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Introduction

This work concerns differentiation on compact groups. We obtain here
natural C"-classes (n=o00, 1, 2,...), i.e., classes of n-times continuously differentiable
functions, on compact groups by the use of one-parameter subgroups, and determine
their fundamental structures. Besides, we make some observations on the differential
structure on such groups.

Let G be a compact group, and R(G) the totally of its one-parameter subgroups.
We define the right (resp. left) derivative d{”f (resp. d{"’f) of a function f on G along

2eR(G) by d¥f(x)= S f(xa(t)limo (resp. dPf(x)= = f((=D)limo) (x€G).
And for each n, we define the “‘right C"-class’’® £{(G) on G as the set of all con-
tinuous functions f having the continuous right derivative d)---df of higher order
for any aj,..., ¢, € R(G) with 1<k<n+1. The “left C"-class” &P(G) is defined
similarly using left derivatives. Needless to say, if G is a Lie group, #{"(G) and
&'9Y(G) coincide with each other for each n and give the usual C"-class on G. Our
basically important result, Theorem 2.1, asserts that this coincidence remains true
for any compact group G.

The essential part of Theorem 2.1 consists in the equality &{(G)=¢&"(G).
For xe G and a € R(G), let xax~! denote the member of R(G) such that (xax~1)(t)=
xa(t)x~! for all real t. Then xa(f)=(xax~')(t)x. Hence we see immediately that
d{rf exists for every a e R(G) if and only if so with d{f. For such an f, we have
dPf(x)=—d¥._, f(x) (e € R(G), x € G). But it is not so easy to know whether, for
such an f, d{”f is continuous for every a € R(G) if and only if so with d{f. The
equality €{”(G)=&{"(G) is no other than the affirmative answer to this question
under the assumption of continuity of f itself. Here we ought to remark that,
unlike the Lie group case, the continuity of f is not necessarily assured even if the
continuity of all d"f or d{f (x€ R(G)) is assumed. In fact, it is possible that for
a discontinuous function on a connected compact abelian group, all derivatives of
every order of it exist and are continuous (cf. [6], p. 56). Let us sketch the method
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of proving the above equality.

In 1979, by the aid of Tannaka duality, K. Mckennon [4] showed that R(G)
is in one-to-one correspondence to a certain Lie algebra A(G) (infinite dimensional
in general), which we present in §1.1 in a form convenient to us and with a natural
locally convex topology. Namely, in our presentation, A(G) conisits of certain matrix
fields over G, the dual object of G, with the coordinatewise algebraic operations and
topology. It behaves as our basic machine in this paper. On the other hand, by
the structure theorem, G is isomorphic to an inverse limit of Lie or finite groups
G,: G= lim G,. This induces an inverse system {g,} of the Lie algebras of G,’s,
and so a Lie algebra lim g;, denoted by g(G). Here, of course, {g,;} can be viewed
also as an inverse system of finite dimensional locally convex linear spaces. So
we equip g(G) with its limit locally convex topology. Through §1 we shall show
that A(G) is no other than a realization of g(G) including the topology. This ob-
servation enables us in particular to see that A(G) is a Baire space, and so, also a
barrelled space (Lemma 1.13).

Now we regard R(G) as a Lie algebra and also as a locally convex space iso-
morphic to A(G) under the above correspondence. Then we have in particular
the following two facts: for each fe &$”(G) (resp. £i"(G)), the function R(G)x
Ge(a, x)—d"f(x) (resp.d’f(x)) is continuous (Lemma 2.9); and second, the
map R(G)xGe(a, x)»xax~'e R(G) is continuous (Lemma 2.10). Here, for
verification of the former, the property of R(G), being Baire and barrelled, plays the
key role (see Proofs of Lemmas 2.8 and 2.9). Since d”f(x)=—d{,_, f(x) for
ae€R(G), xeG and fe&"(G)U &P(G), the equality &{(G)=¢&"(G) follows
from the above two facts at once.

The present paper consists of four sections. In §! the necessary facts concerning
the Lie algebras and one-parameter subgroups of compact groups are prepared.
In §2 we establish Theorem 2.1 and, by virtue of it, define each C"-class on G to
be the identical sets £'(G) and #'(G). §3 is devoted to a study of structures of
our C"-classes. Here the locally convex structure of R(G) mentioned above is needed
again. And also, Lemmas 1.10 and 1.15, which we owe again to Mckennon [4],
are essential. §4 is, as a continuation of §1, concerned with the differential structure
on G.

Here we give a summary of results in §§3 and 4. Let &,(G) be our C"-classes
(n=00, 1, 2,...), and 2(G) the space of regular functions on G in Bruhat’s sense
([2], Definition 1). For a closed normal subgroup N of G, put &(G, N)=
{fe&(G); f(xy)=f(x)(xeG, yeN)}. This space can be identified with the
space &,(G/N) in the obvious way (by Lemma 1.10). Denote by Hy(G) (resp. H,(G))
the totality of closed normal subgroups N of G such that the quotient group G/N
is Lie or finite (resp. finite dimensional and separable). Then Hy(G)< H(G), and
2(G)= U {€,(G, N); N € Hy(G)} by its definition.

Our Theorem 3.1 asserts that &,(G)= U {&(G, N); Ne H(G)} (n=w0, 1, 2,...)
(see Corollary to Theorem 3.1). This theorem determines the basic structure of
the spaces &,(G), and constitutes the core of this paper together with Theorem 2.1.
It exhibits in particular the difference between 2(G) and &,,(G). Here, as to when
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&(G) coincides with 2(G), criteria are given by Corollary to Proposition 3.2.
It is the case if and only if G is locally connected. As a result of Theorem 3.1, each
&,(G) obtains a certain natural inductive limit topology, denoted by z, without
regard to n (Definition 3.4). The rest of §3 concerns topological aspects of the
spaces &,(G) bearing T,. Some results, such as their completeness, a generalization
of the classical Weierstrass approximation theorem (Proposition 3.5) etc., are
obtained.

§4 contains three results which generalize elementary facts in Lie group theory
to the case of compact groups. Let R(G)“ be the complexification of the Lie algebra
R(G), and U(G) the universal enveloping algebra of R(G)c. Theorem 4.1 states that
the map a+./— [ B—d" +./—1dy’ (o, B€R(G)) is an isomorphism of R(G)* onto
the Lie algebra formed of all z,-continuous and left invariant derivations on the
algebra €,(G). Theorem 4.2 asserts that this isomorphism extends to an algebra
isomorphism of U(G) onto D/(G), the algebra of left invariant differential operators
on G (cf. Definition 4.2 and Lemma 4.3). Lastly, Theorem 4.3 describes the center
of U(G) by means of the ““adjoint representation’” of G.

This work originates in our desire to generalize Riss’ theory of differentiation to
the non-abelian case, which was introduced in [6] for locally compact abelian groups
using one-parameter subgroups. His theory is based on Potryagin duality and
the general structure theorem for such groups. Our present work extends Riss’
treatment to the case of compact groups on the bases of Tannaka duality and the
structure theorem for such groups. As for treating the general locally compact
groups (LC groups), we can grasp the one-parameter subgroups of such groups
through Tatsuuma’s duality theory (see, for instance, [8]). But there, problems
remain to be solved.

While, in [2, n°12], F. Bruhat defined differential operators and n-times
continuously differentiable functions (n=o00, 1, 2,...) on LC groups in terms of
his distributions that were formulated in [2] on LC groups depending solely on the
structure theorem of LC groups. But, if the group is not locally connected, his
discussions do not elucidate what such functions really are. Our present theory
enables us to understand his differentiable functions on G, a compact group, no matter
G is locally connected or not. In fact, combined with the discussions given there,
our theory exhibits that for each n, the n-times continuously differentiable
functions on G in Bruhat’s sense just coincide with ours.

The author would like to thank Professors T. Hirai and N. Tatsuuma for
several discussions and kind suggestions. He also wishes to express his thanks
to Professors M. Sugiura and H. Yoshizawa for valuable comments on the theme.

Notation. Unless otherwise stated, G denotes an arbitrary compact Hausdorff
group with unity e and Haar measure d,; such that [; dg=1. G denotes the dual of
G, i.e., the set of all equivalence classes of continuous irreducible (hence finite di-
mensional) unitary representations of G. The dimension of o € G is denoted by d,.
As a representative of each class g € G, we choose a unitary matrix representation
U(o) and fix it once for all.
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R and C designate the fields of reals and compexes, respectively, with the
usual topologies. For any topological group G, ¢(G) denotes the connected com-
ponent of the unity, and R(G) the totality of one-parameter subgroups of G, where
a one-parameter subgroup means a continuous homomorphism of the additive
group R into G. For x e G and a eR(G), x™'ax denotes the member of R(G) defined
as x lax(t)=x"'a(t)x (te R). For a C-valued function f on G and x,€G, the
functions , f, f,,, f and f are defined as follows: . f(x)=f(x5'x), feo(%)=F(xXo),
Ff(x)=f(x"1) and f(x)=£(x) (complex-conjugate) (x € G).

Let M be a topological space. C(M) denotes the space of all C-valued continous
functions on M. For fe C(M), supp (f) denotes the support of f; and for a subset
L <= C(M), &+ the totality of non-negative R-valued functions in &. If M is a
C®-manifold, C"(M) (n=o00, 1, 2,...) denotes the usual class of C-valued, n-times
(infinitely if n = c0) continuously differentiable functions on M. For any topological
linear spaces E and F over C, L(E, F) denotes the space of all continuous linear
mappings of E into F.

§1. Lie algebra and one-parameter subgroups

1.1." In this paragraph, following Mckennon [4], arranged suitably for our
purpose, we associate a Lie algebra with each compact group G, and set up a bijection
of it onto R(G).

Definition 1.1. For o€ G, let M(d,, C) be the totality of complex matrices of
order d,. Let X(G) denote the set of all matrix fields T=(T(0)),ec ON G such that
T(c) e M(d,. C) for each s G.("" We regared Z(G) as involutive algebra over C
under the coordinatewise usual algbraic operations of matrices and the involution
T T*=(T(0)*),.g» Where T(6)* denotes the hermite conjugate of T(c). The
The element I =(1(6)),.¢,» Where I(s) is the identity matrix in 9(d,, C), is the identity
of the algebra X(G). For ceG, let | ||, denote the Hilbert-Schmidt norm on M(d,,
C), i.e., |4],=(tr (4*4))'/2 (4 e M(d,, C)),and P, the seminorm on X(G), viewed as
vector space, defined by P (T)=|T(6)|, (Te Z(G)). We equip X(G) with the locally
convex Hausdorff topology defined by {P,: e G}.

Let the decomposition of the tensor product ®a’ of a, ¢’ € G into irreducible

components be given by c®d'=0,®---®oa,, (0,,..., a,€G). If we use the repre-
sentatives, this is expressed as
(1.1) U(e)®@U(a) =V~ U(a)®D---®U(0,))V,

where ® means the Kronecker product of matrices, @ the direct sum of matrices

in the conventional sense, and Vis a unitary matrix of order d,d,..

(1) If the representative U(s) of a oG is exchanged for another, say, VU(s)V ~! (V a unitary
matrix in MM(d,, C)), then the o-th coordinate T(s) of every T € ¥ (G) ought to be considered
as transformed to VT(s)V ~'. But, since we have fixed the representative U(a).of each oEé,
this respect disappears, and 3 (G) can be viewed simply as the cartesian product of :(d,, C)’s.
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Definition 1.2. Let T=(T(0)),.c be a member of X(G). Assume that if a
decomposition of 6®a’ (o, ¢’ € G) into irreducible components is given by (1.1), then

T(@)®T(a)=V"(T(e )@ - ®T(a,))V
holds. In this case T'is said to satisfy the condition (Cl). While, if
T(0)®1(a')+1(0)@T(c') =V~ (T(6)@ - ®T(,))V
holds under (1.1), T'is said to satisfy the condition (C2).

It is obvious that the totality of the members of Z(G) satisfying the condition
(C1) (resp. (C2)) is stable under the multiplication (resp. linear operations) and the
involution.

For Te 2(G), we denote by exp T the member of X(G) with o-th coordinate

exp T(o) (6 € G), where each exp T(o) is defined by the Taylor series 3 %, n' T(o)".

Lemma 1.1. For T=(T(06)),cc € Z(G), the following two statements are equiva-
lent.

(a) Tsatisfies the condition (C2).

