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Since Boltzmann introduced his equation in 1872 to interpret the behavior of
gas particles, many authors have studied the existence (and behavior) of solutions of
the Boltzmann equation. As for the spatially homogeneous case, the global existence
theory of the initial value problem was established at earlier time by Carleman [4],
Arkeryd and others. Unfortunately the physical consevative quantities such as total
mass and energy (and also entropy) are not useful in the existence theory for the
spatially non-homogeneous Boltzmann equation, while they played decisive roles in
the study o f spatially homogeneous equation. Thus only two types of existence
theorems are expected for the initial value problem, the local eixstence theorems for
arbitrary initial data (at least in a wide class), and the global existence for sufficiently
small (i.e. near an equilibrium) initial data, until a  strong idea lightens the whole
problem some day.

G rad [9], [10] and  [11 ] introduced the concept of angular cuoff scattering
potentials in the calculation of collision integrals, and then established the funda-
mental frame work for the global existence theory of the initial value problem, after
he showed the local existence of solutions for the Boltzmann equation of Maxwell
gas ([8] §20).

Since 1974 Ukai [17], [18], Nishida-Imai [14], Shizuta-Asano [16] and Ukai-
Asano [20] (and also Asano [1] and [2]) showed the global existence (and asymp-
totic appraoach to the prescribed equilibrium) of solutions for the initial or initial
boundary value problem of the Boltzmann equation with a n  angular cutoff hard
potentia l. The initial data  were always assumed to be sufficiently small in  some
sense.

Recently Caflisch [3] and Ukai-Asano [19] proved the corresponding results
for the initial value problem of the angular cutoff soft potential c a se . In  this case,
it is easy to prove the local existence of solutions for large initial data.

All these works were done for the Boltzmann equation without an external force.
Only Glikson [6] and  [7 ] considered that equation and showed the unique local
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existence of solutions to  the initial value problem for sufficiently small initial data.
While Kaniel-Shinbrot [13] showed the local existence of solutions to the initial
boundary value problem of the Boltzmann equation without any external force and
with a  general (hard or soft) angular cutoff po ten tia l. Their initial data might be
arbitrary large and the solution exists in a time interval determined by the size of the
initial data.

In  this paper we show the local existence of solutions to  the initial and initial
boundary value problem of the Boltzmann equation with an  external force and a
general (hard or soft) angular cutoff scattering potential. The initial data may be
arbitrary large in some function spaces and the solution exists in  a  time interval
corresponding to the size of the initial data. Our method is a combination of those
of Glikson and Kaniel-Shinbrot to some extent, but simpler and more natural.

This paper is the first part of the study and concerned with the initial value
problem and the initial boundary value problem with the reverse or specular boundary
condition at the boundary . In the second part we will study more general boundary
conditions including so called Maxwell's boundary condition (i.e. the convex com-
bination of specular and diffuse boundary condition), and show the local existence of
solutions.

Finally we note tha t in  our scheme the solution exists in a backw ord time
interval as well as in the forword. (The positivity is not preserved in the backwrod.)
This might show that the scheme is not adequate in the study of the global existence.

§ 1 .  Introduction

Let f =f (t, x , be the density distribution of interacting gas particles at time
t > 0 and position x e Q  R" with velocity e R", n> 3. The change off is described
by the Boltzman equation :

Of 
+  •  IV+ a(x)• V 4f=Q[f, f ] ,at

=f0(x, (the initial condition) ,

a a a awhere PX= i + . . .   ± a(x) • a ,(x)  + • • • +a„(x) ,  a(x )  is
ax, ax„

the external force and Q[• ,•] is the collision integral.
If f2= R", the initial value problem (1.1) is well posed in a suitable sense stated

later. If S 2  is a domain in IV with a piecewise smooth boundary S = ao, we need a
boundary condition :

(1.2) =C (f ls-) .

Here we define with the unit inner normal n(x) at x e S

S± ()={x e  S; <n(x), 0 }  and

= S±(0 x ,
(1.3)
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and C is a linear operator from a suitable function space on g -  to  a similar one on
g + . With a suitable "dissipative condition" on the operator C, the initial boundary
value problem (1.1)-(1.2) will be well posed.

We state assumptions.

