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Introduction

T his work concerns differentiation on  com pact groups. W e obtain  here
natural C"-classes (n = co, 1, 2,...), i.e., classes of n-times continuously differentiable
functions, on compact groups by the use of one-parameter subgroups, and determine
their fundamental structures. Besides, we make some observations on the differential
structure on such groups.

Let G be a compact group, and R(G) the totally of its one-parameter subgroups.
We define the right (resp. left) derivative da

( r)f  (resp. dc,u)f )  of a function f  on G along
OC G R (G ) by ci f ( x ) =  

d  
 f (x a(t))1 ,,, (resp. dŒm f(x )= dt-  f(Qc(- t)x)it=o) (x e G).dt

And for each n, we define the "right C"-class" 6",(; ) (G) on G as the set of all con-
tinuous functions f  having the continuous right derivative CI(

Œ
r2 • • • tt i

)f  of higher order
for any a 1 ,..., a, e R(G) w ith 1 < k  <n  +1 . The "left C"-class" 6 1 ) (G) is defined
similarly using left derivatives. Needless to say, if G is a Lie group, 61r ) (G ) and
e t n(G) coincide with each other for each n and give the usual C"-class on G .  Our
basically important result, Theorem 2.1, asserts that this coincidence remains true
for any compact group G.

The essential pa rt o f Theorem 2 1  consists in  th e  equality e ( G ) = » ( G ) .
For x E G and a e R(G), let xocx - 1  denote the member of R(G) such that (xax - ') ( t ) -
xa(t)x - '  for all real t. Then xoc(t)=(xax - 1 )(t)x. Hence we see immediately that
d r )f  exists for every a e R(G) if and only if so with d P f .  For such an f ,  we have

(x)= - dx 12x-i f  (x) (a e R(G), X e G). But it is not so easy to know whether, for
such an f , d (

Œr)f  is continuous for every a e R(G) if and only if so with c/(P f .  The
equality e i r) (G)=81 1 ) (G) is no  other than the affirmative answ er to this question
under the  assumption o f continuity of f  itself. H ere  w e ought to  rem ark  that,
unlike the Lie group case, the continuity of f  is not necessarily assured even if the
continuity of all d c,r)f  or ce f  (a e R(G)) is assum ed. In fact, it is possible that for
a  discontinuous function on a  connected compact abelian group, all derivatives of
every order of it exist and are continuous (cf. [6], p. 5 6 ) .  Let us sketch the method
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of proving the above equality.
In  1979, by the aid of Tannaka duality, K. Mckennon [4] showed that R(G)

is in one-to-one correspondence to a certain Lie algebra A(G) (infinite dimensional
in general), which we present in §I.1 in a form convenient to us and with a  natural
locally convex topology. Namely, in our presentation, A(G)conisits of certain matrix
fields over 0, the dual object of G, with the coordinatewise algebraic operations and
topology. It behaves as our basic machine in this pape r. O n  the  other hand, by
the structure theorem, G  is isomorphic to an inverse limit of L ie or finite groups
GA : G i j  G A . This induces an inverse system tgA ;  of the Lie algebras o f  GA 's,
and so a Lie algebra lim gA , denoted by g (G ). Here, of course, { g A }  can be viewed
also as an inverse system of finite dimensional locally convex linear spaces. So
we equip g(G) with its limit locally convex topology. Through §1 we shall show
that A(G) is no other than a  realization of g(G) including the topology. This ob-
servation enables us in particular to see that A(G) is a  Baire space, and so, also a
barrelled space (Lemma 1.13).

Now we regard R(G) as a Lie algebra and also as a locally convex space iso-
m orphic to A(G) under the  above correspondence. Then we have in  particular
the following two facts: fo r each fE (G ) (resp. 6 ) (G)), th e  function R(G)x
G e(a, x)F-clat( r)f ( x )  (resp. 4n f (x )) is continuous (Lemma 2.9); and second, the
m a p  R(G)x G e (a, R ( G )  is continuous (L em m a 2.10). H ere , fo r
verification of the former, the property of R(G), being Baire and barrelled, plays the
key role (see Proofs o f  Lemmas 2.8 and  2.9). Since a rc,( r)f (x )=  — d a ,,f (x ) for
cce R(G ), x e G  a n d  f  e e i r) (G) u SY ) (G ), t h e  equality Sçr) (G)=6“1

1 ) (G ) follows
from the above two facts at once.

The present paper consists of four sections. In §1 the necessary facts concerning
the L ie algebras and  one-parameter subgroups of compact groups are prepared.
In  §2 we establish Theorem 2.1 and, by virtue of it, define each C"-class on  G  to
be the identical sets g t ) (G) and e„"(G ). §3 is devoted to a  study of structures of
our C"-classes. Here the locally convex structure of R(G) mentioned above is needed
a g a in . And also, Lemmas 1.10 and 1.15, which we owe again to Mckennon [4],
are essential. §4 is, as a continuation of §1, concerned with the differential structure
on G.

Here we give a summary of results in  §§3 and 4. Let S,,(G) be our C"-classes
(n= co, I, 2,...), and 3 (G ) the space o f regular functions on G  in  Bruhat's sense
( [2 ],  Definition 1). F o r  a  closed norm al subgroup N  o f  G , p u t e„ ( G , N)=
If e d'u(G ); f (x y) f(x) (x E G, ye N ) ) .  T h is  space  can  be  iden tified  w ith  the
space 4,(GIN) in the obvious way (by Lemma 1.10). Denote by 110 (G) (resp. H,(G))
the totality of closed normal subgroups N  of G such that the quotient group GIN
is Lie or finite (resp. finite dimensional and separable). Then 1-10 (G)g_11 1 (G), and
3(G)= U {S (G , N ); N  E H0 (G)} by its definition.

Our Theorem 3.1 asserts that U {4,(G, N); N e Hi(G)} (n=e, 1,
(see Corollary to Theorem 3.1). This theorem determines the basic structure of
the spaces 4 2(G), and constitutes the core of this paper together with Theorem 2.1.
It exhibits in particular the difference between 3(G ) and S A G ).  Here, as to when
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e c o (G) coincides with g (G ), criteria are given by Corollary to Proposition 3.2.
It is the case if and only if G is locally connected. As a result of Theorem 3.1, each
4,(G) obtains a certain natural inductive limit topology, denoted by r ,  without
regard to  n  (Definition 3.4). The rest of §3 concerns topological aspects of the
spaces 4,(G) bearing r m. Some results, such as their completeness, a generalization
of the classical Weierstrass approximation theorem  (Proposition 3.5) etc., are
obtained.

§4 contains three results which generalize elementary facts in Lie group theory
to the case of compact g ro u p s . Let R(Gy be the complexification of the Lie algebra
R(G), and U(G) the universal enveloping algebra of R (G )c . Theorem 4.1 states that
the map cc+ V -1 / 3  dOE(r) — I Crfir )  (OE, tl n R(G)) is an isomorphism of R(G)c onto
the Lie algebra formed of all v-continuous and left invariant derivations on the
algebra 6° 00 ( G ) .  Theorem 4.2 asserts that this isomorphism extends to an algebra
isomorphism of U(G) onto D I(G), the algebra of left invariant differential operators
on G (cf. Definition 4.2 and Lemma 4.3). Lastly, Theorem 4.3 describes the center
of U(G) by means of the "adjoint representation" of G.

This work originates in our desire to generalize Riss' theory of differentiation to
the non-abelian case, which was introduced in [6] for locally compact abelian groups
using one-parameter subgroups. His theory is based on Potryagin duality and
the general structure theorem for such  groups. Our present work extends Riss'
treatment to the case of compact groups on the bases of Tannaka duality and the
structure theorem for such  g roups. As for treating the general locally compact
groups (LC groups), we can grasp the one-parameter subgroups of such groups
through Tatsuuma's duality theory (see, for instance, [8]). But there, problems
remain to be solved.

W hile, in [2, 110 12], F .  Bruhat defined differential operators and n-times
continuously differentiable functions (n = co, 1, 2,...) on LC  groups in terms of
his distributions that were formulated in [2] on LC groups depending solely on the
structure theorem of L C  g ro u p s. But, if the group is not locally connected, his
discussions do not elucidate what such functions really are. O u r  present theory
enables us to understand his differentiable functions on G, a compact group, no matter
G is locally connected or not. In fact, combined with the discussions given there,
o u r  th e o ry  e x h ib its  th a t fo r  each  n ,  the n-times continuously differentiable
functions on G in Bruhat's sense just coincide with ours.

The author w ould like to thank Professors T. H irai and N. Tatsuuma for
several discussions and kind suggestions. He also wishes to express his thanks
to Professors M. Sugiura and H. Yoshizawa for valuable comments on the theme.

N otation . Unless otherwise stated, G denotes an arbitrary compact Hausdorff
group with unity e and Haar measure (1,-; such that SG  d G =  I. Ô denotes the dual of
G, i.e., the set of all equivalence classes of continuous irreducible (hence finite di-
mensional) unitary representations of G .  The dimension of a E  6-  is denoted by
As a representative of each class a e 0, we choose a  unitary matrix representation
U(a) and fix it once for all.
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R  and C  designate the fields of reals and compexes, respectively, with the
usual topologies. For any topological group G, c(G) denotes the connected com-
ponent of the unity, and R(G) the totality of one-parameter subgroups of G, where
a  one-parameter subgroup means a continuous homomorphism of the additive
group R into G .  For x E G and a ER(G), x - 'ax denotes the member of R(G) defined
as x - tax(t) = x - la(t)x  (t n R ) .  For a C-valued function f  on G and xo E  G , the
functions f ,  f r0 ,  f  and f  are defined as follows: x 0 f (x )=f (x 6 ' x ), f x .(x )=f (x x o ),
f (x )=f (x - 1 ) and f (x )=f (x ) (complex-conjugate) (x E G).

Let M be a topological space. C(M) denotes the space of all C-valued continous
functions on  M . For f  e C(M), supp ( f )  denotes the support of f ;  and for a subset

C(M ), ,99 +  the totality of non-negative R-valued functions in Y .  If M  is a
C"-manifold, C"(M ) (n= co, 1, 2,...) denotes the usual class o f C-valued, n-times
(infinitely if n = co) continuously differentiable functions on M. For any topological
linear spaces E  and F  over C, L (E, F) denotes the space of all continuous linear
mappings of E into F.

§ 1 .  Lie algebra and one-parameter subgroups

1.1. In this paragraph, following Mckennon [4], arranged suitably for our
purpose, we associate a Lie algebra with each compact group G, and set up a bijection
of it onto R(G).

Definition 1.1. For a E d , let 9 ) (d , C )  be the totality of complex matrices of
order d,. Let 1(G) denote the set of all matrix fields T=( T(17))„,6 on 0 such that
T(a)E9N(d,, C) for each a e a i l>  We regared 1(G) as involutive algebra over C
under the coordinatewise usual algbraic operations of matrices and the involution

=(T(o -)*) ,  w here T(o-)*  denotes the hermite conjugate o f T ( a ) .  The
The element I =(1(a)),,E 6 , where 1(a) is the identity matrix in 9..n(d,, C), is the identity
of the algebra 1 ( G ) . For a E G, let 11 L. denote the Hilbert-Schmidt norm on 9A(d„,
C), i.e., II (tic (A* A)) 1 1 2  (A ea)l(d , C)), and P, the seminorm on Z(G), viewed as
vector space, defined by P,(T)=11T(a)11, ( Te 1 (G )) . We equip 1(G) with the locally
convex Hausdorff topology defined by f13 „:o - EG;.

Let the decomposition of the tensor product crOo- ' of a, a' c d' into irreducible
components be given by crO oi=o -

1 8  • • o 0-,„ (o-
1 ,..., o- „, e 6). If we use the repre-

sentatives, this is expressed as

(1.1) U(a)0 U( a') = V - '(U(cr 1 )0. • • C)U(a„,))V,

where m e a n s  the Kronecker product of matrices, 8  the direct sum of matrices

in the conventional sense, and V is a unitary matrix of order

(1) If the representative U (a) of a a ed is exchanged for another, say, V U (a )V ' (V  a unitary
matrix in 93.1(d „ C)), then the a-th coordinate T (a) of every T E  (G) ought to be considered
as transformed to VT(a)V - I. But, since we have fixed the representative U(u) of each a E
this respect disappears, and X (G) can be viewed simply as the cartesian product of 9N(d „, s.
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Definition 1 .2 .  L e t T =(T (c)), E 6  b e  a  member o f  A G ) .  Assume th a t if a
decomposition of o- Oa' (a, a' e 0) into irreducible components is given by (1.1), then

T(o-)0 T ( a ) =  - '( T(o- ,) ••• CIT(a„,))V

holds. In this case T is said to satisfy the condition (C 1 ). While, if

T (a)(:)/(a)+ I T(o-')= / - !(T(o- ,) C1 • • • 10 T (o - „,))V

holds under (1.1), T is said to satisfy the condition (C2).

It is obvious that the totality of the members of E(G) satisfying the condition
(Cl) (resp. (C2)) is stable under the multiplication (resp. linear operations) and the
involution.

F o r  T e 1(G), we denote by exp T  the member o f .E(G) with a-th  coordinate
1exp T (a) (a e -6), where each exp T (a) is defined by the Taylor series E;;°=c, T (a)".

Lemma 1 . 1 .  For T =(T (o -)), c 6  e g G ) , the following two statements are eguiva-
lent.

( a )  T satisfies the condition (C2).
( n )  exp IT satisfies the condition (Cl) for every  t e R.

Pro o f . Take any a, a ' e  -6 and assume (1.1). Put, for t e R,

S(0= exp tT (a) , S '(0 =ex p  tT (o -'),

S k (t)=ex p tT (a k ) in),

and define

A (0= S (t)OS '(t)—  / i(t)C)• • • CIS,n (t))V.
Then

(1.2)
d  A ( t )   _  

T(o-)S (t)OS '(t) + SW ® T(o-')S '(t)dt

— 1/ - t ( T(o-
I )S 1(1)C)•••0T(a,„)S„,(1))V

=(T (a)0 /(a')+/(a)0 T (o - '))(S(t)(DS'(1))

—1/ - l( T(o- ,) 0•••Q T (o -„,))VV - '(S,(t)(:)•••C)S„,(0)V .

