric space. Since there is no holomorphic mapping of C into M(p) except
constant mappings, every component of M(p) is of the non-compact type. Let
us set

t(p)y=[m(p), m(p)]
(p)=¥p)+m(p).

we can show I(p)=g(M(p)) by the same way as in the proof of Proposition 1.1
of [9]. We thereby obtain the following

Theorem 1.2. Let M be a hyperbolic manifold. Then

(1) 0%(p)=0.

(2) M(p) is a hermitian symmetric space of the mon-compact type and the
subalgebra (p) may be identified with g(M(p)). In particular, ((p) is semi-simple.

Remark 1. For any hermitian manifold M, we can construct a complex
submanifold M(p) by the same way, changing Aut(M) to the group of all
holomorphic isometries. If M is a Kihler manifold, then we can show that
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[m(p), m(p)]C¥t, and hence M(p) is a hermitian symmetric space ([10]). But
this does not hold for a general hermitian manifold. Indeed, let M be a con-
nected complex Lie group with a Lie algebra m. With respect to any left
invariant hermitian metric, M is a hermitian manifold satisfying dim¢b'(p)=
dimcM. Moreover m(p)=m and M(p)=M. Therefore if the complex Lie group
M admits a left invariant Kahler metric, then M must be abelian because
[m, mJCt,Am=0. As a consequence, for any non-abelian complex Lie group M
equipped with a left invariant hermitian metric, M(p) (=M) is not a hermitian
symmetric space.

Remark 2. By virture of Theorem 1.2, all results in §§2~5 of [9] for
bounded domains also hold for hyperbolic manifolds. We shall frequently use
these results in the following sections.

§2. An equivariant holomorphic mapping @.

Definition. A hyperbolic manifold M is called half-homogeneous, if for each
point p, To(M)={Z%}; Zeg(M),}.

Let M be a half-homogeneous hyperbolic manifold. From the assumption,
dimcb'(p) is constant, say r,. Since T ,(M)=q(M)./0°(p), we have

2.1 B(p)={Zeb(p); [Z, (M) JCH(p)}.
We define a mapping @ of M into the grassmann manifold Gr(g(M).; e, C) by
D(p)=0(p) for peM.

Let G. be the adjoint group of g(M).. The group G. acts on Gr(g(M).; r., C)
in a natural manner and Aut(M) also acts on Gr(g(M).;r.,, C) by the adjoint
representation. It is clear that if a Aut(M) and p= M, then @(a-p)=Ad a-D(p).
Moreover let g=Exp #,Z*(p), where Exp tZ* denotes the one parameter group of
local transformations of M generated by Z*. Then b%(g)=exp(ad t,Z)b°(p) and
hence exp(ad t,Z) - @(p)=®P(q). It is easy to see that @ is holomorphic. In fact,
there exist Z,, -+, Z, of g(M), such that {(Z)% -, (Z,)¥ forms a base of
Tp(M). Then there exist a neighbourhood W of 0 in C® and a neighbourhood

U of p such that the following mapping g, is a holomorphic diffeomorphism of
W onto U ;

&1z, -+, zn)=Exp x,ZY°Exp y, JZ¥e -+ <EXp x,Z%°EXp y. JZH(p)
z2i=x;+vV—=1y,.
Let g, be a holomorphic mapping of W to G. defined by
gz, -+, za)=explad z,Z,)- -+ -explad z,Z,) .

We then have @(g)=g,°g7(g)-P(p) for geU. Therefore @ is holomorphic.
By Theorem 1.2, I(p) is a semi-simple Lie algebra corresponding to the
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hermitian symmetric space M(p) of the non-compact type. Therefore there exists
a unique Z, of ¥(p) such that

ad Z,X=I,X for Xewm(p),
ad Z,Y =0 for Yei(p).

(2.2)

From Theorem 3.3 of [9], we know that for any p, g€ M, there exists f of G,

such that f-@(p)=®(q) and f((p))=Ig¢). We recall its proof and verify the
following

Lemma 2.1. Let M be a half-homogeneous hyperbolic manifold and let p, q
be two points of M. Then there exist contineous mappings c,:[0, 1]J-M and
f:: [0, 17-G, satisfying

(@) co=p, c;=q and f,=L.

(b) fi-@(p)=D(c) and f,(Up))=Uc.).

Let p, geM. There exist X, -+, Xnsa(M). and p,, =+, pn<EM such that
i+1
n

po=b, pn=g and p=Exp Xf(p:-,) for izl We put for ——<t=
c.=Exp(t m—)X¥.(ps),
gi=exp(ad(t m—i)X.11)-explad X,)-----explad X)).

It is clear that (c,, g.) satisfies the properties of the lemma except the equation
g(l(p)=V(c,). Using (2.1), we get g,-b'(p)=b'c,). We set E,=+v—1Z,, and
A;={XegM).;[E,, X]=2X} for A R. By Lemma 3.4 of [9], Q(M):_,QHA‘
and as in the proof of Theorem 3.3 of [9], we get

gilE:=Eot+ 2 a)t), a:t)eA,
0<AS1

Let 4, denote the smallest positive number 2 satisfying A;+#0. By a direct com-
putation, we have

1 7 ’
exp(l—lad azl(t))°g7‘~Ec=Eo+h<2maz(t) , alEA,.

Since A;CH(p) for 2>0 (Lemma 3.4, [9]), repeating this process, we obtain
h. G, such that h,=1 and

(2.3) he-gi'-E,=E, and h,-gi*-b%(c)=0%p).

Notice that if E, depends contineously on f, then so does h,. From (b) of
Lemma 3.4 of [9] and (2.3), we have

he-grt-04c,)=0%(p) and h,-gr'-b*(c,)=b'(p).
Hence we get

(2.4) - hegitHede=Hp)e and Ay gitmlc)e=mlp)e .
We set-u(t)=h, g7'(tc,)++—1m(c,)). Then u(t) is a compact real form of I(p).
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for any . Let o, be the conjugation of (p). with respect to u(t). Then o,°0,
is an automorphism of I(p).. Let a, be the positive definite hermitian form on
I(p). defined by a,(X, V)=—a(X, a,Y) for X, YE(p), where a denotes the
killing form of I(p).. By a direct calculation, we know that g,°0, is hermitian
symmetric with respect to a,. Recall that the space of all hermitian symmetric
endomorphisms is diffeomorphic to that of all hermitian symmetric linear trans-
formations with positive eigenvalues under the exponential mapping. Therefore
there corresponds a hermitian symmetric endomorphism H(t) of I(p). such that
exp Ht)=(o,°0,)%. We set P{=exp sH(t). In view of the proof of Theorem 7.2
in Ch. IIl of [1], we know

(2.5) Pi*u0)y=u(z).

