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1. Introduction and results

In this note, we improve some results in the previous paper [3]. Let p(x, D)
be a differential operator of order m with coefficients in y*)(V), where V is a neigh-
borhood of the origin in R"*!,

1 0

x=(xg, Xys..0n X,), D=(Dy, Dy,..., D,), D;=—

k]
i Ox;

and y®(V) denotes the set of all functions f(x)e C*(V) such that for any compact
set K in V, there are constants C, A with

ID*f(x)| < CAl*I(|al!), x € K,

for all multi-indexes a e N"*1,

By the definition, y")(V) coincides with the set of real analytic functions in V.
For convenience sake, we set p(®(V)=C*(V). We denote by p,(x, &) the principal
symbol of p(x, D), and suppose that the hyperplan {x,=0} is non-characteristic for
p(x, D). Heareafter it will be assumed that p,(x, 1, 0,...,0)=1. Let us consider
the following problem.

p(x, Dyu=0
(p, $(x)),3{ D§u(0, x')=0,0< j<u—1,
Dgu(0, x")=¢(x"),
where x'=(x,,..., x,), 0Su<m—1. Then we have

Theorem 1.1. Let s=00. Suppose that the characteristic equation p,(0, &,,
&n=0, & =(1, 0,..., 0) has u real and v non-real roots (u+v=m, v=1). Then there
is a sequence of positive number {C,} with the following property: let g(x,) be any
C°function defined near the origin for which (p, g(x,)), has a local C™-solution
near the origin. Then g(x,) is C* in a neighborhood of the origin and we have
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lim sup (Ig"(O)|/C,)1 /"< 1,
n—o0

where g (0)= (71%—), g(0).

Theorem 1.2, Let | <s<oo. Under the same hypothesis that of theorem 1.1,
there is a positive constant A having the following property: let g(x,) be a C°-
function as in theorem 1.1, then g(x,) belongs to y®) near the origin, and moreover
we have

lim sup (|g™(0)|/(n})*)!/" = A.

Theorem 1.3. ([3]). Let s=1. Assume the same assumption in theorem 1.1,
then one can find a positive constant A so that: if g(x,) is a C%function near the
origin for which (p, g(x,)), has a local C"-solution defined in B,={x; |x|<r},
then g(x,) is analytic at the origin and has the following estimate,

lim sup (|]g"(O)/n") /"< Afr.

‘Corollary 1.1. Let l<s=<oo. If (p, ¢(x'), has a local C™-solution in a
neighborhood of the origin for any ¢(x')€y)(R"), then the characteristic equation
.0, &, E)=0 must have more than p+1 real roots for every &' € R"\{0}.

Remark 1.1. In the case when (p, g(x,)), has a local C™-solution in a semi-
neighborhood, we can obtain the corresponding results (cf. theorem 2.1 in [3]).

2. Proofs of theorems 1.1 and 1.2

Let us suppose that p,(0, &, &)=0 has u real roots and v non-real roots
(u+v=m, v=1). Then from lemma 3.3 in [3], there are a neighborhood W of 0
in R™*!, a conic neighborhood I' of & in R"\{0} and symbols g, r on Wx (R xT)
which satisfy the followings;

@1 (= 1P (x, Eor €)04(x, Er E)=r(x, Eo, E),
with
@2 r(x, o, €)= b+ %, @il ) 4(x, H= & aulx. O,

where ai(x, &) is a symbol independent of &, of class s with order (j, 0) on Wx
(RxT) and g(x, &) is a symbol of class s with order (0, —v) satisfying the following
estimate,

(2.3) lgiahy (x, &) S CARH Iy L kIl (K + [ B]) ol
for k+|a|=1, (x, &) e Wx(RxI). Here p* denotes the transposed operator of p.

Remark 2.1. In the case when s=oo0, the constant CA**l«+Al(k+|B])!%a! in
(2.3) should be replaced by a constant C,, ;, which depends on k, o, and B.
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From lemma 2.2 in [2], one can take vy, (x)e CH(R"*') so that vy (x)=1 on
B,, vanish for |x| =2r and satisfy

24 [D*vy (X)] S Co(NAo[P)!*,

when |a| <N, where C,, A, is independent of N (N=1, 2,...,). Now assume that
(p, 9(x,)), has a solution u(x) e C"(B;,). Then applying the same reasoning as [3],
we have that

2.5) S ex4(Y" R oy, Judx= —S ei¢( ) PiQuvw.udx.
j=o !

NZk+IZN-m,N-mzk,m2
Now estimate the right hand side of (2.5).
Proposition 2.1. Let I <s<oo, ISN-2m<k<N-—m. Then we have
|D7(Qyvon, ) S CAVNN|ETHE | H2m=N (A4 r= ) 1| b,

when (x, &)e Wx (RxTI), [€'|21, NZ@2r Y)Y6=D where C, A, A, do not depend
onr, N. Ifs=00 and | EN-2mZkZN—m, the following estimate holds

[DY(Quon, ) SC Ch,pyr V[T g 12N,
Jor (x, &)e Wx(RxT), |&'| =1, where C|, Cy |, are independent of r.
S17l

From this proposition and the same procedure in [3], it follows that

26) [§ ago § erxec > PQuoy,Judx| <

N2Zk+I>N-m,N-m2k,m21

é Cr—m sup |D(J)'u|ANNsN|€/l 1+3m—N’

lx[S2r,j Sm

when |&'|21, &'el’, N2(Q2r HYY6D) 1<s<oo, where C, A is independent of r
and N. If s=oo0, this term is estimated by

(2.7 Cyr™™™™ sup  |Dful |&'|!*3m=N,

|x|S2r,jSm

for &erl, |€'| 21, where Cy does not depend on r.
Using these estimates, we have

Lemma 2.1. Let 1<s<oo. Suppose that (p, g(x,)), has a solution u(x)e
Cm(Bs,,), then there are constants C, A independent of r, N such that

S .
o8, g(EN S CANNN(L+[E')™{ sup  [Dgu|+ sup |gl},
x| S2r,jsm Ix]=2r
for&eR', N=1,2,..., N2Qr )V/6=D, If s=o0, we have

P .
[On,,g(ENS(CRENMA+IEDN  sup  |Djul+ sup |gl},
Ix|S2r,jsm lx|=2r

S
for &eR", N=1,2,...,N2r~!, where vy (x)=vy,0, x') and ¥y,g(¢") denotes
the Fourier transform of by (x")g(x,) with respect to x'.
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Proof. If we integrate (2.5) by &, then the Fourier inversion formula gives that
2.8) |Se""'¢'5N,,(x’)D5u(0, x)dx'| £ the right hand side of (2.6).

Since p,(0, &, —&)=0 has also u real roots and v non-real roots, contarcting I’
if necessary, we may assume that the estimate (2.8) holds for &'eI'U(—T), with
—r={¢; -¢&erl}.

On the other hand, in the complement of I'U(—T'), one can easily get the
following estimate,

T, /
29 On,g(E)] < CoAYNNE| 7N Sup, lgl,

when N>(r~1)!/¢=D, where C,, A4, is independent of N and r. Hence the estimates
(2.8) and (2.9) show this lemma when 1<s<oo. In the case s=o0, it suffice to
remark the inequalities,

" g
(2.10) |Bw,rg(§) S Chr=ME ™" sup, gl

in the complement of I' U (—1I") with a constant Cy (possibly different from that of
(2.7)) independent of r, and

(2.11) rNCyECE+ NN if Nzr b
Proofs of theorems. In view of the identity

() v @=(42) 90

the theorems follow from lemma 2.1 and the inverse Fourier transformation.
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