(n) exptT satisfies the condition (C1) for every te€ R.

Proof. Take any o, ¢’ € G and assume (1.1). Put, for te R,
S(t)=exptT(o), S'(1)=exptT(c'),
Si(t)=exptT(o,) (k=1,...,m),

and define

A =S(®S'(1) = V-1(S,(N@ - ®S,1)V.
Then
(1.2) AL _ 7(0)S(0® S 1)+ NS TS (1)

- V—I( T(O'] )S](’)('B"'@T(GIN)SHI(I))V
=(T(e)®I(c")+ 1(a)®T(a'))(S(N®S'(1))
- V—I(T(O'] )@)"'@ 7‘(6111))VV_l(Sl(I)G')“'@Sm(I))V‘

If we assume (a), (1.2) can be written as
44D _ (1)@ 10+ 1@ T NAM) .

Since A(0)=0, this demands that A(t)=0. Hence exp T satisfies the condition (C1)

for every te R. Conversely if we assume (b), then A(¢)=0. Therefore from (1.2),
- T(0)®I(a)+1(0)®@T(c) = VT (0)D" @T(Gm))V 0.

This shows-that T satisfies the condition (C2).. =~ - : : ' q.e.d.
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Definition 1.3. G denotes the set of all T in Z(G) having the following two
properties:

(a) T satisfies the condition (C1), and
. (b) each coordinate T(o) of T is unitary, i.e. T*T=1.
G is called the bidual of G.

Plainly G becomes a topological group under the multiplication and topology
in Z(G), i.e., the coordinatewise ones. The element I=(I(0)),. is the unity of this
group. For each x € G, put U, =(U(0)),e¢ (€ Z(G)). Let i denote the map x—U,
of G into X(G). The next lemma is well known as Tannaka duality theorem (cf.

(31 (30.5)).
Lemma 1.2. i; is a topological group isomorphism of G onto G.

Definition 1.4. A(G) denotes the set of all H in X(G) having the following two
properties:

(a) H satisfies the condition (C2), and

(b) each coordinate H(o) of H is skew-hermite, i.e. H¥*= —H.

Lemma 1.3. The set A(G) is stable under the R-linear operations and the
commutator product [H, H]l=HH'—H'H. A(G) becomes a real Lie algebra under
these operations.

Proof. 1t suffices to check that A(G) is stable under the commutator product.
Take any H, H € A(G). Obviously we have [H, H']*=—[H, H]. Next, for
o, o' € G, assume (1.1). Then

V-X[H, H')(c)®--®[H, H')(s,)V
=[V-Y(H(o,)®:-®H(a,))V, V' (H'(c,)®--®H'(c,)))V ]
=[H(o)®I(c")+1(c)®H(d"), H'(0)®1(c')+1(0)®H'(c")]
=[H, H'](0)®I(¢')+1(c)®[H, H'](¢").
This shows that [H, H'] satisfies the condition (C2). Hence [H, H] e A(G).
g.e.d.

The next lemma is clear from Lemma I.1.

Lemma 1.4. A member H of 2(G) belongs to A(G) if and only if exp tHeé
for every te R.
_Lemma L.5. The map A(G)>Hr—esptH (teR) is a bijection of A(G) onto
R((f), the set of all one-parameter subgroups of G.

Proof. By Lemma 1.4, the map R 3t—exp tH belongs to R(G) for every He
A(G). The injectivity of the map A(G)3 Hw {exp tH}eR(é) is evident. Each
member of R(G) has the form U, for some ae R(G) (Lemma 1.2), and each co-
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ordinate U,y(0) of it is of the form exp tH(s) with some skew-hermite matrix H(o).
Put H=(H(0)),.s. Then, by Lemma 1.4, H € A(G). Therefore the above map is
surjective. g.e.d.

Since G and G are isomorphic under iz, Lemma 1.5 can be viewed as setting
up a bijection of A(G) onto R(G).

Definition 1.5. h; denotes the inverse map of the bijection of A(G) onto R(G)
just stated. Thus

(1.3) iga(t))=exp thg(e) (x€ R(G), teR).

Lemma 1.6. Assume that the compact group G is a Lie group with Lie algebra
q. For o€ G, let dU(o) denote the infinitesimal representation of g induced from
U(o). Then the map

¢: 33X — H,=(0U(6)X),c € Z(G)
is a Lie algebra isomorphism of g onto A(G).
Proof. Since
(1.4) exp tHy=(exp t(0U(6)X))qeq
=Uexpix(0))sec =Uexpix  (1€R),

the map R>t—exptHy belongs to R(G), and ‘hence Hye A(G) by Lemma 1.4.

Since the map g3 X~ U,,,,x is bijective to R(G), (1.4) together with Lemma 1.5
shows that ¢ is a bijection of ¢ onto A(G). Since each dU(o) is a Lie algebra homo-
morphism, ¢ is a Lie algebra isomorphism. g.e.d.

By the above lemma we can call A(G) the Lie algebra of G, any compact group,
compatibly with theA case of Lie groups. Besides, we see from (1.4) that the map
A(G)>H—expHe G generalizes the exponential mapping in Lie group theory.
A(G) is not necessarily finite-dimensional. In fact, a direct product of infinitely
many compact Lie groups gives such an example. If the compact group G is abelian,
then, as is seen from Definition 1.4, the Lie lagebra A(G) is commutative and consists
of all pure-imaginary characters v (i.e., homomorphisms into the additive group
\/TIR) of G*, the Pontryagin dual group of G. And exp v is the unitary character
{e*® of G*.

1.2. Lie algebra of a closed normal subgroup. For o, '€ G, we denote by
o x a’ the set of all irreducible components (€ G) of 6®a", and by & the element of G
conjugate to o, i.e., the equivalence class containing the complex conjugate rep-
resentation G e x—U(o) to U(s). A non-void subset of G stable under the op-
erations x and conjugation is called a ring in G. For a subset 4 of G, [4] denotes
the smallest ring in G containing 4. We put, furthermore, A(G, 4)=
{xeG; Uo)=I(0) for all €4} and, for a closed normal subgroup N of G,
A(G, N)={oeG; U,(0)=1I(o) for all xeN}.
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Lemma 1.7. ([3], (28.9)). (i) For any subset 4 of G, A(G, 4) is a closed
normal subgroup of G, and A(G, A(G, 4))=[4].

(ii) For any closed normal subgroup N of G, A(G, N) is a ring in G, and
A(G, A(G, N))=N.

Definition 1.6. For each closed normal subgroup N of G, an ideal Ay(G) of
the Lie algebra A(G) is defined as

AN(G)={H € A(G); H(s)=0 for all ce A(G, N)}.

Before proceeding to the next lemma, note that R(G,), where G, is a topological
subgroup of G, consists of all members of R(G) with orbit in G,.

Lemma 1.8. Let Iy be a closed normal subgroup of G.
(i) ig(N)={TeG; T(c)=I(o) for all ae AG, N)}.
(i) RIN)={zeR(G); hy(@) e Ax(G)}

(i) A(N)= Ap(G) (as Lie algebras).

Proof. Since A(G, A(G, N)=N, (i) is obvious. A member o of R(G) belongs
to R(N) if and only if exp thg(a) €ig(N) for all re R. By (i), this is equivalent to
that hg(a) € AN(G). Hence (ii). Fianlly we prove (iii) by giving explicitly an iso-
morphism of A(N) onto A4(G). Let N be the dual of N. Choose a unitary matrix
representation V(7) from each e N. For aeG, let U(o)|y denote the restriction of
U(o) to N, and

U)In=W;'(V(t,(e)@ - BV (Tua oW,

be its irreducible decomposition, where W, is a unitary matrix of order d,. We
define a map ¢ of X(N) into X(G) as

P(S)=(W;1(S(11(0)®+ ®S(Tp( (0N Wo)see  (S€Z(N)).

Then, plainly, @(iy(»))=ig(y) (yeN). Therefore, for aeR(N) and teR,
plin(a(D)) =igla(t)), i,  oexpthy(a)=expthg(e). Hence  @(hy(a))=he(e)
(xe R(N)). This together with (ii) shows that ¢ maps A(N) onto Ax(G) in a one-
to-one way. Furthermore, we see from its definition that ¢, restricted to A(N),
is a Lie algebra homomorphism, hence isomorphism. q.e.d.

1.3. Lie algebra of a quotient group. Let N be a closed normal subgroup of
G. We can identify the dual (G/N)" of G/N, the quotient group, with the ring
A(G, N) in G naturally, including the ring operations x and conjugation. As a
representative of each o in (G/N)", identified with A(G, N), the representation
G/N3xN—U06) (xeG) can be taken. Throughout the paper we keep these
conventions. Then, Z(G/N) consists of matrix fields on A(G, N). In particular,
the bidual (G/N)* of G/N consists of all unitary matrix fields on 4(G, N) satisfying
(C1) on it. Its group operations and topology are defined coordinatewise. While,
the Lie algebra A(G/N) consists of all skew-hermite fields on A(G, N) satisfying (C2),
with algebraic operations coordinatewise.
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Definition 1.7. Let N be a closed normal subgroup of G. ry denotes the
restriction map 2(G) 3 T Tl 4¢,n) € Z(G/N). my denotes the natural homomorphism
of G onto G/N, and 7y the map R(G) € a—>nyoa € R(G/N).

Lemma 1.9. Let N be a closed normal subgroup of G.

(i) ry maps G into (GIN)2, and the following diagram is commutative.
G ™™, GIN

ial liG/N
G = (GIN)?
(i) The map A(G)e H—ry(H) is a Lie algebra homomorphism of A(G)
into A(G/N), and the following diagram is commutative.
R(G) v, R(G/N)

h(;l lhcm

A(G) = A(G/N)

Proof. Plainly ry maps G (resp. A(G)) into (G/N)* (resp. A(G/N)), preserving
the algebraic operations. The commutativity of the diagram in (i) is obvious.
Next, for « € R(G) and t e R, we have

exp try(hg (o)) = ry(exp the(a)) =ry(ig(a(1)))
=ign(my((1))  (by (i)
= ign(Tn()(1)) =exp theN(Tn(2)) -
Hence the commutativity of the diagram in (ii) follows. q.e.d.

The next lemma is important.

Lemma 1.10 ([4], Theorem 4). Let N bethe same asabove. Then Ty carries
R(G) onto R(G/N). Equivalently, ry carries A(G) onto A(G/N).

Since the kernel of ry, restricted to A(G), is Ay(G), we have the following

Corollary. A(G/N)= A(G)/AN(G) (as Lie algebras).

1.4. Structure of A1(G).

Definition 1.8. H,(G) denotes the totality of closed normal subgroups N of G
such that G/N is a Lie or finite group.

Lemma 1.11. (i) A closed normal subgroup N of G belongs to Hy(G) if and
only if N=A(G, A) for some finite subset A<G.

(ii) G= U {A(G, N); N € Hy(G)}.

(iii) For any neighbourhoods V of e in G and ¥ of 0 in A(G), there exists
N € Hy(G) such that NV and ANG)<¥". Here A(G) is equipped with the relative

topology of 2(G).
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Proof. For proof of (i), we have only to recall that a Lie (or finite) group has
a faithful, finite-dimensional, continuous, unitary representation. The easy detail
is omitted. For oG, put N=A(G, {5}). Then N e Hy(G) (by (1)), and A(G, N)=
[{6}]. Hence (ii). Since G is isomorphic with G under ig, and the topologies of G
and A(G) are coordinatewise, we can choose a finite subset 4= G and £>0 so that

V,={xeG; |Ufo)-UJo0)ll,<e(ced)}<V and
v ={He A(G); |H(o)|l,<e (ced)}c¥.
Put N=A(G, 4). Then, NcV, and A,(G)=¥",. Hence (iii). g.e.d.

It is seen from (i) and (iii) of the above lemma that Hy(G) is lower directed under
inclusion, and has the intersection {¢}. An element 6 € G is said to be torsion if
N =A(G, {c}) is open in G, i.e., thec group G/N is finite. The totality of torsion
elements in G coincides with A(G, ¢(G)) ([3], (28.18)). Therefore, if G is totally
disconnected, every o€ G is torsion, and hence, G/N is finite for every N € Hy(G).
While, if otherwise, G contains at least one non-torsion element and so, as is seen
through an ordinary isomorphism theorem, all such N's that G/N is a Lie group
form a cofinal subfamily of Hy(G). For N, N'e Hy(G) such that Nc N’, denote
by 7.y the canonical homomorphism of G/N onto G/N’, and by ry.y the restriction
map A(G/N)e H—H| s ny€ A(GIN'). Then we have the projective systems
{G/N, my.y} of Lie or finite groups and {A(G/N), ry.y} of Lie algebras. Evidently,
the limit of the former is isomorphic with G.