[A] The external force a(x) is a (piecewise) smooth potential force whose potential
b(x) is bounded from below:

a(x)= —  Fx b(x), b(x)> 1 a n d  b(x) e C2 (0 ).

[ Q ]  The scattering cross section q(v, 0)> 0 in the collision integral is induced from
the inverse power intermolecular force and satisfies the angular cutoff assumption of
Grad [9] :
(Q.1) q i (V )= Çq ( V ,  0 ) d w  exists and is continuous in  (0, oo), w h ere  V=

s—i
— ill and co> cos 0.

(Q.2) 0<q1(V )<C0(V 2+V g),

For the later use we write the explicit form of Q [f , f ]:

( 1 .4 ) Q U , f 1 ()= 11, f f  (O f ( i) - f  (Of (1)}  cktcho,

co>co, w >=1 — lic o s0

1 + co>co, we S" - 1  a n d

f =f (t, x , f (1 )=.f (t, x , etc.

Sometimes we rewrite (1.4) as

QU, f l - v [ f ] f

V ] ( ) =11 q(1 - 1 I , ( 1 ) g 1 d0) = Ock 1.

We note that y, Q , and Q are invariant under the orthogonal transformations in R .
Assuming Q= Rn , we consider the bicharacteristic equation of (1.1) in R'x' x

dx
dt d i  = " '

x1r=o=xo,
We describe the (unique) solution of (1.5) by

(1.6) x =X (t, xo , xo,

If we define the energy function (Hamiltonian) e (x , )  [6], [7] by

(1.7) e(x , )= b(x )+

then we can show easily that e(x, is constant on each bicharacteristic curve, i.e,

(1.4)'

(1.5)
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(1.8) e(X(t, xo , H(t, xo , 0 ))=e(x0 ,

This implies that the solution (1.6) exists globally in time for each x 0 , E Rn x R".
If we define a family of mappings {Tt ; t e RI by

(1.9) Tt(x, )=(X(t, x, E,(t, x, E)),

t h e n  Tt l  is a  group of (piecewise) C 1-diffeomorphisms in  R 2 n. In particular, we
have

(1.10) T;T_t= To = identity map.

The following lemma is needed later.

Lemma 1 .1 .  Assum e [ A ] .  Let T> 0  a n d  R > 0, an d  define the subset B(R)=
{(x, )6 R " x  R"; 1(x, 01 2  =ixi 2 R 2 1  o f  R"x I ' 1 . Then , th e re  ex is ts  a

constant c=c(T, R)>0 such that T , maps the outside o f B(cR) into the outside of

B(R) for Iti < T.

P r o o f  The continuity o f  T,(x, in  (t, x, implies that T, maps B(R) into
B(cR) for some c> 0, It' < T. This and (1.10) show the lemma.

Now we define function spaces on R x" x R .  Let E the set of all measurable
(or continuous) functions f (x, on R  x ./?' such that

(1.11) i, = sup ee ( x .)1 f(x , (a>0).

The subspace ÉOE o f  E defined with the same norm 1 Le b y  ÉOE ={f(x,
sup ecce(x, 4 ) 1 f (x ,  )1-->0 as r-+091.

Let Ep , , , T  be the set of all measurable (or continuous) functions f(t, x, ) on
[0 , T ] x R x R  such that f(t, • ) e E p _y t , 0 t  T ,  and

[1.12) If =  sup sup e ( P- 7 0 e( x ' ) 1f(t, x, 01< co.
O<tST

Ép o ,, T  is defined similary, i.e,

Ép , ) ,, T =  fl(t, x, )e f(t, .)E É p  r, 0 < t <  T1.

Finally we define a group U 0 (t ) of operators by

(1.13) Uatif(x, ))=1.(x(-1, x , 0 , — (> x, ()).

NO is a  contraction mapping in E , E Œ , and because of Lemma 1.1.
Clearly U 0 ( t )  is generated by Ao  = f ? „  a(x) • V .  I f  f:„ consists of continuous
functions only, then U 0 ( t )  is a  Co semi-group in E. W e  note that U 0 ( t )  has the
following properties:

u0(t)(fg)= (u0(0f ) (u 0 ( t)g ) ,

I uo(t)f I = uo(() If I ,
(1.14)

uo(01=
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U 0 (t)f o (t)g i f  f

The equation (1.1) with f2---- R" is almost equivalent to

(1.15) f  (t, x , ")= U 0 ( f  )f o  + U o (t - s)Q[f (s), f (s)]ds.

