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§ 0 .  Introduction

Let Q be a  bounded domain in  R ' with smooth boundary. The operators d
which we shall treat in this memoire are of second order, linear, elliptic in the interior
of S2 and degenerated only in normal direction at each point of the boundary. Under
some assumptions on d ,  the existence and uniqueness of the classical solution u  of
the equation du = f  will be shown for any given function f  with certain Holder con-
tinuity up to the boundary. W e impose no boundary condition because we assume
the - entrance property -  of the boundary with respect to d .

There are many authors who have studied various types of degenerated elliptic
equations. Baouendi [2] treated the equations degenerated at the boundary, but
for which the boundary is non-characteristic. Baouendi-Goulaouic [3] studied the
equations degenerated in  all directions a t  the boundary . The main tool in  these
two works is the elliptic regularization initiated by Oleinik (see Oleinik-Radkevic
[7]) and the theory of interpolation in L2 framework.

Recently, Goulaouic-Shimakura [6] studied the same class of operators as in
[3] in  the  W ilder spaces. And Graham [10] studied the Dirichlet problems for
Bergman Laplacian also in some Wilder spaces. Our interest in this memoire is to
study the same type of operators as in the Chapter V of Graham's article. But the
Wilder spaces with which we work are not the same because of the difference of the
boundary conditions. O ur method is, as in [6] and [10], to make use of the ele-
mentary solution for the simplest model of our operators.

In §1, we consider the model LŒ in the half-space, and explain the non-isotropic
degeneracy at the b o u n d a ry . In §2, we describe the general setting of our equations
in  a  bounded dom ain, and state the m ain results. In  th is  w o rk , so m e  a priori
inequalities o f Schauder type for solutions are essential. In  we reduce these
inequalities to the case of the half-space. And the a priori inequalities in the half-
space are finally established in § 5 . The §4 is devoted to introduce the elementary
solutions of L  and  1,,+,1. The results on the existence and uniqueness of the
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solution stated in §2 are proved in  §6 . In  §§7  and  8 , we establish some detailed
estimates which are needed in §5.

The author would like to express his gratitude to Professor S. Mizohata and
N. Shimakura for their kind suggestions and a number of useful conversations.

§ 1 .  Preliminaries

The operators .Qe' treated in this memoire have, roughly speaking, the following
properties (see the hypotheses [H-1]- [H-6] in §2):

(a) Elliptic in the interior of the domain;
(b) Degenerated in the normal direction at each point of the boundary surface

(supposed to be smooth);
(c) Not degenerated in tangential directions at the boundary.

They are approximated, near the boundary, by the following simple operator La  in
the half-space RT:

02 n - 1 02 0L , = - x „  -  E  ax,2,
j l ax .3 

+  a

where a is a complex parameter with negative real part.
As C. R. Graham [10] pointed out, Rt.', itself has a  group structure G  whose

multiplication is defined by

g x x=(g' + g„x', g ,ix„) f o r  g gn)e G.

It is easy to verify the identity

(1)
,Lo,(x,  0   ){u (g  x  x )}-

y
)u(Y) ly=gxx.ex

This identity explains very well the non-isotropic structure of L„.: For any fixed
point y ' of R" -

1 , La is  invariant by the translation x->(x' + y', x„) (we regard y' as
an element (y ', 1) of G ) .  And for any fixed positive number k, 1.,7  is of degree 2 with
respect to the homothety: k2x„) (we identify k with an element (0, k) of G).
Therefore, let us introduce a  non-isotropic distance function d on RI. as follows;

(2) d(x, y)= {(-,/ ) 2  +  Ix' - y'1 2 14}'/2 .

This gose well with the group structure G because d(g x x, g x y)=g„d(x, y )  (The
distance function adopted by Graham is left invariant one and is equivalent to d(x,
y ) / M in  x„, N7 ) in our notation).

We shall introduce, in §4, an elementary solution E jx , y ) of La . This kernel is
homogeneous of degree 1- n with respect to left translations:

Ejg x x, g x y )= gV "E a (x, y)

(As the volume element in  RT, we do not use the left invariant Haar measure of G
but the ordinary Lebesgue measure dx =dx i  A ..... A dx„).
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It would be helpful for the readers to compare LOE w ith  the model M OE due to
Baouendi-Goulaouic [2]

AI cc = — .x-„z1+  Ox„

which is degenerated at the boundary in all directions. MOE is associated with another
group structure 0  o f R T  whose multiplication is  gox=(g' g „ x „ ) .  M ,  is
invariant by the translations: x-->(x'+y', x„) and is of degree I with respect to  the
ordinary homotheties x—>kx (k> 0). And the distance function to be introduced to
kr.I. is ordinary Euclidian one ix— yl (or left invariantly ix —yi/Min (x„, y„)).

Let us return to our model LOE. To study the regularity near the boundary of
the solutions u of the equation L o =f, the ordinary distance ix — yl is not appropriate
but we must work with d(x, y) introduced in (2) above, because of the non-isotropic
property of LOE.

Let us introduce two basic function spaces C ( k )  and Vcil(k.1.) for 0<p< I
(then LOE is a continuous map from the second space to the first space):

(3) 0 ,;( k +) = e C(R T ); sup lu! + s u p  lu ( x )  u ( Y) I
 <  + }

R . l a x  R I . d(x, y)P

(4) V (R1, ) =  u  E C
°
( kl.) e

a n U ,  apaku, N/x„apa„u and x u eq(-1-V4-)

for j, k=1,..., n —1.