Lemma 1.12. (i) The map y: A(G)e H=>(ry(H))enycy gives a Lie algebra
isomorphism of A(G) onto the limit of {A(G/N), ry}.
(ii)y In case G/N and G|N' are Lie groups, ry.y is the differential of my.y.

Proof. (i). Put A, =lim {A(G/N), ry.x}. Obviously ¥ is a Lie algebra homo-
morphism of A(G) into A,. The injectivity of ¥ is clear from Lemma 1.11, (ii).
Take any (Hy)newo) € A1» Where Hy e A(G/N). We can well define the union H
of all Hy’s, viewing them as matrix-valued functions. Then He A(G) and
Y(H)=(Hy)yeno ) Hence Y is surjective. (ii). For He A(G/N), there exists
o€ R(G) such that ry(hg(2))=H (Lemma 1.10) and so, ry.y(H)=ry(hg(2)). Hence,
in view of (1.3) and Lemma 1.9, we have for t € R,

nnn(igiv (exp tH))=my yigin rn(exp the(a))
=y nTy iG' (€Xp the(2)) =Ty (1)) =7y (@) (1)
=ig|n-(exp try.(h(®))) =ig/n-(exp try-n(H)).
This shows that ry.y is just the differential of 7y.y. q.e.d.

Definition 1.9. R(G) is regarded as a real Lie algebra isomorphic with A(G)
under the map hg. That is, for o, Be R(G) and a, be R, aa+bf and [a, ] are
the elements of R(G) corresponding to ahg(a)+ bhg(f) and [hg(a), hg(B)] under hg,
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respectively. Furthermore, A(G) is equipped with the relative topology of X(G),
and then, R(G) is topologized homeomorphically with A(G) under h;. (They are,
as real vector spaces, locally convex and Hausdorff.)

Lemma 1.13. The locally convex space A(G) (i.e., R(G)) is isomorphic with
R!, a direct product of the straight line. Hence it is a Baire space, and so, also
barrelled.

Proof. We can regard {A(G/N), ry.y} as a projective system of finite-
dimensional, locally convex, Hausdorff, real vector spaces. Let A, be its limit
space. Since the topologies of A(G) and each A(G/N) are coordinatewise, the map
Y given in Lemma 1.12 is obviously homeomorphic from A(G) onto A,. While,
A; is a closed linear subspace of the product space of all A(G/N)’s (N € Hy(G))
which is evidently isomorphic with R’. Hence A, is isomorphic with some RI.
This proves the first assertion of the lemma. Then, as a direct product of complete
metric spaces, A(G) is a Baire space, and so, barrelled ([1], Chap. 3, §1). q.e.d.

In view of Lemma 1.12, the next lemma is rather well known. The proof is
omitted (cf. [5], §47).

Lemma 1.14. The dimension (finite or infinite) of A(G) coincides with the
usual covering dimension of the compact space G. 1t is finite if and only if Hy(G)
contains a totally disconnected member.

Before concluding this section, we quote one more lemma.

Lemma 1.15. ([4], Theorem 5). The union of the orbits of the members of
R(G) is dense in ¢(G).

Since G/c(G) is totally disconnected, and so, R(G/c(G)) is trivial, we have, by
Lemma 1.8, (iii) and Corollary to Lemma 1.10, A(G)=A,.)(G)=A(c(G)). The
Lie algebra A(G) is commutative if and only if ¢(G) is abelian. Indeed, if A(G))
(= A(c(G))) is commutative, we see by Lemma 1.15 that ¢(G)? is abelian. Conversely,
if ¢(G) is abelian, A(¢(G)) is commutative.

§2. Continuous differentiability of functions

2,1. Definition of continuous differentiability.

Definition 2.1. A C-valued function f on G is said to be right (resp. left) differ-
entiable with respect to a € R(G) at xe G if the function f(xa(t)) (resp. f(a(—1)x))
of real variable ¢ is differentiable at t=0. In this case we define

497 = & f (xa(t)eo

(resp. 40 ()= - f@(=D)l1mo )

and call this value the right (resp. left) differential coefficient of f with respect to o
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at x. In particular, if f is right (resp. left) differentiable with respect to « at every
x € G, then the function x—d"f(x) (resp. x+—>d{’f(x)) defined on G is called the right
(resp. left) derivative of f with respect to «, and denoted by d{"f (resp. d\Vf).

Definition 2.2. &,(G) denotes the set of all C-valued continuous functions
on G. For each n=1, 2, 3,..., &7(G) (resp. £'(G)) denotes the set of all those
f € &(G) for which the successive right (resp. left) derivatives

dgz';)f" dgc';) dgt';)f‘, eeey d(r) o dgzrz) dgz';).f

An

(resp. df, ddS, .., dD...dDdD7)

An

exist and belong to &,(G) for any oy, ay,..., a,€ R(G).® (Obviously &{”(G)=
EF(G)26Y(G)2-, and &(G)2¢P(G)26P(G)2++.) €L(G) (resp. €L(G))
denotes the intersection of all #%(G)’s (resp. &P(G)’s) (n=1, 2, 3,...).

Suppose G is a Lie group. Then, of course, £(G) and &{’(G) coincide with
each other, and give the class of n-times (infinitely if n = c0) continuously differentiable
functions on G, which can be defined by using local coordinates, too. The aim of
this section is to prove the following theorem for any compact group G.

Theorem 2.1. For each n=o0, 1, 2,..., the sets &(G) and &"(G) coincide
with each other.

Since f(xa(t))=f((xax~1)(1)x) (x € G, a € R(G)), we see that d{’f exists on G
for every a € R(G) if and only if so with d’f. But it is not so easy to see that d{"f
is continuous on G for every a € R(G) if and only if so with d{’f. Paragraph 2.3
will be devoted to proving this theorem. For the moment we make the following

Definition 2.3. for n=o00, 1, 2,..., we set &(G)=&(G)n &(G), and call
its elements the n-times (infinitely if n=00) continuously differentiable functions on
G.

Lemma 2.1. (i) Suppose that f, ge &(G). Then af+bg (a,beC), fg,
Js xof and f,, (x € G) belong to ¢{”(G). And, for a e R(G), the following hold:

dy(af +bg) =adf +bd{g,
dP(fg)=(dP g +1(dPg),
df=def,
dP(xof) =xo(df ),
0 (fe) = (@Dsx0f Ve

The cooresponding assertions hold also for functions in &{"(G).

(2) Here the requirement for the continuity of f itself is not excessive. Indeed, the existence and
continuity of all successive right and left derivatives of a function f on G does not necessarily
imply the continuity of f, even if G is connected (cf. [6], page 56).
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(i) A C-valued function f on G belongs to &(G) if and only if fe &{(G).
In this case, for a € R(G),

a0 f=(drr)”.
Proof. 1t suffices to check the listed formulas. The first three are obvious.

The others are also clear from the following: . f(xa(1)=f(xg'x(1)), f(xo(t))=
f(xxoxota(t)x,), and f(a(—t)x)=f(x"a(t)). q.e.d.

Corollary., Each &,(G) (n=o0, 1, 2,...) is an algebra over C under the usual
algebraic operations of functions, and stable under the left and the right trans-
lations, the inversion and the complex conjugation.

Proof. Easily seen from Lemma 2.1. g.e.d.

2.2. Regular functions.

Definition 2.4. Let N be a closed normal subgroup of G. For each n=o0,
1, 2,..., we define a subalgebra &,(G, N) of &,(G) as

&G, N)={fe €(G); f(xy)=f(x) for all xe G and ye N}.

&,(G, N)is evidently stable under the left and the right translations, the inversion
and the complex conjugation.

Lemma 2.2. Let N be a closed normal subgroup of G. A C-valued function
g on G|N belongs to &{"(G/N) (resp. &{*(G/N)) if and only if gonye &{(G) (resp.
&\P(G)). In this case, for a € R(G),

(2.1) d&”(g°n~)=(d${,3(a)g)°n~
(resp. d'P(gomy) =(dg)omy).

Proof. This lemma is clear from the equality (gomy)(xo(?))=g(mp(x)Tn()(2))
(resp. (gompy)(a( — x)=g(Ty(a)(— )Tp(x))) and Lemma 1.10. g.e.d.

Corollary. Let N be the same as above. For each n=00, 1, 2,..., the map
&,(G/N)3 gr—geny is an algebra isomorphism of &,(G/N) onto &G, N).

Proof. Easily seen from Lemma 2.2. g.e.d.

In particular, each &,(G, N) with N in Hy(G) can be regarded as the class of
infinitely continuously differentiable functions on the Lie or finite group G/N.

Definition 2.5. Define a subalgebra 2(G) of £,.(G) as
Following [2], each member of 2(G) is called a regular function on G.

Let Z(G) denote the set of all trigonometric polynomials on G, i.e., finite
C-linear combinations of coordinate functions u$p (j, k=1,..., d,, 6€ G) of the
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representations U(c). For a € R(G), put H,=hg(x). Then, foreachoe G and xe G,
U, ar(0)=U(0) exp tH,(0) and U, (0)=(exp—tH,(0))U,(c). Hence we see
that the coordinate functions u3 of U(c) belong to &,(G) with derivatives

(2.2) dPU(6)=U(c)H,(c) and
(2.2 dPU(e)= —H,(0)U(s) (x€R(G)),

where the left hand sides mean to take derivatives coordinatewise. So it is also
clear that each u{} belongs to &,,(G), and therefore, to £,(G, N) with N=A(G, {c}).
Thus we have seen that 7 (G) is included in 2(G). Evidently 7(G) is a subalgebra of
2(G) stable under the left and the right translations, the inversion and the complex
conjugation.

Partial integration formula. Suppose f, g € &(G) and a« € R(G). Then

[ 49 1 dgx = _d) roea)dgx
G G

= c;i_t SGf(xoz(t))de= dit SGf(x)de=O.

Replacing f by fg, we have

[ @N@gdex=— | _1)(@Pg)(dox.

The same holds also for the left differentiation.

Example 1. Let Q be the discrete additive group of rational numbers and G
its Pontryagin dual. Identify G and Q canonically, and denote by , the unitary
character of G corresponding to re @, i.e., (x, x,)=(r, x) (xe G). The commutative
Lie algebra A(G) consists of all pure-imaginary characters of Q, and so, 1-dimensional.
Each aeR(G) is of the form (r, a(t))=e'"" (re @, te R) with some ve\/—_lR.
Hence

A= —dPy)=vry,.

Now, for p=1,2,.., put N,=A(G, {1/p!}). Then (G/N,)" =A(G, N,)=
[{1/p], N,=A(G, [{1/p}}]) and [{1/p"}1={q/p!; ¢=0, 1, +2,..}. Hence
{N,; p=1, 2,...} is cofinal in H(G) and so, 2(G)=\Up., 6,(G, N,). Furthermore,

since (G/N,)*={q/p!; q=0, 1, £2,...}, dPxy, =0 % Xqpr and the partial

integration is valid, we can show in the same way as in the classical case that each
€.(G, N,) consists of all functions on G that permit Fourier expansion by {x,/,; 4=
0, +1, +2,...} with rapidly decreasing coefficients. Thus the functions in 2(G)
have been characterized. On the other hand, take any absolutely convergent series
> 5, ¢, of non-zero complex numbers and define

J®) =21 ¢px1pm(x) (x€G).

Then the termwise differentiation shows immediately that f is infinitely continuously
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differentiable. But f is not regular, since it belongs to none of &,(G, N)).

By the way, the following should be noted here: G is connected: each N, is
totally disconnected and G/N , is isomorphic with the I-dimensional torus; G is locally
isomorphic with (G/N,) x N, for any p, but not isomorphic.