In this paper we are concerned with solutions of (1.15) or the corresponding evolu-
tional integral equation (3.6). They are called the mild solutions of (1.1) or (1.1)-
(1,2).

§ 2 . The initial value problem

We ask for the solution of (1.15)111 the space E T . Let f o  E Ep , p> 0, i.e,

(2.1) ePe(x')I.fo(x, . 1folp•

We put

.f0(1, •x• .)=.fo(x•
(2.2)

x , c',)=  U o (t)f o + U o(t - s)Q[A(s), it(s)]ds

for l =0, 1,.... Using (1.14), we have
e ( p - y t ) e ( x ,

4)1 f  1 +1 0 , - 1.7 ,- - 1 .1 .1 7 1 1 p +
(2.3)

. o 
C - 7 ( 1 - s ) e ( x U0(1 —  s ) { e ( P - Y 8 ) e ( x ' ) 1Q [ f (S ) ,J . I(S)]o  ds.

To estimate the second term on the righthand side, we need

Lemma 2.1. A ssume the condition [Q] and let fa E Œ, ct >0. Then we have

Q1 [f' .111 __Q,[1f I, If I] <  vŒ( )  e  e -œe(x ' °  If
(2.4)

where

(2.5)
•

<C((/ , oc)(1+ •q1(1(> - 0 ) e - - , 1 , 1 2 / 2

Moreover, v„() - 'Q i m aps E OE (resp. E Œ) into EŒ (;'esp. EŒ) continuously.

P ro o f . Using the equality W 1 2 + 1 0 2 = 1 1 2 + 1 1 1 2 ,  we have

IQIE.f.J1(01 0)1f(')11.f(11)1d,d0)

=e —" I x I f  I «  ql(1 -11)e - aetx.'"

= e-""x) vŒ( ) •
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This proves the first inequality of (2.4). The second is proved in a similary way.
The assumption [Q] implies

from which (2.5) is easily obtained.

Using lemma 2.1, we obtain for p-ys> 0

2.6)
e(P-7s)e(x') io2EA(s), fi(s )] I y( ) e - (P- Ys)

( 
e-(P-Y° 0 s<  t.

Hence we can estimate the integral of (2.3) as follows:

e- Y( t- s) e( x, ) U0 (t - s){...} ds

e- Yo- s) ( x, ) 2v p _y s (E(-1+ 5,

P t

(2.7) < e- Yo- s)e(x, 4 ) 2C(p —yi) ib(x)+ - 1
1
- 1fl 2 r 2  e-(P-") ds

Jo

<2C (p-yt) eP_ y t)
 - f  

e(x,

since we have by (2.5) and (1.8)

vg (- s ,  x , C(Œ) { l+ IE(- s, x, )1 2 } 4 1 2

<C (2 ) ib (X (-s , x , "))+ )12}41 2

=C(a)e(-s, x, )=C(ot)e(x,

From (2.3) and (2.7) we obtain for 0_<_t_ T=p12y

(2.8) If  „ +2c (-(2)--)e - P1 2 -fy I

If we choose y > 0 satisfying the inequality

(2.9) D  1  - 8C (  e -P / 2 i f o l P >
0 ,

then the following algebraic equation has two positive roots O<X 0 < X ,:

(2.10) 2C (-0 e - P1 2 X 2 - X +Ifolp= 0 .

Clearly we have



Boltzmann equation with an external force 231

2 1folp I fo < Xo = <2Ifolp,1 + \
(2.11)

4 C  (1 )  e —P12 X o <  1,

which shows that (2.8) implies

(2.12)f 1 1  P l .T ^ X o < 2 Ifo I P .

From (2.2) we have

(2.13) + 1(t) — .Mt) = 0 (t — s){021fi(s), f  i(s)1} ds.

A similar calculation as above shows

I  + 1 2G ( -P - )e - P / 2  - I -  + f t -  lp,y ,T1A2 Y
(2.14)

< 4C ( I )  e— P l2
 y

i x 01 11 p,y,T•

Thus (2.11) implies that {A} is convergent in E p ,y ,T . T h e  limit f ( t )  satisfies in Ep ,,,,T

the equality

(2.15) f(t)= U 0 (t - s) f + U 0 (t - s)Q[f (s), f (s)]d s.