0Where, we denote by 0;  for j= I n.Ox
jLet us set,

(5) 11u11.=sup lui a n d  lulp,d= s u p  lu ( x ) — u ( Y) I 
x d(x, y)" •

With these semi-norms, we can define the related norms,

(6) 11,411, i,d  =11/4 11. +1/41,,,d and

n—In - 1

11u112+,,,d=llull + E d E  110 jOkit Iln„1
j = 1j ,  k =

n - 1  

+ E 11./x„a i anullp,a+11, cAullp,d.

Clearly, C ( k )  and 11(ii7) are Banach spaces with the norms 11 11d and 11 112+„,d
respectively.

Next, we consider the case in which S2 is a bounded domain of R " .  Let 0 be a
given non-negative smooth function defined on r2 and equivalent to a distance to the
boundary, that is to say,
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(7) f2= {x e R"; 4)(x)>0} ,

052-= {x e ; 4)(x)= 0} ,

(1 0 +0  o n  00,

where r2 and 4) are supposed to be smooth.
Similarly to d(x, y) in k , w e  in tro d u c e  a  non-isotropic distance do (x, y ) t o  (2- .

(8) do(x, y)= {(N/44(x) — VO(Y))2 + Ix — Y12 11/2 ,

for (x, y) e x
For 0<p <1, we define C"((2; do ) and V"(12; d o ) by the following.

(9) CP(0; d o )-= it/ e C(0); sulp u I + soup I u(dVoc— , uy ()3;21  < (Do }

and set, Mull do =ilu M + 1 u  „ , d  as in (5) and (6). In order to define V0 (0 ; do ) which
is analogous to V(/T4), we take a system of a finite number of smooth vector fields
{X; }7=0 on a s  follows,

(10) X ,= g i k ( x ) a k ,  f o r  x e r2 and j =0, 1,..., N.
k=1

Here, all gi k (x)'s are smooth functions and are chosen so as to satisfy the following
conditions:

(A) There is a constant C > 0 such that, for any x e ao, we have

X0 4)(x)...0  a n d  X j 4)(x)= 0, f o r  j= 1,..., N.

(B) There is a constant C >0 such that, for any x e af l and any tangent vector
at x E aS2, we have

N n
E  E  gik(x)rik

k=1

2
Cl/112'

( C )  For any compact set KcS2, there is a constant C = C(K)> 0 such that, for
any x e K a n d  e R", we have

2
g  jk (X )4

j= 0  k = 1

The existence of {X./} =0 as above is obvious for a large number N > 0, and one can
n-1

see that X 0  is corresponding to 0„, and E  'X i X ;  t o  E 03, in the case of half-space
J 1J = i

Now we can define 1/"(0; d o ).

(11) 17"4-2; u e C (0)

 

X i u e C°(12),

X o u, X 1 X ku, ‘ 10X i X 0 u and OXau e Co(r2; do),

for ... , N.
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And set,

(12) Mull2+0,d0=111111 + E
1=1

+ E E 11,9)xi xou ll„,d ,
k= 1 j=  1

Remark 1, It is easy to see that the space M O ; do) does not essentially depend
on the choice of {X ; }7=0 .

§2 . Hypotheses and principal results

Let S2 and 4) be identical to the ones in (7), and for simplicity, we denote Oi 4) and
8101,0 by 4);  and (kj , respectively. We consider a class of differential operators on
Q of the form

(13) — a ik (x)ej ak + a i (x)ai  + ao (x).
j , k= I J= 1

[H— l] (Regularity of the coefficients and the boundary)
a i k (x) and a(x) are in CP(0; do). Moreover we suppose that all a i k (x)'s are

real valued, ai k (x)=a, ; (x) for ], k= n ,  af (x)'s are complex valued for j=1,...,
n, and ao and (j) are smooth.

Remark 1. In order to establish the theorem 1, it is sufficient to suppose that
afl and 4) are of C 2 "-class.

Moreover we suppose that d  satisfies the following hypotheses.

[H-2] (Ellipticity in the interior)
For any compact set K c  Q, there exists a constant C= C(K)> 0 such that, for

any x e K and  e R', we have

C jk(X) -.C(K)II2 •
, k= I

[H-3] (Non degeneracy in tangential directions)
There exists a constant C> 0 such that, for any x e OS2 and any tangent vector n

at x to af2, we have

a ik (X ) 11 jt k  On 12  •
j,k= 1

Let us set g(x)= aik(x)¢0k14'. Then,
, k=

[H -4 ]  (Degeneracy in normal direction)
g(x) belongs to CM( d,,,),d o ) , and there exists a constant O< such that, for

any x e aQ, we have
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The behavior near the boundary of the solution of " d u  = f "  depends essentially
on the values of the following function a(x),

(14) a(x)= { a1 (x)0 1 — aik(x)CklIg(x), f o r  x e 052.
j= 1 j ,k = 1

Remark 2 .  The definition of a(x) is independent of the choice of the function
0(x) satisfying (7).

We suppose in this paper that :

[H -5 ] (Entrance property of the boundary)

a(x)< 0, o n  ao.

Remark 3 .  In order to establish the theorem I, it sufficies to assume Re oc(x)<O,
on ao.
Let us set

(15) di(x )= a jk (X )O k , f o r  j=  I n.

Finally, we add:

[H -6 ] (A supplementary assumption)
There exists a constant 5 >0 such that, for any x e g2 and j=1,..., n, we have

d (x )=  0 (0 6 +1 /2 ) a n d  di (x)/0 1/2 e Cqr2; do ).

We note that [H -6 ] is one of sufficient conditions to reduce .31  to  the model
operator LŒ. I f  w e  assume tha t a ll ai k (x )'s  are  smooth, [H -6 ] is automatically
fulfilled. (B ecause, if all ai k (x)'s are in C1(Q) and 0 is in  C2 (r2), all di (x)'s are of
0 (0 .)