Example 2. Suppose G is finite dimensional (see Lemma 1.14) and separable.
In this case let us construct a function fe &,(G) such that f=f, for ye G implies
y=e. If G is neither Lie nor finite, such f is not regular. Take a linear base
{oy,..., o} of R(G) (see Definition 1.9) and put H;=hg(x;) (j=1....,n). As G
is countable by assumption, put G={o;; i=1, 2,...}. For each i, take a non-singular
matrix C(a;) e M(d,,, C) and m;>1 so that m; is larger than any of the absolute
values of coordinates of H(a;) (j=1...., n) and C(s;). By (2.2) and (2.2)" we have,
forany =231 _1a;;%,.... B,=24,=14,;,%;, € R(G) (p=1, 2,...),

dg)---dg) Tr (U(a;)C(07))
= z ayj, o pjp Tr(U(O'i)Hj,(Ui)"'Hj,,(o'i)c(o'.')) >

1< 1,0msd p<in

dg)---diP Tr (U(a)C(o7))
= > (=Dray;,--ay,;, Tr(H;(a)---H;,(6,)U(0:)C(07)) -

1<j150nnfps<n
The coeflicients of the d2, terms of each of these trigonometric polynomials do not
exceed nPaPd? mP*! in absolute value, where a=max{|ay;|; ji=1.....d
k=1,..., p}. Hence, if we define

a

J)=2%, i72d;Xnid,m)~ Tr (Ue)C(o) (x€G),

the termwise differentiation shows that fe £,(G). Here, if n=0 (i.e., G is totally
disconnected), we replace it by 1. Now we show that this f satisfies the required
condition. Suppose f=f,. Then, by uniqueness of Fourier expansion, U,(¢;)C(c;)=
C(s;) for all i. Since each C(o;) is non-singular, this implies that Uy/(o;)=
I(c,) (i=1,2,...). Hence y=e.

2.3. Proof of Theorem 2.1.

Lemma 2.3. For each neighbourhood V of e in G, there exists a function
0 e D(G)* such that supp(6)< V and g 0dg=1.
JG

Proof. Take a neighbourhood W of e and N € Hy(G) so that WN<V. Since
G/N is Lie or finite, there exists ge &,(G/N)* such that supp(g)<=ny(W) and

SG/N gdgn#0. Put f=gomy. Then fe&,(G, N)*. supp(f)=V and S fdg #0.
G
Therefore, suitably normalizing f, we obtain 6. q.e.d.

Lemma 2.4. Let m be a complex Radon measure on G and fe &{"(G) (resp.
&0(G)). Then mx fe &(G) (resp. frxme &°(G)) and, for a e R(G),
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(2.3) d (mxf)=mx(d{ f)
(resp.  dP(frm)=(df)xm).

Proof. The differentiation of S Sy~ xa(t))dm(y) and g fla(=2)xy~ dm(y)
G G
in ¢ under the integral sign proves the lemma. g.e.d.

From Lemma 2.4 we see that if fe &,(G), then m« fe £2(G) and f *m e £L(G).
Now suppose f€ &,(G, N)with Ne Hy(G). Then, mxfand f¥m are constant on each
coset of N, and so, can be viewed as functions on G/N. By Lemma 2.2, they belong
to £&(G, N)and €9(G, N) respectively. But, since G/N is Lie or finite, £%(G/N),
&(G/N) and &,(G/N) coincide with one another. Hence both mxf and fxm
belong to £,(G, N). Thus, we have shown thatif fe 2(G), then both mx f and f*m
belong to 2(G).

Definition 2.6. We denote by P, the norm on the C-linear space &4(G) defined
as Po(f)=sup|f(x)| (fe &(G)), and topologize &,(G) by it. For any ay,..., 4 €
xeG
R(G) (k=1, 2,...), P,,..q, (resp. P*r*x) denotes the seminorm on the C-linear space
&7(G) (resp. £P(G)) defined as
Py ()= sup |d--d2) f(x)| (fe€iP(G))
(resp. Prox(f)=sup |[dP)---d) f(x)]  (fe&P(G))).
xeG

For n=o0, 1, 2,..., we denote by '’ (resp. ) the family
{Po, Pyyooays 1 <k<n+1, ay,..., 2, € R(G)}
(resp. {Pg, P*vox; 1<k<n+1, ay,..., ¢ € R(G)}),

and topologize £"(G) (resp. €{”(G)) by it. Thus the C-linear spaces &\(G) and
€V(G) (n=o0, 1, 2,...) are locally convex and Hausdorff.

Lemma 2.5. Let {V,},., be a neighbourhood baseat e inG. For each ve 4",

choose a function 0, 2(G)* so that supp(0,)=V, and S 0,d;=1 (Lemma 2.3),
G

and regard & as directed by defining v>v' if V,<V,. Then, for each fe &”(G)

(resp. €(G)) (n=o0, 1, 2,...), the net {0 %f},., (resp. {f*0,},.,) lies in 2(G) and
converges to f in &7(G) (resp. £(G)).

Proof. 0, 2(G)implies 0,%f€ 2(G), as remarked above. Take any ay,..., 0, €
R(G) (0<k<n+1). Let D,,..,, denote the map fdy)---di) f of &,7(G) into &,72(G).
where we put &§(G)=&o(G), and agree that if k=0, D,,..,, means the identity map
on &{”(G). Then, by (2.3) and the uniform continuity of D,,..,. fon G,

|(Da|mak(0v*f)(x)_(Day"akf)(x)l
= |(0v*Da|'-~akf)(x)_(Day--akf)(x)l
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= |{. 6 Pur N )= Daa NNy

< SUP [(Dyyogy SIY ™1 %) = (Do S )X

yeVy

——0 (v—0), uniformly w.r.t. xe G.
Hence the assertion for fe &'7(G). The other can be checked similarly. q.e.d.

Before proceeding to the following Lemmas 2.6-2.10, recall Definition 1.9 and
Lemma 1.13.

Lemma 2.6. Let fe &(G) (resp. &"%(G)). Then the map
o l— df (resp. dPf)
of R(G) into &y(G) is R-linear.

Proof. We prove the assertion for fe &”(G). First suppose fe 2(G), and
take N € Hy(G) and g € &,(G/N) so that f=gony. Then, since the map @y of R(G)
into R(G/N) is linear (Lemma 1.9, (ii)) and G/N is a Lie or finite group, we have,
for a, be R and «a, e R(G), '

dS)inp S=(dY) (aarbpy@)° TN ...
=(ad®) )9 +bdy) pg)ony
=ad” f+bdy f .0 2.1).

Next, for any fe &{”(G), there exists a net {f,}, in 2(G) converging to f in &{”(G)

(Lemma 2.5).  Then, for each aeR(G), {df,}, converges to df in & (G).

So the linearity of the map a—d{"”f follows from that of every map a—>d{"f,.
q.e.d.

Lemma 2.7. Let {a;};, be a net in R(G). If this net converges to a in R(G),
then {o,(1)}, converges to a(t) in G for each t€ R.

Proof. Put hg(a;)=(H,;(6)),ec and hg(a)=(H(06))ses- Then, by assumption,
| H (o) — H(o)||,—0 (1—0) for each o€ G, and hence, |exp tH,(c)—exp tH(o)||,~0
(A—0). This proves the lemma. q.e.d.

Lemma 2.8. For each fe &{”(G) (resp. €\"(G)) and x € G, the map
a— dPf(x)  (resp. d{Pf(x))
of R(G) into C is R-linear and continuous.

Proof. We prove the assertion for fe &(G). The R-linearity of this map is
clear from Lemma 2.6. We demonstrate its continuity. For ¢>0, put B,={ze C;
|z|] <&}, and for n=1, 2,..., define

g0=n{f(x2(%)) -1} @er@Y.
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Then, for each oeR(G), lim g,(0)=d’f(x) and so, the set {g,(«)}, is bounded.

Therefore, for « € R(G), there exists a positive integer k, such that « € N\, g, (By,.)-
Hence U2, (NZ; g, '(B.))=R(G). On the other hand, by Lemma 2.7, each g,
is continuous on R(G) and so, each N\%, g, '(B,,) is closed in R(G). Since R(G)
is a Baire space, it follows that, for some ko, N, g, '(B,,.) contains a non-void
open subset O of R(G). Hence it follows that d{”f(x) € B, for allae 0. Now take
any o, €0 and put 01=2+(0(0—a0). Then O, is a neighbourhood of 0 in R(G)

and, by R-linearity of the map a~d'”f(x), we have d\”f(x) e B, for all xe 0,. This
proves the continuity in question. q.e.d.

Lemma 2.9. Let fe &'(G) (resp. £(G)). Then the map
(@, X) > dif(x) (resp. d;"f(x))
of R(G)x G into C is continuous.

Proof. As &”(G) and &{"(G) are stable under the complex conjugation, we
can assume without loss of generality that f is real valued. For x € G, let ¢, denote
the map ar—>d{”f(x) of R(G) into R. By Lemma 2.8 each ¢, belongs to R(G),
the dual space of the locally convex space R(G). The set {¢,; x€ G} is plainiy
bounded in R(G)' relative to the weak topology o(R(G)’, R(G)), and hence equl-
continuous because R(G) is barrelled ([1], Chap. 3, §3, Theorem 2). This together
with the inequality |dYf(x)—duf(xo) <IdPf(x) = dEf ()| +1d ()= dof (xo)
shows that the map (a, x)—d{”f(x) is continuous. The continuity of the other map
can be proved similarly. q.e.d.

Lemma 2.10. The map (o, x)—x"'ax of R(G) x G into R(G) is continuous.

Proof. Put hg(a)=H,=(H/0)),ec- Then hz(x~tax)=U - H,U =(U,-:(6)H,
(0)U(6)),.c. Hence the assertion. q.e.d.

Lemma 2.11. A C-valued function f on G belongs to &$(G) if and only if it
belongs to &"(G). And in this case,

dPf(x)= —di-1f(x) (x€R(G), x€G).

Proof. Since f(xa()=f(x(t)x"1x) (xeG,x€R(G), teR), this lemma
follows immediately from Lemmas 2.9 and 2.10. q.e.d.

Lemma 2.12. A4 function f belongs to &Y(G) if and only if it belongs to
&$(G). In this case,

dpdPr=dPdyr (a, BeR(G)).

Proof. Assume that fe £9°(G). Then, by Lemma 2.11, f and d’f (8 € R(G))
belongs to £{(G). Now take any xe G and «, € R(G). Define, for te R,
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g(t)=dPf(xp(r)), and
0u0=n{f@( = 1) BV ~S RO} (1=1.2...).

Then, as n tends to infinity, g,(t) converges to g(¢) for each te R. On the other hand,
since djf’f e #{"(G), we have by the mean value theorem

gy ty=n{dpr(a(~ L)xp) - dpreepn)

=dw(dr) @s)xBe) (=4 <s,<0).

As n tends to infinity, this converges to didy’f (xp(t)) uniformly in 1, because d\Vd}’f
is uniformly continuous on G. Hence the limit function g(¢) is differentiable and

A g =dPdpxp(r).

Therefore, in particular, d’(d{f)(x) exists and is equal to d’d’f(x). Since x
and B are arbitrary and d\”d{"f is continuous, this shows that d’fe #{’(G). Since
a is arbitrary and €{”(G)=&{"(G) by Lemma 2.11, we have fe #(G). In the same
way we can prove the reverse assertion that a function in €$(G) belongs to &5”(G).

g.e.d.

We are now in the position to complete

Proof of Theorem 2.1. It suffices to prove the assertion for n=1, 2, 3,....
But the cases n=1, 2 have already been verified in Lemmas 2.11 and 2.12. So we
make the proof for any n by induction. It suffices only to show that &{(G)<
&'P(G) (n>3), because the reverse inclusion can be shown similarly. Take any
n>3, and assume that &, (G)= &' ,(G). Under this assumption we show that

&Gz & P(G). Suppose fe&'(G). Then, by repeated use of Lemma 2.12,
we have for any p<n—1 and any a, f8,..., #,€ R(G),

dif) - dif) (diP [y =d(dif) - dif) ).

Since dif;)---dyy) fe &7(G)=&1"(G), the right hand side of this equality is continuous
on G. Hence dfe#{,(G) and so, by our assumption of induction, d¥fe
&'0,(G). Since a is arbitrary, this shows that fe £°(G). Hence &(G)<= €P(G).

q.e.d.