Moreover for any f, {Pi}.cr iS a one parameter subgroup of automorphisms of
the semi-simple Lie algebra I(p).. Hence there exists uniquely X(t)!(p). such
that H(t)=ad X(t). Since E,e+v/—1u(t), ¢:°0Es)=FE, This means P{E,=FE,
and hence [ X(t), E,]=0. Form this equation, we get X(t)=t(p).. We now set

fzzgrh[‘-exp(jll—ad X(0) .
Clearly f.0%(p)=0(c,). By (2.4) and (2.5), we have
fo¥p)Tge- het-u)NKco).=tcy),

fom(p)T(ge-hit v/ =T u@t)Nmlc,).=mlc,) .

We also know from (2.4), dimg¥(c,;)=dimgl(p) and dimpm(c,)=dimgm(p). Therefore
we get f,-¥(p)=¥c,) and f,-m(p)=m(c;). We thereby proved Lemma 2.1 except
showing that f, is contineous. We have already proved that for any p, g€ M,
I(p) and Y(g) are isomorphic to each other. In particular dimzm(p) and dimpg¥(p)
are constant. To complete the proof of Lemma 2.1, it is sufficient to show the
following

Proposition 2.2. (1) The correspondences: p—m(p) and p—¥p) are differ-
entiable mappings of M into Gr(g(M); rn, R) and into Gr(g(M) ; i, R) respectively,
where rn=dimgm(p) and r,=dimgi(p).

(2) The correspondence p—Z, is a differentiable mapping of M into o(M),
where Z , is the element of ¥p) defined by (2.2).

Proof. We recall that if feG. and f-b(p)=0%g), then f-b'(p)=0'(g) because
of (2.1). Therefore we can show by the same way as in the case of the mapping

@, that the assignment: p—b'(p) is holomorphic. Since dim,;b‘(p)z%dimnm(p),

we can take for any point p, locally defined differentiable mappings
wi(p), =+, wra(p’) of a neighbourhood of p into g(M). in such a way that
{wi(p"), -+, wro(p")} forms a base of b'(p’). We write w,(p")=u(p")++v—1v(p"),
where u(p’), vi(p’)em(p’). Then the set {u,(p’), Vi{p )} 151, jsrye forms a base
of m(p’). Since ¥(p")=[m(p’), m(p’)] and since dimgf(p’) is constant, we can take
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a base {e,(p"), -+, e; (p")} of ¥(p’) in such a way that e;(p’) depends also differ-
entiably on p’. Thus we get (1).

By using a base {ui(p"), vi(p')} 151, jsrpiee {p iS represented by a matrix @
which is independent to p’. Let us write Zp,=; vi(p’) ei(p’). As an endo-

morphism of m(p’), each ad e;(p’) is represented by a matrix Q;(p’) with respect to
a base {u(p), v(p N 1si.jsrpme- Then Qu(p”), -+, @, (p’) are linearly independent.
Now {vi(p’), -+, vr,(p")} is a unique solution of the equation 3 v,(p’) Q(p")=Q.

This implies that y,(p’) is differentiable and we get (2). q.e.d.

§3. A holomorphic immersion.

Let M be a half-homogeneous hyperbolic manifold and let p, be the isotropy
representation of 5°(p). We consider the following condition :

(C) There exists Hy of 0(p) such that pp(Hp)=1.

By the half-homogeneity, if M satisfies (C) at a point p, then M satisfies at any
point of M. In what follows, we fix a point p of M and assume that M satisfies
(C). Put

0*={XegM).; [Hy, XI=2X}.

We then have (Lemma 4.1, [9])

g(M)=6"1+6°+6, [6% 6*1Co**,
@.1) 0°(p)=06°+06",

bi(p)=0".

Since M is half-homogeneous, we have dim¢f~'=dimcM. Moreover we may
assume (Lemma 4.2, [9])

bI(p)c o
Let r denotes the radical of g(M) and put

t=[r, ((p)].
We also define a subalgebra a of g(M) by

a={Xeg(M); [X, [(p)]=0}.
If we put

1,=0'(p), .=b(p) and E,=v—1Z,,
we then have from Proposition 2.4 of [9],
g(M)=1(p)+t+a (vector space direct sum)
0=, +t.N\O 4+a.NG"* (vector space direct sum)
(3.2) 0°=1(p)c+tNE°+a.NG° (vector space direct sum)
te=t:NO 1 +t.NE°
a.=aN0 ' +aNEG°
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and
te= 2 (to)a
-1<2<1
3.3) tN0'= 23 (t)a, tNO°= 3 (to)a
-1<2<0 0<1<1

acﬂﬁ"Z(rC)oﬂﬁ"‘,

where (t.);={Xer.; [E,, X]=1X}. '
Let B be the subgroup of the adjoint group G. defined by

B={feG.; f-0(p)=0"(p)}.

Since g(M). is centerless (Lemma 5.1, [9]), the Lie algebra of G, is identified
with g(M).. It is easy to see that under this identification, the Lie algebra of
B coincides with b%(p). The homogeneous space G./B is the G.-orbit of 0°(p)
in Gr(g(M).;r,, C). Let @ be the holomorphic mapping defined in §2. Then
® is an immersion of M onto an open subset of G./B (Propositions 3.1 and 5.2,
[9]). Let h, be the holomorphic mapping of #-* to G./B defined by

hy(z)=m,-expz for ze67,

where m,; denotes the projection of G, onto G./B. It is easy to see that A, is a
holomorphic imbedding of ¢-! onto an open dense subset of G./B (cf. Proof of
Theorem 1, [8]).