N ote  1 . For a  given p> 0, y  and Tare calculated by

(2.16) Y Y(P) i fol,),

(2.17) T  P   _  P  _   T (P )  
2 Y  -  2 Y(P)Ifol, lfolp •

N o te  2 . I f  p.< 0  in  th e  assumption [Q ] (This occurs in  th e  angular cutoff
soft potential c a s e . See Grad [9]), we have

(2.18) I A +  1(01 I fol, + 2C(p) e - P tl f/(t)1 2

instead of (2.8), since vp ( )_<C(p) fo r  p .< 0 . Thus we can show that the solution
f (t ) is in Ep a ,T .

N o te  3 . If f 0 e Ep, then all f i (t ) is  in Hence the solution f ( t )  is  in
nov.

If f o e Ep is continuous in (x, then .f,(t, x, ,';') is continuous in  (t, x, for
V = 0 , 1 ,.... Thus the solution f(t, x , * ) of (2.15) is also continuous in  (t, x,
Moreover f(t, x, satisfies

(2.19) [- a  +  •  F .+  a(x)• 17
41f (t, x , )=Q [f(t, x , • ), f(t, x , • )]().at '

To prove the uniqueness of the solution of (2.15), we assume that f (t )  and g(t)
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be the mild solutions of (2.15) in E P , , T  with the initial data f, and go . W e choose
y, >y so that the condition (2.9) holds fo r if0 1, and lg o lp . I f  we take T, =p/2y,
according to (2.17), then we can show easily

(2.20) If
where X , satisfies the second inequality of (2.11) with y replaced by y l , as the root
of the corresponding quadratic equation. In a similar way as used to show (2.14),
we obtain

(2.21) I f -g l,„y ,,T , -gol„ + 4 C ( - ) e - P1 2

This proves the uniqueness in [0, Iterating this argument, we can prove the
uniqueness in [0, T].

Now we state theorems.

Theorem 2 .2 .  A ssume [A ] and  [Q ], and let .f o e Ep ( p > 0 ) .  Then the initial
value problem  (1.1) has a unique m ild solution f ( t )  in where y and  T are
determ ined by  (2.16) and  (2 .17). I f  f 0 e E, then f (t ) E tp , y, T. If f o  e E p and is
continuous in (x, then f ( t )  is also continuous in (t, x, and satisfies (2.19).

Theorem 2 .3 .  A ssume [A ] and  [ Q ] .  Let fo e (p > 0 ) and f o (x, a.e.
Then the m ild solution .f ( t )  of ( I I )  is also non-negative a.e.

To prove Theorem 2.3 we need a  slightly different iteration scheme. First, we
consider the linear equation

Of -
e t  

+C • r x f  a(x) • 17 f+ v (t ,  x ,  )f= 0 ,

(2.22)
f  =M x, (x, e R" x R".

The above equation is very easily solved. We define a  "group of operators -  U (t,
t ;  V ) to solve (2.22):

(s 7'_ , + s (x,.;))ds
0 ,  ; V) fo (X , = e - 4  , io(T-1+,(x•

(2.23)
= exp U0(t -s)v (8 ) d  U 0 (1 -

If v(t, x , )> O , then U(t, 2; V) is a contraction in  E , and t n fo r t> T. V t ,  ; V) is
generated by A (t)=  - • 17 ,-a (x )•  V1 —v(t) and has the following properties

t ;  V RAT, s; 11)= U( I, s; t > t > s,

U(t, t ; v)=identity map,
(2.24)

I U ( t ,  ; v)f1=U (t, 2; O f

U(t, 2; V) f  U ( t ,  t ;  v ) g  i f  f
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We define { f,(t)}  by

fo(t)=fax,
(2.25)

° - f1 + 1  + ( • Vx  + a(x) • F4)f t+ = — +1, .1'1+11,0=10(x,

Then A + JO is solved by

f l +  JO =  U(t, 0; v [f d )f ,
(2.26)

+  t
o U (t, s; v [f ,])Q ,[f i(s), f i(s)]cls.