If we assume (a), (1.2) can be written as

dA (t) =(T (a)01(.7')-1-1(o-)0T (o-'))A (t).dt

Since A(0)=0, this demands that A(t)=- O. H e n c e  exp t T satisfies the condition (Cl)
for every t e R .  Conversely if we assume (b), then A (t) E-_-- O. Therefore, from  (1.2),

T(a)01(o - ') +/(o - )0 T ( a ) - 1 / - qT(o - i )(:)•••EDT(a„,))V=0.

This shows.that T satisfies the condition (C2). q. e. d.
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Definition 1.3. Ô  denotes the set of a ll T  in  E(G) having the following two
properties:

(a) T satisfies the condition (C1), and
(b) each coordinate T (a) of T is unitary, i.e. T*T= I.

is called the bidual of G.
;,‘

Plainly G becomes a  topological group under the multiplication and topology
in 1(G), i.e., the coordinatewise o n e s . The element /=(/(a)) 0„ 6  is  the unity of this
g roup . F o r each x E G, put Ux - (U x (o)),E,- (e E (G )). Let

 1 G
 denote the map xi-3 U x

of G into E (G ). The next lemma is well known as Tannaka duality theorem (cf.
[3], (30.5)).

Lemma 1 . 2 .  iG  is  a topological group isomorphism of G onto G.

Definition 1 . 4 .  A(G) denotes the set of all H in E(G) having the following two
properties:

(a) H satisfies the condition (C2), and
(b) each coordinate H(c) of H is skew-hermite, i.e. H* = -H .

Lemma 1 . 3 .  The set A (G) is stable under the R -linear operations and the
commutator product [H , H ']=H H ' -H 'H . A (G ) becomes a real L ie algebra under
these operations.

P ro o f . It suffices to check that A(G) is stable under the commutator product.
T ak e  an y  H, H'E A (G ). Obviously we h av e  [H, H T = - [H ,  H '] .  N ext, for

a'E 6, assume (1.1). Then

H'](cr i )C)•••10[H, Hi(o . „,))V

= [V - I(H(a i )S•••O H(a„,))V , 1/- 1 (fF(o- ,)OE•••■OH'(a„,))11

=[H(o - )0 I(o - ') +1(o- )(DH(cr'), H'(o- )0 l(o - ') + 1(00 H'(o- ')]

=[H , H '](o - )01(o . ') + l(a)0[H, H '](o - ').

This shows th a t [H , H '] satisfies the  condition  (C 2). Hence [H , HIE A (G).
q. e. d.

The next lemma is clear from Lemma 1.1.

Lemma 1 .4 .  A  member H  of  1(G) belongs to A (G) if  and only  if  exp tH e G
f or every  te R.

Lemma 1.5. T he  m ap  A(G)3 H1-3.esp tH  ( te  R )  i s  a bijection of  A (G) onto
R(G), the set of  all one-parameter subgroups of G.

Pro o f . By Lemma 1.4, the map R tH  belongs to R(d) for every H e
A (G ). The injectivity of the m ap  A (G)9 H 1-qexp t ill e R (G) is evident. Each
member of R(G) has the form Ux ( 1 ) fo r  some a e R(G) (Lemma 1.2), and each co-
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ordinate U„, ( 0 (a) of it is of the form exp tH(a) with some skew-hermite matrix H(a).
Put H=(H(o - )),rE o . Then, by Lemma 1.4, H e A (G ). Therefore the above map is
surjective. q. e. d.

Since G and d are isomorphic under i G, Lemma 1.5 can be viewed as setting
up a bijection of A(G) onto R(G).

Definition 1 . 5 .  116  denotes the inverse map of the bijection of A(G) onto R(G)
just stated. Thus

(1.3) iG(a(t))= exp thG ( a )  (a e R(G), t e R).

Lemma 1.6. A ssume that the compact group G is a Lie group with Lie algebra
g. For a e d, let 0U(a) denote the infinitesimal representation of  g  induced from
U (a ).  Then the map

e: ga C  Hx=(OU(a)X)„GeE(G)

is a L ie algebra isom orphism  of g onto A(G).

Pro o f . Since

(1.4) exp t Hx  = (exp t(aU (a )X )L e o

=  ( U e x p iX ( 6 ))o-Ed U exp t X  (t  E  R ),

the  map R a  tt--*exp tHx  b e lo n g s  to  R(G), and  hence Hx e A(G) by Lemma 1.4.
Since the m ap gaX Ue „p ,x  is  bijective to  R(6), (1.4) together with Lemma 1.5
shows that t is a bijection of g onto A (G ). Since each 3U(a) is a Lie algebra homo-
morphism, t is a Lie algebra isomorphism. q. e. d.

By the above lemma we can call A(G) the Lie algebra of G, any compact group,
compatibly with the case of Lie groups. Besides, we see from (1.4) that the map
A(G)a Hi-*exp H eÔ generalizes th e  exponential mapping in  L ie  group theory.
A(G) is not necessarily finite-dimensional. In  fact, a  direct product o f infinitely
many compact Lie groups gives such an exam ple. If the compact group G is abelian,
then, as is seen from Definition 1.4, the Lie lagebra A(G) is commutative and consists
of all pure-imaginary characters y  (i.e., homomorphisms into the additive group

—1 R) of G*, the Pontryagin dual group of G .  And exp y is the unitary character
1-*ev(c) of G*.

1 .2 .  Lie algebra of a closed normal subgroup. F o r  a, a' e C, w e denote by
a x a' the set of all irreducible components (e C) of aOa', and by o the element of
conjugate to a ,  i.e., the  equivalence class containing the complex conjugate rep-
resentation G U ( a )  to  U (c r ).  A  non-void subset o f  C  stable under th e  op-
erations x and conjugation is called a ring in C . For a subset 4 of d, [4 ] denotes
t h e  sm allest r i n g  i n  C  conta in ing  4. W e  p u t ,  fu rtherm ore , A(G, 4)=
{x e G; Ux (o- )= I(o - )  for a ll a E 4 1  a n d , fo r  a  closed norm al subgroup N  o f  G,
A(6, N)= {a e d; Ux (a)= /(o-) for all x e NI.
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Lemma 1.7. ( [3 ] , (2 8 .9 ) ) . ( i )  Fo r any  subset d  o f  0, A (G, z1) is  a  closed
norm al subgroup of  G, and A (6, A (G, LI))= [d].

(ii) For any  closed norm al subgroup N  of  G, A (0, N ) is a rin g  in  6, and
A (G, A (0, N ))=N.

Definition 1.6. For each closed normal subgroup N  of G, an ideal AN (G) of
the Lie algebra A(G) is defined as

AN (G)={ H E A(G); H(o- )= 0  for all o-  e A(C, N)} .

Before proceeding to the next lemma, note that R(G0 ), where G o is a topological
subgroup of G, consists of all members of R(G) with orbit in Go .

Lemma 1.8. Let N  be a closed norm al subgroup of G.
(i) iG (N)= { Te T (a)=I(a) f o r all a e A (0, N)l.
(ii) R(N)={1 eR(G); 17 G (a)EA N (G); .
(iii) A(N)-2= A N ( G )  (as Lie algebras).

P ro o f . Since A (G, A (6, N )=N , (i) is obvious. A member a of R(G) belongs
to  R(N) if and only if exp th,(a)e 10 (AT) for all t e R. By (i), this is equivalent to
that hG (a) n A N (G). Hence (ii). F ia n l ly  we prove (iii) by giving explicitly an iso-
morphism of A (N) onto A N ( G ) .  Let Ai be the dual of N .  Choose a unitary matrix
representation V(T) from each r e I Q  For o- e 6, let U(o- )1N  denote the restriction of
U(o) to N , and

(Cf)1N = W ; 1 (V (T i(a))C) • • CD V(T.(,)( 0)))

be its irreducible decomposition, where w, is a  unitary matrix of order d , .  We
define a m a p  of E(N) into E(G) as

(PM  = (W ; (S(t I (a)) e • • • e s ( T „ ) ( 0 . ) ) 14/,, G. (S

T hen , p la in ly , (p(i N (y))= i G (y )  ( y  e  N ) . Therefore, f o r  a e R (N )  a n d  t e R,
9(i„,(a(t)))= iG (a(t)), i.e., (p(exp thN (a))=exp th G (a). Hence 9(h N (a))=h G (a)
(oc e R(N)). This together with (ii) shows that 9  maps A (N) onto A N (G) in a one-
to-one w a y . Furthermore, we see from its definition that 9 ,  restricted to A(N),
is a Lie algebra homomorphism, hence isomorphism. q. e. d.

1 .3 .  Lie algebra of a quotient group. Let N  be a  closed normal subgroup of
G .  We can identify the dual (GIN) o f  GIN , the quotient group, with the ring
A (6, N ) in  6 naturally, including the ring operations x  and conjugation. As a
representative of each cr in  (G IN ) , identified with A (0, N ), the representation
G/N 9 xN1--+Ux (o) (x  e G ) can  be  taken . T hroughout the paper we keep these
conventions. Then, E(GIN) consists of matrix fields on A (C , N ). In particular,
the bidual (GIN)"' of GIN consists of all unitary matrix fields on A (0, N)satisfying
(C l) o n  it. Its group operations and topology are defined coordinatewise. While,
the Lie algebra A(GIN) consists of all skew-hermite fields on A (C, N) satisfying (C2),
with algebraic operations coordinatewise.
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Definition 1.7. L e t N  b e  a  closed normal subgroup o f  G .  rN  denotes the
restriction map E(G) 3 Ti-4 TI- ,A (o,N ) eE(GIN ). N  denotes the natural homomorphism
of G onto GIN, and Tr N  the map R (G )e co-r N .  e R(G I N).

Lemma 1.9. Let N  be a closed norm al subgroup of G.
(i) rN  m aps G into (GIN)", and the following diagram is commutative.

G  2 1 . * GIN

G  ,-E>„ (GIN)"

(ii) T he m ap  A (G)e HI-4rN ( H )  i s  a  L ie  algebra hom om orphism  o f  A(G)
into A (GIN), and the following diagram is commutative.

R (G) , R (GIN )

II G I th G /N

A (G) A (GIN )

P ro o f . Plainly rN  maps G (resp. A (G)) into (G IN )  (resp. A (GIN )), preserving
the  algebraic operations. The com m utativity of the diagram in  ( i)  is obvious.
Next, for a e R(G) and te  R , we have

exp trN (h G (a))= rN (exp th G (a))=rN (iG (a()))

=ionv(nx(cx(t))) (by (1))

icol( 7tv (a)(0)=ex p th G I N (TrN (a)).

Hence the commutativity of the diagram in (ii) follows, q. e. d.

The next lemma is important.

Lemma 1.10 ([4], Theorem  4). L et N  be the same as abov e. T hen frN  carries
R(G) onto R (G IN ) . Equivalently , rN  carries A (G) onto A (GIN).

Since the kernel of rN , restricted to A (G), is A N (G), we have the following

Corollary. A (G IN ) /1 (G )IA N ( G )  (as L ie algebras).

1.4. Structure of A (G).

Definition 1.8. Ho(G) denotes the totality of closed normal subgroups N  of G
such that GIN is a Lie or finite group.

Lemma 1.11. (i) A  closed norm al subgroup N  of  G belongs to H o (G) if  and
only  if N =A (G , A ) for some finite subset A g

(ii) d= u {A(d, N ) ; N  H o(G)}.
(iii) For any  neighbourhoods V  of  e  in  G  and 1 /' of  0  in  A (G), there exists

N e H o (G) such that N g V  and A N ( G ) g .  K . H e re  A (G) is equipped with the relative
topology of E(G).
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Proof. For proof of (i), we have only to recall that a Lie (or finite) group has
a  faithful, finite-dimensional, continuous, unitary representation. The easy detail
is om itted . For a e d, put N =A (G , {a}). Then N  eH o (G) (by (i)), and A (C, N )=
[{a }]. Hence (ii). Since G is isomorphic with u n d e r  iG , and the topologies of
and A (G) are coordinatewise, we can choose a finite subset d g C and c >0 so that

=  E  G ; 1l Ux (a)— Ue (a)11,7 < e (a e d)} g V  and

= {H e A (G); 1111(a)ll,<s (a eA)} V. g

Put N = A (G, d ) . T h e n , N  V, and AN (G)g -V ,. H e n c e  (iii). q. e. d.

It is seen from (i) and (iii) of the above lemma that 110 (G) is lower directed under
inclusion, and has the intersection {O .  An element o- e C is said to be torsion if
N =A (G, { a })  is open in G , i.e., the group GIN is finite. The totality of torsion
elements in Ô coincides with A(Ô , c(G)) ([3], (28.18)). Therefore, if G is totally
disconnected, every a e Ô is torsion, and hence, GIN is finite for every N E /M G ).
While, if otherwise, C contains at least one non-torsion element and so, as is seen
through an  ordinary isomorphism theorem, all such N 's  tha t GIN is a L ie group
form a  cofinal subfamily of H o (G). For N , N 'E  H o(G ) such that N N ' ,  denote
by re"  the canonical homomorphism of GIN onto GIN', and by r"  the restriction
m a p  A (GIN )e ,A (C ,N ') e A (G IN ') . T h e n  w e  have  the  p ro jec tive  systems
{GIN, irN ,N }  of Lie or finite groups and {A (GIN), rN ,N }  of Lie algebras. Evidently,
the limit of the former is isomorphic with G.

Lemma 1 .1 2 .  (i) T he map tit: A (G)E1-11-(rN (H)) N E „o ( G )  gives a L ie  algebra
isomorphism of A (G) onto the limit of {A (GIN), rN ,N }.