Lemma 3.1. Let X607 and X,=0°. Then exp X, (resp. exp X,) leaves
hy(6Y) invariant and induces a translation (resp. a linear transformation) of 6~
Proof. For any z€67!, we get
exp X-;-hy(z)=m,(exp X-;-exp z)=hy(X-,+2),
exp Xo-hi(z)=m,(exp X,-exp z-(exp X,) '-exp X,)
=h,(Ad(exp X,)z). g.e.d.
Let L, K, L., K., L, and L. be the connected subgroup of G. correspond-
ing to the subalgebra I(p), t(p), Up), ¥(p)e, !+ and I_ respectively. Recall that

@ is an imbedding on M(p) (Proposition 3.2, [9]). Then @M(p))=L/K. It is
well known that the mapping :

L. XK, XL_>=(a, b, ¢)—>a-b-ceL,
is a holomorphic diffeomorphism onto an open set of L. and that
LcL,-K.-L_.
Therefore @(M(p)) is contained in A,(l,). We set
S=hit=@(M(p)).

S is a symmetric bounded domain in I, and is known as the Harish-Chandra
realization of M(p). We now prove the following
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Theorem 3.2. Let M be a half-homogeneous hyperbolic manifold satisfying
the condition (C). Then @(M) is contained in h,(6-') and therefore hi'e® gives
a holomorphic immersion of M onto an open set of the vector space 071,

Proof. Let R, denotes the connected subgroup of G. corresponding to
(t+a). (=(t+a).). Note that (t+a). is an ideal of g(M).. Therefore every
element of G, induces an automorphism of g(M)./(t+a).. Since g(M).=(p).+({+a).,
the group R, is the identity component of the kernel of this correspondence.
Therefore R, is closed. Clearly G.=R.-L..

Let ¢ be any point of M and let (¢, f;) be as in Lemma 2.1. We denote
by 7 the projection of G, onto G./R,. The restriction of 7 to L, gives a covering
mapping of L. onto G./R.. Therefore there exists a contineous curve s, in L,
such that y(s,)=r(f:;) and s,=1. We set r,=f,-s;*. Then 7, is a contineous
curve contained in R,. Clearly

3.4) aX=X (mod (t+a).) for Xel(p). and a<=R..

It follows that for any X€l(p)., f.X=s.X (mod (i+a).). Since f,Xeg(M) for
any Xel(p), we know

s Xeg(M)NU(p).=1(p).
Notice that L is an identity component of the subgroup of L. which consists of
all elements of L, leaving I(p) invariant. It follows that s, is contained in L.

Consequently, s;-@(p) is contained in h,(S). Since ({+a). is contained in §-'+6°,
we get by Lemma 3.1,

O()=/f1-P(p)ER: h(S)Th,(67). q.e.d.

The next theorem gives a characterization of hermitian symmetric spaces of
the non-compact type among half-homogeneous hyperbolic manifolds.

Theorem 3.3. Let M be a half-homogeneous hyperbolic manifold. Then M

is a hermitian symmetric space if and only if there exists H, in ~/—1%, such that
pr(Hp)=1.

Proof. Suppose that H,e+/—1f%, satisfying p,(H,)=1. Then 6 '=0.
Therefore dimcf'=dim¢M. Since 6'=DbY(p), this implies that M(p)=M and
hence M is a hermitian symmetric space. The converse is clear. q.e.d.

§4. Fiberings of M and hi'-®(M).
Let M be a half-homogeneous hyperbolic manifold satisfying (C). We set
M=h7'-O(M).

Every element of Aut(M) leaves @(M) invariant and hence induces an auto-
morphism of the domain . In this section, we study the action of the group
G(M), the identity component of Aut(M), and construct fiberings of M and
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with S as base spaces.
For convenience, let us set

t,=t:N\0"Y, t_=t,NF° and u=aq, 0"

Since (r.);=(t.)-:, we get from (3.3),

“4.1) te =t

and from Proposition 2.4 of [9],

4.2) te=[t-, 1.1, t-=[t,, -],

Since [E,, #(p)]=0 and since . is contained in #-'4-0°, we get from (3.1) and (3.2)
4.3) [t(p)e, te1Ct., [l t,1J=0 and [(., 1-]=0.

Lemma 4.1. (1) [t., t-]=[ts, t,1=0 and [, t-JCu.
(2) [t, ul=0.
3 [, [t, t11=0.

Proof. 1f —1<A<0 and 0<v<]l, then (v.);C6* and (r,),C6°. Therefore
[(l’c)x' (fc)u](__'@"f\(rc)zw. On the other hand

[(rc)b (rc)v]C[(tc)—l, (rc)—u]C(rc)-(1+u)ma-l'
If 24+v+#0, then (r)-qn01CH° by (3.3). It follows that if A4+v#0, then
[(t)1, (t),]=0and [(to), (t)-:1C(r)eNO 1. Therefore [t,, t-JCu. If 0<y, <1,
then [(to),, (te)p]=L(te)-s, (t)-nJ- Since (r,)-, and (t;)-, are subspaces of 7%, we
get [(to),, (to),]=0. This implies [t-, t-]=0. If 0<p<1, then [(t;),, u]JCTH'N(tc)y
=0 by (3.3). Since [t,, ts4+u]=0, we get (1) and (2). Consequently,
Ct, O, t11Cht, [y, t-J1CLE, uw]=0.
Hence we get (3). q.e.d.

Let us denote by 7, the projection of uxt,xIl, (=67 onto f,. In view of
the proof of Theorem 3.2, 5,°h7'e@(M)=S. Therefore the domain <M is an open
set of uxt,xS. Let geL. Then g induces an automorphism of & which will
be denoted by gs. In what follows, for every wet, we denote by w, and by
w- the t,- and the i_-component of w respectively.

Lemma 4.2, Every ge L leaves h,(uX1,XS) invariant and hence induces a
holomorphic transformation g of uXt.XS. Let §u, w, 2)=(u’, w’, 2’). Then

Z'=gs(2),

w'=(Ad gw),—[2', (Ad gw)-],

u’=u——;—[w’, Ad gw].