[H-3] and [H-4] imply that d  has a  Fuchsian principal part transversal to ,a52
and a(x)+ 1 is a  characteristic root of this principal part, the other root being O.
Therefore, [H -5] means that these characteristic roots at every point xeaf2 are
smaller than 1. By virtue of L2 -theory for such operators as d ,  we know that the
equation "..c iu  f " can be treated without any boundary conditions.

Now we can state the principal results. F i r s t ,  the following a priori estimate
holds.

Theorem 1 .  Suppose that d  satisf ies the hypotheses [H -1], [H -2], [H -3],
[H -4 ], [H-5] and [ H - 6 ] .  Then, there exists a constant C > 0  such that, fo r  any
u e l/P(0 : d ) ,  we have

(16)C { 0 4 , 4 1 .

Here, the constant C depends only on 52 and d .

To establish (16), we reduce it by localization, diffeomorphism and perturbation,
to the case of the model operator in R'4_ of the form
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n - 1
(17) L„= —x„a„— E  + aa„, f o r  x E

here a is a parameter corresponding to a(x) (see (14)). Then the proof of (16) relies
on the study of the explicite kernel of Green's operator of LŒ .

Next, let us suppose that all the coefficients are real and ao(x)> O. Then we can
show that s i is injective from  VP(r2; do ) into CP(r2; do)  by the maximum principle.
And by virtue of L2 -theory in the case all the coefficients are smooth, we can show
that d  is surjective, that is to say,

Theorem 2. Suppose th a t s i  satisfies the hypotheses [H -1], [H -2], [H -3],
[H-4], [H-5] and [ H - 6 ] .  Moreover, we suppose th a t a ll the coefficients of s i  are

rea l and a0(x )> 0 . Then, the operator d  is an isomorphism from  V I L ( ; d o) onto
C ( ;  d o).

If the coefficients of lower order terms of szi are complex valued, we can not use
the maximum principle. But, from L2 -theory, we can prove the analogous result.

Theorem 3. Suppose that s i satisfies the hypotheses [H-1], [H-2], [I-1-3] and

[H - 4 ] .  In place of [H-5], we suppose that Œ(x) ._ —1 and tha t ai k (x)(j, k=1,..., n)

b e lo n g  to  C 2 (r2) and aj (x) (j=1,..., n) b e lo n g  to  C 1 ( 0 ) .  T h e n , th e re  ex is ts  a
suffic iently large positive num ber C such that the operator s i  is  an isomorphism
fr o m  N O ;  d o) onto CP(i2; do ) ,  if  Re ao(x)_?:C on Q.

Remark 4. In this case, [H-6] is automatically fulfilled.

At last, we consider the resolvent of the operator d .  Let us set,

(18) A  = {A E C — 101; I arg —11/} u {0} ,

where, tfr E (0, TO and C is the complex plane.
Then we have the following theorem which is sharper than the previous ones.

Theorem 4. W e  fix  a  1/i e (0, n). Suppose th a t  s i  satis fies the hypotheses
[H -1], [H -2], [H -3], [H -4], [H -5] and [ H - 6 ] .  Then, there  ex is ts  a constant

Ao >0 such that, for any A e n 1A1 , 1.01, the operator si +A  is  an isomorphism
fro m  vP(r2 ;  d o) onto 0 1( r2; do ). M o re o v e r ,  if  a ll th e  coefficients of si are real,
a0(x) is non-negative and if A is positive, then we have

(19) u Il(s1 + ,1)u fo r a n y  u E VP(S-2 ; do).

Where, the constant Ao depends only on Q, and

Remark 5. Under the hypotheses [H-1] — [H-6], we can show the following
a priori estimate:

(20) 114)Xciu + iti 11N/ tiO X iX o  L4 . d o1 1 X i X k l i  11„,do

IRCOU N/Pd 11Xj14 d  +(Rd — 110)1114'
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where C is a positive number depending on S2, ti/ and d  but independent of u .  And
this inequality (20) will be proved in parallel with the inequality (16).

Remark 6 .  By virtue of this theorem and the above Remark 5, we can easily
show that the operator —.Q1 generates a holomorphic semi-group.

§ 3 .  A priori estimate in D (proof of the theorem 1)

In this section, we reduce the inequality (16) to the model c a s e . To do this, we
begin with a localization.

Let {(S2j , 0 }1 1, 0 be a partition of unity of r2 such that:

(S2i Ir= 0  i s  an open covering of 0,

r2, c 52, Qi, e C ( Q )  a n d  E
p=o p=o

To establish the inequality (16) for u e M O ; d o ), it suffices to consider each u  for
j=1,..., M .  For each S21 , there exists a diffeomorphism cui  such as (0 .co-

i
- 1 )(y)= y„,

then Q. is mapped by (of  on to  W (a small neighborhood of the origin of ki4. whose
coordinates are denoted by y= (y i ,..., y„)). By virtue of cui  for j=1,..., M, we can
reduce the required inequality for e a c h  u  to  an analogous one in

Let us set, for R>0,

(21) W R= fX = (X ' , X „) R, 0<x„< R 2 } and

WR
= W R U  {OW R n (x„ = 0)}

By a suitable w 1, the operator si is reduced to the following one defined on WR

for sufficiently small R .  For simplicity, we adopt the same coordinates x=(x', x„)
in place of y =(y ', y „) . Then,

n - In - 1
(22) = - x„b„„(x)0?,- 4V 2 E  b„,(x)ak a„— E  b i k ( X )  k

k= 1 j ,k = 1

J1 b i (x)0J +1),(x),
=

where all the coefficients of a ' are in C( W R ):
Moreover:

(23) b (x )>  0  ( [H -4 ] ) :  b„(x)< 0, for x „ =  ([H-5]) ;

bn k ( x ) = 0 ( 4 ) ,  for k = I n — 1  ([H -6 ]) and

{b i k (x)} 1
.5 1=1 is a symmetric positive matrix (EH - 3 D.