(ii) In case GIN and GIN' are Lie groups, r "  is the differential of n-N'N•

P roo f. ( i ) .  Put A, =f irn  { A (G IN ), r") . Obviously Ik is a Lie algebra homo-
morphism of A (G) into A , .  The injectivity o f IP is clear from Lemma 1.11, (ii).
Take any (11,),E , 0 ( , ) e A i , where HN e A (G IN ). We can well define the union H
o f  a l l  HN 's, view ing them  a s  m atrix-valued functions. Then H  e A (G ) and
O(H) = ( h r

 N)N eH 0(G )• H ence tp i s  surjective. (ii). For H e  A (G IN ), there exists
e R(G) such that rN (h ( ; (a))= H (Lemma 1.10) and so, rN ,N (H )=r N ,(hG (1)). Hence,

in view of (1.3) and Lemma 1.9, we have for t e R,

nN ,N (i -G )N  (exp t H ) ) = T r u ' N i G 1 N  rN (exp th G (a))

= i61 (exp th G (a))=7r N ,(a(t))= 7r N ,(a) (t)

=16)N ,(exp trN ,(h G (a) ) )=i -G )N ,(ex p trN ,N (H )).

This shows that r"  is just the differential of ItN, N. q. e. d.

Definition 1.9. R (G) is regarded a s  a  real Lie algebra isomorphic with A(G)
under the m ap hG . That is, for a, h' e R (G) and a, be R, aoc+ bl3 and [oc, 16 ] are
the elements of R(G) corresponding to ah G (a)+ bh G (I3) and [h G (a), h G (P)] under hG,



Differentiable functions on compact groups 333

respectively. Furthermore, A(G) is equipped with the relative topology of E(G),
and then, R(G) is topologized homeomorphically with A(G) under hG . (They are,
as real vector spaces, locally convex and Hausdorff.)

Lemma 1 .1 3 .  The locally convex space A(G) (i.e., R(G)) is isomorphic with
R', a direct product of  the straight line. Hence it is a  Baire space, and so, also
barrelled.

Pro o f . W e  c a n  regard  {A(GIN), r i,I ,N } a s  a  p ro je c tiv e  system  o f  finite-
dimensional, locally convex, Hausdorff, real vector spaces. L e t A , be its limit
space. Since the topologies of A(G) and each A(GIN) are coordinatewise, the map
tp given in  Lemma 1.12 is obviously homeomorphic from A(G) onto A ,. W hile,
A , is a  closed linear subspace of the product space o f a ll A(GIN)'s (N EHo(G))
which is evidently isomorphic with R'. H e n c e  A 1 is isom orphic w ith som e R'.
This proves the first assertion of the lem m a. Then, as a direct product of complete
metric spaces, A(G) is a Baire space, and so, barrelled ([1 ], Chap. 3, §1). q .  e .  d .

In  view of Lemma 1.12, the next lemma is rather well known. The proof is
omitted (cf. [5], §47).

Lemma 1 . 1 4 .  T he dimension (f inite o r inf inite) of  A (G ) coincides w ith the
usual covering dimension of the compact space G . It is f inite if  and only if  H o (G)
contains a totally disconnected member.

Before concluding this section, we quote one more lemma.

Lemma 1.15. ([4 ], Theorem 5). T he union of  the orbits o f  the  members of
R(G) is dense in c(G).

Since G Ic(G) is totally disconnected, and so, R(Glc(G)) is trivial, we have, by
Lemma 1 .8 , (iii) and Corollary to Lemma 1.10, A(G)= A c ( G ) (G)'_-- A (c (G )). The
Lie algebra A(G) is commutative if and only if  c(G) is abelian . Indeed, if A(G))

A(c(G))) is commutative, we see by Lemma 1.15 that c(G)" is abelian . Conversely,
if c(G) is abelian, A(c(G)) is commutative.

§ 2. Continuous differentiability of functions

2 . 1 .  Definition of continuous differentiability.

Definition 2 . 1 .  A C-valued function f  on G is said to be right (resp. left) differ-
entiable with respect to  a e R(G) a t x e G if the function f(xci(t)) (resp.f(a(— t)x))
of real variable t is differentiable at t= 0 .  In this case we define

d (P f(x ) —
d
d

t  f  (xa(t))1t=0

resp. 4 f ( x ) —  c
d
i t f(cx( t)x)It=o),

and call this value the right (resp. left) differential coefficient o f f  with respect to  a
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a t x. In particular, if f  is right (resp. left) differentiable with respect to  a at every
x e G, then the function xi-d V )f (x)(resp. ( x ) )  defined on G is called the right
(resp. left) derivative off with respect to a, and denoted by cgŒr)f  (resp. c/(

a l)f ).

Definition 2 .2 .  4 (G ) denotes the set of a ll  C-valued continuous functions
o n  G .  For each n=1, 2, 3,..., S ir) (G) (resp. S;P(G)) denotes the set of all those
fe  4 (G ) for which the successive right (resp. left) derivatives

dV;)f, d (
Œr24 ; )f,..., 4 r ) . • .4'2 d V

(resp. 4 1
i
)f , c0)...c/Wcef)

exist and belong to  So (G ) for any a i , a2 ,..., a„ e R(G).(2 ) (Obviously 61.r) (G)
e 2r) (G)D S (3r) (G)D • ••, an d  d'çi ) (G ).6 “2 ' ) (G)D S (

3 /) (G )_ • • •.) f ( G )  (resp. 6"(1) (G))
denotes the intersection of all Sr ) (G)'s (resp. 6°;,/) (G)'s) (n =1, 2, 3,...).

Suppose G is a Lie group. Then, of course, S,(,") (G) and
 e » ( G )  coincide with

each other, and give the class of n-times (infinitely if n=oo) continuously differentiable
functions on G, which can be defined by using local coordinates, too. The aim of
this section is to prove the following theorem for any compact group G.

Theorem 2 . 1 .  For each n= c13, 1, 2,..., the sets ‘;,r ) (G ) an d  e 1) (G ) coincide
with each other.

Since f(xa(t))=f((xax - 1 )(t)x ) (x e G, a E R(G)), w e see that ci(
Œr)f  exists on G

for every a E R(G) if and only if so with cV f .  But it is not so easy to see that d„( r)f
is continuous on G for every a e R(G) if and only if so with c/(2)f. Paragraph 2.3
will be devoted to proving this theorem. For the moment we make the following

Definition 2 .3 .  for n = co, 1, 2,..., w e se t S (G )=  r ) (G) n eno(G), and  call
its elements the n-times (infinitely if n=oo) continuously differentiable functions on
G.

Lemma 2 . 1 .  (i) S uppose th at f, g E e i r) (G). T hen  a f+ b g  (a, b e C ), fg,
f ,  ,co f  and f x 0  (x e G) belong to e i r) (G ) .  A nd, for a ER(G), the following hold:

d(: ) (af +bg)=ad (
ŒrY +b4r ) g,

dV) ( f g )= (4 r )f)g  +f (d g),

cllr )  f = c1V)f ,

dar )  (X 0 f) X  0 (C IV Y

dV) (fx 0 ) =(dx 2 12x0 f ) . 0 .

The cooresponding assertions hold also for functions in 6 ) (G).

(2 ) Here the requirement for the continuity of f  itself is not excessive. Indeed, the existence and
continuity of all successive right and left derivatives of a function f  on G does not necessarily
imply the continuity of f ,  even if G is connected (cf. [6], page 56).
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(ii) A  C-valued function f  on G belongs to ei r) (G) if  and only  if  le  61' ) (G).
In this case, for a e R(G),

dlanf=(d(Œr)f)' .

Pro o f . It suffices to check the listed formulas. The first three are obvious.
The others are also clear from the following: ,f (x a(t))=f (x V x a(t)) , f x 0 (xa(t))=--
f (x x 0 x6ta(t)x 0 ), and f (a(— t)x )=f (x - ta(t)). q. e. d.

Corollary. Each 4,(G) (n= co, 1, 2,...) is an  algebra ov er C under the usual
algebraic operations of  functions, and stable under the lef t and the right trans-
lations, the inversion and the complex conjugation.

Pro o f . Easily seen from Lemma 2.1. q. e. d.

2 .2 .  Regular functions.

Definition 2.4. Let N  be a  closed normal subgroup of G .  For each n oo,
1, 2,..., we define a subalgebra 4,(G, N) of ',(G ) as

á,(G, N )= ff e (G); f (x y )=f (x ) for all x e G and y e .

4,(G , N ) is evidently stable under the left and the right translations, the inversion
and the complex conjugation.

Lemma 2 .2 .  Let N  be a closed normal subgroup of  G. ,4 C-valued function
g on GIN belongs to ( G I N )  (resp. ‘ ;' ) (GIN)) if  and only  if  gonN  e ei r ) (G) (resp.
e i l) (G )) . In this case, f or a e R(G),

(2.1) 4r)(gonN )=(4r2()9).7rN

(resp. 4 1 ) (gon N ) = ( 4 ( a ) g)o7t N ).

Pro o f . This lemma is clear from the equality (gonN )(xa(t))=g(n N (x)frN (a)(t))
(resp. (gonN )(a(— t)x)=g(Tc N (a)(— t)riN (x))) and Lemma 1.10. q. e. d.

Corollary. L et N  be the sam e as abov e . Fo r each n= co, 1, 2,..., the map
SH(GIN) gl-->gon N  is  an algebra isom orphism  of „(GIN ) onto (SVG, N).

P ro o f . Easily seen from Lemma 2.2. q. e. d.

In particular, each S o o (G, N ) with N  in H o (G) can be regarded as the class of
infinitely continuously differentiable functions on the Lie or finite group GIN.

Definition 2 .5 .  Define a subalgebra .9(G) of e c o (G) as

g(G)= U N ); NE Ho(G)} .

Following [2], each member of 9(G) is called a regular function on G.

Let Y (G ) denote the set of all trigonometric polynomials on G , i.e., finite
C-linear combinations of coordinate functions u (

j ak ) ( j, k =1 ,..., d ,, a e  d )  of the
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representations U(o-). For a E R(G), put HOE = hG ( a ) .  Then, for each o- e 6 and x e G,
x a ( t ) ( 0 =  x (Cr) exp tH,c(o-)  and UOE(_t)OE (o-) = (exp — tH„(0)Ux (a). Hence we see

that the coordinate functions u (11,2 of U(a) belong to e,(G) with derivatives

(2.2) cror)U(o-)= U(a)HOE(o) and

(2.2') crOEI)U(o)=— HŒ(a)U(a) (a e R(G)) ,

where the left hand sides mean to take derivatives coordinatewise. So it is also
clear that each u (11,) belongs to d'c,(G), and therefore, to g oo (G, N) with N =A (G, fo- D.
Thus we have seen that "(G ) is included in g ( G ) .  Evidently "(G ) is a subalgebra of
9 (G) stable under the left and the right translations, the inversion and the complex
conjugation.

Partial integration formula. Suppose f , g E g,(G) and a e R (G ). Then

d (
Œr) f  (x )d G x 4") f (x a(t))d G x

G G

dddt(x c c ( t) )d G x  — f ( x ) d  x
d t

= 0
G G

Replacing f  by f g ,  we have

(e f)(x )g (x )d G x=  — 1G  f  (x)(df )g)(x)d G x.

The same holds also for the left differentiation.

Example 1. Let Q  be the discrete additive group of rational numbers and G
its Pontryagin d u a l. Identify 6 and Q  canonically, and denote by X r

 the unitary
character of G corresponding to r G Q, i.e., (x, xr )=(r, x ) (x e G ) .  The commutative
Lie algebra A(G) consists of all pure-imaginary characters of Q, and so, 1-dimensional.
Each a e R(G) is  of the form (r, a(t))

=
e

t v r  (r e Q , te R ) with some v e — 1R.
Hence

crOE");4-= — dal ) Z0= vi7r.

N o w , fo r p =1, 2 , . . . ,  p u t  N p -= A(G, {11 p!}). Then (GIN p r =A (0 ,  N )=
[{ 1Ip!} ], N p =A (G, [{ 1Ip!} ]) and [{1/p!}] = { qlp!; q=0, ± 1, ±2,...}. H en ce
{N ;  p = 1, 2,...} is cofinal in 1-10(G) and so, g(G)=-U p'=, e cc (G, N a). Furthermore,

since (GIN p ) ' ={ q Ip ! ; q =0 , ± 1 , ± 2 ,. . .} ,  e x o p , =V  zgh„ and the partial

integration is valid, we can show in the same way as in the classical case that each
d'oo (G, N )  consists of all functions on G that permit Fourier expansion by Iz  ; q=
0, + 1, + 2,...} with rapidly decreasing coefficients. Thus the functions in 9 (G)
have been characterized. On the other hand, take any absolutely convergent series

,T= cp  of non-zero complex numbers and define

f (x )=E ;=, c p z i l p ,(x ) (x  e G).

Then the termwise differentiation shows immediately that f  is infinitely continuously
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differentiable. But f  is not regular, since it belongs to none of S c o (G, N p ).
By the way, the following should be noted here: G is connected; each N p  is

totally disconnected and GIN p  is isomorphic with the 1-dimensional torus; G is locally
isomorphic with (GIN,,) x N p  for any p, but not isomorphic.

Example 2. Suppose G  is finite dimensional (see Lemma 1.14) and separable.
In this case let us construct a function f E S (G )  such that f = f y  for y e G implies
y = e .  I f  G  is neither Lie nor finite, such f  is  no t regu lar. T ake  a  linear base

a„ ; o f R (G) (see Definition 1.9) and put H i = h G (c9) (1  =1,..., n). As
is countable by assumption, put 6= la i ; i = I, 2,...1. For each i, take a non-singular
matrix C(cri )E9I1(da i , C ) and m i > 1 so  that m i is larger than any of the absolute
values of coordinates of H i (ai ) (j =1,..., n) and C(o-

i ). By (2.2) and (2.2)' we have,
for any fl i  =  E l i =1e R ( G ) ( p = 1 ,  2,...),

d (firi
) • • • C14 ) Tr (U(a i )C(a i ))

= E a Hi • • • ap i p  Tr (U(o-
i )H i i (ai )• • .1-/ ( a i )C(ai )),

c/(
f i li )  • • • d (i p

) Tr ( U(cri )C(o-
i ))

= E ( -1 )Pa i i ,•••a p h , Tr (H i i (o-
1)• • •H i p (o-

i )U(a i )C(a i )).

