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§ O. Introduction

Let G be a locally compact unimodular group, and S a closed subgroup of G.
Suppose that there exists a compact subgroup K  of G with G =S K  (S  n K  is not
necessarily trivial). Th is  paper is devoted to give a generalization of the Frobenius
reciprocity theorem for these G and S.

In particular, let G be a finite group, and S  a subgroup of G .  Let {b, T(x)},
{H, A (s)}  be representations of G, S on finite-dimensional vector spaces b, H  re-
spectively. We shall denote by {.5A, TA(x)} the representation of G induced from
{H, A(s)} , and by 03, Ts (s)1 the restriction of {b, T(x)}  to S .  Then the Frobenius
reciprocity theorem can be stated in the following three forms which are mutually
equivalent.

(1) I f  {b, T(x)} and {H, A (s)}  are irreducible, then {5,4, T A
(X )}  contains

{ T(x)}  exactly as many times as {b, T (s)}  contains {H, A(s)}.
(2) Homs (H, 5 ) -  Hom e  (kV, f)) (linearly isomorphic).
(3) Horns (55, Hom, (55, 55A).
Various generalizations of this theorem were given by many people. Using the

direct integral decomposition theory, both F. I. Mautner and G. W. Mackey gener-
alized the theorem as stated in form (I) a b o v e . In Mautner's case, G is assumed to
be a separable locally compact unimodular group and S a compact subgroup [7].
In Mackey's case, G is a separable locally compact group and S a closed subgroup of
G [6]. But, in his case, the Frobenius reciprocity theorem is formulated only for
representations which appear in the direct integral decompositions of regular re-
presentations. R. Penney also formulated in [9] a generalization of the Frobenius
reciprocity theorem in form (1). He dealt with Lie groups and made use of the
C'-vector method.

In the case of C. C. Moore [8], the group G is a locally compact group and S
a closed subgroup of G .  He assumed that the homogenous space S\G possesses an
invariant measure and that both {53, T(x)} , {H, A(s)} are unitary. Nevertheless the
induced representation {55^, TA(x)) is defined so as to be an isometric one on a Banach
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space  5A . He formulated a version of the Frobenius reciprocity theorem in form
(2). A fte r tha t A. Kleppner obtained in [5] a generalization of the theorem in form
(2) too. I n  h is  case, representations are not necessarily unitary, but assumed to be
isometric representations on Banach sp aces . M ore general induced Banach re-
presentations were defined and studied by R. A. Fontenot and I. Schochetman [2].
They also proved a generalization of the theorem in form (2).

Roughly speaking, all of the above people attempted to give the equality of the
"multiplicity" of { H, A(s)} in {5, T(s)} and that of {5, T(x)} in {5A, TA(x)}. In
contrast to this, J. M. G. Fell considered in  [ I ]  the  weak Frobenius reciprocity
property: for irreducible unitary representations { ,5, T(x)}, { H, A(s)} o f G , S re-
spectively, {5, T(x)} is weakly contained in 

{ b i t ,
 TA(x)} if and only if { H, A(s)} is

weakly contained in {5, Ts (s ) ) .  R. W. Henrichs studied when this property holds [4].
O n  th e  o ther hand, M. A. Rieffel [10] a n d  R. Rigelhof [I l] made category

theoretical arguments on this subject. Of course there are some differences between
assumptions or results in their papers, but we say nothing here on these differences.
In  any case, they found, under some conditions, G-modules G H  and HG for which
relations Hom s (H, 6)-_-'Home (GH, 6) a n d  Horns (5 , H)' -. HomG (b, HG) hold.
They also gave concrete representations of G-modules G H  and HG as vector-valued
function spaces on G, which are similar to representation spaces of induced repre-
sentations in Mackey's sense. B ut these two are not equal.