The next proposition 1 is a local version of the theorem 1 and the latter is a
consequence of the former.

Proposition 1. Suppose that .1  is  of the fo rm  (22) and satisfies (23). Then,
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fo r  a suffic iently sm all R>0, there exists a constant C=C(R)>0 such that, for any
u E VI( W 2 R ) ,  w e have

(24) 1102 + C { P u  II ii,d, w2R + II u II 0 ,a, w2R} + qR(u .),

where q (u) is a semi-norm of P ( W 2 n )  defined by

RR(LI)=-' C I E  Ilajull,,d,vv..+11-x- nanull t i,d,w2.1+0(R)lia„ull„,d,,,,2 .
i=1

Let us set

(25) a° = — x„b„„(o)a — E  bi k (o)aj ak +b,,ma„.
,  k = 1 -

From (23), there is a  suitable linear transformation of coordinates in R .  which
reduced .go to La with a =  b„(0)113„„(0). Then, the proposition 1 is a consequence of
the following proposition 2 which will be established in the section 5 (see the lemma
2). For W  R ", we denote by S ' ( W )  the set of distributions having compact sup-
port in W.

Proposition 2. F o r a n y  R>0, there exists a constant C=C(R)>0 such that,
for any u e W ( WR ) n e'( wo, we have

(26) MuM 2 + p ,d ,W R  CIIILeiull,,d,wR +

Remark 1. Since a —.40 can be regarded as perturbation, it is not difficult to
see that this proposition assures the proposition I.

§ 4 .  Elementary solutions for L ,  and

Let us set, for (x, y) e x R!, with x 4y,

(27) Ecc(x, y)—y(n,
o

A(x, y, 0)2 1 - "+3 {0(1-0)} - 2 - 3 1 2 d0.

Where, A(x, y, 0)= {d(x, y) 2 0+ y)2(1— 0)} 1/2 ,

y)={( +,/y 2 + —y'12 /4} 1/2 ,

y(n, a)= (4n)-„ / 2 2 _2a _, r (n-- 3 — 2cx)//r (  —22cx —1  )

and Re a< —1/2 (*).

Then, Ea(x, y) is one of elementary solutions of 1,„ in RT. Let A  be the complement
of the negative real axis in the complex plane, that is to say,

(28) A= {A e C— {0} ; I arg # 7r} U {O}.

And let us set, for (x, y) e RT x RT with x4 y and ). e A,
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(29) EA ,7(x, y)=6(n, 00)p/2 y ;  cc-1 K p (2 4(x, y , 0)).

A (x, y , 0)- P{0(1-0)} - / - 3 /2 d0.

Where, 13=  n  3  a , R e  a  <  — 1/2  (* ),

,6(n, a)=(47t)-" / 2 2 - 2 a - 1 / 2 1 r (   2a — 1  )

and K (z) is the modified Bessel function of order /1 defined by

(30) K ii(z)= IF( 2 '62
+ 1  )(2z)P/ } 1: (x6+ Z2 ) - fl -  I /2 cos x o dx o

={ \ 17r(z12)A1F( 4 + 1  )1. exp ( —zx 0 ) (x6 — 1)fi -1 /2dx 0 ,

for Re fl> —1/2 and z> 0.
Then, EA.7(x , y ) is one of elementary solutions of 1,7 + ), in RT, and EA tends to E„
as

( * )  R em ark 1 . The integral of the right hand side of (27) and (29) are not
convergent if Re a E E — 1/2, 0), but if n  3, we see that E7 and EA  can be continued
analytically with respect to a in that case (see the Remark (**) of §7).
In particular for a= —1/2, n=3  and A e A, we have

(31) E , , _ , 1 2 ( x ,  y ) =
y ;i / 2  iexp { —2,1.1c/(x, y)}

 +
exp{ —2.\/2d(x , y)}}

X. y ) d(x , y).

R em ark 2 . W e also  note  t h a t :  F o r  =  ( x 0 , x', x„)e R lr"  and 5; = (y o , y ',
y„)e RV", let E7(g, 57) be an elementary solution of LOE defined by

(32) L„= L OE -  06,

where 0 0  i s  the derivative with respect to  an  auxiliary variable x 0 . Then, by the
definitions of EOE and EA ,„, we can show the relation

(33)E A  7 (x, y ) exP — iN/(xo — Yo)}EŒCR, 0 4 0 ,
E(s/A)

where EWA) is the  line {y 0 =-0.\ /2 ;  —00 +CO } in  th e  complex plane C for
A e A (if A =0, E(V X ) is the entire real axis.). By virtue of (33), one can see that
EA „ has the same singularity as E7 in  a  neighborhood o f  x = y . A n d  by virtue of
(29), (30) and the fact A (x, y , 0) d(x, y ), EA ,OE and  its derivatives with respect to x
are exponentially decreasing as Re N aC i(X , y) tends to + co, for a fixed ye RT and a
fixed A E A — {0}.

After all, we have the following lemma 1 (the proof is omitted).

L em m a 1. For A  and  Re a <0 (Re a < — 1/2, if n=2), EA Jx , y) is an  ele-
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mentary solution of L,t +.1. in R .

Remark 3. The proof of this lemma and the construction of EA ,O E can be done
by the same method in Goulaouic-Shimakura [6] (see also Graham [10]).

§ 5 .  A priori estimates in RI. (proof of the proposition 2)

The proposition 2 is the direct consequence of the following lemma 2.