By Theorem 2.1. &(G)=&"(G)=&"(G) (n=o0, 1, 2,...). Thus wc sec
that it is perfectly natural to call the members of &,(G) the n-times (infinitely if
n=o0) continuously differentiable functions on G. It should be noticed that
Theorem 2.1 permits us to make mixed derivatives d{)---d{"dgD---dy!f, for fe &,(G)
(n=00,1,2,...)and 0< p+g<n+1. Here the ‘operators’ d{” and df” (o, pe R(G))
commute with each other on &,(G), as was shown in Lemma 2.12.
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§3. Structure of the spaces ¢,(G) (n=0, 1,2,...)
3.1. Structure of &,(G)’s as sets.

Definition 3.1. H(G) denotes the totality of closed normal subgroups N of
G such that G/N is finite dimensional (cf. Lemma 1.14), and H,(G) the subset of
H(G) consisting of all N e H(G) such that G/N is separable. (Needless to say,
Hy(G)= H\(G).)

Note that if G is finite dimensional, H(G) consists of all closed normal subgroups
of G, containing in particular the subgroup {e}.

Lemma 3.1. Let N be a closed normal subgroup of G. The following three
are equivalent: (a) N € H(G); (b) ¢«(N)e H(G); (c) ¢c(No)E N for some Nye Hy(G).

Proof. Evidently ¢(N) is, as well as N, a closed normal subgroup of G, and
G/N=(G/c(N))/(N]c(N)) (as topological groups). Here N/¢(N) is totally discon-
nected. Hence, by Lemma 1.8, (iii) and Corollary to Lemma 1.10, A(G/N) =
A(GJc(N)). This proves that (a) and (b) are equivalent. Next, if we assume (c),
then c¢(No,)e H(G) and G/N=(G/c(Ny))/(N/c(Ny)). Hence A(G/N) is finite
dimensional. That is, (a) holds. Conversely, assume (a). Then, by Lemma 1.14,
there exists a closed normal subgroup N, of G containing N such that Ny/N is totally
disconnected and (G/N)/(No/N) (ZG/N,) is Lie or finite. Hence ¢(Ny)S N and
NoeHy(G). That is, (¢) holds. g.e.d.

A topological group is said to be locally connected if the connected open sets
containing its unity e form a neighbourhood base at e. A finite dimensional compact
Hausdorff group is locally connected if and only if it is a Lie or finite group ([5], §47).
The direct product of a family of compact Hausdorff groups G, is locally connected
if and only if each G, is locally connected and all except at most a finite number of
G,’s are connected.

Lemma 3.2. The following three are equivalent: (a) H(G)=Hy(G); (b) ¢(N)e
Hy(G) for every N e Hy(G): (c) G is locally connected.

Proof. Since ¢(N)e H(G) for N e H(G) (Lemma 3.1), (a) implies (b). Next
assume (b), and take any neighbourhood U of e. Then we can choose a neighbour-
hood V of e and a connected N € Hy(G) so that VWN= U. Since G/N is Lie or finite,
there exists a connected open neighbourhood W’ of my(e) contained in my(V). Then
W=ny!(W’) is a connected open neighbourhood of ¢ contained in U. Indeed, we
have only to check its connectedness. Suppose contrary. Then there exists open
sets 0, and 0, in G such that (WnO,)U(WnO,)=W and (WnO,)n(WnO,)=g.
Since N is connected, each coset xN of N contained in W meets only one of O, and
0,. Hence, for O;=ny(0) (i=1,2), (W nO)UW nO3)=W’" and (W' nO)N
(W'=0%) =g, which contradicts the connectedness of W’'. Thus we have shown
that (b) implies (c). Finally assume (c). Then, for Ne H(G), G/N is finite-
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dimensional and locally connected, i.c., a Lie or finite group. Hence (a). q.e.d.

Lemma 3.3. Suppose a subset # of &,(G) satisfies the condition
sup |df (x)| <0
xeGfed

for each o€ R(G). Then there exists Ne H(G) such that #<&,(G, N). The
same holds if the left derivative is employed instead of the right one.

Proof. We can assume with no loss of generality that & consists only of real
valued functions. Then, for each fe # and x € G, the map ¢, : a—d{f(x) of R(G)
into R belongs to the dual space R(G)' (Lemma 2.8). By assumption, the set
{¢/; fe B, xe G} is weakly bounded, and so, equicontinuous because of the
barrelledness of R(G). Therefore there exists a neighbourhood ¥~ of 0 in A(G)
such that

3.1) |df(x) < 1 for fe#,xeG and aehgl(¥).

Take N e Hy(G) so that Ay(G)<v¥" (Lemma I.11, (iii)). Since Ay(G) is linear and
hg'(AN(G))=R(N), (3.1) demands that

drf(x)=0 for fe#,xeG and aeR(N).

Hence, for each fe #, xe G and a € R(N), the function f(xa(t)) of real variable ¢ is
constant. Since the union of orbits of all «e R(N) is dense in ¢(N) (Lemma 1.15),
it follows that f(xy)=f(x) for fe #, xe G and yec(N), i.e., that & =&,(G, c(N)).
Since ¢(N) e H(G) (Lemma 3.1), this completes the proof. q.e.d.

Theorem 3.1. Each function f in &,(G) belongs to &,(G, N) for some
N e H,(G).

Proof. Applying Lemma 3.3 to the singleton {f} of &,(G), we see that fe
&,(G, N,) for some N, € H(G). Let f be the Fourier transform of f, i.e.,

flo)= S(‘ (U (0)*d;x (ceG).

Put A={oeG; f(6)#0} and N,=A(G. 4). Then, forall ye N, and o € G,f'y(a)=

Uy(o)f(a)zf(a). So f,=f (y € N,), because both sides have the same Fourier coeffi-
cients. Thus fe &, (G, N,). Besides. since 4 is countable, so is [4] (=(G/N,)").
That is, G/N, is separable. Now put N=N;N,. Then, obviously, fe &,(G, N).
And, since G/IN2(G/N)/(N/N,) (i=1,2), G/N is finite-dimensional and separable,
i.c., Ne H,(G). q.e.d.

Corollary. Foreachn=o0, 1, 2,..., the space &,(G) coincides with the union of
all &,(G, NY's with N e H,(G).

By Theorem 3.1 the study of continuously differentiable functions on compact
groups is reduced to that of those on separable finite-dimensional compact groups.
In Paragraph 3.3 we shall show that &,(G) coincides with 2(G) only when G is
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locally connected. Therefore, in the above Corollary, we can not replace H,(G)
by Hy(G) unless G is locally connected. A continuous function on a connected
compact Lie group belongs to the C*-class if and only if its Fourier transform
decreases rapidly ([7]). Hence, if the compact group G is connected, each &,(G, N)
with N € Hy(G) consists of all functions on G expressed as

fx)= % d;'Tr(Uo)C(0)) (xe€G)
oeA(G,N)

with a rapidly decreasing (C(6)),cq(q,n) € Z(G/N). But, for a non locally connected
G, even if it is connected, the present author does not know yet how the functions in
&.(G)~2(G) might be characterized.

Definition 3.2. For fe &,(G), N, denotes the largest of all closed normal sub-
groups N of G such that fe &,(G, N). (The largest member really exists. It can
be defined as the closed subgroup of G generated by the union of all such N’s.)

The following are easy to check through Theorem 3.1 and the isomorphism
theorem used in its proof: (i) for any fe &,(G), N,e H,(G); (ii) if fe 2(G), then
N;e Hy(G). Conversely, for a supplement to Theorem 3.1, we have the following

Proposition 3.1. For any N € H,(G), there exists a function fe &,(G) such

Proof. As Example 2 in Paragraph 2.2 shows, each &,(G/N) with N e H,(G)
contains a function g such that N ={ny(e)}. Put f=gomy. Then fe&,(G) and
N,;=N. g.e.d.

Remark. Each of H(G) and H,(G) is closed under finite intersections and so,
lower directed under inclusion. Indeed, since Hy(G) has this property, we see
by Lemma 3.1 that so does H(G). As for H,(G), we reason as follows. Take any
N, N,eH,(G). Put N=N,nN,, Qj=A(G, N;) (j=1,2) and 4=Q,UQ,.
Then N < A(G, 4)= N, and hence, A(G, N)=[4]. Since [4] is countable as well as
Q, and Q,, this shows that G/N is separable.

3.2. Inductive limit topology for the spaces &,(G).

Definition 3.3. For each pair (p, q) of non-negative integers and for any
Uprenns % Byseees By € R(G), define the seminorm Pg;jjj{j: on &,.,(G)as

Poias(f)=sup g din) di) - dpDf ()] (fE€E p4q(G)).

a2y ap

In case p=0 or g=0, this coincides with one of P,,., . P#""#s and P, defined in
Definition 2.6. Forn=o0, 1. 2,...,let ' and F'" be the same as in Definition 2.6,
and put

L’gﬂ:{Pﬂ;jjjﬂg; 0<p+g<n+l, ay,..., 2, By,..., B,€ R(G)} .

The topologies for each &,(G) defined by ', F and &, are denoted by z,, 7,
and T respectively, without regard to n. The space &,(G) equipped with z,, 7,
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and ., is denoted by &7(G), €P(G) and &{(G) respectively. (This definition of
the notations #{”(G) and &{"(G) agrees nicely with Definition 2.6.)

Plainly, =, is finer than each of 7, and z,. It is easy to see that all spaces £{”(G),
&V(G) and E{*(G) are complete. For fe &,(G) (n=00, 1, 2,...) and ay,..., o € R(G)
(0<k<n+1), we have P“""“"(f)=Pa]...ak(f) by Lemma 2.1, (ii). Hence the map
frfis a topological linear isomorphism of £{(G) onto &{(G).

Lemma 3.4. Suppose R(G) has a countable linear base. Then, for each
£(G) (n=o00, 1, 2,...), the topologies =,, T, and T, coincide with one another, and
make it a Fréchet space.

Proof. Let B be a countable linear base of R(G), and §; the subset of §,
consisting of all Pirf«’s such that 0<p+q<n+1 and ay,....ay By...., B €B.
Then &, is countable. Moreover, since the maps a—d"f and a—d{"f of R(G)
into &,(G) are R-linear for fe &,(G) (Lemma 2.6), &, defines obviously the topology
z, for £(G) (n=o0, 1, 2,...). Hence each &{*(G) is a Fréchet space. Similarly,
we see that either of £'(G) and &(G) is a Fréchet space. Therefore, the con-
tinuous identity maps &(H(G)effe&(G) and &P (G)ef>fe&P(G) are
both open by the open mapping theorem. Hence the lemma. q.e.d.

Lemma 3.5. Let N be a closed normal subgroup of G. For each
n=0o0, 1, 2,..., the algebra isomorphsim (Corollary to Lemma 2.2)

¢,(GIN)3 g - gony € 6,(G, N)
is also a homeomorphism relative to each of T,, T, and t ..

Proof. From Lemma 2.2 we have, for g € ,(G) and a,,..., «,, By,..., B,€ R(G)
O<p+g<n+1),

Phiba(gomy) = PEBa (g),
where &; =7y(e;) and B;=7y(8;) (i=1,..., p,j=1,..., q). Sincethemap 7y carries

R(G) onto R(G/N), this proves the assertion. q.e.d.

Lemma 3.6. The topologies z,, T, and T, induce the same topology on
each &G, N), for Ne H(G) and n=o0, 1, 2,..., and make it a Fréchet space.

Proof. Clear from Lemmas 3.4 and 3.5. q.e.d.

Now we define an inductive limit topology for the spaces &,(G), which is rather
more proper than .

Definition 3.4. For any closed normal subgroup N of G, £{*(G, N) denotes
the space &,(G, N) equipped with the relativized z,. The family {€{"(G, N);
N e H(G)} is upper directed since H(G) is lower directed, and its union is &,(G)
(Theorem 3.1). Hence each &,(G) (n=0, 1, 2,...) can be topologized so as to be
the inductive limit of this family. This topology is denoted by z, without regard
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to n, and the space &(G) equipped with it by #*(G). For any closed normal
subgroup N of G, &*)(G, N) denotes the space &,(G, N) equipped with the relativized
t*t

7. is, by definition, the finest locally convex topology for &,(G) which coincides
with =, on each &(G, N) with N € H(G). As an inductive limit of Fréchet spaces,
each &'*)(G) is barrelled and bornological. For any closed normal subgroup N
of G, &(G, N) is closed in £.Y(G), and so, in &{*)(G). If G is finite dimensional,
T, coincides with = .