Using Lemma 4.1, this lemma can be verified similarly as Lemma 4.5 of [7].
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Let R denote the connected subgroup of G, corresponding to t+a. If fER,
then f induces an affine transformation f of uXt, X!, by Lemma 3.1. If f(u, w, 2)
=(u’, w’, z’), then z=2z’ by (3.4). This combined with Lemma 4.2 leads us to
the following

Proposition 4.3. FEvery geG(M) induces automorphisms ga of M and gs
of S in such a way that the following diagram commutes:

a0 g 7 5
gl gsul gs
M i@ . 7 S
We set for ze$
4.4) M,=(p,ohi'e®)(z) and M,=n7'z).

Since L acts on S transitively, we get from Lemma 4.2 and Proposition 4.3 the
following

Proposition 4.4. Let z, z’€S. Then the fibers M, (resp. M,) and M, (resp.
M) are holomorphically isomorphic to each other.

Remark 3. Both (M, S, 5,°hi'-@) and (M, S, ,) give fiberings with base
space S. These are not holomorphic fiber bundles. But real analytically, we
have M=SXM, and M=SX M, In fact let gM and z=7z,°h7'-@(¢g). Since
the mapping B: X—(exp X)s-0 gives an analytic diffeomorphism of m(p) onto S,
we get a real analytic diffeomorphism of M onto SX M, defined as follows:

M>g—(z, exp f7(2)-q)ESXM,.

The case of i is similar.

Remark 4. In the case where M is a Siegel domain of the second kind, the
mapping @ is an imbedding (Corollary 5, [8]) and the fibering M—S corresponds
to the realization of M as a Siegel domain of the third kind constructed in [7].

§5. The structure of the fiber .¥,.

Let H, be as in §3. We can decompose H, as H,=H,+H,+H’, where
H,et(p)., H.<t- and H' €a,NE°. Since [Hp, (p).JCUp)., we have [H,, I(p).]=0
and ad H,X=ad H,X=ad E X for any X€l(p).. Therefore H,=FE, and by (3.3),
H,=0. Thus we can write

G.1) Hy=E,+H' (H'€a,N6".

Let E’ (resp. A) be the real (resp. the imaginary) part of H’. We can decompose A as
A=v,+1I’, where v,€a,N0"! (=u) and I’€a,N0°. Then H'=E'+~/—1(v,+1").
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Lemma 5.1. Both v, and I’ are in a and [v,, I’]=0.

Proof. By direct calculations,
LE’, Al=[H’, Al=[H,, Al=—v,,
CE’, v I=[H', v, 1=~ =1[', v]=—v,— V=1L, v.].
From the first equation, we have v,=g(M) and hence v,, I’€a. This combined

with the second equation implies [/, v,]JCg(M)N+/—1 g(M)=0. g.e.d.

By Lemma 5.1 and (5.1), we have
Ad(exp(—+/—1v))H'=E'++/—11",
(5.2) o _
Adlexp(—v —1v YH,=E'+v—1(I'+Z,).

If we set
0 10— .Ad(exp( - ‘\/__1 vr)) 00;

then we have from (5.2)
ad(E'++/—1I")=—1 on u

(5.3) _
ad(E'++/—11)=0 on aNO”

Since I’ is contained in f, and since [I’, v,]=0, ad I’ leaves u and aN#"
invariant and every eigenvalue of ad I’ is purely imaginary. Hence if we set
for 1eR,

U*={Xeu; [2E’, X]=1X}

Vi={Xeanb";[2E', X]=2X},

then we have
u=X>U* and aNf°=32V4

AER AER

Lemma 5.2. (1) u=U"+U" and aNf =V '+V".
2) ad@l")=v—=1onU", ad@l')Y=—~—1 onV-"'and ad2l")=0 on U2+V",

Proof. Let veU?* By (5.3), ad2"v=(A1+2)v/—1v. Hence
(5.4) ad@INo=—Q+2)v/—17.

We write 7=v’'+X, where v’eu and X=a,Ng”°. Clearly v'eU? and XeV*i
Therefore by (5.3),

(5.5) ad@l’w'=Q+2)~/—1v" and adQ@INX=2vV—1X.

It follows from (5.4) and (5.5), (A+2)v’=0 and (1+1)X=0. Hence if 1#—2, —1, then
v=0. If 2z=—1, then ad(2I")v=+~'—1v and if ==—2, then ad(2/")v=0. Similarly,
we have V=0 if 1% —1, 0 and ad(2[")=—~/—1 on V! and ad(2I)=0 on V°.
q.e.d.
As an immediate consequence of Lemma 5.2, we have
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Lemma 5.3. (1) a=a2+a'4+a°, where a*={Xea;[2E’, X]=21X}.
(2) ad@I)=0 on a ?+a° and (ad2I’))?*=—1 on a .
3) aNb'=a;*+a, and a.NG°=a-+ad, where

a.={Xea*; [2I', X]=x+v—1X}.

It is clear that the subspace t is invariant by ad a. We investigate the
eigenvalues of ad E’ on {.

Lemma 5.4. (1) ad 2E'=-—1 on {.
@) t.={Xet.;[2AZ,+]), X]=x+v—1X}.

Proof. Notice that v,€a % Therefore by (2) of Lemma 4.1 and by (3) of
Lemma 5.3, we have [i, v.]=0. It follows that t, and t_ are invariant by ad X
for any X<a.,MN6’°. Hence i, and ! are invariant by ad E’ and by ad(I’'+Z,).
Since I'+Z, is in 1, all eigenvalues of ad2(I’+Z,) are purely imaginary and
both t, and t_ are decomposed into the sum of eigenspaces of ad 2(/’'+Z,). Let
vet, satisfying

(5.6) ad 2('+Z ,w=av/—1v  for 2€R.
Then
5.7 ad 2(]’+Zp)ﬁ=—1\/jlﬁ.

By (5.2), (5.6) and (5.7), we have

ad(2EYw=(—2+2A)w and adQRE)o=—1iD,
because vt.. Thus we get (A—1)v=0. Consequently, if v+#0, then 2=1 and
ad(2E"yv=—v. Considering t.=t,, we get (1) and (2). g.e.d.