Lemma 2. Suppose th a t Re a is contained in a com pact set K  of the  in terva l
( - c o ,  0). T a k e  a n y  f e C ( k l . )  h a v in g  s u p p o r t  in  WR = {x e  I x ' l < R  and
0.. x „< R 2 }  and pu t u = EOEf. Then, each of the quantities lis ted  in  (a )-(d ) below
is m ajora  ted by

C(K) Lc, +  R 'lfd 1

where C(K) is a  positive number depending on K  but neither on R nor on f :

(a) R- 2 110 . ; (b) R- 1 11a;u11.

(c) 110„u 11, and Rola„14, d ;

(d) 11ei aku 11N/x„aia„0 ., x „a iu  ., Rg iajakui„,a ,

R11 1\ /xm ai an u l „ ;  a n d  R"IX u1 d  ( 1 j, I ) .

If n=2, the proposition 2 can be reduced to the case where n 3  as follows.
Let La be an operator with 3 variables xo, x 1 and x 2 defined by La -06  (see (32)).
Then, u(x) can be regarded as a solution of LŒ u.---f( L„u) in R  independent of xo .
Therefore the detailed proof of this lemma will be done only for n.3.

In order to prove the lemma 2, let us prepare the following properties [P-1],
[P-2] and [P-3] of E,(x, y), which will be verified after the proof of this lemma.
We denote any ai  - 1 )  by D, various multi-indexes by y  and Re a by a'.
And we fix a  n (n . 3) and fix a compact set K  of the interval ( -  co, 0), and assume
Re a e K.

[P - I ] :  For any K  E  (0, I) and tif E (0, rc), there is a constant C, =C i (K , K, n)> 0
such that, for any 2 eA o , ni+ 3 and (x, y) e x R'.1_ with x+y, we have

laTDYEA,a(x, y)2ce+1.--md(x,

Where, g (x, y)=exp - lc Re ,/2,d(x, y)}.
In particular, these estimates are valid for A=0.

[P -2 ]: Let us set K„(x, y)=a„E cc(x, y).
There is a constant C2 >0 and a non-negative function '. e C ( R " )  whose value is 1
for Ix I 1 and 0 for Ix I 2 such that, for any SERq_ and p>0, we have

C 2 ,  where ( x ) = (  
P P
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[ P - 3 ] :  Let us set K„(x , y)= 0„E x, y).
There is a constant C 3>0 and a non-negative function ti E CZ°, (1-4) whose value is 1
in a neighborhood of the origin such that, for any R> 0, we have

/—
1Kni/R1u,d C 3/R ', w h e re  ti R (x)=t7( x; i ; z" )

Proof of the lemma 2. B y  v irtue  of [P-1], one can see that, for a fixed x e
EA ,Œ(x, y) and a1 E2 (x, y) (1..5 _  j'n -  1) are locally summable if /1=0 and summable
if Re J > 0  w i t h  respect to  y on 1 4 .  Therefore the estimates of the quantities in
the group (a) and (b) are not difficult. It suffices to consider (c) and (d).
Group (d): By virtue only of [P -I], we can obtain the required inequality for each
of the quantities of (d). Since the proof can be done by the same procedure as the
estimation of derivatives of the Newtonian potential in bounded domains, the proof
is omitted (cf. [5]).
Group (c): F i x  a  point s e R I_  If d(0, 2R, we have I K„f(s)I CC,.11f11,,,,. If

s)<2R, by subtraction, we have

=(.f. — f (s))3R,s+ f (s) 3 R ,s ==1 t

Then we obtain

(34) CCI RPIJ L i d  a n d  I KJ2 (s)15.- C2 Li

Next, we take another point t e R . w ith  s * t and write p = 2 d ( s ,  t ) .  Suppose that
R' > R  + 2 p . Again, we write .f = f i + f 2 + f 3 , where

= (f  ( s ) ) 4  , s ,  1 .2 = (f — OM , R

and .f3(x)=.f (s))7R , (x)

First, [P-3] implies

K„i310 -  K„.f3(015- C3(P/R')"ll f  II Go - cc3(p1R ) 11 11 f M,

Secondly, we have

IK„.fz(s)I 6 CCIP'1f1 g ,a and IK„f11015 C(C i  +

Finally, we also obtain

IK„f2(s) -  K„f2( 1)15

Collecting these inequalities, we have

(35) I K ,,f(s) - K f( t)I  C{C3(p/R)R  M f  II 1+ c 2),0"11- I „,d1
By (34) and (35), (c) is established. Q. E. D.

Now we verify [P-2] and  [P -3] by using the facts which will be proved in
Appendix ([P-1] will also be proved there).



(36) KAR(X)= (1 N / T )  2 c '

(37)
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Proof of [P -3 ]. Set fi(x)=i1(x„), where O5 fj5._ 1, E Cij ( k + ) and iv/ =1 for O5_
x„.5 1, 11 = 0  for x „  2 .  Then we have

M  a (1\Fr I X  2
)

N

17( n  d1+ NIT R and

(1 - N/T
1112 1+.\/T)

by virtue of the lemma A.3.
Hence, we obtain IKA R I,,,,5Citii,,IRie=C3 IRP.

Proof of [P -2 ]. It follows immediately from the homogeneity of K„(x, y) that
K4,,,(x) depends only on the parameter s„_.0. Therefore, we put p= 1 and  we
take f o r  th e  following function,

'(x; s„)=a(x)b(Nlx „ - NIS-,-,).

Where, a(x')EC'(R" - '), b(x„)e C(R) and having supports in Ix'i <2 and lx„I <2,
their values are 1 for 51 a n d lx„I _5 I , 0.5a and 0  b5_ 1 in  R" - I  and  R
respectively.
Let us set

V„(x, s„)= {Kr&  • „s„)} (x).