Remark. Each &,(G) (n=o00, 1, 2,...) can also be topologized so as to be the
inductive limit of {€{*)(G, N); Ne H,(G)}. Denote this topology by z,. Let us
show that 7, coincides with =, for each n. By definition, 7 is obviously finer than
4. To prove the converse, it suffices to show that the identity map of each
&{H(G, H) with N € H(G) into &'9(G), the space &,(G) equipped with z,, is con-
tinuous. Let f; (j=1, 2,...) be any sequence in &Y(G, N) converging to 0. Put
Qj=A(G, ij), A=U%,Q; and Noy=N%, N,j. Then Ngy=A(G, 4), and so,
A(G, Nyg)=[4]. Here, since each Q; is countable, so is [4]. Hence G/N, is
separable. On the other hand, N,e H(G) since Ny, 2N. Thus Nye H,(G).
Therefore 7, coincides with =, on &,(G. Ny), and so, f;—0 in &i?(G) because f;—0
in &(*(G, N,). This shows that the map in question is continuous.

Theorem 3.2. Let # be a subset of £(G) (n=o00,1,2,...). The following
five statements are equivalent: (a) # is T4-bounded; (b) # is T ,-bounded; (c) #
is ,-bounded; (d) @ is T,-bounded; (¢) # is a bounded subset of E{*(G, N) for
some N € H(G).

Proof. The implication ‘(a)=>(b)=-(c) and (d)’ is obvious. By Lemmas 3.3 and
3.6, each of (c) and (d) implies (e). Since 7, coincides with =, on each &,(G, N)
with N € H(G), (e) implies (a). q.e.d.

Proposition 3.3 in the next paragraph will show that, in the above theorem, H(G)
in (e) can not in general be replaced by H(G).

Theorem 3.3. Each space &' *(G) (n=oo0, 1, 2....) is complete.

This theorem is verified by following the way of proof of Theorem 1 in [2].
Let us sketch the proof for our case. For a closed normal subgroup N of G, we
define a 7 ,-continuous projection py of any &, (G) (n=o00, 1, 2,...) onto &G, N) as

n(N@={ fxndyy (fe6(G) xe0),

where dy denotes the Haar measure on N such that S dy=1. We have py,py,=
N
pszN| =pNz if Nl gNz.

Lemma 3.7. The set {py; NeR(G)} is equicontinuous on each &%(G),
where N(G) denotes the totality of closed normal subgroups of G.
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Proof. For each fe &,(G), {pn(f);: N e N(G)} is bounded in &{(G) and so,
equivalently, in €*)(G). That is, {py; N € (G)} is bounded relative to the simple
topology for the space of continuous linear operators on &*)(G). Since &*)(G)
is barrelled, the equicontinuity follows. g.e.d.

Lemma 3.8. Let N be a closed normal subgroup of G. The algebraic linear
isomorphism g gony of &*(G/N) onto &*(G, N) is also topological.

Proof. Denote this map by ¢ and put H={N'e H(G); N=N'}. We see
that H(G/H)={N’'|N; N'e H} and &,(G, N)=Ué&,(G, N') (N'eH). By Lemma
3.5, each &{*(G/N, N'/N) (N’e H) is topologically isomorphic with &{*(G, N')
under . Hence, in particular, { is T4-continuous. On the other hand, ~! can be
extended to the map y~lopy of &,(G) onto &,(G/N). If Ny,e H(G), then NNye H,
and Y~ lopy maps &G, Ny) into &(G/N, NNo/N) continuously. Hence
Y lopy is T4-continuous, and so is Y~ q.e.d.

Lemma 3.9. Let H be a directed subfamily of H(G) such that the intersection
of its members is {e}. Then for any N e HyG), there exists N, e H such that
N,SN.

Proof. The proof is the same as for Lemma 1 in [2]. g.e.d.

Proof of Theorem 3.3. Set & =&*(G). Let & denote the dual space of &,
and &* the set of all linear forms of &' that are a(&’, &')-continuous on each equi-
continuous subset of &’. The proof depends on Grothendieck’s completeness
theorem.

(I) For N e N(G), put & =pn(&), A y=ker py, Ey=pn(&’) and A"y =ker py,
where py denotes the adjoint of py, and &y is endowed with the relativized .
Then, (i) £ =&y + Ay, &' =En+ Ay (direct sums); (ii) £y can be canonically viewed
as the dual space of &y; (iii) if N, = N,, then &y, 28y, andAt y, oAy,

(I) For Te &', put Xp={py(T); Ne H(G)}. Its a(&’, &)-closure X is equi-
continuous on & and contains 7. Here we use Lemma 3.7 and the fact that the net
pn(T) (N € H(G)) on H(G) converges to T in o(&’, &).

(II7) Put X=U{€x; Ne H(G)}. Then, for each u e &*, there exists an N, e
H(G) such that u(T)=0 for Te X n "y, Indeed, if otherwise, we can choose N;e
H(G)and T;eé (j=1,2,...)sothat N;2N;,, T;e&y,, nA 'y, and u(T)=1. Here,
by (iii) of (I) and Lemma 3.1, we can assume that each N; is connected. Put N,=

2y Nj. Then_ N;/No,e H(G/N,)and Ny N;/N,={ny_(e)}. Sinceeach N;/N,
is connected, this shows by Lemmas 3.9 and 3.1 that {N;/N,; j=1, 2,...} is cofinal
in H(G/N,). Therefore, by Lemma 3.8, &y_ is an (LF)-space and so complete.
Hence there exists an fe &y, such that w(T)=T(f) for Te&y,. Since &y =
\Uf=1 &n,, and so, f€ én,, for some j,, it follows that u(T;)=T;(f)=0. This is a
contradiction.

(IV) Suppose Te Ay, Then we see easily that X=X n oy, Hence u=0
on X and so, by (II), u(T)=0. On the other hand, since &y, is complete, there
exists an f, €&y, such that u(T)=T(f,) for Te&y, Then w(T)=T(f,) for all
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Te&’'. This completes the proof. q.e.d.

3.3. Results from the structure theorem for finite dimensional compact groups.

Lemma 3.10.. Let K be a compact (i.e., closed) subset of G and O a neighbour-
hood of K. Then there exists a function fe 2(G) such that f(x)=1 on K and, =0
on G~O0.

Proof. See Proposition 2 in [2]. g.e.d.

Lemma 3.11. If G is totally disconnected, the space 7 (G) of trigonometric
polynomials on G coincides with 2(G).

Proof. For N e Hy(G), the group G/N is finite, and so, the set (G/N)” is also
finite. Hence every ge&,(G/N) (=& ,(G/N)) permits the Fourier expansion
with finite terms. Hence the lemma. g.e.d.

Lemma 3.12. Suppose G is finite dimensional. Then, for each totally dis-
connected N € Hy(G), there exists a topological linear isomorphism g—g of &o(N)
onto a closed linear subspace of €(G) having the following two properties: (a)
g=g on N for all g e &(N), and (b) ge D(N)<=g e 2(G).

Proof. It suffices to show that there exists a continuous linear map g—g§ of
&o(N) into &$(G) fulfilling (a) and (b). By the structure theorem for finite
dimensional compact groups ([5], §47), there exists a subset L of G fulfiilling the
following four conditions: (i) ee L; (ii) L is homeomorphic under ny with an open
neighbourhood of my(e); (iii) U=LN is an open neighbourhood of e; (iv) if we put
U'=ny(L)x N and y'=ny(y) for ye L, then the map y: U'a(y’, z)»yzeU is a
local isomorphsim of (G/N)x N onto G. Now take open sets ¥ and W in G so
that NV, V=W and W< U, and 0 € 2(G) so that 6(x)=1 on V and 6(x)=0 on
G~W (Lemma 3.10). For g € &(N), denote by g’ the trivial extension of g to U’,
and regard it as a function on U thourght . Then g’ is continuous on U, and for
any o€ R(G) and xe U, d{”g'(x) exists and =0. Define

Jx)=0(x)g'(x) (xeQ).

Then, obviously, §€&y(G) and j=g on N. Moreover, for any ay,..., a,€ R(G)
(p=1,2,...), we have

4 dF(x) = (d)-d) (g (x)  (x€6).

Hence § € &,(G). Obviously from this equality and construction of §, the map g g
is linear and continuous. Now assume that g € 2(N). Since 2(N)=7(N) (Lemma
3.11), g is expressed as Y; ¢;*? (finite sum), where c;e C, 7;€ N, and each v is
a matrix element of 7;. Recall that each 7; is an irreducible component of the re-
striction o]y of some a;€ G ([3], (27.48)). Put N'=nN\; A(G, {5;}) (€ Hy(G)). Then
geé(N, N nN). Hence g’ is constant on each coset of N'n N contained in U.
Therefore, if we take N, € Hy(G) so that 0 € £,(G, Ny), then ge &,(G, Non N'n N).
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Since Ny, N’, N € Hy(G), this shows that §e 2(G). Conversely assume that §e
2(G), ie., ge&, (G, N") for some N"e Hy(G). Then g=g|yeé, (N, NnN")
and N(NnN N")~NN"/N”. Here N/(Nn N") is totally disconnected and NN"/N"
is Lie or finite. Therefore these isomorphic groups are finite. Hence NN N"¢€
Hy(N), and so, g € 2(N). q.e.d.

Proposition 3.2. If G is not locally connected, then &.(G)# 2(G).

Proof. (1) First suppose G is totally disconnected. Since G is not finite by
assumption, neither is G. So we can choose an infinite sequence a; (i=1, 2,...)
in G and a convergent series Y%, c; of positive numbers. Define f(x)=X%2, ¢
di'y(x) (x € G), where y; denotes the character of o;. Then fe &(G) (=&x(G))
but f& J(G) (=2(G) by Lemma 3.11).

(II) Next suppose G is finite dimensional. Then we can choose a totally
disconnected N € Hy(G) so that G is locally isomorphic with (G/N)x N ([5], §47).
Since G is not locally connected, neither is N. Therefore, by (I), there exists a
function g e &(N)~2(N). By Lemma 3.12, g can be extended to a function in
E.(G)~ 2(G).

(IIT) Finally we treat the general case. By assumption and by Lemma 3.2,
there exists N € H(G)~Hy(G). And, by (I), there exists a function g € &,(G/N)~
2(G|N). Putf=gony (€ &L(G)). Then f& 2(G). Indeed, if we assume contrary,
N,;e Hy(G). Since N;2N, (G/N)/(N;/N)=G/N, and N,/N=N, this implies
that N,e Hy(G/N). But this is absurd, since g& 2(G/N). q.e.d.

From Lemma 3.2, Theorem 3.1 and Proposition 3.2 we have the following

Corollary. The following four conditions are equivalent:
(a) G islocally connected; (b) H(G)=HyG);
(© H(G)=HyG); (d) &.(G)=2(G).

Proposition 3.3. If H(G)# H,(G), then there exists a bounded subset of &(G)
included in 2(G) but not in any &,(G, N) with N € H,(G).

Proof. (1) First suppose G is finite dimensional. The assumption H(G)#
H\(G) means in this case that G is not separable. Choose a totally disconnected
N e H(G) so that G is locally isomorphic with (G/N)x N. Then N is non-separable
as well as G. Let & be the set of the coordinate functions of all continuous, ir-
reducible, unitary representations of N, and & the image of # under the map in
Lemma 3.12. Then, since & is bounded in &,(N) and included in 2(N), & is bound-
ed in #57(G) and included in 2(G). We show that & is not included in any
6,(G, N) with Ne H,(G). Suppose contrary, i.e., that & =&,(G, N,) for some
N,eH|(G). Then Z<=&,(N, NnN,). This together with definition of %
demands that NnN;={e}. Hence N=N/(NnNN,)@NN,/N,. Therefore N is
separable as well as G/N,. But this is absurd.

(IT) Nextlet G bearbitrary. By assumption thereexists an N € H(G)~ H,(G).
Obviously, Hy(G/N)={N'/|[N; N=N'eHyG)} and H,(G/N)={N'/[N; N=N'e
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H,(G)}. By (I) there exists a bounded subset # of ¢$(G/N) included in 2(G/N)
but not in any &,(G/N, N'/N) with N'/Ne€ H,(G/N). Put &' ={geny; ge Z}.
Then it is easy to see that &’ is a bounded subset of #$(G) included in 2(G) but not
in any &,(G, N') with N’ € H,(G). g.e.d.

Each €%)(G, N) with N e Hy(G) is, evidently, a Montel space. While, in
case G is not locally connected, we have the following

Proposition 3.4. Each ¢(G, N) with N in H(G)~ Hy(G) includes a closed,
bounded and non-compact subset.