Hence f 1  + 1 (0 >  0, if f ,(t)> 0.
By a similar calculation as used to show (2.8) we obtain

(2.27) If t+Ilp .y ,t-- f o l„+C (P)e - P120 <  t < T -  P

y 2y '

If we take y > 0 and X 0 >0 as in (2.9) and (2.10), we have the same estimates (2.11)
and (2.12) for the new f ,(t) defined by (2.25) or (2.26).

From (2.25) we obtain another representation of .fi(t) similar to (2.2), i.e.,

(2.28) +  1 (0=  u0 (t)f0+ s)1 Q 1 E fi(s), .h (s)]—  vE fl(s)] f,+ i(s)lcis .0

The same calculation used to derive (2.14) shows

(2.29) 1.ft+1 - filp, y ,T . 2C (-0  e -P/2 x0{1fi —A-11p,y ,T+ •

Taking the second inequality of (2.11) into account, we have

(2.30) X 01 — 11„.„T•

Thus the newfl(t) is also convergent in E ,, 1, and the Iiinitf(t) is the solution of (2.15)
or the following

(2.31) f (t)= U (t, 0; + U(t, s; v [ f] )Q  iE f( s ) , f  (s)]ds.

The coincidence of the solutions of (1.1), (2.15) and (2.31) (and also those of
(2.25), (2.26) and (2.28)) is proved easily by the integration theory. This completes
the proof of Theorem 2.2.

§ 3 .  Initial boundary value problem -Reverse and specular reflection cases

In  th e  study of the initial boundary value problem (1.1)-(1.2), we need the
bicharacteristic curve starting from each point ( x ,  ) e  Q x R" under some reflection
law at the wall S = 0 0 .  In this paper we study only two typical cases, that is, the re-
verse reflection and the specular reflection, which are described as below:
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(3.1) f ( x ,  ) =f ( x , (x, e g+ (reverse refl.),

(3.2) f (x , )=f  (x , -2 <n (x ) , >n (x ) ) , (x , e g+ (specular refl.).

1. Reverse reflection boundary condition
First we state the basic assumptions on the spatial domain Q.

[MR Q is a domain in R" with a piecewise smooth boundary S=0S2 which consists
of a t m o s t a  countable  num ber of (n -1)-dimensional C I  surfaces
(l<  /0  < oo), which are closed in R".

The bicharacteristic equation of (1.1)-(3.1) is described as below:

dx  
d i  - d i

 -  a ( x ) ,

(3.3)
4=0 = x o , (xo, G Q x R",

with the reverse reflection law

± 0) -  ` (  -TO)
(3.4)

at x(t + 0) = x(t -  0 )  x(t) E S.

We can construct easily the solution of (3.3)-(3.4) in the time interval ( -  co, co).
In fact, (x (t), (t)) given by (1.6) is the solution of (3.3) in S2 x R" in a maximal time
interval (- t + (xo, t  (xo, (:1)). If t±(xo ,  1:))  (resp. t(xo, (1)) is finite, we have

(3.5) X( - t+(x o , xo, , ) E S

(resp. X(t - (x o , ), x o , G) E

If we extend (x (t), (t)) by

x(t 1
 t ± ( x o ,  W )= X (- t±(x o , xo, t 5 0

(tT-t ± (x o, W )= t-T-t±(xo, xo, t50 ,

then (x(t), 4t)) satisfies the first two equation of (3.3) in ( - 2 t + ( x o ,  0 ) - t  ( x 0 ,

- t+(x o , G )) or (t - (x o , ()), 2t -  (x0 ,t + ( x o ,  ( ) ) )  with the reflection law (3.4).
Repeating this procedure if necessary, we have the solution of (3.3)-(3.4) in the whole
interval ( -  co, cc), which is also denoted without confusion by

x(t)=X (t, xo , G),
(3.5)

40=E,', (t, xo , ).

If we define 7; by (1.9) with (X, ,E) constructed as above, then 171 is a  group of
piecewise C°- (and also C'-) diffeomorphisms in Q x IV, and enjoys the properties
stated in (1.8) and Lemma 1.1.