Now we make clear our aim in this paper. L et L(G) be the convolution algebra
of continuous functions on G with compact supports, and L(S) similarly, where G
and S are the same as those given first in this sec tion . There exist L(G)-submodules
5 ,, 5g of , ,  6A respectively, which are more essential in this paper than whole spaces
(for definitions, see §1). They arc, a t the same time, L(S)-submodules. Then our
aim is to prove the relation

Hom u s , (5 , ,  H)-..' Hom, ( G ) (60 ,

which is a  generalization of the Frobenius reciprocity theorem in fo rm  (3 ). Our
technique is different from those of the above people. The author has made attempt
to prove a  theorem in  form (2) for these submodules S N ,  t h a t  is, the relation
Hom L (s ) (H, HomL(G) (6 (1, 60 ). But at present he has not yet succeeded.

§1 . Notations and a scheme for the proof of main Theorem

L et G be a locally compact unimodular group, and S a  closed subgroup of G.
We assume that there exists a compact subgroup K of G with G = SK (S n K  is not
necessarily trivial).

Let L(G) be the algebra of all complex valued continuous functions on G with
compact supports. For every compact subset C  of G, the vector space L (G )  of all
functions f  in L(G)•whose supports are contained in C is a Banach space with the
n o rm  I f  = sup  if(x )i. W e sha ll regard the algebra L(G) to be endowed with the

xeC
inductive topology generated by these Banach spaces L c ( G ) .  For the subgroup S,
the algebra L(S) will be defined in the same way.
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Throughout this paper, a topologically irreducible representation {5, T(x)}
of G will be fixed. The representation space 5 is a locally convex Hausdorff topo-
logical vector space, not necessarily complete, but we assume tha t, for all Radon

measures a on G with compact supports, the integrals Ç T(x)da(x) define continuous
G

linear operators on 5 .  Especially, for a function f  in L(G) or in L(S), we set

T (f )=1 G T (x )f (x )(1x  or T (f )=1 s T(s)f(s)dp(s)

respectively, where dx  denotes a Haar measure on G and dp(s) a left Haar measure
on S. Both are continuous linear operators on 5, and 5 can be seen as an L (G) -
module at the same time as an L(S)-module.

N ow  w e must impose the condition tha t the representation {5, T(x)}  shall
contain an equivalence class (5 of irreducible representations of K  finitely many times.
We shall denote by p the multiplicity of (5 in {5, T(x)}:

[T1 K: (5]= p (0< p< + oo).

Let 5(6) be the space of all vectors in 5 transformed according to (5 under u—>T(u)
(u e K ), and 5 0 the L(G)-subinodule of 5 generated by W ), then, for every non zero
vector y in b(b), we have

$30={7"(f)v; fe  L(G)1 •

This is clearly a G-invariant dense subspace of 5, and can be seen as an L(S)-module.
In the following, the subspace 50 is  more essential than the representation space 5
itself.

Let {H, A (s)}  be a fixed representation of S. The representation space H  is,
like 5, a (not necessarily complete) locally convex Hausdorff topological vector
space, and, for all Radon measures on S with compact supports, continuous linear
operators on H are defined by integrals.

We shall denote by 5A the space of all continuous H-valued functions go on K
satisfying the equality

(P(mu)=A(m)(p(u) for all m e M =S  n K.

For a system of semi-norms {1•1, t E /} which defines the topology on H , we in-
troduce a locally convex topology in defined by the system of semi-norms

(p, =sup 1q)(14 )1 ,( e e l ) .
u eK

For every element x in G, a continuous linear operator TA(x) on 
5 A

 is defined as

TA(x)(p)(u)= A(s)tp(k)

where ux = sk , k  e K , s E S .  The right hand Side is clearly well-defined. Also fOr
the induced representation {$ A, TA(x)} of G, as in- the 6.se of {5, T (x )} , we shall
denote by 5A(6) the space of all vectors in 5 4  transformed according to (5 under
u-•-+TA (u), and by 5'ol the L(G)-submodule of 5^ generated by SV((5).
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Let Hom u s )  (5 0 , H) be the vector space of all linear operators of 5 0 to  H which
commute with L(S)-actions, a n d  Horn / ( G )  (5 0 , bg) the  vector space o f  all linear
operators o f  5 , to 5g which commute with L(G)-actions, then our aim is to prove
the following Theorem which is a version of the Frobenius reciprocity theorem.