By Lemmas 5.3 and 5.4, we have
La™!, a]Ca™?, [, (1Ca™3,
(5.8)
Ca™?, t]=[a"?, 1]J=[a"? a']=0.

Let M, be the fiber defined by (4.4). By Remark 3, ¥, is connected and by
Lemma 5.3, ¥, is regarded as a domain of a;*X(a;-+t,).

Lemma 5.5. The domain M, is invariant under the following transformations
of a7?X(ay+t4).
(a) (z, w)—(z+a, w) for every a<sa™

b) (z, w)—»(z—l—%[o’, c]+[é, w], w—l—c) for every cea,+is.

Proof. Let X=c-+¢. By using (5.8), we get exp X=exp c-exp c‘-exp%[c‘, c].

We claim that ¢ is contained in #° In fact, by Lemma 5.3, a_.C#’°. Since
Ta-, v,]=0, a.CAd(expvV/—1v,)0"'=0°. Therefore ¢€a_+t.Cf° It follows
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exp X-hy(z, w)=7r1(exp c‘exp%[c', c]-exp z-exp Ad(exp c')w)

=hy(z+ %[5, J+E wl, we).

Therefore M, is invariant under the transformations of the form (b). For any
aea™? the following equality holds clearly:

exp a-hy(z, w)=h,(z+a, w). q.e.d.
We now set
Q.= {yca?; (VW—1y, 0)e M} +v,,
(5.9) -

F(w, 10'):3/2;[10, w'] for w, w'Ea,+t,.

Then £, is an open set of a~? containing v, and F, is an a;%valued hermitian
form on a,+t,.

Definition. Let £ be an open connected cone in a real vector space V and
let F be a V -valued hermitian form on a complex vector space W such that the
condition “ F(w, w)=0" implies w=0. A pseudo-Siegel domain D of the second
kind associated with 2 and F is a domain in V,XW defined as follows:

D={(z, w)eV XW ;Imz—F(w, w)e 0}.
A pseudo-Siegel domain D of the second kind is a Siegel domain of the

second kind if 2 is a convex cone containing no entire straight lines and F is
an Q-hermitian form, i.e., F(w, w) is contained in the closure of £.

Proposition 5.6. The fiber M, is holomorphically equivalent to the pseudo-
Siegel domain of the second kind associated with 2. and F, defined by (5.9). In
fact, M, is represented as

HMo={(z, w)ea*X (as+1:); Im z— Fi(w, w)+v,€2.}.

Proof. Let yef,. Then (+/—1(y—v,), 0)e M, Using Lemma 5.3, we have
exptE’ (v ~1(y—v,), 0)
=r,-exp(Ad(expV—1v,) "H(H' —~/—11")-expvV—1(y—v,)
=m-exp(— vV —1v,)-exp t(H'—+—11")-expV—1v,-expvV—1(y—v,)
=m,-exp(—+v—1v,)-exp Ad(exp t(H'—~/—1I')v/—1y
=hy(—~—=1v,+etvV—=1y,0),

because H’—+/—11’ belongs to §°. Therefore (v —1(e-'y—v,), 0)€ M. This
implies ety Q, for any t€R, proving that £, is a cone.

By a suitable transformation as in Lemma 5.5, every point (z, w) can be
translated to (v —1(Imz—F.(w, w)), 0). Therefore (z, w)e M, if and only if
Imz—F(w, w)+v.€Q.. Now M, is diffeomorphic to a"2Xx 2,%(a,+1,) under the
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following mapping :

Me3(z, w) —> (Rez, Imz—F(w, w)+v,, w)ea X2, X(a,+1.).
Therefore £, is connected.

Assume that Fi(w, w)=0. Let X=w+w and Y=v—1w—+~—1w. We
define a mapping ¢ of C into M by

P2)=exp xX-exp yY(p)  for z=x++v—1y.
Since [w, w]=0, we get from the proof of Lemma 5.5,
hite@egh(2)=(0, xw++/—1 yw)=(0, zw).

Since hA7r'e® is an immersion, ¢(z) must be holomorphic. This means that ¢(z)=p
for any zeC and hence w=0, completing the proof. q.e.d.

§6. The symmetric Siegel domain S isomorphic to M(p) and the structure
of .

It is well known that the hermitian symmetric space M(p) of the non-compact
type is holomorphically isomorphic to a symmetric Siegel domain S of the second
kind. Therefore by Kaup-Matsushima-Ochiai [2], there exists E; of I(p) such
that

Up)=8"2—4s"1+8+8' 42,

(6.1)
= {Xe<l(p); [E; X]=2X}.

Note that dimgzd2=dimz8* and dimgz3'=dimg8', because I(p) is semi-simple.
Moreover there exists I, of & such that
ad I,=0 on &248°4&%
(6.2)
(ad I))*=—1 on & !43a!,
Define linear transformations P and P of &;!'4-a! by

P(X)= 3 (X—v/=I[1, X

P(X)= 5 (X+v/=1LL,. X7),

and set
0:'=8+P@E™)

03=P(3 )48+ P(3")

0i=P(g")+2?

Hi=3(E V=1,
By (6.1) and (6.2), we have
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1(p)e=05"+065+0;

(6.3)
ad HX=2X for Xe0i.

The Siegel domain S is regarded as a domain in &;°+P(37") defined by
S={zt+wes*+PE ") ; Imz—F(w, w)e2},

where 2, is an open convex cone in 8% containing no entire straight lines and
F, is an £2,-hermitian form on P(37!) given by Fy(w, w/)=%[w, w’] (Tanaka
[12]). By Lemma 2.1 of [7], for every v of £, there exists a unique DE8*

such that

(6.4) (o, v1=E;.
We then have (see, §2 of [7])
(6.5) g-2=[yp, [v, 8%]] and &*=[7, [9, 87%]] for vel..