By the lemma A.4, we have

V„(x• s„)= 0 b( N y„- N is„)U„(x, y„)dy„a--. V +

Where,

V,;(x, s„)= 1 0 a (x )b ( NITx„- \Is.) ± ) 2 1 Mg(1 ) d1+ . f ir

Then, 111/411„ C, since the lemma A.3 in §8 below holds. And we also have

V?.,15_C o b(.\ y„-,Is„) 1 \ 1 ,7
-1 "

since b(r - .N1- „) has its support in the interval [(N/s„ - 2) 4., 2 +.\/.5„ ]. Q. E. D.

At the end of this section, we show the following lemma which provides the
basic estimate to demonstrate the theorem  4.

Lemma 3 .  We fix a ql e (0, Tr). Suppose that A eA fr an d  Re a is contained in
a compact set K of the interval ( -  a), 0). Then, for any u e P c1(.17) having support
in  W1 , each of the quantities listed below is majarated by

C(K, 11.1)11(La+ ,0,111p,a,

where C(K, Ili) is a positive number depending on K a n d  b u t  independent of u.
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(a) J p d '  J . J X f l l j i f l U  J P d  J a f a k U  p,da n d 1 J 1 ,d  (I j ,  k n— 1)

(b) \ /i i u J 1,d (1 ̂  j  ̂  n — 1 ) and J) J u J,1,d.

Pro o f . F o r  y e n ' ( W R ), R e  e  K  and y e A 1, n {JyJ =  1} , if w e put
g(x )=(L +y )v (x ), we obtain  v (x )=E g (x ) .  Then, it follows from  the Rem ark 2
of §4 that we call apply the lemma 2 to g and y. (By virtue of (33), it is not difficult
to see that [P-2] and [P-3] remain valid for this case, and we also note that E YŒ (x, y)
and a J E. Œ(X, y) (I j  n -  I) are summable w ith  respect to  y  on k  for a fixed
x e Hence, i l l  order to obtain the required estimations, we have only to put
R = \ / j, y=i/J2J and carry out a change of variables defined by

(x', x,,)  -  (\/T)iy', JÀJy,).Q .  E. D.

§ 6. Proofs of the theorem 2, 3 and 4

Proof of  the theorem 2. First, we show that the operator d  is  injective  from
d , )  in to  C ( ;  d , , ) .  Suppose u e V ( ;  d e ,) a n d  d u  =  0. W e  a ssu m e ,

contrary to the theorem, that u  is not identically zero. Then, by the maximum
principle, u  attains the maximum only on Q. Therefore, we may assume that u
attains the maximum at a point x° e Q and  u(x °)> O (if not, we consider —u).
Without loss of generality, we suppose that x°=0. {x,,=0} is the tangent space at
x° to Q  and that x,>0 is locally the side of Q . Then w e have  d u (0 )=0 .  A n d
evidently we have

-

—

a J k ( 0 ) a la k u ( 0 ) ^ O . u ( 0 ) < 0  a n d  a u ( 0 ) = 0  ( 1 ^ j ^ n —  1).

Since a1u(0) (I ^j^n) are bounded, we can show

a1 ,(0)a1a1u(o)=0( 1  j n ) .

After all, we have

- aJ(0)cJou(0) + a,(0)a,,u(0) + a 0 (0)u =  O

But, this contradicts to the fact Œ(0)=a,(0)<0.
In order to prove the surjectivity of tile operator d ,  we prepare some proposi-

tions. First, from the inequality of the theorem I and the above uniqueness result,
we can derive, by a argument of functional analysis, the following a priori estimate
which is very strong (the proof is omitted):

Prosposition 3. Suppose that d satisf ies the sanie hypotheses as in theorem 2.
Then, there is a constant C > 0  such thai, for any  u e V ( di ), we have

(38)J u  JJ 2 -i- p,d CJJd u  J
where the constant C depends only  on d and Q.

Let us set
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(39) s e =  — d iv  grad+ E tx; xi + t,

where X . is defined by (10) and 'X i  is the formal transpose of X j . it follows from
L2 -theory (cf. [3]) that d °  is an isomorphism from C' (r2) o n to  C "(r2 ). Simi-
larly we obtain:

Proposition 4. d °  is an  isomorphism from VP(i2; d o) onto CA(S2; do).

P ro o f.  We use the following facts which are well-known in the Holder theory
(cf. [5]):

(a) For fa  C "(Q ; d o ), th e re  is  a  sequence { f" 1 } ,„N  s u c h  as f " 'E C (S2),

f  m  II A ,d 0 .64 f II d and, for any va [0, II.fm—f II v,d0
.--°3  (as m— co).

(b) If a sequence {um}„,E N  is bounded in Cg(r2; do)  and is a Cauchy sequence
in C°(0), then it is a Cauchy sequence in Cy(n; do ) for any va [0, te) and its li mit is
contained in Cli(52; do).

It suffices to prove that the operator d °  is surjective. Suppose f a  C A ( ;  d o ), then
we can take a sequence {f in}„,o , which satisfies (a). F o r  each m e N, there is a um a
C '(0 ) such as szettm =f m , and from (3 8 ), II r e m a i n s  b o u n d e d  and {um},n o ,
is a Cauchysequence in Vv(0, do ) forany va  [0, ft). From (b), the limit u of {un'}„,o ,
in 1/"(0; do ) is an element of VP(S2; do ) and by taking the limits of the both sides of
at

°
 lim  = f '  i n  Cv(f2; d o ), we have szeu = f .  Thus, the proposition 4 is proved.

Q. E. D.

End of the proof of the theorem 2. Now we complete the proof of the theorem
2 by virtue of the proposition 3 and the proposition 4. We consider the family

of operators defined by

(40) = (1 — t).321° +

Then for each t a [0, 1], s it is linear and continuous from V P(S2 , do )  into CM( Q; do )
and satisfies (38) with sit= with some C independent of t. Moreover, .22.