We define the function spaces Ep  and .t p on 52 x R", and E p a ,T  and on
[0, T] x Q x R" a s  in  § 1 . Then the operator U 0 (t) defined from the new {V  by
(1.13) is a contraction mapping in E,, and Ép , and enjoys all the properties in (1.14).
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Moreover, if f  satisfies the boundary condition (3.1), then U o (t)f also does. Thus
we can rewrite (1.1)-(1.2) (Here (1.2) means the reverse reflection boundary condition
(3.1).) as in §1, which results to

(3.6) f (t)= U 0(t)fo + U o (t - s)Q[f (s), f (s)]d s.

Clearly Q[f(s), f(s)] satisfies the condition (3.1), if f(s) does. H ence a ll the
arguments in §2 are applicable to study (3.6). Thus we obtain the corresponding
results to Theorem 2.2 and 2.3 with same constan ts. We note that in the successive
approximation formula (2.2) or (2.26)f, , 1 (t) satisfies (3.1), if f,(t) does.

Theorem 3 . 1 .  A s s u m e  [A ],  [Q ] a n d  [52]R . L e t f o e E p ( p > 0 ) .  T hen  the
in it ia l boundary value problem  (1.1)-(3.1) has a unique m ild solution f(t) in  E p o,,,
w ith  the same y  a n d  T a s  in  Theorem 2.2. If f o e Ép , then f(t)e E p o ,, T. I f  f o e È,„
is piecewise continuous on t-2-  x R " w ith  d iscon tinu ities on ly  on  a n d  n o t a lo n g  the
bicharacteristics d e fin e d  b y  (3.3)-(3.4), a n d  satis fies the reverse re flection  law
(3.1), then f(t, x, is  a ls o  piecewise continuous w ith  d iscontinu ities o n  a n d  not
a long the bicharacteri,stics and satisfies (2.19) and (3.1). M oreover, if f o (x, )>0
a.e. in Q x R", then f(t, x, )>0 a.e.

2. Specular reflection boundary condition.
The bicharacteristic curve of (1.1)-(3.2) is given by (3.3) w ith th e  specular

reflection law

± 0) = 4= 0) - 2<n(x(t)), (t -T n(x(t)) ,
(3.7)

at x(t +  0 )  x(t - 0) = x(t) e S.

The construction of the solution of (3.3)-(3.7) is rather difficult, and carried over under
the more restrictive assumption on O.

[D]s 0  is a  domain in R" with the boundary S= 00 which consists o f a  countable
number o f  (n -  1 )  dimensional surfaces S,o (1 < /0 < oo), which are  closed,
regular and disjoint w ith each other. The curvature of Si 's is nuiformly bounded.

If we construct the solution of (3.3)-(3.7) in the time interval ( - co, 0] for each
initial data (x o , E  Q x R ", then w e have the existence theorem for the initial
boundary value problem (1.1)-(3.2), combining the arguments used to show Theorem
2.2, 2.3 an d  3 .1 . Therefore we focus our efforts to solve (3.3)-(3.7).

For any initial (x o , ()) e  Q x R", (X(t), 4 t)) given by (1.6) is the unique solution
of (3.3) in a maximal time interval ( - t+(x o , t-(xo, G)), while x(t) remains in O.
If t + (xo, < 0 0  (resp. t -  (xo , G )<  co), x(t) reaches S, as t->-t+(x o , (resp.
r ( x o , 0)). I n  other words

(3.8) X( -  t + (xo , G), xo, E S ± (14 —  t + (X 0 , ()), X 0 , 420 )

(resp. X(t - (x o , xo, 0 ) e( S W  ( X 0 ,  0 ) ,  X 0 ,  co)

We put
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M — t+ (xo, co), x o , o )= (xo,
(3.9)

— t+(xo , x o ,  ,D) =L;E+ (xo , •

Similarly we define X - (x o , and E - (x 0 , Furthermore we put

(3.10) C (x , ) = -2 < n (x ) ,  >11(x).

Roughly speaking, two cases occur at (X ± (x o • E',+(xo, that is,
(i) there exists a bicharacteristic curve (x i (t), 1(t)) starting from (X±(x o ,

C(X + (x o • .2 ( x ,  ,D))) which remains in Q x R" for a time,
(ii) there exists no such a solution.

If <n(X +(x 0 , G)), H + (xo, G)> >0, then the case (i) o c c u rs . In this case we can
extend (x (1), (t)) into Q x R" by the specular reflection law of (3.7). We have only
to put

x(--t—t+(xo, (0))==x10),
(3.11)

xo. 50)=1(1)

for 0< t <t - (X + (x o • c))), C(X + (xo• E+(xo, ()))). W hen the extended (x(t),
(t)) reaches to S x R" and the case (i) occurs again, we repeat the same procedure.