The coefficients of the d i, terms of each of these trigonometric polynomials do not
exceed  nPaPdg i mf+1 i n  abso lu te  va lu e , w h e r e  a= max II akij ; i k

= 1 ,
•••

,

k =1 ,. . . ,  p l .  Hence, if we define

f (x )=E 7 1 1  i - 2 d;i2 (n ida,m i)i Tr (Ux (a i)C(a1)) (x E G),

the termwise differentiation shows that fE ( G ) .  Here, if n =0  (i.e., G  is totally
disconnected), we replace it by  1 . N ow  w e show that this f  satisfies the required
condition. Supposef=fy .  Then, by uniqueness of Fourier expansion, Uy (ai )C(cri )=
C(cri)  fo r a l l  i. Since each C(ai )  is non-singular, th is im plies tha t U y (a i ) =-
1(ai ) ( i=l,  2,...). Hence y =e.

2 .3 .  Proof of Theorem 2.1.

Lemma 2 .3 .  Fo r each neighbourhood V  o f  e  in  G , there ex ists a function
0 E 2(G)+ such that supp(0) g V and O d G =1.

.  G

Pro o f . Take a neighbourhood W of e and N e 110 (G) so that WN V .  S in c e
GIN  is  Lie or finite, there exists g e ( G I N ) +  such that supp (g)g n N (W ) and

gdG m 0 O. Put f= gofrN . T h e n  f E d '( G , N ) ,  s u p p ( f ) -- V  and S  fd G  O .
G/N G

Therefore, suitably normalizing f , we obtain O. q. e. d.

Lemma 2 .4 .  L et m  be a  complex R adon measure on G and f a  g ( G )  (resp.
81' ) (G)). Then m* f a (S t ) (G ) (resp.f*m E ey)(G) )  and, f or a e R(G),
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(2.3) da,r)(m*f) = m* ( 4 r )  f )

(resp. cr,1) ( f * m ) =( 4 ' )f )*m ).

Pro o f . The differentiation of f (y - 1 xoc(0)dm(y) andf ( Œ ( - t ) x y - 1 )dm (y )
G G

in t  under the integral sign proves the lemma. q. e. d.

From Lemma 2.4 we see that iffe  S c,(G), then tn*  f e  6 t ) (G) and f  *m  e 6V(G).
Now suppose f  e S co (G, N) with N E H o ( G ) .  Then, m*f and f*m  are constant on each
coset of N , and so, can be viewed as functions on G IN . By Lemma 2.2, they belong
to 6r(; ) (G, N) and W (G , N )  respectively. But, since GIN is Lie or finite, ( G / N ) ,
6 V (G /N ) and  d '(G IN )  coincide with one another. H ence both  m * f  and f * m
belong to d '„(G , N ). Thus, we have shown that if f  E 9(G), then both m* f and f  *m
belong to g(G).

Definition 2.6. We denote by P o the norm on the C-linear space 10 (G) defined
as P o ( f )= sup I f(x)1 (f  e 4 (G )) , and topologize d'o (G) b y  it. F o r  any c a, e

xeG
R(G) (k = 1, 2,...), Pa r .• (resp. Œk) denotes the seminorm on the C-linear space
e kr) (G) (resp. 61' ) (G)) defined as

P.1•••co,( f) = sup d (4 ) —  ct,r2f (x)i Sicr)(G))
xeG

(resp. P1 1- /k(f) =sup I c/(2,) • • • 4'2 f  (x)I ( f  e e k i) (G))).
xeG

For n= oo, 1, 2,..., we denote by gr ) (resp. 'g") the family

{Po, Pac,..•Œk ; 1 <k<11+1, oc i ,..., Œk  e R(G)}

(resp. {Po , Par 'a k  ; 1 k< n + 1, ak e R(G)}),

and topologize r'') (G) (resp. élP(G)) by it. Thus the  C-linear spaces 6r;,r) (G ) and
»(G ) (n  oo  , 1, 2,...) are locally convex and Hausdorff.

Lemma 2.5. Let be a neighbourhood base at e  in G .  For each ve./1/",

choose a function Ov e 9 (G)+ so  that supp (Or ) g. V,, an d  1  0 4 G = 1  (Lemma 2.3),

and regard .A r as directed by defining v >v ' if  V„g. V . T hen, f or each f E  e n G )
(resp. gl,' ) (G)) (n= oo, 1, 2,...), the net {0,*f},, e x  (resp. If*O v I r e „ )  lies in 9 (G )  and
converges to f  in ‘ (,r) (G) (resp. 6°;,1 ) (G)).

Proof. E 9(G ) implies 0,,*fe 9(G), as remarked above. Take any ai .............. Œk E
R(G) (0 _ k <ti+ 1). Let Da t ...,k denote the map f i-d V i

) • • .4 r2 f  of 611") (G) into
where we put SLr) (G )=S 0 (G), and agree that if k =0 , means the identity map
on 60;to ( G ) .  Then, by (2.3) and the uniform continuity of Da i ...,,k f  on G,
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= 0,(y){(D„,.... k .f x)— (D„,...«J O N G Y
G

sup I x)—(1)„i...„,f)(x)I
ycv v

--->0 (v—>0), uniformly w.r.t. x e G.

Hence the assertion for f e d';,r) (G ) .  The other can be checked similarly, q. e. d.

Before proceeding to the following Lemmas 2.6-2.10, recall Definition 1.9 and
Lemma 1.13.

Lemma 2.6. Let fe  ei r ) (G) (resp. 0 ) (G)). Then the map

c1V)f  (resp. 4 1 )f )

of R(G) into go (G) is R-linear.

Pro o f . We prove the assertion for f e eir) (G ) .  First suppose f e .9(G), and
take N e Ho (G) and g E d'o o (G/N ) so that f=gon N . Then, since the map TrN o f  R(G)
into R(GIN) is linear (Lemma 1.9, (ii)) and GIN is a Lie or finite group, we have,
for a, b E R and a, fi e R(G),

cearc,) +bp f =  (drtr
N  (act+ b p )g )

°
 N (': (2.1))

=(ad (4,),(Œ ) g+bd ( o ) g)on N

= ad(
Œr) f+ bd (

f ir) f ( (2 .1 )).

Next, for any fe  61r) (G), there exists a net ILI A in  g (G) converging to f  in  e i r) (G)
(Lemma 2.5). T hen, for each a E R (G ), {41,1, converges t o  crar) f  i n  go (G).
So the linearity of the map al—>c/V)f  follows from that of every map al-->d(

Œr)f t .
q. e. d.

Lemma 2.7. L et {a ,}, be a ne t in  R (G ). I f  this net converges to a in  R(G),
then faA(t)1À converges to a(t) in G for each te R.

Pro o f . put hG (Œ À )= (11 (0 )),6  and  hda)-=(H(a)) f f e d . Then, by assumption,
11H2(0) - 1 (011,—>0  0.—>0) for each a e 6, and hence, Ilexp t H ,t (o-) — exp tH(o-)11,—*0
(2—>0). This proves the lemma. q. e. d.

Lemma 2.8. For each f  e ei r ) (G) (resp. ‘ (,"(G)) and X E G, the map

a c4,r)f(x) (resp. 4nf (x))

of R(G) into C is R-linear and continuous.

P ro o f . We prove the assertion for f e ei r) (G ) .  The R-linearity of this map is
clear from Lemma 2.6. We demonstrate its continuity. For s> 0, put B ,= {z e C;
1z1 and for n=1, 2,..., define

g„(a)= n i f  (x a (- n - ) )  — f (x )}  (a e R(G)).
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Then, for each a e R(G), lim g„(a)=d1f )f (x )  and so, the set  { g 0 (Œ)} 0  is bounded.
n-.00

Therefore, for a e R(G), there exists a positive integer k that a e g;1(Bk.J.
Hence vzc:=, ( r =  gT,'(B k , ) )= R (G ).  On the other hand, by Lemma 2.7, each g„
is continuous on R(G) and so, each ry-„_, g; 1 (B1 1 )  is closed in R (G ).  Since R(G)
is a Baire space, it follows that, for some 1(0 , G1(13„01) contains a  non-void
open subset 0 of R (G ).  Hence it follows that d(,,r)f (x)e B k ., for all a G  0 .  Now take

1 any ao E 0 and put 01— 
2 k 0

 (0  a0 ). Then 0 1 is  a  neighbourhood of 0 in  R(G)

and, by R-linearity of the map al-tiY,' )f (x), we have dx
( r)f (x)E B, for all a e 0 , .  This

proves the continuity in question. q. e. d.

Lemma 2 .9 .  Let f E  r ) (G ) (resp. Sti " (G ) ) .  Then the map

(a, x)I---> clV )f ( x )  (resp. cV f (x ))

of R(G)x G into C is continuous.

P ro o f . As e i r) (G) and 61' ) (G) are stable under the complex conjugation, we
can assume without loss of generality that f  is real valued. For x e G, let (p., denote
the map a)--4 x r)f (x )  of R(G) into R .  By Lemma 2.8 each 9 ,  belongs to  R(G)',
the dual space of the locally convex space R (G ). The set {9 x ; x e G I is plainiy
bounded in  R(G)' relative to  the weak topology cy(R(G)1, R(G)), and hence equl-
continuous because R(G) is barrelled (Ell Chap. 3, §3, Theorem 2). This together
w ith  th e  inequality  14 ' )/(x)— d (4)f (x0)1< d(4) f (x)I + idWf (x) — cl (4,)f (x0)1
shows that the map (a, x )'-cl,r )f (x ) is continuous. The continuity of the other map
can be proved similarly.  q. e. d.

Lemma 2 .1 0 . The m ap (a, x ) i- x - locx of R(G)x G into R(G) is continuous.

P ro o f  Put li0 (a)=11=(1./ x (a))0 e 0 . Then h,(x - lax)= II,-,1-1„Ux =(U x -x(a)H c,
(o- )U,(a)), E d . Hence the assertion ,q .  e .  d.

Lemma 2 .1 1 . A  C-valued function f  on G belongs to 6“,r) (G) if  and only  if  it
belongs to ‘ 1 ) (G ) .  A nd in this case,

clr )f (x)= —d - i f ( x )  (a E R(G), x E G) .

P ro o f . S in ce  ,f(xa(t))=f(xa(t)x - lx) ( x  e G, a E R(G), t e R), this le m m a
follows immediately from Lemmas 2.9 and 2.10. q. e. d.

Lemma 2 .1 2 . A  function f  belongs to e l ) (G ) i f  and  only  if  it belongs to
SY ) (G ) .  In this case,

clk) d(
Œnf = 4 1 ) d O e  (a, 13e R(G)).

Pro o f . Assume that f e et ) (G ) .  Then, by Lemma 2.11, f  and ct(i )f  (fl e R(G))
belongs to all ) (G ). Now take any x e G and a, f3 e R(G). Define, for t e R,
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g(t)=dY )f (x ,6(t)), and

g„(t)= n f (œ  — -j—n ) x13(t))— f (4 ( 0 }  ( n = 1 ,  2,...).

Then, as n tends to infinity, g(i) converges to g(t) for each t e R .  On the other hand,
since dk )f  E 611 ) (G), we have by the mean value theorem

d
d

t g „(t) = n i d &  (— x )6(0)—  dkV (xfl(t))}

= d,"(d (l )f ) (cc(s„).0(t)) (—  --1
17 < s „ <0) .

As n tends to infinity, this converges to c» dV )f(xfi(t)) uniformly in t, because d (Pd (
f ir)f

is uniformly continuous on G .  Hence the limit function g(t) is differentiable and

d  g(t)=ti (
Œnd (i ) (xfi(t)).dt

Therefore, in particular, df ir) (4 1)f )(x ) exists and is equal to  dœ ndi )f (x). Since x
and fi are arbitrary and di nci(

p r)f  is continuous, this shows that ci(2 )f  e e i r) (G ).  Since
a is arbitrary and 61r )  (G) = ei l ) (G) by Lemma 2.11, we have f  c e n G ) .  In the same
way we can prove the reverse assertion that a function in  cq ) (G) belongs to

q. e. d.

We are now in the position to complete

Proof  o f  Theorem 2.1. It suffices to prove the assertion for n=1, 2, 3,....
But the cases n=1, 2 have already been verified in Lemmas 2.11 and 2.12. So we
make the proof for any n  by induction. It suffices only to show th a t  e rr) (G).g_
S,(»(G) (n> 3), because the reverse inclusion can be shown sim ilarly. Take any
n >3, and assume that e„r2 1 (G)g61,121 (G). Under this assumption we show that
Str) (G)g d';,"(G). Suppose je  e„, )(G). Then, by repeated use o f  Lemma 2.12,
we have for any n — I and any a, R(G),

d'i ir,) • • • d i irr ) (c11," f)= d (2 ) (4", ) • • • d (
p r) f ).

Since c/V) • • •di rp
) f e  d 'i '(G )=69 ;' ) (G), the right hand side of this equality is continuous

o n  G .  Hence dOE'Ve e„r_) ,(G) a n d  so , by  our assum ption o f  induction, dOE
( ' )/ e

e n ( G ) .  Since a is arbitrary, this shows that f  e  en n (G ). Hence g;,r )( G )  (! ) (G).
q. e. d.