0 =.21°
is an isomorphism from MD; d o ) onto CP(S2; do ). Therefore, by the method of
continuity (cf. [ I ] ) , each of szoli is  an isomorphism from VP(r2; do )  onto 0 1(n ; do ),
in particular, so is si=s1 1 . The theorem 2 is completely proved. Q .  E .  D .

Proof  of the theorem 3. If we can prove that the operator d  is injective from
V '( ;;  do )  into CA(S2; do ), then it follows from the method of continuity (see (40)
above) that the operator d  is  an isomorphism from VP(C2; do )  o n to  CP(0; do ).
Since a j (x)'s are complex valued, we can not use the maximum principle to prove
the uniqueness. But, we can replace this argument by L2 -theory, tha t is  to  say.

Lemma 4. Under the saine hypotheses as in the theorem 3, the operator sit is

injective from VA(r2; do ) into C1L(C2; do).

Proof of the lemma 4. Let us set f=  d u  for u e vqr2; d o ). Multiplying i7 to
the both sides o f f = d u  and integrating by parts for the second order terms, we have
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(a) (f, u)—(a o u, u)— t  ( a ik ai u, Oku)— (bi e j u, u),
j ,k =1 j=1

where (  , )  stands for the scalar product in L2 (0) and

b1(x)=u(x)+
L

Let us set F0==_17 4)(x)=((,b 1 ,..., 0„) for x e 00, then 17 0/1V01 is interior normal to
Q. Again, integrating by parts for Re (bi e J u, u), we have

2 t  Re (b
r
 .u, u)= 2  ±  Re {i((lm b .)0 .0J

:1=1
J J  '

-11 6 1 1 1 1 2 ( 1 S ,
PO

where fi= b14)/I17 01.
And we have

u)} —t Re ((0i bi )u, u)

IS

IF  0113 =a i k 4 ) i k + a k ( C l i k 0 i )
:1= 1j , k = 1 j ,k =1

=(a(x)+1)g(x) (since  t  a i k 0 i n )  are of 0(0)),
j ,k =1

where a(x)g(x) is defined by (14).
Since u:5_ —1 by hypothesis, we have

(b)
Of2

Moreover, for any e (0 , 1 ) , there is a constant K= K(6)> 0 such that

(c) ((lm  b) 1 u, u)15e (ai k Oi u, eku)+ KiMu 1112

.1= I j ,k =1

holds for any u p 1/"(5-2; do), where III III denotes the norm in L2 (52). Admitting this
for a moment, we have Re (f —ao u, — K'(u, u), that is to say, III duld
where K"= .1nf ao (x)— K' and K'= K +Sup ( i 10 i bi (x)1)/2.

i =
Therefore, if  Re a0 (x ) is large enough so that 0 , ue VA(52; do)  and du =0
imply u =O.

Proof of the inequality (c). ( c )  is a  consequence of the following inequality.
There is a positive constant C such that we have

it 1 1 1 1  1 1 ,i( X )I C
j = i j ,k =1

ci i k (x ) (Xk ) 1 1 2 ,

for a n y  e C" and x E (2.
And, since Im bi (x)= 0(0) j n), this inequality is obvious. Q. E. D.

And the theorem 3 is now established.
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Proof  of  the theorem  4. Evidently, by almost the same procedure as in the
proof of the theorem 1, we can derive the inequality (20) from the lemma 3 in §5 (at
first for Q = R .  and si =L Œ,  and secondly for general Q and d ) .  Here, \/T is
regarded as the dual variable of xo (see (32) and (33)). This inequality (20) assures
the injectivity of the operator J1+,1 for .I. e A q, n {P,I>),o} .  And the surjectivity is
also easy to see by the method of continuity and the compactness of the operator

+,1.)- 1  (w hen  it ex is ts) . At last, we prove the inequality (19). Since all the
coefficients are real, we can apply the maximum principle. Take any f e  C ii(0 ; d ),
and suppose that u is the unique solution in M O ; d o ) of the equation "Gil =
f " .  Let us set u , =max (u, 0) and u_ =max ( —u, 0). Then, b y  the maximum
principle, we have

;11 II f  II 00 and  ),,u_ .11f11,„ (since ao (x)?.._ 0).

Since =sup max (u ., u_ ), the inequality (19) is proved.
Q

Q. E. D.

§ 7 . Appendix 1 (The proof of [P-1] in §5)

It suffices to consider the case where ),=0 (see the Remark 2 of §4). We intro-
duce a new representation formula of Ecc(x, y).

(A .1) EOE(x, y)= ot)y;°'-' B(x, y, 0) 2 1 - 1 1 +3 P OE(0)d0.

Where, B(x, y , 0)={ (x„+ y„+ Ix' — y'1214)2 — 4x„y„(1— 01 1 /4 ,

tk OE( 0 )  =  0 - ( 1+3+2a)/4(1 o)(n - 5 -2 2 )/4 9

( n ,  a ) =  ( 2 n ) -
0 2 2 3/2 n— 3 — 2a  )1,1,7 (   1 — n  2a  )

4 4
n - 1R e a <  2 (**).and

P ro o f .  We can expand the right-hand side of (27) into power series of Q=
+ Ix' — y'12 /4)- ' and rewrite it to obtain (A.1).

Remark (**). By the analytic continuation with respect to a, this formula re-
mains valid for Re a e(— co, 0), if n 3. T h e  analytic continuation method used in
this paper is essentially as follows: Let f (0) be a function of class C1 ([0, 1]) and T

be a complex parameter with Re T >0. T h e n  w e  have the equality:
ri ri

F(T) - 1
 o f  (0)6T - ld  = F(T) - 1  I  {f (6)—f (0)}0r - 'd0 + r(T ± 1) - 1  f (0 ) .