Theorem . T w o v ector spaces Hom u s ) (530 ,  H )  a n d  Homu of,, o , b ,g) are
mutually isomorphic:

Hom u s ) (530 , H)L 'Hom L (G ) (b o ,

The proof of this Theorem will be pursued as follows. We will define three
other vector spaces Horn, (A,./9J1(4), C d 0 H ), Horn!,. (A °/0(a v ), C dO m H )  and
Horni. ( , ) (5 ,(6 ), 51(6)) (fo r definitions see §3, §4, a n d  § 5  respectively). •The
following diagram shows the scheme for the proof of main Theorem.

Hom L ( s )  (b o , H) HomA (A,19)1(a,), H)
Prop. 1

-1
Hom ( )  ( (ô), 51(6)) 4= — Hom (A ° /0 (a) , C d ®  m H)

Prop. 2

1:51P rop . 3

H O M L ( G )  ( b p ,  b1:1).
The notation " "  means "linearly isomorphic", and we understand that the first

is the statement of Proposition 1 and so o n . T h e  second••••• is clear by Definition
of the vector space Hotn';,. (A°/01)(av ), CdO m H) in §4. §2 is devoted to preparations,
and §§3, 5 and §6 are to prove Propositions 1, 2 and 3 respectively.

§ 2. Group algebras on G and matrix algebras on S

Let du be the normalized Haar measure on K, and du a left Haar measure on S,
then dx=dp(s)du (x— su) is a  Haar measure on G.

We choose an irreducible unitary matricial representation u—q)(u) of K  which
belongs to the equivalence class 6 of irreducible representations of K  given in §1.
Denote by d 1 (u) the (i, j)-coefficient of D(u), by d the degree of (5, and set h(u)=
(1. trace D(u).

Let A  be the vector space of compactly supported continuous functions F =F(s)
on S  with values in 931(d, C), the set of all d x d complex m atrices. Then it is an
algebra over the complex number field with product

F*G(s) FMG(t-is)dp(t).

For every compact subset C of S, A c  denotes the Banach space of all functions F
in .A w hose supports are contained in  C  with the norm 11F11 = max sup I f i i (s)I

SEC-
where F =( f i i ). We shall topologize the algebra A  as the inductive limit of these
Banach spaces A .  P u t  M =K n S  as in  § 1 . Then the set
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A ,.={F e A ; F(sm)=F(s)D(m) for all m E MI

is a closed subalgebra of A , where D(m) means the complex conjugate of the matrix
D (m ). Denote by D , the restriction of D on M, and by dm  the normalized Haar
measure on M , and put

F*Dm ( s ) = A4 F(stn - 1 )D(m)dm,

then F-4•*D m  is a continuous projection of A onto A,.
On the other hand, for every function fE L(G), we put

f *x6(x)= (xu -  ')X,,(u)du ,

then L.,(G)4, 5= { f * : f  E  L (G )} is a closed subalgebra of L(G).

Definition. A linear mapping (I) of L(G)*L, into A , is defined as

(1)(f)(s)= K D(u)f (str 1)du.

Lemma 1. The linear m apping is bijectiv e and bicontinuous. The inverse
is given by

(P-1(F)(su)= d • trace [F(s)D(u)].

P ro o f . We assume 0( f) = 0. Then we have

f(su)= f *x 6(su)=-- d • trace D(v)f(suci)clv

=d • trace [(1)(f)(s)D(u)] =0.
Therefore is injective.

For every function F in Ar , the function

g(s, u)= d • trace [F(s)D(u)]

on S x K  induces a  function f  in  L(G)*x, in  such a  way that f ( su )=g (s , u ) . It is
easy to show that 'P(f )=F. From this, we obtain the explicit formula of 0 - t. The
continuity o f  a n d  cP- '  is clear. Q. E. D.

For every function .f e L(G), we put

f ° ( x ) = f ( u x u - 1 )du,

then the set L'(6)= {f 0 4, x,3 ; fE L(G)}  is a  closed subalgebra of L (G ). This plays an
important role in this paper.