By Theorem 2.1, d'„(G)=61,''(G)= e„' ) (G )  (n = oo, 1, 2,...). T h u s  w e  se e
that it is perfectly natural to call the members o f cr(G) the  n-times (infinitely if
n = oo) continuously differentiable functions o n  G .  It should  be noticed that
Theorem 2.1 permits us to make mixed derivatives 4Y  ••• A r

p
) 4 12 • • • f  ,  for f  E S(G)

(n=oo, 1, 2,...) and O S pl-g<n+ 1. Here the 'operators' dV ) and d(
f l i) (a, fleR(G))

commute with each other on 1 2 (G), as was shown in Lemma 2.12.
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§ 3 .  Structure of the spaces 6' „(G) (n = ,  1,2,...)

3 .1 . Structure of 6P„(G)'s as sets.

Definition 3.1. H(G) denotes the totality o f  closed normal subgroups N  of
G  such that GIN  is finite dimensional (cf. Lemma 1.14), and H 1(G) the subset of
H(G) consisting o f a ll N e H(G) such that GIN  is separable. (N eedless to say,
Ho (G)g H,(G).)

Note that if G is finite dimensional, H(G) consists of all closed normal subgroups
of G, containing in particular the subgroup {O.

Lemma 3.1. L et N  be a  closed norm al subgroup of  G. The follow ing three
are equivalent: (a) N e H(G); (b) c(N) E H(G); (c) c(N o )g N  for some N o e Ho (G).

P ro o f . Evidently c(N ) is, as well as N , a  closed normal subgroup of G , and
GIN ;-'_-(Glc(N))1(NIc(N)) (as topological groups). Here N Ic(N ) is totally discon-
nected. H ence, by Lem m a 1.8, (iii) a n d  Corollary to Lem m a 1.10, A(GIN)
A (GIc(N )). This proves that (a) and (b) are equivalent. Next, if we assume (c),
t h e n  c(N o ) E H (G )  a n d  GIN ''(Glc(N 0 ))1(N Ic(N 0 )). H e n c e  A (G IN ) is f in ite
dimensional. That is, (a) holds. Conversely, assum e (a). Then, by Lemma 1.14,
there exists a closed normal subgroup N o of G containing N  such that N o /N  is totally
disconnected and (GIN)I(N o IN ) (--If-GIN 0 )  is  L ie or finite. H e n c e  c(N 0).g_N and
No eH o ( G ) .  That is, (c) holds, q. e. d.

A topological group is said to be locally connected if the connected open sets
containing its unity e form a neighbourhood base at e. A finite dimensional compact
Hausdorff group is locally connected if and only if it is a Lie or finite group ([5], §47).
The direct product of a family of compact Hausdorff groups GA. is locally connected
if and only if each G, is locally connected and all except at most a finite number of
GA 's are connected.

Lemma 3.2. The following three are equivalent: (a) H (G )=H 0 (G); (b ) c(N) E
H 0 (G)for every N e H0 (G) : (c) G is locally connected.

P ro o f . Since c(N )EH (G ) for N  eH(G) (Lemma 3.1), (a )  implies (b). Next
assume (b), and take any neighbourhood U of e. Then we can choose a neighbour-
hood V of e and a connected N e H o (G) so that V N g U . Since GIN is Lie or finite,
there exists a connected open neighbourhood W' of 7r,,„(e) contained in nN ( V ) .  Then
W=7E,TAW') is a  connected open neighbourhood of e contained in  U .  Indeed, we
have only to check its connectedness. Suppose contrary. Then there exists open
sets 0 1 a n d  0 2 in  G such that (Wn 0 1 ) U (Wn 0 2 ) — W and ( Wn 0 1 ) n (wn 0 2 )=0.
Since N  is connected, each coset xN  of N  contained in W meets only one of 0 1 and
0 2 . Hence, for 01=7r,„(0 i) (1= 1, 2), (W' nOD u (14/' n O )= W ' a n d  (W' n n

co)=0, which contradicts the  connectedness o f  W '.  Thus we have shown
th a t  (b ) implies (c). Finally assume (c). T h e n , fo r  N  e H(G), G IN  is finite-
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dimensional and locally connected, i.e., a Lie or finite g r o u p . Hence (a). q. e. d.

Lemma 3 . 3 .  Suppose a subset a of SA G) satisfies the condition

s u p  ArY (x)1 < oo
xEG fe2

f o r each an  R ( G ) .  T hen there ex ists N  e H(G) su c h  th at  1 g& ,(G , N ) . T h e
same holds if  the left derivative is employed instead of  the right one.

P ro o f . We can assume with no loss of generality that .4 consists only of real
valued functions. Then, for each f e  .4 and x c G, the map yo f x : co—d (Œr)f (x )  of R(G)
in to  R  belongs to th e  dual space R (G )' (Lemma 2.8). By assumption, the set
{(pf x ; f e a ,x e G }  is weakly bounded, and so, equicontinuous because o f  the
barrelledness o f  R ( G ) . Therefore there exists a  neighbourhood Y/' o f  0  in  A(G)
such that

(3.1) Id(;),f(x)1< 1 f o r  f e  .1, x  G  a n d  a E hZ l ( r) •

Take N E Ho(G) so that A N (G ) -1/ -  (Lemma 1.11, (iii)). Since A N (G) is linear and
hz '(A N (G))-=R(N), (3.1) demands that

4 1 ( X ) = 0 for f e d ,  x e G  a n d  a  e  R (N ).

Hence, for each f e x e G and a c R (N ), the function .f(xa(0) of real variable t  is
constant. Since the union of orbits of all a e R (N ) is dense in c(N ) (Lemma 1.15),
it follows that f ( x y )=f (x )  for f e x E G and y e c(N ), i.e., that ,4 c(N)).
Since c(N )e H(G) (Lemma 3.1), this completes the proof. q. e. d.

Theorem 3.1. Each f unction f  i n  g ,( G )  belongs to „(G , N ) f o r  some
N E H i (G).

P ro o f . Applying Lemma 3.3 to the singleton {f} of 6'1 (G ), w e see that f  e
N ,) for some N , e H ( G ) .  Let j be the Fourier transform off, i.e.,

j(6 )= f (x )U )*(1G x  ( o - E 6 ).

Put A = {o- 6 ;1 (000} and N 2 = A (G, A ) .  Then, for all y e N 2 and an 6 ,4 (a )=
Uy (o- )j(o- ) = j (a ).  So f y. =f  (y  E N2), because both sides have the same Fourier coeffi-
cients. T h u s  f n  1 (G, N 2 ). Besides, since A  is countable, so is [A ] ( =(GIN 2 )").
That is, G/N2  is separable. N ow  put N = N 1 N 2 . Then, obviously, f E  N ) .
And, since GIN ''-(GIN 1)1(NIN 1)  ( i=1 , 2), GIN  is finite-dimensional and separable,
i.e., N  E H,(G). q.e.d.

Corollary. For each n= oo , I,  2 ,..., the space (G) coincides w ith the union of
all d'n (G, N )'s with Nn 11 1 (G).

By Theorem 3.1 the study of continuously differentiable functions on compact
groups is reduced to that of those on separable finite-dimensional compact groups.
In  Paragraph 3.3 we shall show that 1 0 0 (G) coincides with 9 (G )  only w hen G  is
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locally connected. Therefore, in the above Corollary, we can not replace H i (G)
by 110 (G) unless G  is locally connected. A  continuous function on  a  connected
compact Lie group belongs to the C'3 -class if  and  only if  i t s  Fourier transform
decreases rapidly ([7]). Hence, if the compact group G is connected, each C e (G, N)
with N e H0 (G) consists of all functions on G expressed as

f ( x ) =  E  d; 1- Tr (U x (c7)C(a)) (x e G)
acA(6,N)

with a  rapidly decreasing (C(o- )) ," ( 6 ,N ) E E (G IN ). But, for a non locally connected
G, even if it is connected, the present author does not know yet how the functions in

(G)---.9(G) might be characterized.

Definition 3.2. For f e S,(G), N f  denotes the largest of all closed normal sub-
groups N  of G such that j e e i (G , N ). (The largest member really exists. It can
be defined as the closed subgroup of G generated by the union of all such N's.)

The following are easy to check through Theorem 3.1 and the isomorphism
theorem used in its proof: (i) for any fa d',(G), N f  e 111 (G); (ii) if f a g (G ) , then
N 1 e  H A G ). Conversely, for a  supplement to Theorem 3.1, we have the following

Proposition 3 .1 . Fo r any N e 111 (G), there ex ists a f u n c tio n  f e e (G ) su c h
that N f =N .

Pro o f . As Example 2 in Paragraph 2.2 shows, each g (G IN )  with N e H i (G)
contains a  function g  such that is 1,-= {nN (e)}. Put f= gon N . Then f eS „,(G ) and
N f = N. q. e. d.

Rem ark. Each of H(G) and Hi (G) is closed under finite intersections and so,
lower directed under inc lusion . Indeed, since H o (G) has this property, we see
by Lemma 3.1 that so does H (G ). As for H,(G), we reason as follows. Take any
N ,, N 2 e H ,(G ) . P u t  N =N , n N 2, Q = A ( ,  N 1 )  ( j = 1 ,  2 )  and A = Q 1 u 02.

Then N  A (G, .4).g N , and hence, A ( ,  N ) = [4 ] .  Since [A ] is countable as well as
Q, and 02, this shows that GIN is separable.

3 .2 .  Inductive limit topology for the spaces ‘„(G).

Definition 3 .3 . F o r  each  pa ir  (p , q ) o f  non-negative integers and  fo r any
fig E R(G), define the seminorm 11,:::47, on 

'  
p+ q (G) as

PflOE::1 ( f  )= sx
,r . • dv„)d,31,)• d o - ( x ) i  (f  E p + ,(G)).S 

In  case p= 0 o r q = 0, this coincides with one of POE,... „ Piii — flq and P, defined in
Definition 2.6. For n= co, 1, 2,..., let RV)  and R,( ; )  be the sanie as in Definition 2.6,
and put

Rn = { MI; ; 0< p+ g <n +1, ap, e R(G)} .

The topologies for each d'„(G) defined by R(„r) , g n  and R„ a re  denoted by r , ,  r ,
and r + respectively, without regard to  n. The space d',,(G) equipped with r„  r
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and r ,  is denoted by 64,;) (G), S;P(G) and a ' » ( G )
 respectively. (This definition of

the notations 8';,r) (G) and 6';»(G) agrees nicely with Definition 2.6.)

Plainly, r , is finer than each of r r and r,. It is easy to see that all spaces en c ),
e;,i)(G) and EV ) (G) are complete. For f  e 4,(G)(n = oo, 1, 2,...) and ak e R(G)
(O k <n ± 1 ) , we have PŒI— Œk(f )=P OE,.,.„,(f) by Lemma 2.1, (ii). Hence the map
f i-÷f  is a topological linear isomorphism of 61,r) (G) onto d' 1) (G).

Lemma 3.4. S uppose R (G) h as  a  countable linear base. T h e n ,  f o r  each
( G )  ( n = ,  1, 2,...), the topologies r „  r i an d  r +  coincide w ith one another, and

m ake it a Fréchet space.

P ro o f . Let Zi be a  countable linear base of R (G), and R;, the subset of R„
consisting o f a l l  Pf:::::!pq's such that 0 <p ± q < 11 + 1 and oci ,..., ct,„ 13,,..., e
Then is coun tab le . M oreover, since the maps al—a„r1 and ori—c/(2 )f  of R(G)
into go (G) are R-linear forf E d'i (G) (Lemma 2.6), R,ç defines obviously the topology
r , for e (G) (n -= co, 1, 2,...). Hence each 6°;,+) (G) is a  Fréchet space. Similarly,
we see that either of é l r ) (G) and enG ) is a  Fréchet space. Therefore, the con-
tinuous identity maps S;;"(G) cf 1—J e e r ) (G ) an d  61,+) (G) cf e e („' ) (G ) are
both open by the open mapping theorem. Hence the lemma. q. e. d.

Lemma 3.5 . L e t  N  b e  a  c losed  n o rm al subgroup  o f  G .  F o r  each
n=oo, 1, 2,..., the algebra isom orphsim  (Corollary  to Lem m a 2.2)

e„(GIN)n g g°7rN eSn(G , N )

is also a homeomorphism relative to each of r „  r i and

Pro o f . From Lemma 2.2 we have, for g e e n (G) and a l , .... ap , fige R(G)
(0_<.p+q<n+1),

where a-1,=ff,(oci ) and Pi = TrN (/3f ) (i p, j =1,..., q). Since the map ffN carries
R(G) onto R(G IN), this proves the assertion. q. e. d.

Lemma 3.6. T he topologies r,., r i a n d  r +  in d u c e  the  sam e topology  on
each 4,(G, N), for N e H(G) and n= cc, 1, 2,..., and make it a Fréchet space.

P ro o f . Clear from Lemmas 3.4 and 3.5. q. e. d.

Now we define an inductive limit topology for the spaces d'(G), which is rather
more proper than r +.

Definition 3.4 . For any closed normal subgroup N  of G, cr (,»(G , N ) denotes
the space d'„(G, N) equipped with the relativized r + . The fam ily {6';,+) (G, N);
N e H(G)}  is upper directed since H(G) is lower directed, and its  union is  d'(G)
(Theorem 3.1). Hence each á',,(G) (n= oo, 1, 2,...) can be topologized so as to be
the inductive limit of th is fam ily. This topology is denoted by r *  without regard
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to  n , and the space e n (G) equipped with it by d'„* ) (G). F or any closed normal
subgroup N of G, 6';,* ) (G, N) denotes the space 4 1(G, N) equipped with the relativized
r , .

r *  is, by definition, the finest locally convex topology for d'n (G) which coincides
with r ,  on each 4,(G, N ) with N E H (G ). As an inductive limit of Fréchet spaces,
each e„* ) (G) is barrelled and  bornological. For any closed normal subgroup N
of G, 4,(G, N) is closed in 61,+) (G), and so, in &* ) (G). If G is finite dimensional,
r *  coincides with r , .