If the case (ii) occurs at (X + (x o • E+(xo, ,L))), we have to extend (x (t), 4t))
in the tangent bundle T(S) of S. In this case we have

<n(X + (xo• W), E + (xo, ci)> = 0 .
(3.12)

<n(X +(x0, G)), C(X + (xo, G), E + (xo, ()))> =O.

Denote by d(x) the orthogonal projection of a(x) onto the tangent space Tx (S) of S
at x E S .  Then there holds

a(x )=5(x )+ a ,(x)n(x),
(3.13)

a 1(x)= <a(x), n(x)>.

Let K(x) be the curvature form on S. A smooth curve x =x (t) lies on S, if and only
if the following equation holds

dx — 4t)dt '

cg  = <K (x ) , >n (x )  (mod Tx (1 ) ).

For the initial (X ,, L70 e T ,,(S ), we can solve the following "bicharacteristic
equation"

dx 
d i

cg  =<x (x ), >n(x )+Z i(x ),
dt

(3.14)
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(3.15) xit=o = Xo, cIto Eo. =

The solution (X (t), E(t)) (or m ore precisely (X(t, X 0 , E 0 ), xo, E n)) of (3.14)-
(3.15) exists uniquely for a time and satisfies the following equality:

d  <n(X(t)), E (t)> =0,dt

d
d

t  ib (X (t))+  j
2
- 1E(t)i 21  =O.

Thus e(X(t), SOD= e(X 0 , E 0 ) and (X(t), E(t)) exists globaly in  t im e . We can extend
the solution of (3.3)-(3.7) by putting for t< 0

x(- t - t+ (x o , 0 ))=X (t, X + (x o , C (X+(xo, ()), E+ (xo, ())))
(3.16)

t - t + (x o , 0 ))=E (t, X+(x o , G), C(X+(x o , G), E ± (xo, G))).

in the case (ii). Another choise of extension is possible under some condition. For
example, we can pull the bicharacteristic curve into Q x R" if the following condition
holds for (X 0 , Ho) e Tx .(S),
(3.17) <K(X 0 ).::70 , E 0 > < ai (X o ).
Under this condition we have only to solve the usual bicharacteristic equation (3.3)
with initial (X 0 , E 0 ). Thus at any point of the "bicharacteristic curve" lying in T(S)
where (3.17) holds, we can pull back the curve into Q x R". H ow ever these changes
of extensions give no influence to the specular reflection law (3.7).

Thus we have the solution (x (t ), (t )) of (3.3)-(3.7) in ( - co, 0]. Similarly we
can obtain the solution in [0, cc). A gain w e denote the solution of (3.3)-(3.7) by
(X (t, xo , ` 0 ), E(t, xo , 0 )). T h en  w e  d e fin e  T, by (1.9) and U 0 ( t )  by (1.13) with
the new bicharacteristics defined above. Clearly (1.8) and  other properties (e.g.
Lemma 1.1) enjoyed by the old one hold for this c a s e . Exceptionally (1.10) hold
for almost every point of n x R" and not for every point. B ut the proof of Lemma
1.1 is available, because T,(x, 0 is piecewise continuous in  (t, x, Especially
U 0 (t)f satisfies (3.2), if f o  does.

Thus all the arguments used for the reverse reflection case are applicable for
this specular reflection case, and we have the following

Theorem 3.2. A ssum e [A ], [Q] and [S U ,. Let 10  e E > 0). Then the initial
boundary value problem (1.1)-(3.2) has a unique m ild solution f ( t )  in Ep ,,,,T  with the
same y  and Tas in Theorem 2.2. /H o E E,„ then f(t) E Iffo e Ép , is piecewise
continuous on n x R" with discontinuities only on and not along the bicharacteristics
defined by (3.3)-(3.7), and satisfies the specular reflection law (3.2), then f(t, x,
is also piecewise continuous with discontinuities on and not along the bicharacteri-
sties and satisfies (2.19) and (3.2). Moreover, if  f o (x , )> 0  a .e . in Q x R ,  then
f(t, x, a.e.
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