Proof. (1) First suppose G is finite dimensional and not locally connected.
Then there exists a totally disconnected and non locally connected N € Hy(G).
Set Hy(N)={K,; Ae A}. Since each K; is open in N, its indicating function f;
is continuous on N. The set {f;; A€ A} is bounded in &,(N) but not equicontinuous
at e, because N{K,;; AeA}={e} and N is not discrete. Hence the closure & of
{f.1; Ae A} in &(N) is bounded in &(N) but not compact. Now let Z be the image
of # under the map in Lemma 3.12. Then Z is closed and bounded in &$7(G)
but not compact.

(II) Let G be arbitrary and N € H(G)~Hy(G). By (I), ¢(G/N) includes a
closed, bounded and non compact subset. Since &$(G/N) is topologically iso-
morphic with £$(G, N), this completes the proof. g.e.d.

Proposition 3.4 shows that if G is not locally connected, the space &%(G) is
not Montel, and so not nuclear because it is complete and barrelled. As for a
locally connected G, €%(G) is nuclear if and only if G is separable ([2],
p. 53, Remark).

3.4. For a closed normal subgroup N of G, put
T(G, N)=9(G) N €,(G, N).

This is a subalgebra of 77 (G) isomorphic with & (G/N) under the map 7 (G/N)3g~
gomy (cf. [3], (28.72), (k).

Proposition 3.5. For each N e H(G) and n=o, 1, 2,..., (G, N) is dense in
&M(G, N).

Proof. In view of Lemmas 3.4 and 3.5, it suffices to show, for any G and n,
that 7 (G) is dense in #¢’(G). Take any fe &,(G), e>0 and any finite number of
operators D,,..., D, each of which has the form d{---d%) (0<p<n+1). By Lemma
2.5, we can choose a regular function 6 on G so that

(32) sup D,(04f)(x) ~ D;f (9] <.

X
jE10k

Since 0 is regular, the functions G x G € (y, x)—~D(0,)(x) (j=1,..., k) are continuous.
Hence
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3.3) D0+ ) (X)=|_D6,-) (D (e

Next put M =sup {|D{(0,)(x)|: x, yeG, j=1,..., k}. By the Peter-Weyl theorem,
there exists a g € 7 (G) such that su% lg(y)—f(y)|<e/M. Then, by (3.3),
Ye

(3.4) sup |D(0xg)(x)— D (0 f)(x)|

xeG
Ji=1..., k

~ sup |§ D(6,-)x)(g(y) — f())dey

<Mx%=s.

From (3.2) and (3.4), we have
sul(q |D(0%g)(x)—D;f(x)| <2e.
Jj=1 ’..f,k

Here 0xg belongs to 7 (G) as well as g.  This completes the proof.
q.e.d.

The above proposition implies ipso fact that 7 (G) is dense in &*)(G) (n= o0,
1,2,...). It generalizes the classical Weierstrass approximation theorem for the tori
to any compact groups.

§4. Enveloping algebra

Most statements in this section are made in regard to the right differentiation.
But the parallel statements for the left differentiation also hold.

4.1. Derivations associated to one-parameter subgroups. Let & be an algebra
over C. A linear map d on & is called a derivation if d(fg)=(df)g+f(dg)
holds for f, ge &. The totality of derivations on & forms a complex Lie algebra
under the usual linear operations and commutator product.

Definition 4.1. R(G)¢ denotes the complexification of the Lie algebra R(G).
For each a+if e R(G) (o, BeR(G), i=4/—1), d{d;; (resp.d(?;p) is defined to be
the linear map

fl— dPf+idQf
(resp. f > dPf +id}f)

of &,(G) into &,(G). Each d};; (resp. dQ;p), restricted to &,(G), is a derivation on
the algebra &,(G), which we call the right (resp. left) derivation associated to a+
if e R(G)-.

All the derivations d{};; and d{?;; are z,-continuous. Actually the operators
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dir),s and d),, belong to L(£{*(G), &4(G))and, if restricted to £,(G) (n=00,2, 3,...),
belong to L(&*¥(G), €*,(G)). Moreover, for fe &,(G) and x, € G, we have

(left invariancy) dip(eo ) = xo(di 1),
(right invariancy)  di0ip(fio) = (AR5 s
Our first task in this section is to prove

Theorem 4.1. The map a+if—d),s where d{),, is taken as restricted to
&€,(G), is a Lie algebra isomorphism of R(G)° into the Lie algebra of derivations
on &,(G). The image of this map coincides with the totality of left invariant and
T4-continuous derivations on &,(G).

Lemma 4.1. (i) The map a+iB—d\) s is linear from R(G) into L(¢{¥(G),
&o(G)).
(ii) If d&ipf=0 for every fe 7(G), then a+if=0 (i.e. x=p=0).
(iii) For a+if, a'+ip’ € R(G)-,

dl(::z)-*ilf,a’+iﬂ’]= [di'lw, dgz")ﬁp']

holds on &,(G), where the right hand side designates the usual commutator product
of operators.

Proof. (i) is obvious from Lemma 2.6. (ii). Put hg(e)=H, and hg(B)=H,.
Then, by assumption, U(a)(H,(0)+iHy(0))=0 for every oe G. Hence H(0)+
iHy(0)=0(o€ G). Since H,(c) and H s(0) are skew-hermite, this shows that H (o)=
Hy0)=0(oce G). Hence H,=H;=0,ie. a=f=0. (iii). In view of (i), it suffices
to show that df?),.,=[d{”, d{] holds on &(G) for y, ¥ € R(G). Put hs(y)=H,
and he(y)=H,. Foroe G we have

d . U(e)=U(c) [H,(0), H,(0)]
=U(0) (H (0)H (o) — H,(6)H (o)) =[d", d]U(0).

Hence d{),.; and [d'", d’] coincide on 7(G). Since df) ., and [d{", d{”], con-

Ly, [v,7’]
sidered as mappings of &#5*)(G) into &y(G), are continuous, and J(G) is dense in
&5¥(G), this shows that they coincide on &,(G). g.e.d.

The first assertion of Theorem 4.1 follows immediately from Lemma 4.1.
Therefore it remains only to prove that each left invariant and z,-continuous der-
ivation on &,(G) has the form d{};,; for some a, € R(G).

Lemma 4.2. Let CS be the complex vector space of all C-valued functions on
G and d a linear map of 7 (G) into C¢. The following three are equivalent:
(a) d=d§f-3m|r(c) for some a, B € R(G);
(b) forf, ge 7(G) and x,€G,
d(fg)=(df)g+f(dg) and d(..f)=,(df);

(c) forf, geJ(G)and x,€G,
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d(fg)(e)=(df)(e)g(e)+f(e)(dg)(e) and
d(,,f) ()= (df)(e).

Proof. The implications (a)=-(b)=>(c) are obvious. We show that (c) implies
(a). Evidently (c) is equivalent to the following: (¢") for g, ¢’ € G and x, € G,

(4.1) d(U(e)®@U(a"))(e)
=(dU(0))(e)®U (6')+ U0)®(dU(c"))(e) and
(4.2) d(U ;1(6)U(0))(e)=(dU(0)) (xg") -

Here note that U,(¢)=1(¢) and U (6')=1(c"). Now suppose (¢’) holds. Put T(a)=
(dU(o))e) for o € G and define T=(T(0)),c; (€ 2(G)). Then T satisfies the condition
(C2) in Definition 1.2. Indeed, if an irreducible decomposition of U(c)®U(c")
for o, ¢’ € G is given by

U(@)®U(a')=V~1(U(a)®---@U(s,))V
(V a unitary matrix), then, by (4.1),

V'(‘(T(ol)@m@T(am))V=T(a)®l(a’)+1(a)®T(a’). N

Now put H, = —;— (T-T*) and H,= — ‘5 (T+ T*). These matrix fields are hermite

and satisfy (C2), because so does T* as well as T. That is, H,, H 2 € A(G). So put
a;=hz'(H;) (j=1,2). Then, by (4.2),

(dU(0)) (x0)=d(U,(0)U(0))(e)=U,(0)T(0)
=U,(0)(H(0)+iH(0))=(d{%:2,U(0)) (o) (0€G, x0€G).
This shows that (a) holds. q.e.d.

Corollary. Let d be a continuous linear map of &*(G) (n=c0, 1, 2,...) into
C6 equipped with the pointwise convergence topology. Then the following three
are equivalent:

(@) d=d%is e, for some a, feR(G);

(b) forf, ge&,(G) and xq€G,

d(fg)=(df)g+f(dg) and d(;.f)=x(df).
(©) forf,geT(G) and xy€G,
d(fg)(e)=(df)(e)g(e) +f(e)(dg)(e) and
() () = 5,(df ) (e).

Proof. The implications (a)=>(b)=-(c) are obvious. If (c) is assumed, there
exists, by Lemma 4.2, o, f € R(G) such that df=d{),,f for fe 7(G). Then, since d
and dl,. are continuous from &#*(G) into €% and (G) is dense in
&*)(G), this equality holds for fe &,(G). Hence (a). g.e.d.
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It is clear from the above corollary that each left invariant and z,-continuous
derivation on &,(G) has the form d{),, for some «, Be R(G). Thus Theorem 4.1
has been proved.

4.2, Invariant differential operators.

Definition 4.2. D(G) denotes the set of all linear operators on &,(G) that are
generated by the derivations d{;;, d};s (¢, B€R(G)) and &,(G), where each
member of &,(G) is taken as a multiplication operator. That is, D(G) consists
of the operators on &,(G) expressed as

D=3 abi:had®n...ddf). . di) (finite sum),

where a,...., oy, Bys.... B,€ R(G), dithee £.,(G), and if p=q=0, d)---d)dg---df)
means 1, the identity operator on &,(G). Each member of D(G) is called a dif-
ferential operator on G. A differential operator D on G is said to be left (resp. right)
invariant if D(, f)=,(Df) (resp. D(f,,)=(Df),,) holds for fe&,(G) and x,€G.
D(G) (resp. D,(G)) denotes the set of all left (resp. right) invariant differential oper-
ators.

A differential operator is z,-continuous, and so, determined by the restriction to
Z(G). Obviously D(G) is an algebra over C with 1 as its identity element, and
also a left module over &,(G). Each of D(G) and D,(G) is a subalgebra of D(G)
containing 1.

Lemma 4.3. A differential operator D on G is left (resp. right) invariant if
and only if it can be expressed as

D= Z can"'apdgtrx)"'dg’;
(resp. D=3 covor dP...nn ad) (finite sum),
where ay,..., a,€ R(G), C4.q, (resp.c**r)eC, and d)---dy) (resp.dy---db))

means the identity operator 1 if p=0.

Proof. We shall prove for left invariance. A differential operator D has the
form

D=3 afrPa phita (finite sum),

where g fae & (G) and DPv:fa=dn...d0dP...d{". By Lemma 2.‘11, diPf(e)=
ayap ) ayap oy ap By Bq B
—dy(e) for fe £,(G) and fe R(G). Hence ‘

Dir:af(e)= = Dy le,, £(e)

gy Bray-%p-
e =(=1)"Dy,..p,a,a, f(€)-

Therefore, if D is left invariant,

(Df)Y(X)=D(x-1f) ()
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= Z ai:g;(e) (_ l)q(Dﬂq"'lilal“-ap(x‘1f)) (e)
=Y (=1)abiha(e)(Dy,prara, J) (X)) (x€G).
This proves the ‘only if” part of the lemma. The ‘if* part is obvious. q.e.d.

Let p be the algebra automorphism f— f of £,(G). For each D e D(G), define
D=pDp~'. 1If D has the form

D=3% flf,}ﬁlfgg de).--do dgp...dy) (finite sum),
where aﬁ;j;;‘:: € £,(G), then, by Lemma 2.1, (ii),

D= Z(Qﬁ""ﬂ")vd;ﬁ)'“d(al,), d;f,)"'d;qu)-

ayrap

Therefore the transformation DD is an automorphism of the algebra D(G), and
the subalgebras D,(G) and D,G) are carried onto each other under this trans-
formation.

Definition 4.3. U(G) denotes the universal enveloping algebra of the Lie
algebra R(G)°. C and R(G)¢ are identified with their canonical images in U(G).

Each element of U(G) is expressed as
2 Coporayy---0,  (finite sum),

where ay,..., &, € R(G), ¢,,.., € C, and the product «,---, means the identity element
1if p=0.