Remark. Each g i,(G) (n = oo , 1, 2,...) can also be topologized so as to  b e  the
inductive lim it o f  {61+) (G, N); N  e H i (G)} . Denote this topology by r o . Let us
show that r o coincides with r *  for each n .  By definition, r o is obviously finer than
r * . To prove the converse, it suffices to show that th e  identity m ap o f  each
6“„+) (G, H) with N E H(G) into S,( ,°) (G), the space e n (G) equipped with r o ,  is con-
tin u o u s . Let f 1  (  =1 ,  2,...) be any sequence in d' » (G , N ) converging to O . Put
Q = A ( , N 1 ,), = S-21 a n d  N o = 1 1 , .  T hen N o =A (G, a n d  so,
A (6, N O= [ A ] .  H ere, since each 01 is  c o u n ta b le , so  is  [A ]. H e n c e  G/N o i s
separable. O n  th e  o th e r  hand , No e H(G) since  No P_ N .  Thus N o E 111 (G).
Therefore z-0 coincides with r ,  on Sn (G, N 0 ), and so, f1-4 ) in  d',( ,°) (G) because f i --*0
in 61,+) (G, No). This shows that the map in question is continuous.

Theorem 3.2. L et a  be  a  subset of  S n (G) (n= oo, 1, 2,...). The following
five statements are equivalent: (a) a  is r,-bounded; (b) a  is r + -bounded; (c)
is r„-bounded; (d) .4  is  r 1-bounded; (e) a is  a  bounded subset of  EV ) (G, N ) for
some N E H(G).

Pro o f . The implication `(a) (b) (c) and (d)' is obvious. By Lemmas 3.3 and
3.6, each of (c) and (d) implies (e). Since r ,  coincides with r  ,  on  each , n (G, N)
with N  e H(G), (e) implies (a). q. e. d.

Proposition 3.3 in the next paragraph will show that, in the above theorem, H(G)
in (e) can not in general be replaced by H I (G).

Theorem 3 .3 .  E ach  space  * ) (G)(n=oo, 1, 2,...) is complete.

This theorem is verified by following the way of proof of Theorem 1 in  [2].
Let us sketch the proof for our ca se . F o r a  closed normal subgroup N  of G, we
define a r * -continuous projection pN  of any 4, (G) (n= co, 1, 2,...) onto e n (G, N ) as

PN (f)(x )=  f(xY )d N Y  ( f e  e n (G ), x E G),

where dN  denotes the Haar measure on N  such that dN  = 1 . We have p,„i pN , =

P N 2 P N I  = P N 2  if N 1  N 2 .

Lemma 3.7. T h e  set { p N ; N  egl(G)}  is equicontinuous o n  each ef;,* ) (G),
where 91(G) denotes the totality  of closed norm al subgroups of G.
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P ro o f .  For each f n  (G ) ,  { p N (f ); N  e91(G)}  is bounded in  r,+ ) (G) and so,
equivalently, in r,* ) (G ) . That is, {pN ; N E91(G)}  is bounded relative to  the simple
topology for the space of continuous linear operators on r  ,*) ( G ) .  S ince  r i*) (G)
is barrelled, the equicontinuity follows, q .  e .  d.

Lemma 3.8. Let N  be a closed norm al subgroup of G. The algebraic linear
isomorphism gl-*gorrN  o f 6°,* ) (GIN ) onto e;,* ) (G, N ) is also topological.

P ro o f .  D enote  th is m ap  by  ip  and put H={ N ' e H(G); N  g N I  We see
tha t H(G1H)={ N ' IN ; N 'e  H ] and  g„(G, N )= U  ,n(G , N ')  (N ' e  H ) . By Lemma
3.5, each g;,± ) (GIN, N '/N ) (N ' E H ) is topologically isomorphic with 6a;,+) (G, N ')
under 0. H ence, in particular, tP is r * -continuous. On the other hand, 0 - 1  can be
extended to the map 11J- 1 0pN  of gu(G) onto Sn (G IN ) . If N o E H(G), then NN o  E H,
an d  111- 'op N  m a p s  d;,+) (G, N o ) in to  S;,+) (GIN , N N o IN )  continuously. Hence
qi --lo p N  is  r * -continuous, and so is 1 / ,--1 . q .  e .  d .

Lem m a 3.9. L et H be a directed subfamily of H(G) such that the intersection
o f  its members is {e}. Then Jr any N E 1 1 0 ( G ) , there exists N ,E H  such that
N 1 N .

P ro o f. The proof is the same as for Lemma 1 in [2]. q .  e .  d .

Proof of  Theorem 3.3. Set e =r,* ) (G ) . Let S ' denote the dual space of g,
and 6 " the set of all linear forms of d' that are a(g', g')-continuous on each equi-
continuous subset of 6 " .  The proof depends on  Grothendieck's completeness
theorem.

(I) For N e91(G), put SN =pN (S), .7(N = ker pN , S N =p N (‘')  and d r =ker
where p'N  denotes the adjoint of pN ,  and is endowed with the relativized r,,,.
Then, (i) =4+ Y ('N , g '=6”N +,iG, (direct sums); (ii) g"N  can be canonically viewed
as the dual space of SN; (iii) if N ,g  N 2 , then Cy ,  S 'N 2 and,Y("N , dif"N 2 .

(II) For TE X', put X T ={ pN (T ); N  H(G)}  . Its 0(6", g)-closure X T  is equi-
continuous on g  and contains T. Here we use Lemma 3.7 and the fact that the net
p(T ) (N  E  H(G)) on H(G) converges to  T in o-(6", ‘).

(III) Put X =  U { , ;  N  e H (G )} . Then, for each u e t h e r e  e x i s t s  an  N e
H(G) such that u(T )= 0 for Te X  n s - ',„u .  Indeed, if otherwise, we can choose N i

H(G) and T.; e r  (1= 1, 2,...) so that N i +  TJ E S N  n i rN i  and u(T )= l .  Here,
by (iii) of (I) and Lemma 3.1, we can assume that each N i  is connected. Put N,,

N 1 . T h e n  N J /N . e H(G IN 0 ) and ncf_, N j / N  = {trN .(e)} . Since each N i /N o,
is connected, this shows by Lemmas 3.9 and 3.1 that {Ni /N c o ; j=1, 2,...} is cofinal
in  H(G N 00). Therefore, by Lemma 3.8,  g  an (LF)-space and so complete.
Hence there exists an f e e N  s u c h  t h a t  u ( T ) =T ( f )  fo r  T e  g k . .  Since 4_ =
u7=1 , N i , and so, f e  gNi o  for some j„,, it follows that u(T 0 )=T 0 ( f )= O. T h i s  is a
contradiction.

(IV) Suppose Te ,Yri v “. Then we see easily that X T g X  n ,,,f;,.. Hence u
on X T and so, by (II), u ( T ) = 0 .  On the other hand, since 4 . is complete,' there
exists an f u c g tha t u (T )=T ( f u)  for Te e k .  T hen u ( T ) =T ( L )  for all
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T e r  . This completes the proof. q. e. d.

3 .3 .  Results from the structure theorem for finite dimensional compact groups.

Lemma 3 .1 0 . Let K be a compact (i.e., closed) subset of G and 0 a neighbour-
hood o f  K .  Then there exists a function fe .9(G) such that f(x ) 1 on K  and,
on 0 , 0.

P ro o f . See Proposition 2 in [2]. q. e. d.

Lemma 3 .1 1 . If  G  is totally  disconnected, the space .9- (G) of  trigonometric
polynomials on G coincides with 3(G).

Pro o f . For N E  H o ( G ) ,  the group GIN is finite, and so, the set (GIN)" is also
finite. H e n c e  e v e ry  g eXo (GIN) (— (G/N)) perm its the Fourier expansion
with finite terms. H e n c e  the lemma. q. e. d.

Lemma 3 .1 2 . S uppose G is f inite dim ensional. T hen, f o r each totally  dis-
connected N G 110 (G), there exists a topological linear isomorphism  of  go (N)
onto a closed linear subspace of  d' (,: ) (G ) having the follow ing tw o properties: (a)
4 = g on N f or all g e 10 (N ),  and (b) g e .9(N)<=>4 e .9(G).

P ro o f . It suffices to show that there exists a  continuous linear map gi-"g of
S0 (N ) in to  gt,"(G ) fulfilling (a) and (b). B y  the structure theorem  fo r finite
dimensional compact groups ([5], §47), there exists a  subset L of G fulfilling  the
following four conditions : (i) ee L; (ii) L is homeomorphic under 7r, with an open
neighbourhood of ir (e); (iii) U= LN is an open neighbourhood of e; (iv) if  we put
U'=7rN (L) x N and y' = nN (y ) for y e L, then the map Lk :  U ' (y ' , z)1-4 yz E  U  is  a
local isomorphsim of (GIN) x N  onto G .  Now take open sets V and W in  G so
that N g_ V, V g W a n d  Wg U, and 0 e g (G ) so that 0(x)E-: 1 on V and 0 (x ) 0  on
G  W (Lemma 3.10). For g e So (N), denote by g ' the trivial extension of g  t o  U',
and regard it as a function on U thourght Then g' is continuous on U, and for
any a e R(G) and x E  U, 4r ) g'(x) exists and = 0 . D e fin e

"d(x).= 0(x)g'(x) (x e G) .

Then, obviously, 4 e So (G) and = g o n  N .  Moreover, for any ape R(G)
(p=1, 2,...), we have

4 ';  • -d(4,) 4(x) = (c/Vi ) - • • c/Vi? 0)(x)g'(x) (x e G).

Hence 4 e  V G ). Obviously from this equality and construction of 4, the map gi-* 4
is linear and continuous. Now assume that g E  g ( N ) .  Since .9(N)=-- 3- (N) (Lemma
3.11), g  is expressed as E  c i ( to (finite sum), where ci e C, Ti E and each v(ri) is
a matrix element of Ti. Recall that each T i is an irreducible component of the re-
striction o- t iN  of some o- i e O ([3], (27.48)). Put N '=  A (G ,  {a i }) ( e H o (G)). Then
g e Sœ (N, N ' n N ) .  Hence g ' is constant on each coset of N' n N  contained in  U.
Therefore, if we take No E  H o ( G )  so that 0 e croc (G, N 0 ), then 4 e 8'0AG, N o n N' n N).
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Since N o ,  N ', N  e H o (G), this shows th a t  " e 9 ( G ) .  Conversely assume tha t gE
9 (G), i.e ., 4 e N ") for som e N" e Ho(G). T hen  g = J IN G S oo (N , N  n N")
and NI(N n N")-2-f-NN"IN". Here NI(N n N ") is totally disconnected and N N "/N "
is  Lie or finite. Therefore these isom orphic groups are finite. H e n c e  N n N"
H o (N), and so, g e 2(N ). q. e. d.

Proposition 3 .2 .  If G is not locally connected, then cre, ( G ) 09(G).

P roo f. (I) First suppose G is totally disconnected. Since G is not finite by
assumption, neither is C. So we can choose an infinite sequence a i ( i=1 ,  2,...)
in and a convergent series Er_, ci of positive numbers. Define f ( x )=E r_ , ci

dTlxi(x) (x e G), where xi denotes the character o f (xi . T h e n  f  e g o (G) (= gco(G))
but f .5 " ( G ) ( =g ( G )  by Lemma 3.11).

(II) Next suppose G  is finite dim ensional. Then w e can choose a totally
disconnected N e H o (G )  so that G is locally isomorphic with (GIN) x N  ([5 ], §47).
Since G is not locally connected, neither is N .  Therefore, by (I), there exists a
function g ES0(N ) - .-- 9 ( N ) .  By Lemma 3.12, g  can be extended to a function in
1,0(G)--- 9 (G).

(III) Finally we treat the general case. By assumption and by Lemma 3.2,
there exists N E H(G)--,H0 ( G ) .  And, by (II), there exists a function g ES 00(GIN)--.

(G IN ). Put f = gon N  (E œ (G )) . Then f 1 4 9 ( G ) .  Indeed, if we assume contrary,
N 1  E  H o ( G ) .  Since N 1 P_ N , (GIN )I(N f IN) GIN f  a n d  N f IN =N 9 , this implies
that N 9 E H o (G IN ). But this is absurd, since g143(GIN). q. e. d.

From Lemma 3.2, Theorem 3.1 and Proposition 3.2 we have the following

Corollary. The following four conditions are equivalent:
( a )  G is locally connected; ( b )  H(G)=H o (G);
(c) H i (G )= lio(G ); (d) œ (G)= 9(G).

Proposition 3 .3 .  If  H(G)OH,(G), then there exists a bounded subset of »(G )
included in 9 (G) but not in any d'oo (G, N) with N  H ,(G ).

P roo f. (I) First suppose G  is finite dimensional. The assumption H(G)0
H 1(G) means in this case tha t G is not separable. Choose a totally disconnected
N e Ho (G) so that G is locally isomorphic with (GIN) x N .  Then N  is non-separable
as well as G .  Let a be the set of the coordinate functions of all continuous, ir-
reducible, unitary representations of N , and .4 the image of R  under the map in
Lemma 3 .1 2 . Then, since ./ is bounded in S o (N) and included in g(N ), a is bound-
ed in 6°V ) (G) and included in 9 ( G ) .  We show that i s  n o t  i n c l u d e d  in any
8 03(G, N ) with N  E  H ,(G ). Suppose contrary, i.e., that g  g d 'oo(G, N O  for some
N 1 e 111( G ) .  T h e n  a  g 6%,(N, Nn N O .  This together w ith  defin ition  o f  a
dem ands that N n N ,={ e } .  Hence N =N I ( N n N ,) 'N N ,I N , .  Therefore N  is
separable as well as G/N 1 . But this is absurd.

( I I )  Next let G be arbitrary. By assumption there exists an N  e H(G)---H,(G).
Obviously, H o (GI N)= {N' I N ; N e Ho (G )}  and H,(GIN)= {N' IN ; N  N ' E
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I / 1(G )} . By (I) there exists a bounded subset a of 4 : ) (G/N) included in .9(GIN)
but not in  any d'(G IN , N '/N )  w ith  N 'IN e H i (G IN ) . P u t .1'={ gon N ; ge } .