The right-hand side can be continued analytically to Re r> —  1. Thus we can
extend the definition of the left-hand side to Re 'V > — 1 by this equality.

We also introduce the following auxiliary function:

(A .2) T (a, b, X , Y )= (X  +Y 6)99b-'d0,
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where X > 0, 17 0, a + b <0 and b>0.

Then we have

Lemma A .1 .  Suppose tha t b>0 and a + b < O . T h e n , th e re  is  a constant C=

C(a, b)>0 such that, for any X >0 and 17 0, we have

(A.3) T(a, b, X , Y)._-_CXa+ 1'(X +Y) - b.

P r o o f .  It suffices to consider the case where X = I. B o t h  of the following
inequalities are valid:

T(a, b, 1, l i b  a n d  YbT(a, b, 1, Y) f -'(b)F(-a-b)1T(-a).

Q. E. D .

Let us set

(A.4) J(p, q)=-J(p, q, x, y)=T(-  n +  P ±  2 q  q, d(x, y) 2 , \ /x„y„),

where n  3, - 2 ,  q > 0 and (x, y)e R 12, x RT with x= y.
Since B(x, y, O) y )2 + 2 \ ix ,,Y ,,0 }  ho lds, w e can  estim ate  E,(x, Y)

and its derivatives by J(p, q)'s. After a long calculus, we obtain:

Lemma A .2 .  Suppose th a t n  3 and Re a is conta ined in a compact set K  of
1

the in te rva l (- oo,
n - 1

2   j , and  put fi = -(2cx+n- 1)/4. T h e n , th e re  is  a  con-

s tan t C=C(K)>0 s u c h  th a t, fo r a n y  (x, y)e RTx R'4_ w ith  x= y  and lyl + m  3,
we have

(A.5) 1 'DYE(x, y )1< c yTi.oc cskx, y )2,-21r-m+2; j( y l +  m  _2 , 13,
4_ j ) ,

i=1

where we denote any O f  (1 . .1:5_n -1) by D and Refi by 13'.

Evidently, [P-1] follows from (A.3), (A.4) and (A.5), if Re a e K .  We can also
prove [P-1] in the case where Re a is contained in a compact set R  of the interval
( - oo, 0) by the method of analytic continuation (see the Remark (**)), the detailed
proof is omitted.

§ 8. Appendix 2 (Further preliminaries to §5)

In this section, we shall obtain a number of inequalities needed in the verifications
of the properties [P-2] and [P-3] of the kernel K„(x, y)=0„E(x, y) in §5.

We use the following notations in this section. Let us set

(A.6) h(X11, yll) = (SIX ?! N/Y 1 I ) / ( N/XII ±  \/ï;;1),

Mxn, J'„, 0)= —(1 — /7) - 2 - 2 ( 1 ) ( 11 , 0 )/(Nix„ - EN/Y„)-\/x„ ,

OOE(h, 0)= (h0 + 1 - 0)(h 2 0 + 1-  orr(— cx)INIn

and k„(x„, y„)= RK „ ( x ,  y ) d y ' .



Certain degenerated elliptic equations 575

Then we have:

Lemma A .3 .  Suppose n . 3. F o r  any  com pact set KOE( - oo, 0), there is a
f unction M (h) w ith a param eter a  such that, f o r any  x „>0, y „>0, x „+y „ and
Re a. e K, we have

(A .7) kn(xn, Y n)- —

v„)
M (  h  )  ,

with h =11(x„, y„) defined by (A.6).
Moreover, M i (h) satisfies the following properties:

(i) M (h) is locally  summable with respect to y„ e R , for a fixed x„ e R
(ii)) If  R e  a  - 1/2, M OE(h)= 2(1 + h)2 "+ 1 Y(h),

where Y (h)-=1 for h>0 and Y (h)=0 for h <O.
(iii) I f  -  1/2< Re a <0, M o,(h )=0 {(I+h ) 2 }, in a neighborhood of  ,h = -1.

Pro o f . We obtain at first

(A.8) k„(x„, y„)= r(- a -  1 /2 ) '' ,f„(x„, y„, 0){0(1-0)} - a- 3 /2 d0

and M (h)= T (- a -  1/2) - 1 ( P OE(h, 0)10(1 -0)1 - 1 - 3 /2 d0.

Then, the assertions of (i) and (ii) follow by a direct calculation, and to prove (iii),
it suffices to remark M Œ( -  1)=(dldh)M ,(- 1)=0 (see also the Remark (**) of §7).

Q. E. D.

To establish [P-2 ] ,  we introduce the following auxiliary function U,(x, y„)
defined for x e RT and 0< y„+x„:

(A.9) U„(x, y„)= R n _i K„(x, y)a(y')dy',

where a(x ') is a fixed element of Q°(R" - ').
Suppose that F is a compact set of R2 contained in

{(a', o-); oe' <0 and 0< a <Min (1, -oc')}, f o r  ce = Re a.

Lemma A .4 .  Suppose 3. Then, we have, for (a', o-)e F,

(1 
U„(x , y „) +a(-0 /x „+ Lyn) M (h) <C

where C is a positive constant depending only on (a, F, n).

Pro o f . By virtue of the lemma A.3, it suffices to show the following inequality:

(A.10) 1Kn( Y )iia(x') -  a();')Idy' C _
IN/xn-N/Y „i'

From [P-1], we can show
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1K„(x, A la(x ) — a(y')I
 

CI la 1 Y7. -

1 c k x ,

Therefore, we obtain (A.10) by integration on R 11- 1  (we denoted a n  usual Holder
semi-norm by I I f o r  O < <  l ) .Q . E . D .

D EPAR TM EN T  O F  M ATH EM AT ICS
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