We may assume that the point p of M(p) corresponds to ~/—1lv, of S where
v,€2,. Then by Proposition 2.4 of [7],

6.6) Z,= %(13+vs—ﬁs) .
We put
d,=expv —1 vs-exp\/Z:Iﬁs.
Using (6.1), (6.2) and (6.4), we get
6.7 Ad 5;121,:—;—(18—\/——_1 E)=—+~—1H;.
Therefore by (6.3) and (6.7), we have
(6.8) Ad 6,05'=1,, Ado,0i=¥p)., Adodbi=1_.

Let B® be the closed subgroup of L. defined by
Bis={aeL.; a(03+0)=05+04.
It is easy to see that B® is connected and

6.9) Ad 6,B°=K.-L_.

Define a holomorphic mapping h, of 67! to L./B* by

hy(z)=rn;-expz for ze06;,

where m, denotes the projection: L.—L./B°. The mapping h; is an imbedding
of 65! onto an open dense subset of L./B°® and under the natural action of L
on S, the restriction of h, to S is L-equivariant (Tanaka [12]). Let ¢, be a
holomorphic diffeomorphism of L./B*® onto L./K.-L_ given by
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L./B2gB' ——> g6;'K.-L_€L./K.-L-.

The mapping 6, is L.-equivariant. It should be noted that L.NB=K.-L.. We
then have the following commutative diagram:

LB —s LJK.-L.CG./B

(6.10) hsT th Iz,T 5o hi(S)=hy(S) .

;1D S=s C I, cC ot

We now consider the decomposition of t (=[r, I(p)]) into the sum of eigen-
spaces of ad E..

Lemma 6.1. (1) t=t"'+t+i!, where t*={Xet;[E, X]=21X}.
2) t'=[t}, v,] and t'=[1"}, 9,].
(3) [t°, t-14+111=0 and [t°, 872+[3"? 8*]+3%]=0.

Proof. Since E, is a real diagonal element of the semi-simple Lie algebra

I(p), we have by Lemma 1.5 of [6],
t= 3214, {'={Xet;[E, X]=1X}.
AER

Let wet*. Then by Lemma 5.4, we have w=w,+w., where

1¢g=%(u¢2\/——1[1’+2p, w]).
For any Xe8g?,
Ad 6,X=X+/1[v,, X1=5Tvs. [vs, XT1.
By using (6.6),
Qw_=w+2v/—=1[I", wl+~ =101, wl+~—1[v,, wl—~—1[0,, w].

Since [Ad 6,X, w-]=0 by (4.3) and (6.8), we get by considering the t1?*‘-com-
ponent of [Ad ¢,X, w-], [X, [0, w]]=0 and [[vs, [vs, X]J, [vs, w11=0. These
show that [[9,, w], 821=0 and [[v, w], 8-%]=0, because of (6.5). Therefore we

have proved [[t, 9.1, 82]=0 and [[t, v,], 87 *]=0. From (6.5), we also know that
872=[v,, 8°] and 8*=[?,, 8°]. It follows that

[Ct, &°], 8*1=L[1, 821, [0s, 8°1]
CLCl, 84, 8%, 9.1, 8%, 9,1=0.

Similarly we get [[1, 87%], 82]=0. Let A, (resp. 4,) be the maximal (resp.
the minimal) 2 such that t##0. Then [t*1, 82]=0. Therefore if we set
3=a"2+[8"2 8°]48% then t%14+[1%, 8°2] is an ad 8-invariant subspace. Since
E.=[&% 8%, the trace of ad E; on t*1+[t*, §-2] is equal to zero. Therefore
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(6.11) A(dimpt?1+-dimg[t1, 82])=2dimg[1%1, 87%].

It follows that 1,<2. Similarly we have 4,>—2. Consequently, [t%172 §-2]=0
because 2,—4<—2. Then t*14+t41-2 and [t%17% §2]+t%1"2 are ad §-invariant.
Hence we have

Zl(dim3111—|—dimki‘1'2)=2 dim}zt'zl_z.

(6.12) '
2,(dimg[17172, 82]4dimgt41%)=2 dimpt#1-2,

From (6.11) and (6.12), we get t*1-2=[t*1 8-2] and if 1,0, then tf1=[1%1-2 g%]
Assume A;#0. Then using (6.5), we have
thmr=[t4, vy, [, 8°00]CLILY, ve], [vs, 8° 10+ (s, t41]
CLILtY, v], 8], vd+[vs, 1]
=[v,, t*1].

Therefore t*1-2=[yp,, 1#1]. Similarly, t41=[1%1"2 9,]. It follows that dimgt*1=
dimgt#1~2 and hence A,=1. By the same way, we can show 4,=—1 or 0. We
have proved that if 1*#0, then —1=<1<1 and t'=[?9,, t*] and t'=[v,, 1]
Consequently, if —1<A4<1, then [t% 824+82]J=0 and hence [t% 8§]=0. This
means A=0.

It remains to show that [t° t'4+t7*]=0. Recall that [, tJCa by (1) of
Lemma 4.1. Since ad E;==+1 on [1° t*!], this means [{, t-'4-1']=0. g.e.d

Next we shall prove the following

Lemma 6.2. Let t, and t_ be as in §4. Then
ty=Ad 047+,
t-=Ad d,t1+t_Nt2.
Proof. Every element of 8° leaves t* invariant because [E;, 8°]=0. In

particular, [/, t*]JCt*. Since I, is contained in the isotropy subalgebra at
v/ —1v, we can decompose 17! and 1! as follows:

1= T, T={(Xet?; [, X]=2v=1X},
E€R
1= 3T}, Ti={Xet!;[[, X]=Av—=1X}.
+ER
Note that T;'=T:Z} and Ti=T';. From (6.7), we have

E,=v=1Z,= %Ad (E+v/=11).

Let u=T;'. Then
[E,. Ad 68u]:——%(2+l)Ad Bou

and
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(E, Ad 5317]:%(1—1),4(1 8, .

We know from (3.2) and (3.3) that if u+#0, then —1<%(2—1), —%(2+1}<1.
This implies —1<4<1 and hence —l<-é—(2—1), —%(2+1)<0. It follows from

(3.3) that u and @ are contained in t,. Therefore Ad d,t;'Ct,. We can show
Ad o ict. similarly. Let wetl. Then w=w,+w.- where

wtzé(wi%/—_l[Zp—H’, wl).
By Lemma 6.1, w=Ad d,w. Therefore
(Z,, w]=%Ad 8.l —v—1E, w]:—;—[ls, wlet .