Then it is easy to see that a' is a bounded subset of e , : ) (G) included in 2(G) but not
in any S„(G, N ') with N' n H i (G). q. e. d.

Each SV ) (G , N ) with N  n H o (G ) is , evidently, a M ontel space. W hile, in
case G is not locally connected, we have the following

Proposition 3 .4 .  Each dV (G, N ) w ith N  in H(G)--. H o (G) includes a closed,
bounded and non-compact subset.

P ro o f .  ( 1 )  First suppose G is finite dimensional and not locally connected.
Then there exists a  totally disconnected and non locally connected N e Ho(G).
Set H 0 (N )={ 1( ). ; ) e A } .  Since each KA is open in N , its indicating function
is continuous on N .  The set { f ;

 2E A} is bounded in 4 (N ) but not equicontinuous
at e, because n {KA ; 2 e /1} { c }  and N  is not discrete. Hence the closure a of
{LI ; /1. E Al in 0 (N) is bounded in e 0 (N) but not compact. Now let .4  be the image
of a under the map in Lemma 3 .1 2 . Then i s  c lo s e d  and bounded in  SW (G)
but not compact.

(II) Let G be arbitrary and N E H(G)--,H0 (G). By (I), ‘ („±) (G/N) includes a
closed, bounded and non compact subset. Since SV ) (GIN ) is topologically iso-
morphic with SW (G, N ), this completes the proof. q. e. d.

Proposition 3.4 shows that if G is not locally connected, the space S W (G) is
not Montel, and so not nuclear because it is complete and barrelled. As for a
locally connected G , S (: ) (G ) is nuclear if  a n d  only i f  G  is separable ([2],
p. 53, Remark).

3 .4 .  For a closed normal subgroup N  of G, put

N )= n g,,(G, N ).

This is a subalgebra of 3' (G) isomorphic with .F (G I N) under the m a p  (GI N ) g
gon (c f . [3], (28.72), (k)).

Proposition 3 .5 .  Fo r each N  E H(G) and n= co, 1, 2 ,. . . ,  .F(G, N ) is dense in
d';,+) (G, N).

P ro o f . In view of Lemmas 3.4 and 3.5, it suffices to show, for any G and n,
that .i(G ) is dense in éa ir) (G ) . Take any f e  S (G ), E > 0 and any finite number of
operators D1 ,..., D k  each of which has the form CIVi

)  • • • CI(
Œ

r
p
) (0 < p < n  +1). By Lemma

2.5, we can choose a regular function 0 on G so that

(3.2) sup ID i (0*f )(x ) D .; f (x)I <s.
xeG

j =1•••,k

Since 0 is regular, the functions G x G e (y, x)I—D; (0)(x ) (j =1,..., k ) are continuous.
Hence
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(3.3) D;(0* f)(x)= 1 G D (O ,-1 ) (X ) fW C IG Y •

Next put M= sup {ID)090(x)1; x, y e G, j=1,..., k } .  By the Peter-Weyl theorem,
there exists a g e „ (G) such that sup 1g(y)—f(y)1<e/M. Then, by (3.3),

yeG

(3.4) sup ID ;(0,1, g)(x) — Di (0*f)( x)I
xeG

j= 1 ....... k

=  sup D;(0,- i)(x)(g(y)— f (.1)))dGY
xeG G

From (3.2) and (3.4), we have

sup  IDJ (0*g)(x)— D i f(x)1<2e.
xeG

Here 0*g belongs to ,i(G ) as well as g .  This completes the proof.
q. e. d.

The above proposition implies ipso f act that ,°)- (G) is dense in 6 ' 7 ) (G) (n= cc,
1, 2,...). it generalizes the classical Weierstrass approximation theorem for the tori
to any compact groups.

§4 . Enveloping algebra

Most statements in this section are made in regard to the right differentiation.
But the parallel statements for the left differentiation also hold.

4 . 1 .  Derivations associated to one-parameter subgroups. Let 6' be an  algebra
over C .  A  linear map d  on e is called a  derivation i f  d(fg)=(df)g +f(dg)
holds for f , g E S .  The totality of derivations on forms a  complex Lie algebra
under the usual linear operations and commutator product.

Definition 4 . 1 .  R(G)e denotes the complexification of the Lie algebra R(G).
For each a +  e  R(G)e (a, )3 e R(G), i= \ / —1), (resp. 4',?,# )  is defined to be
the linear map

f ef+ ic1 (8

(resp.f 1—> d (2)f+ id (
f inf)

of 6'1 (G) into 4 (G ) .  Each dM f l (resp. restricted to ‘ 00 (G), is a derivation on
the algebra 61' (G), which we call the right (resp. left) derivation associated to a +
ifi ER(G)c.

All the derivations d( r) a n d  d( 1 )
0• are r,r continuous.a + Ift cg-1- Actually the operators
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d (
Œ

ri ). i p  and d (2,).0  belong to L(61* ) (G), go (G)) and, if restricted to 4,(G) (n = oo , 2, 3,...),
belong to L( *) (G), o',*_)

1(G ) ) . Moreover, for f  e 1(G) and xo e G, we have

(left invariancy) cl(Œr4).ip(x0f) = x o (dxr- of ),

(right invariancy) clf,»Ip(fx 0) -- ( 4 1 )4.ifif )x ..

Our first task in this section is to prove

Theorem 4.1. T he map oc-k ifil—d , where cl (
cf, i p  is  tak e n  as  restricted to

1 (G ), is  a L ie algebra isomorphism  o f  R(G)c into the L ie algebra of  derivations
on 6 ° ( G ) .  The image of this map coincides with the totality  of left invariant and
r * -continuous derivations on 6V G).

Lemma 4 . 1 .  (i) The map a+ il3i— dW 1p is linear from R(G)c into L(61* ) (G),
1 0(G)).

(ii) If dW ip  f=0 f or every  fE,F(G), then a+ if i=0 (i.e. a= 4=0).
(iii) For a + a' +i13' E R(G)c ,

d(r)a-1-ifi,ce+ifil [ d ( ra-F ifit d ( )ar'+ ilr ]

holds on SAG), where the right hand side designates the usual com m utator product
of operators.

Pro o f . (i) is obvious from Lemma 2 .6 . ( i i) .  Put 11,00= Ha and hdtp=  H .
Then, by assum ption, U(a)(H„(o-)+ iH p (a))=0  for every a e Ô. H e n c e  H OE(ci) 
iH p (o)= 0 (a e  0 ) .  Since H OE(ci) and l i fi(a) are skew-hermite, this shows that H  JO =
H (o)= 0 (a E 6 ) .  Hence H„= H p = 0, i.e. a =fi = O .  (iii). In view of (i), it suffices
to  show tha t c/f 1 = [cryr) , d n  holds on S2 (G) for y, y' E R (G ). Put h ( y ) =H
and hG (y')= H y .. For a E G we have

c4r7),,,, ]  U(a) = U(o-)[1-17(a), H (a)]

= U(o-)(H y(o-)1-17,(a)— Hr (o-)H y(a))=[d (
yr) , cln U ( a ) .

Hence c 1 and [dyr) , dyr,) ] coincide on .9- ( G ) .  Since 4r,,) ,] and [d ) , dV,) ], con-
sidered as mappings of S (2*) (G) into i o (G), are continuous, and Y  (G) is  dense in
61* ) (G), this shows that they coincide on 6)2 (G). q. e. d.

The first assertion of Theorem 4.1  follows immediately from Lemma 4.1.
Therefore it remains only to prove that each left invariant and e-,-continuous der-
ivation on o '(G ) has the form dW i p  for some a, /3e R(G).

Lemma 4 .2 .  Let CG be the complex vector space of all C-valued functions on
G and d a linear m ap of  Y (G) into C G . The following three are equivalent:

(a) d=dW i pIT ( G ) f o r some a, fl E R(G);
(b) for f , g E Y (G) and Xo E G,

d( fg) -= (df )g +f (dg) a n d  d(x .f )= x o (df);

( c )  for f , g E Y (G) and x o  e G,
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d(fg)(e)=(df )(e)g(e)+f (e)(dg)(e) and

(ICJ) (e) = xo (df )(e) •

Pro o f . The implications (a) (b) (c) are obvious. W e show that (c) implies
(a). Evidently (c) is equivalent to the following: (c') for a, a' E 0 and x , e G,

(4.1) d(U(a)0U(a))(e)

=(d U(a))(e)OU ( u') + A 003(d U(0 - '))(e) and

(4.2) d(U x v(a)U(a)) (e) = (d U(0-))(xo- 1 ) .

Here note that U (a)=I(a) and Ue(o- ') = I(o- '). Now suppose (c') h o ld s . Put T (a)=
(dU(o-))(e) for a e -G and define T=(T(o-)),„d  (e E(G)). Then T satisfies the condition
(C2) in  D efinition 1.2. Indeed, if an  irreducible decomposition o f U(o-)(DU(o- ')
for a, a' e C is given by

U(a)0 U(o- ') = 1/ - 1 ( U(o- , )0 • • • P  U(o-,„))V

(V a unitary matrix), then, by (4.1),

- 1(T(a 1 )  ED • • • 0 T(am)) V= T(a)C)I(o- ') + I(a)C)T(o- ').

Now put H  = (T —  T * )  and H 2 =  - (T + T *). These matrix fields are hermite

and satisfy (C2), because so does T* as well as T. That is, H I , H2 e A (G ). So put
a;  = (j = 1, 2). Then , by (4.2),

(dU(0"))(x0)=A U„0(0)U(0)(e)=Ux 0(0-)T(a)

=  , o (0) ( 1 1+ = (d (4 )+ (x0) (a e 0, x, e G) .

This shows that (a) holds. q. e. d.

Corollary. L et d be a  continuous linear m ap o f  d In G ) (n =o o , 1, 2,...) into
CG equipped w ith the pointw ise convergence topology . Then the following three
are equivalent:

(a) d = 4120 1 ,,(G) f or some a, lie R(G);
(b) for f , g e 4,(G) and xo e G,

d(f g )=(d f )g  +f (dg ) a n d  d(x . f )=„ o (df ).

( c )  for f , g e Y(G) and x o  e G,

d(f g)(e)=(df )(e)g(e)+f (e)(dg)(e) and

d(x 0 f )(e)= x o (df)(e).

Pro o f . The implications ( a ) . ( b ) ( c )  are obv ious. If (c) is assumed, there
exists, by Lemma 4.2, a, fl e R(G) such that d f  4 r. 4

). i p  f  for f  e g "(G ) . Then, since d
an d  dŒr.;.1 1,,..( G )  a r e  continuous from 8';,* ) (G ) in to  CG, and  .F(G ) i s  dense in
‘;,* ) (G), this equality holds for f  e 4 ,(G ) . Hence (a). q .  e .  d .
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It is clear from the above corollary that each left invariant and 'r-continuous
derivation on d'„(G) has the form for some a, /3 E R (G ) .  Thus Theorem 4.1
has been proved.

4 .2 .  Invariant differential operators.

Definition 4 .2 .  D(G ) denotes the set of all linear operators on  g oo (G ) tha t are
generated by th e  derivations 4 1:,  4 1_ 1 fi (a, fl e R (G )) a n d  6'00 (G ) ,  where each
member o f  6",c (G ) is taken  as a multiplication ope ra to r. T ha t is ,  D(G) consists
of the operators on Sc o (G ) expressed as

D —  E  afiOE , ::. 11,gcra ';)• • • ctŒr)d f l ',)• • •ct,/: (finite sum),

where a,,..., ap , E R(G), 6 (G ),  and if p = q=0, dar,) •• •d(
crp

) d(
f l ',) • • .4 1:

means 1, the identity operator on 6'00 (G ) .  Each member of D (G ) is called a  dif-
ferential operator on G .  A differential operator D on G is said to be left (resp. right)
invariant if D( x 0 f ) = .„0

(D f )  (resp. D (L )= (D f ) .,0 )  holds for f e 6 ( G )  and  x, e G.
D I(G)(resp.D,.(G)) denotes the set of all left (resp. right) invariant differential oper-
ators.

A differential operator is 'r-continuous,  and so, determined by the restriction to
..F(G). Obviously D (G ) is an  algebra over C  with 1 as its identity element, and
also a left module over 6 ° (G ) .  Each of D i(G ) and D r (G ) is  a subalgebra of D(G)
containing 1.

Lemma 4 .3 .  A  dif ferential operator D  on G  is lef t (resp. right) inv ariant if
and only  if  it can be expressed as

D =  E  c a ,...Œ p dVi)• • •d(1)

( r e s p .  D = 1 C 7 1 Œp d  ....... d(2'))......... (finite sum),

where ape R(G), (resp. C ,  a n d  4 r
i
) • • • C14 ) (resp. da t,) • • •d(

Œli?)
means the identity  operator 1 1f p=0.

Pro o f . We shall prove for left invariance. A  differential operator D has the
form

D = E  afll— flq D° , "•fi ,,
LCI•••ap al.••G ep

(finite sum),

where af l
a l:::/3„q e 66',(G ) and = da

r
i
) • • • d 4) C1(al

i
) • • • d i l l

,: . By Lemma 2.11, di,nf(e)=

— d (e ) for fe  (G ) and /3 e R (G ).  Hence

f  (e )= (e)

.......  —  (

Therefore, if D is left invariant,
(D f)(x )= f ) (e )
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= E afle,1:::flOE7,(e) (— (e)

E( (x ) (x  e  G ).

This proves the 'only if' part of the lem m a. The 'if ' part is obvious, q. e. d.

Let p be the algebra automorphism f 1-*.t  of 6%,(G). For each D e D(G), define
D= pDp - '. If D has the form

D = E d(4)• • •d(Œr) d (f l y•••cri) (finite sum),

where afl1::.#4 e S œ (G), then, by Lemma 2.1, (ii),

D =E (a flOE :::13g)v • • d(,', ) d i )  • • • cri jr„) .

Therefore the transformation DI-j) is an automorphism of the algebra D(G), and
the subalgebras D 1(G) and D r ( G )  a r e  carried onto each other under this trans-
formation.