Theorem 4.2. The map a+if—d{);; of R(G)° into D(G) extends uniquely to
an algebra isomorphsim of U(G) onto D(G) mapping the identity of U(G) to that
of D(G).

This theorem is well known if G is a Lie group, and makes clear the structure
of the algebra D,(G). By Theorem 4.1, the map a+ if—>d¢) ip is a Lie algebra homo-
morphism of R(G)¢ into D/(G), regarded as Lie algebra under the commutator
product. Hence this map extends uniquely to an algebra homomorphism of U(G)
into D(G) mapping the identity of U(G) to that of D(G). Denote this extension
by . Then, by Lemma 4.3,  is obviously surjective. Therefore, for the proof of
Theorem 4.2, it remains only to show that i is injective.

Lemma 4.4. For any finite number of linearly independent members
Hi,.... H, of A(G), there exists a finite subset A of G such that the matrix fields
H,...., H,, restricted to A, are linearly independent.

Proof. This can be proved by finite induction. Assume that, for some k<m,
there has been chosen a finite subset 4, so that H,,..., H,, restricted to 4,, are linearly
independent. This assumption obviously holds for k=1. Now if H,,..., Hy, Hy,,
restricted to 4,, are linearly independent, we define 4,,,=4,. Otherwise, there
exist uniquely determined real numbers cy,..., ¢, such that
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Hy,,(0)=c,H,(0)+ - +c,Ho) for all o€ 4,.
But, since H,..., H,, H,, , are linearly independent on G, there exists ¢’ € G such that
Hyy1(0)# e Hy(6)+ - + e H(d).

Put 4,,,=4,U{¢'}. Then H,,..., H,, H,,, are linearly independent on it. This
completes the induction. g.e.d.

Proof of Theorem 4.2. We prove the injectivity of .

(I) Take a linear base B of R(G)¢ consisting of elements in R(G). Introduce
a total ordering in B, and denote by B’ the set of all finite increasing sequences of
elements of B, containing the void sequence. Then {af---y; (o, fB,...,7)€B'} is a
linear base for U(G). Therefore, for the injectivity of y, it suffices to show that
{dPdy---dP; (o, B,...,y) e B’} is linearly independent in D(G). So our task is
to prove the linear independency of {d{’d{’---d\”; (a, B....,y)€ S} for any finite
subset SSB'.

(I1) Let F be the set of all members of R(G) appearing in the sequencesin S.
Put F'=hg(F). Then, since F' is a finite and linearly independent subset of A(G),
there exists a finite subset 4<G such that the members of F', restricted to it, are
linearly independent (Lemma 4.4). Set N=A(G, 4). Then, since A(G, N)=[4],
the map ry (see Definition 1.7) carries F’ onto a linearly independent subset of A(G/N)
in a one-to-one way. That is, %, carries F onto a linearly independent subset of
R(G/N) in a one-to-one way (Lemma 1.9, (ii)). Hence {&B---7; (o, B,..., y) € S}, where
a=Tn(e), B=7N(B)s-.., 7= An(D), is linearly independent in U(G/N). Since N € Hy(G)
(Lemma 1.11, (i)), i.e., G/N is Lie or finite, this implies that {d;"d%”---d‘i";
(e, B,...,7)€ S} is linearly independent in D,(G/N). Under the isomorphism
g—gony of &4(G/N) onto &,(G, N), each dPdy---d" is transformed to
ddy---dP|, . (cf. (2.1)). Hence, as a matter of course, {dVdf.--d";
(o, B,..., y) € S} is linearly independent in D,(G). q.e.d.

4.3. The center of U(G). Let A(G) denote the set of all members of Z(G)
satisfying the condition (C2) in Definition 1.2. Then it is easy to see that, under
the linear operations and the commutator product in Z(G), A(G) is a complex
Lie algebra isomorphic with the complexification of A(G). The Lie algebra iso-
morphism hg of R(G) onto A(G) extends uniquely to that of R(G)¢ onto A(G),
also denoted by hg.

Definition 4.4. For x € G, let Ad (x) denote the map
a+iff |— xax~4+ixfx~! (a, fe R(G))
on R(G)¢, or equivalently in virtue of /i, the map
H,+iH, — U(H+iH,)U,-y (H,, H, € A(G))

on A(G)¢. Then Ad(x) is an automorphism of the Lie algebra R(G)¢, and extends
uniquely to an algebra automorphism of U(G) mapping 1 to 1, which is again denoted
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by Ad (x).®

Lemma 4.5. Let the algebra U(G) be realized by D(G) through the iso-
morphism established in Theorem 4.2. Then

Ad (x)D=R,°DsR,-: (xeG, DeD(G)),
where R, denotes the right translation f— f, on &,(G).
Proof. For xeG, a € R(G) and fe &,(G),
(Ad(x)dY) f=d&e- f

- Hde('xot(l)x_l)|,=o=(Rx°d§z’)°Rx")f'

Since D(G) is generated by | and d'” (« € R(G)), this proves the lemma. q.e.d.
For y € R(G)¢, define the map ad (y) on U(G) as
ad (y)D=[y, D]=yD—-Dy (DeU(G)).
ad (y) is a derivation on the algebra U(G). For each poéitive integer m, put
U, (G)=w(C+ ;" ®* R(G)°),

where ® denotes the canonical homomorphism of the tensor algebra C+
> 2 , ®*R(G) onto U(G). Each U,(G) is a linear subspace of U(G) stable under
every ad () (y€ R(G)°). Put ad,, (y)=ad (y)|y,)» Now let us suppose G is finite
dimensional. Then so is each U,(G). Therefore we can equip it with the usual
finite dimensional vector space topology, and define the map exp ad,, (y) onit by the

Taylor series > 3%, ’—(]—,ad,,, (y)*. If m<m’', then expad, (y) extends expad,, (y).

Therefore, for each y € R(G), the union of the maps exp ad,, (y) (m=1, 2,...) defines
a linear map on U(G), which we denote by exp ad ().

The next lemma is verified in the same argument as for Lie groups with simple
modifications.

Lemma 4.6. Assume that G is finite dimensionul.
(i) Ad(o(t))=expad(ta) (xeR(G), teR).
(ii) For a € R(G) and D e U(G),

ad (x)D=0 &= Ad («(t))D=D for all te R.
(iii) Let Z(G) denote the center of U(G). Then, for D € U(G),
DeZ(G) <> Ad (x)D=D for all x e ¢(G).

(3) The linear spaceA(G) is locally convex, complete and Hausdorff relative to the coordinatewise
convergence topology, and the map Ad: G x1—Ad (x) gives a representation of G onA(G)*
such that G x A(G)*D(x, H) =Ad (x)H € A(G)° is continuous.
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Proof. (i). For any D,, D, e U(G), choose a positive integer m so large that
D,, D,. D,D, € U,(G). Then, since ad (to) is a derivation on U(G),

(exp ad(10)) (D;D2) = Lo 1 (ad,(12)(D; D))

=TEogy, 2, i1 (9n(2) D)) (@dy (1)1 Dy)

f7=k

S 07r (ady(12) D)) ) (S50 T (@d,(12) D))

= ((exp ad(z0))(D,)((exp ad(¢x)) D).

Hence exp ad(ta) is an endomorphism of the algebra U(G). Now take any f € R(G).
The elements

Ad («(1)B = a(t)ed —1)

and
. k
(exp ad(12))p= oy (ad, (2)*)
of R(G) correspond under h; with
(Uae(0)H g(0)U 4~ 1)(0))ge
and
(S0 ad (H)HHylo))
k=0 k! ¢ k oeG

respectively, where (Hy(0)),e6="hs(®), (Hp(0))sec =hs(B), and ad (H,(s)) denotes
the map M—[H(0), M]=H (6)M — MH (o) on M(d,, C). For each o€ G, the o-th
coordinate of each of these matrix fields satisfies the equation

LM =H M- MOH0) (M(1)eM(d,. O)

with the initial condition M(0)=Hy(g). Hence these two matrix fields coincide
with each other for all te R. Thus, for each te R, the endomorphisms Ad (a(1))
and exp ad(ta) of U(G) coincide on R(G). Besides, from definition, each of them
fixes the identity 1 of U(G). Therefore they coincide on U(G).

(ii). Choose m so that De U,(G). Then, by (i), o

Ad ((1)D= Sz L7 (ad, @FD) (€ R).

Hence the implication ==. The reverse one follows from

d

dt Ad (OC(t))D',=0 = ad m(a)D'
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(iii). D belongs to Z(G) if and only if it commutes with every « € R(G). By
(ii) this is the case if and only if Ad («(7))D =D for all « € R(G) and te R. Hence the
implication <=. Now take m so that De U,(G). To prove the reverse implication,
it suffices to show that the map x—Ad (x)D of G into U,(G) is continuous, because
U a(R) (€ R(G)) is dense in ¢(G). Take a linear base {a,,..., «,} of R(G). Then D
is expressed as

k k.,
Ckl...k"dl'“'a,,‘ (ckl"‘knec)'

0Lkt +k,,<m
Hence
Ad (x)D= > Crpk, (Ad (X)ap)*i---(Ad (x)or, )k
Ok (++k,<m
The continuity in question is clear from this together with Lemma 2.10. q.e.d.

The assertion (iii) of the above lemma holds without finite dimensionality of G.
That is, we have

Theorem 4.3. Let Z(G) denote the center of the algebra U(G), and ¢(G) the
connected component of e in G. Then

Z(G)={D e U(G); Ad (x)D=D for all xec(G)}.

Proof. Realize U(G) by D,(G)through the isomorphism in Theorem 4.2. For
any closed normal subgroup N of G, the Lie algebra homomorphism 7 : a—myeo of
R(G) onto R(G/N) extends uniquely to an algebra homomorphism of D,(G) onto
D(G/N), mapping | to 1. And, evidently,

(4.3) Tn(Ad (x)D)=Ad (ny(x))(Tn(D)) (x€G, De D(G)).

Now assume that a De D(G) is fixed by Ad(x) for all xe ¢(G). Take any D'e
D(G) and fe&,(G), and choose Ne H(G) and ge&,(G/N) so that f=gomy.
By (4.3) we have,

Ad (my(x) (Tn(D)) =Tin(Ad (x)D) =T n(D)  (x € c(G)).

Since G/N is finite dimensional and ny(c(G))=c(G/N), this shows by (iii) of Lemma
4.6 that 7y(D)e Z(G/N). Hence

(DD") f=(mn(D)7epn(D)g)omy = (ﬁN(D,)ﬁN(D)g),OnN =(D'D)f.
Sinee f and D’ are arbitrary, this shows that D e Z(G). Convérsply assume that D e
Z(G). Let f. N and g be the same as above. Then 7y(D)e Z(G/N) and: so, again
by (4.3) and (iii) of Lemma 4.6, A T ’
- (Ad (x)D) f=(7in(Ad (x)D)g)omy
=((Ad(my(x)TN(D)g)ony = (7n(D)g)omy=Df (xe€c(G)).

Hence Ad (x)D=D (x e ¢(G)). This completes the proof. q.e.d.
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Corollary. If U(G) is realized by D /(G), then
Z(G)={De D(G); D-R,=R.°D for all xec(G)}.
In particular, Z(G) includes D(G) n DAG), and coincides with it if G is connected.

Proof. Obvious from Lemma 4.5 together with

D(G)nD(G)={DeD(G); D-R,=R,D (xe G)}. q.e. d.
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Added in proof. After our manuscript had been finished, the author learned
the papers: (a) H. Boseck and G. Czichowski, Grundfunktionen und verallgemei-
nerte Funktionen auf topologischen Gruppen I, Math. Nachr., 58 (1973), 215-
240; (b) K. P. Rudolph, Michal-Bastiani differentiation on topological groups,
Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1979 (1980), 161-166.
In (a) our Theorem 2.1 is obtained for any LC groups but under a stronger as-
sumption on continuous differentiability of functions. (b) announces our Lemma
2.9, the key to Theorem 1.1, also for any LC groups without proof. Recently, Prof.
K. Sakai kindly informd us that these results were given in full treatment in a book
by the above three authors: Analysis on topological groups - General Lie theory,
Teubner-Texte zur Math., Band 37, Leibzig, 1981. Unlike our construction, their
method uses only the inverse limit technique together with computational
observation on one-parameter subgroups.