This shows that w.<t% Hence we get {i=t, NI+t Nt. g.e.d.

§7. Relization of . as a pseudo-Siegel domain.

We put
V=82+4t"1+a?

and define an open set 2 of V by
.Q={a+b+c; aef,, bet™, cea?, c—%[[b, aj, b]E.Q,} ,

where é=8* given by (6.4). Making use of the uniqueness, we know that

A\
taz%d for any t>0. Hence £ is a cone. Next we put
W=PE )+t +ay .

Since [t°, 8-1]ct™!, we have [W, W]CV,. Thus we can define a V .valued
hermitian form F on W by

Flw, w')=%[w, 77 for w, wel.

By using @ and F, define an open set D of V. XW by
D={(z, w)eV XW ;Imz—F(w, w)e£}.

Let d=expv —1 v,-expV:Tvs-expvz 119,, where v, and v, are the elements of

2, and 2, as in §5 and §6 respectively. It is easy to see that
Ad oV AW)=0"".
Therefore V.+W is abelian. Let us put
By=Ad¢'B

and define a holomorphic mapping h, of V.+W to G./B, by
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ho(z)=m,-€xp z,

where m, denotes the projection: G.—G./B,. Then h, is an imbedding. It is
clear that B*=L.N\B, and the restriction of h, to 8;2+P(87!) coincides with h;.
We shall examine the action of A(S) on hy(D), where A(S) means the connected
subgroup of L corresponding to 8 24+87'4-8° In what follows, we represent a
vector of V.+W by a system of vectors (z, z,, z;, w;, w,, w,) under the identifi-
cation :

Vet+W=g2 X1 X a2 X P(3~ ) X (1INty) X ay .

Lemma 7.1. Let f_,=exXpc-,, f-=expc-, and fo,=eXxp c,, where c_,€87%
c-1€87Y and c,€8°. Then f; leaves ho(V.+W) invariant and induces an affine
transformation f, of V.+W as follows (j=—2, —1, 0):

F ooz, za, 23, Wy, Wa, W) =(21FCos, 25, 25, Wy, Wi, W),

f—l(zly 29, Z3, W1, Wy, ws):(zi, zé) 21’37 wiv w;y w:;)
’ l 5 D
21:21+7EP(C~1), Plc-)]+LP(c-1), wil

z3=2,+[P(c-y), w.]
25=24
wi=w,;+P(c-y)
Wr=w,

Ws=ws,

fﬂ(zly 25, 23, W1, We, We)=(Ad foz1, Ad fozs, 25, Ad fowy, W, ws).

Proof. The assertions for f., and f, are obvious. We shall prove for
the case of f_. Since c¢.;=P(c..)+P(c.,) and since [87% [37%, 87']]=0,

f.1=exp P(c-,)-exp P(c-,)-exp%[f’(c-l), P(c_,)]. Therefore
f—l'ho(zh 2y, 23, Wi, Wy, W3)
1. -
= no~exp(zl+ EEP(C_I), P(c-x)]) -exp P(c-1)-eXp z,-€XP 23+ €XP Ws

xexp Plc_,)-eXp w,-exp w,.

Here we used [P(c.,), z,][8:7}, t71]Ct;2=0. Since exp P(c-,)€B, and since
[P(c.), [P(c-y), w,)]et;2=0, we have

exp P(c_;)-exp w,-exp w,
=exp(w,+[Plc-,), w,])-exp(w,+[Plc-y), w,])
=exp wy-exp[ Plc-,), w,]-exp wy-exp[Plc-,), w.]  (mod By).

It follows
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f-1rho(zy, 25, 25, Wi, We, Ws)
—exp(zi+ 5 [P, Ple )T+ TP(c-), w,)-explus+Plc-)

X exp(zs+[Plc-y), ws])-exp w;-expz;-expw,  (mod By).

q.e.d.

Next we verify

Lemma 7.2. Let f_, f-, and f, be as in Lemma 7.1. Then 7{D)=D
(]:—2, _17 0)-

Proof. (a) The case of f_,. Clear.

(b) The case of f_,. Let z=z+z,+z; and let w=w,+w,+w,; Then
Fw, w)=F(w;, w)+F(ws, we)+F(ws, ws)+F(w,, wy)+F(w,, wy). By Lemma7.1,
Flw;, wy)+ F(w;, wy)=F(w,, ws)+ F(w,, wy)+ F(P(c-y), we)+ Flw,, P(c-;)) and
Im z,=Im z,+Im[P(c_,), wol=Im z,+F(P(c-y), ws)+F(w,, P(c-y). It is clear that
Imz,—F(w}, w)=Im z;—F(w,, w,). Since z;=z, w;=w, and w;=w;, combining
the above equalities we get Imz'—F(w’, w')=Imz—F(w, w), where (z/, w')=
Faiz, w).

(¢) The case of f,. Let (2, w)=fo(z, w). It is clear that Imz'—F(w’, w’)
=Ad fImz—F(w, w)). Therefore it is sufficient to show that Ad f,2=2.
Let v=v,4v,+v;, where v,€587%, v,et™! and vi€a® We set Ad fov;=vi. Since
fo is an automorphism of S, v{ belongs to £, if v, belongs to £; and by (6.4),
i=Ad fo0,.. Therefore if v,=£,, then

]‘ ’ Al 4 ]‘ Fa
Ug_gttlﬂ'zy 0], Uz]:va—‘fi:[Ad fove, Ad foD(], Ad fovel

1
-:Us—?[l:vz,. D1, vo].
This means Ad fooeR if vel. q.e.d.

We set

Do={(z,, 22, 23, w1, Wy, Wo)ED ; zy=+—1v; and w,=0}.

Let 7, denote the projection: (zi, zs, 25, Wi, W, Ws)—(21, Wy). Then 0(D)=S.
By Lemmas 7.1 and 7.2, every feA(S) induces an automorphism fp of D such
that fseno=ms°fs, where fs denotes the automorphism of S corresponding to f.
It is well known that A(S) acts on S transitively. Since Dy=77'(v'—1r;, 0),
we have

(7.1) A(S)- ho(Do)=ho(D) .