Lemma 2 .  For any functions fe L(G)*L 3 and g e L'((5), we have the equality

f *g)= (1)(f)*(P(g) .
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Pro o f . This is a consequence of the following simple calculation:

cb(f*g)(s)= D (u ) f * g (su - ')du= D(u)f(x )g(x-lsu-l)dxdu
K G

D(u)f(x)g(u - lx - 's)dxclu= D(u)f (xu-')g(x -'s)dxdu
K G K G

= K U s
D(u)f(tvu - ')g(v - l t - l s)cip(t)dvdu

=K ,31(1)(ti)D (v )f (tu
t-- ')g( 1 v - 1 )du dp(t)dv

=0(f )*4)(g)(s). Q. E. D.

Lemma 1 shows that 0 is an isomorphism of L(G)*z- 75 onto A , both regarded as
topological vector spaces. Lemma 2 means that 0 gives an  isomorphism of topo-
logical algebras L'(5) a n d  A ° =1)(1.;(6)). F o r  every function F =0(f ) e  A , we
define

F°  = f ° )  ,

then F— F° is a continuous projection of A,. onto A ° .  For any function F e A °, it is
clear that

F(m1sm2)=D(m1)F(s)D(m2) for all m i , m 2 e M.

Lemma 3 .  For any functions F e A  and Ge A r , we have

(F*G°)°-=(F*D m )°*G ° .

P ro o f . First, we perform the following calculation:

(F*G°)(s)-= F(t)G°(t - 's)dp(t)

= n4 F(t)D(m)G°(m -  t - 1  s)d md p(t)
s 

F ( t  - ')D(m)G°(t - ls)dp(t)dm
s

=((F*D m )*G')(s).

Let f  and g  be functions in L(G)*z, such  that F* =0 ( f )  and G =0(g), then it
follows that

(F*G°)°=(0(f )*(b(g°))°=((b(f*g°))°=0((f  *0°)
0 * g 0 ) _ 0 ( f  0 )*  -  

(g 0 ) =(F*Dm)°*G°. Q. E. D.

Let a be a (non-trivial) closed regular maximal left ideal in L°(45), and e a right
identity m o d u lo  a . Then 0(n) is  a  closed regular maximal left ideal in  A ° and
e=41(e) is a right identity modulo 0 (a ). On the set
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934(0= {F e A r ; (G*F)" ecP(a) for all G e A} ,

we can prove the following

Lemma 4. (i) 91)1(a) is a closed lef t A -invariant subspace of  A r .
(ii) e 931(a) f o r an y  FeA r .
(iii) n A° =(9J1(a))°= OW.

P ro o f .  The statement (i) is clear.
L et us prove the  sta tem ent (ii). For any function G e A , the function G*F

belongs to A , .  Thus the equality G*F*Dm =G *F holds, and hence, by Lemma 3,
we obtain

is an element in A .  Since, for any function F e Ar , G r *F tends to F in A r , it follows
that (Gy *F)°— >F". If F is an element in all(n), then each function (Gr *F)° belongs to
OW, and consequently so does F ° .  Therefore we have the inclusion (9311(a))°c OW.

O n the other hand, it is clear that O(a)c931(a) by Lemma 3. From this the
relations 0(a)c9)1(n) n A ° and 0(ct)c(9.11(a))° are also clear. Since 9I1(a) n A ° i s  a
left ideal in A' which contains the maximal left ideal CO, we have only to show that
9J1(n) n A ° 4 A °. S uppose  that 9j1(n) n A ° = A ', then  9J1(n) A °  m ust hold . B ut
this contradicts the fact OW =(9)1(n))° A°. Q. E. D.

§ 3 .  The first step: proof of Proposition 1

We imposed the condition [T IK :(5 ]=p ,0 <p <+o o . in  §1 . T h is  means that
dim 55(6)= p d .  We now consider the continuous linear operators on 55

E (S )= T (u )z d (u )d u , a n d  E l i (S)= d T(u)d 1 (u)du

for 1 <i, j < d. Then the subspace $Y S)= E(6).) is decomposed into the direct sum

5(6)= $.51(6 )0 • • • ®5d(6 )

w ith  f) ;(6)= E 11(6 )5  (1  _< i d ). These subspaces .5(t5)  of are p-dimensional
irreducible L'(6)-submodules, and  mutually isomorphic. In  fact Ef i (S ) is  a n  in-
tertwining operator of f) 1(6) onto

We choose a non-trivial K-irreducible subspace V of b(S), and a basis e1 ..... ea

of V such that

(G*(F*(f..—F))°=((G*F)* — G*F)°=(G*FY *— (G*F)°.