Definition 4.3. U(G) denotes th e  universal enveloping algebra o f the  L ie
algebra R ( G ) c .  C  and R(G)e are identified with their canonical images in U(G).

Each element of U(G) is expressed as

E (finite sum),

where cc i ,..., a p e R(G), E C, and the product means the identity element
tif  p = O.

Theorem 4.2. The map ot+ ifli--4d (
c,r_ i p  of R(G)e into N G) ex tends uniquely  to

an algebra isom orphsim  of U(G) onto D I(G) mapping the identity  of  U(G) to that
of D i(G).

This theorem is well known if G is a Lie group, and makes clear the structure
of the algebra N G ) .  By Theorem 4.1, the map a+ i,61- 4",?, fi is a Lie algebra homo-
morphism o f R(G)e in to  D I(G), regarded as L ie  algebra under th e  commutator
p ro d u c t. Hence this map extends uniquely to an algebra homomorphism o f  U(G)
into D i(G) mapping the identity of U(G) to  that o f D I( G ) .  Denote this extension
by i .  T h e n ,  by Lemma 4.3, i1i is obviously surjective. Therefore, for the proof of
Theorem 4.2, it remains only to show that is injective.

Lemma 4 .4 .  F o r  an y  f in ite  n u m b e r o f  linearly  independent m em bers
H 1,..., H„, of A (G), there ex ists a f inite subset d  of  6 such that the matrix  f ields
H 1 ,..., H„„ restricted to A. are  linearly independent.

Pro o f . This can be proved by finite induction. Assume that, for some k <m ,
there has been chosen a finite subset d k  so that H 1 ,..., H k , restricted to d k , are linearly
independent. This assumption obviously holds for k = 1 .  Now if H 1 ,..., H„, Hk + 1,
restricted to d k ,  are linearly independent, we define dk + 3t =  d k .  Otherwise, there
exist uniquely determined real numbers c1 ,..., c k such that
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H k + i (a)= c,H ,(o-) + • • • + ckH k (a) for all a e  k.

But, since H 1 ,..., H k ,  H k +,  are linearly independent on 6 , there exists o-' E Ô such that

H k + 1(0 ) 0 e1 l -11 (01+ --• + cklik(a') •

Put A k + 1= A k U  { a l .  Then H 1 , . . . ,  H k ,  H k + i  are linearly independent on  it. T h is
completes the induction ,q .  e .  d.

Proof of Theorem 4.2. We prove the infectivity of
(I) Take a linear base 0  of R(G)c consisting of elements in R ( G ) . Introduce

a total ordering in 93, and denote by 93' the set of all finite increasing sequences of
elements of 93, containing the void sequence. Then taf l• y  ; (a, 13, ,  y )  E 0'1 is  a
linear base for U (G ) . Therefore, for the injectivity of t/i, it suffices to show that
{ dar ) cik ) • .d") ; (a, y)E 931 is linearly independent in  D ,(G ) . So our task is
to prove the linear independency o f  {c/(; ) dk ) - • •cryr) ; (a , /3,..., y) e S I for any finite
subset S g. 93'.

(II) Let F  be the set of all members of R (G) appearing in the sequences in S.
Put F '=h G ( F ) .  Then, since F ' is a  finite and linearly independent subset of A(G),
there exists a  finite subset A Ô  such that the members of F ',  restricted to it, are
linearly independent (Lemma 4.4). Set N =A (G , A ) .  Then, since A (G , N )=[4 ],
the map rN  (see Definition 1.7) carries F' onto a linearly independent subset of A (GIN)
in  a  one-to-one w a y . That is, TCN carries F  onto a  linearly independent subset of
R(GIN) in a one-to-one way (Lemma 1.9, (ii)). Hence RV •j j  ;  (a, y) E S}, where

= 13= it- N(fl) , • • •, = ( 1 ) , is linearly independent in U(G IN ). Since N E Ho(G)
(Lemma 1.11, (i)), i .e .,  G IN  i s  L ie  o r  f in ite , th is  im p lie s  tha t {dV ) c/(1-30 • • •c4r) ;
(a, y) e LS} is linearly independent in  D i(G IN ) . U nder t h e  isomorphism
gi—go7rN  o f  S „(G IN ) o n to  S oc ( G , N ) ,  each cif; ) d (; ) • • •4,r) is  t r a n s fo rm e d  to
clic") c/(f ir) • • •c/V) 1,.. (G ,,,, (cf. (2.1)). Hence, a s  a  m atte r o f  c o u rse , {c/I'V f! ) • • •d yr) ;
(a, /3,..., y) e S} is linearly independent in D,(G). q. e. d.

4.3. The center of U ( G ) .  Let A(G)e denote the set of all m em bers o f  E(G)
satisfying the condition (C2) in Definition 1.2. Then it is easy to see that, under
the linear operations and  the  commutator product in E(G), A (G)c is a  complex
Lie algebra isomorphic with the complexification of A (G ) . The Lie algebra iso-
morphism hG  o f  R (G) onto A (G) extends uniquely to that o f R (G)c onto A(G)c,
also denoted by hG .

Definition 4.4. For x e G, let Ad (x) denote the map

+ il3 xax- + (a, I3e R(G))

on R(G)c, or equivalently in virtue of h ,, the map

H, + iH 2U x ( H 1 - 1 - iH 2 ) U „- 1 ( H 1 , H 2  e A(G))

on A (G )c . Then Ad (x) is an automorphism of the Lie algebra R(G)c, and extends
uniquely to an algebra automorphism of U(G) mapping 1 to  1, which is again denoted
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by Ad (x). ( 3 )

Lemma 4 .5 .  L et the algebra U (G ) be realiz ed by  D i (G ) through th e  iso-
morphism established in Theorem 4.2. Then

Ad (x )D  = R oD oR i (x  E G, D e D i (G)),

where R x  denotes the right translation f . f x  on

Pro o f . For x e G ,  e R(G) and f  e (G),

(A d(x )d (; )) f = i f

d ( • x o t ( t ) x - ') I , = o =  ( R o d o R i ) f .dt

Since D i (G) is generated by 1 and (PP (oc E R(G)), this proves the lemma, q. e. d.

For y E R(G)c , define the map ad (y) on U(G) as

ad (y)D = [y , D]=y D— Dy  (De U(G)).

ad (y) is a derivation on the algebra U (G ). For each positive integer m, put

U „,(G )= w (C  + k n2 Ok  R (G)c),

w here w  denotes t h e  canonical homomorphism o f  t h e  tensor a lgebra  C+
Ok R(G)c onto U (G ). Each U (G )  is a  linear subspace o f U(G) stable under

every ad (y) (y e R (G )c). Put ad,„ (y)= ad ( y ) l u , n ( G ) •
 N o w  let us suppose G is finite

dimensional. Then so is each U,„(G). Therefore we can equip it with the usual
finite dimensional vector space topology, and define the map exp ad„, (y) on it by the

Taylor series E k")= , a d „ , ( y )k .  I f  m< tit', then exp ad,„. (y) extends exp ad,„ (y).

Therefore, for each y e R(G)c, the union of the maps exp ad„, (y) (m =1, 2,...) defines
a linear map on U(G), which we denote by exp ad (y).

The next lemma is verified in the same argument as for Lie groups with simple
modifications.

Lemma 4 .6 .  A ssume that G is finite dimensional.
(  i )  Ad (a(t))=exp ad ( t a )  (a E R(G), t E R).
(ii) For a e R(G) and DE U(G),

ad (a)D —0 < > Ad (a(0)D= D for all t E R.

(iii) Let Z(G) denote the center of  U(G). Then, for D E U(G),

D E Z(G)  Ad (x )D  D  for all x e c(G).

(3) The linear spaceA(G) is locally convex, complete and Hausdorff relative to  the coordinatewise
convergence topology, and the map Ad: G3x (x) gives a  representation of G onA(G)c
such that G x A(G)`D(x, II) I—Ad (x)HEA(G)` is continuous.
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P roo f. (i). For any D1 , D2 c U(G), choose a positive integer In so large that
D 1 , D2, D 1 D2 E U„,(G). Then, since ad (ta) is a derivation on U(G),

(exp ad(ta)) (D 1 D2 )  E°=o j (adm (toI)'(D ID 2))

Eck°--.0 E  .

k

!  (adm(ta) i p t )  ( a d .( t / ) i D2)
i +j=k  i!j!

= (E71.1, (adm (t)D 1))(E T = o (adm(to) f  D2))

= ((exp ad(tcx))(D1)((exp ad(tot))D2)•

Hence exp ad(ta) is an endomorphism of the algebra U (G ) . Now take any ie c R(G).
The elements

Ad (a(t))/3 = a(t)13a(— t)

and

(exp ad(tcx))/3= Ef tk
=o k !  ad i (Œ)k/3)

of R(G) correspond under hG  with

(U ( t ) (o- )H fi (o- )Uco _0 ( )),7E 6

and

t k  

(E Î,°=0 ad (1-1 0 "1 - /Au))!

respectively, where (1/(G)) E 0 = hG (ot), (H p (o- )),E 6  =120 (# ) , a n d  ad ( I  J O  denotes
the map MI—[H (u), M]= H„(o- )M —  MHo- ) on 931(ci„, C ) .  For each o- c 6, the o--th
coordinate of each of these matrix fields satisfies the equation

d  M(t)=11,,(o- )M(t)— M(t)I-I„(o- ) ( M ( t )  e C))
dt

with the initial condition M(0)=11 /1(a). Hence these two matrix fields coincide
with each other for all t e R .  Thus, for each t e R , the endomorphisms Ad (40 )
and exp ad(ta) of U(G) coincide on R(G). Besides, from definition; each o f  them
fixes the identity 1 of U (G ). Therefore they coincide on U(G).

(ii). Choose m so that D c  U,„(G). Then, by -(i),

t 'Ad (a(t))D=E,7_, 0  k !   (ad„, (at)"D) (t e R

Hence the implication The reverse one follows from

d--
d t

— Ad (a(t))D t = 0  =ad »(c)D.
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(iii). D belongs to Z (G ) if and only if it commutes with every a e  R(G). B y
(ii) this is the case if and only if Ad (a(t))D =D for all a e R(G) and t E R .  Hence the
implication  .  N o w  ta k e  in so that D e U ,(G ). To prove the reverse implication.
it suffices to show that the map x—*Ad (x)D of G into U,,(G) is continuous, because
U a(R) (a E R(G)) is dense in c(G). Take a linear base {a .....a,,} of  R(G). T h e n  D
is expressed as

0 ^ k 1 ++k ^ m
•a( c k l . . . k  e  C).

Hence

Ad (x)D=( A d  ( x )  ) k l . . . ( A d  ( x ) a )kn.

The continuity in question is clear from this together with Lemma 2.10. q. e. d.

The assertion (iii) of the above lemma holds without finite dimensionality of G.
That is, we have

Theorem 4.3. Let Z(G ) denote the center of  the algebra  U (G ), and  c(G ) the
connected component of e in G .  Then

Z (G )={DEU(G ); Ad(x)D=D for all x e c (G )} .

Proof. Realize  U(G) by D 1(G) through the iomorphism in Theorem 4.2. For
any closed normal subgroup N  of G, the Lie algebra homomorphism :  a' 7rNoa o f
R(G) onto R(G/N) extends uniquely to an algebra homomorphism of  D 1(G) onto
D I(G/N), m apping Ito I. And, evidently,

(4.3)N ( A d  (x)D) =  Ad (lrN(x)) ( N (D)) ( x  e G, D e D,(G)).

Now assume that a D e D,(G) is fixed by Ad (x) for all x E c(G). T a k e  a n y  D' e
D,(G) a n d  f  E (G), and choose  N e H (G )  a n d  g e 1 (G / N )  s o  th a t  f= g o iv N .

By (4.3) we have,

Ad (lrN (x )) ( (D)) =  tN(&d (x)D) =  N(D) ( x  E c(G)).

Since GIN is finite dimensional and lrN (c(G))=c(G/N), this shows by (iii) of Lemma
4.6 that (D) E Z(G/N). H e n c e

(D D ')f= =  ( N (D ') N (D)g)oJr =  (D'D)f.

Since f  and D' are arbitrary, this shows that D e Z (G ). Convèrsely assume thaÏ  D E
Z(G). L e t  f .  N aild g be the same as abOve, Then  ( D ) E Z ( G /N )  and so, again
by (4.3) and (iii) of Lemma 4.6.

• (A d (x)D )f= ((A d (x)D)g)o7r

(x E c(G))

Hence Ad (x)D =  D (x e c(G)). This completes the proof. q.e.d.
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Corollary, I f U(G) is realized by  D I(G), then

Z(G)= {D G D i(G); DoR x =R x 0D for all X E c(G)} •

In  pa rticu la r , Z(G) includes D I(G) n D r (G), and coincides with it if G  is connected.

Pro o f . Obvious from Lemma 4.5 together with

Di(G) n D,(G)= {D e D i(G); DoR x = R x 0D (x e G)} . q. e. d.
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Added in p roof. After our manuscript had been finished, the author learned
the papers : (a) H. Boseck and G. Czichowski, Grundfunktionen und verallgemei-
nerte Funktionen auf topologischen Gruppen I, Math. Nachr., 58 (1973), 215—
240 ; (b) K . P . Rudolph, Michal-Bastiani differentiation on topological groups,
Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1979 (1980), 161-166.
In (a) our Theorem 2.1 is obtained for any LC groups but under a  stronger as-
sumption on continuous differentiability of functions. (b) announces our Lemma
2.9, the key to Theorem 1.1, also for any LC groups without proof. Recently, Prof.
K. Sakai kindly informd us that these results were given in full treatment in a book
by the above three authors : Analysis on topological groups - General Lie theory,
Teubner-Texte zur Math., Band 37, Leibzig, 1981. Unlike our construction, their
method uses on ly  the inverse lim it technique together with computational
observation on one-parameter subgroups.