We define a G.-equivariant holomorphic diffeomorphism § of G./B, onto G./B by

5
G./By=2gB, — go*Be(G,/B.
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Considering (6.10), we get the following diagram:

0

G./B, > G./D
Tm NG Q/ Thl
(7.2) D Lol — s LK, L.
N leols:hs Tlh/
S =~ S

Lemma 7.3. §cho(Do)=hi(H,).
Proof. Let u=(~—1uv,, 2s, 25, 0, wy, ws). Then
Sho(u)=1,-exp(—/—1 v,)-€XD Z5-€Xp Wy +eXp Ws-eXp 2, expv —Lv,-0;"
=7r,-exp(—~/—1v,)-exp 2;-€Xp Wy €XP Wy €Xp 2, .
Here we used the fact expv/—1v0;'€K.-L_. Notice that

Ad 0,z,= %(zz—i-\/——l [9s, 2z2])
and

1 - -1 o
5 &=V =10, 2)=Ad a(— %m, %) EVEEXS
Hence by Lemma 6.2,
1 S 1 —
eXp zy=exp— (z»-+ v =1[1s, 22])'37(97(22_‘\/_1[03, z,])

xexpg Lza—V =10y, 2], 2+ =10, 2]

—exp(Ad d,20-exp¥ 2z, [0, 21]  (mod B).

From the above equalities, we get Soho(u)=h,(u’") for some u’'a;®Xx(a;+ts). If
we write u’'=(z’, w’), then

Z’:—'\/——l Ur+zs+‘\/——1[22, [ﬁw 22]]
7.3) 4

w' =w,+ Ad 0,2, +w;.

It is not difficult to see that conversely for any u’€a;?X(a,+1t), there exists u
of the form u=(v—1uv,, 25 25, 0, wows) such that Gehe(u)=~h,(u’). Note that
[@,, Ad d52:1=[w,, Ad 652,]=0 by Lemma 6.2. Using this equation and using

Ad 5322=%[zg+«/:_1[1‘13, z,]), we get from (7.3),

Imz'—F(w’, w)+v,=Im za——;—[[lm 29, D51, Im zo]— F(wetws, wetws).
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This shows ueD, if and only if u' & H,. q.e.d.

Since A(S) acts transitively on S, so on S. It follows from Proposition 4.3,
h(HM)=A(S)-hy(H,). Since the mapping 6 commutes with the action of A(S),
considering the diagram (7.2), we get by (7.1) and Lemma 7.3,

Goho(D)=hy(H) .

We thereby proved that D is holomorphically isomorphic to <H. In particular, D
is connected and so is 2 (cf. Proof of Proposition 5.6). Let w=w,;+w,+w, and
suppose F(w, w)=0, where w,eP(3™Y), w,et,Nt? and w,=a,. Then F(w,, w,)
=0. Since F, is an £,-hermitian form, we have w,;=0. Hence F(w, w)=F.(w, w).
Therefore w,=w;=0. We have proved the following

Theorem 7.4. Let M be half-homogeneous hyperbolic manifold satisfying the
condition (C) in §3. Then M is immersed in a complex vector space as a pseudo-
Siegel domain D of the second kind in such a way that G(M) acts on D
equivariantly.

§8. Characterizations of Siegel domains.

Let D be a pseudo-Siegel domain of the second kind associated with a con-
nected cone £ in a real vector space V and a V.-valued hermitian form F on W.
We prove

Proposition 8.1. A pseudo-Siegel domain D of the second kind is a Siegel
domain of the second kind if and only if D is a complete hyperbolic manifold.

Proof. Assume that D is complete hyperbolic. Let (z, w)eD, where
zeV. and weW. Then (W—1(Imz—F(w, w)), 0)eD. Therefore if we set
D,=DN\(V X {0}), then D,#¢ and D,={z€V,.;Imz=}. By Theorem 3.4, Ch.
V of [3], D is holomorphically convex. We then have from the proof of Prop-
osition 1.1 in [13],

(a) (z, w)eD impliese(z, 0)eD,.

(b) £ is convex.

Suppose that £ contains a line. Then D, contains a complex line which
contradicts the assumption that D is hyperbolic. Therefore £ is a convex
cone containing no entire straight lines. For any ve and weW, we know
(V=1w+F(w, w)), wyeD. Therefore from (a), v+F(w, w)eR. Since v is
arbitrary, F(w, w) is in the closure of . This implies F is an £2-hermitian
form. Hence D is a Siegel domain of the second kind. The converse follows
from Theorem 4.15, Ch. IV of [3]. q.e.d.

As an immediate consequence of Theorem 7.4 and Proposition 8.1, we have

Theorem 8.2. Let M be a half-homogeneous hyperbolic manifold. Assume



Half-homogeneous hyperbolic manifolds 25

the followings:

(a) M is complete hyperbolic.
(b) M satisfies the condition (C) in §3.
(c) B(p)#bq) if p+#q.

Then M is holomorphically isomorphic to a Siegel domain of the second kind.
Conversely, every Siegel domain of the second kind is a half-nomogeneous hyper-
bolic manifold satisfying (a), (b) and (c).

The converse follows from Theorem 4.15, Ch. IV of [3], Corollary 5 of [8]
and from Proposition 6.2 of [9].

In the case where M is a homogeneous hyperbolic manifold satisfying (C),
the equivariant immersion @ becomes a covering mapping. Then by Theorem
4.7, Ch. IV of [3], the corresponding pseudo-Siegel domain D is complete hyper-
bolic. Applying Proposition 8.1, D becomes a homogeneous Siegel domain of the
second kind. In particular, D is simply connected. Consequently, @ is a
holomorphic diffeomorphism of M onto M. Therefore M is holomorphically
isomorphic to D and hence isomorphic to a homogeneous bounded domain. Thus
we obtain the following

Theorem 8.3. A homogeneous bounded domain in C™ is a homogeneous
hyperbolic manifold satisfying the condition (C) in §3.
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