Since the right hand side belongs to 40(n), the statement (ii) is proved.
L e t u s  now  show the inclusion (9.11(n)r OE OW .  L e t { g,,} cL (S ) b e  a n  ap-

proximate identity of the unit 1 in S .  Then the following .1.11(d, C)-valued function

0
Gy= 

)

\  0  g,
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T ( u ) e = t  d 11(u)e 1( 1 :G j< d).

We keep these notations in the following. In this situation it is clear that ei e
For the above K-irreducible subspace V, the set

av ={ f e l2 (6 ) ; T ( f )V =

is a closed regular maximal left ideal in L W ) .  As a right identity modulo av , we may
adopt a  function e e L '(3 ) such that the restriction of T (e) o n  ((5) is the identity
o p e ra to r . For an arbitrary non zero vector y e V we have av  { f  e  L '((5 ); T (f )v = 0}
and hence, especially for ei , it follows that

a v = I fe  V (6); T (f )e1=0} (1 <  i d).d).

Thus the 12(6)-modules N O  and L °(ö)/nv  are isomorphic.
As in §2, we define a closed A-invariant subspaces ¶U(a) of A , as

A/10v ) = {F e A r ; (G*F)° e  4 0 0 for all G E Al .

Then A,19.11(av ) can be seen as an A-module.
On the other hand, we shall denote by Cde)H  the vector spaces of all column

vectors a = (
 a

1 = r ( a 1 ,..., ad ) with a ; e H (1 < i < d), where H is the representation

a d

space of {H, A(s)}  given in § 1 .  This vector space Cd(DH can be considered as an
A-module in the following way:

R (F)a = A (f li)•••A (f id) E
i = 1

(a ,

•
d

A (1.  . ,11)•• • A(fdd) a d E  A U d i)aii=1

where F =( f 1 )EA , a =t (a ,,..., ad ) e Cd® H , and A ( f 11) = A (s)J(s)dit(s).

Now let HomA (A,./9)1(av ), C d 0 H ) be the vector space of all (algebraic) homo-
morphisms of Adan(a v ) to  Cd® H, both regarded as A -m odules. O ur aim  in this
section is to prove the following

Proposition 1. The vector space HomL(s)($50, H ) is isom orphic to th e  vector
space HomA (A,./931(cti,) , C O N ):

Homu s )  (STN, H).z2 Hom A  (4,19)1(a v ), C d  H) .

At first, we try to give a linear mapping of Horn / (5 ) (S30 , H) to HomA (A,./9.)1(4 ) ,
C d 0 H ). Let a be an element in Homu s ) (SN, H ) .  For every function F = ( f i i )=
11(f) e W a y ) we know that

ii T (f ,1 )e f =T (f )e1 =0
=
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(See Lemmas 3 and 4  in  [12].) Therefore it turns out that

A (f )c(e 1 ) =o( T (f 1 f)e. i)=0 (1 d),
J= 1 J= 1

547

i.e., R(F)i(a(e,),..., a(e d ) ) = 0 .  Denote by [F] the element in A,./a/t(av ) o f which F
is a  representative, then the above observation makes it possible for us to define a
linear mapping OE of /1,./9N(a,) to C' ®H as

c,([F])=R (F)`(*ei),...,(x (ed)).

Moreover the following equalities

'„(G*[F])=R(G*F)f(a(e i ),...,a(e d ))

=R (G)R (F)'(a(e,),...,a(e d ))

=R (G)„([F])

means that is an element in Hom A  (A,./9:11(4 ) ,  C d H ).
The mapping a---* OE is clearly linear. Suppose =  0, then a(T (f )e i) = 0 (1< i < d)

for all functions f e  L(G )*, so a = O . Thus the linear mapping oc—> c, is injective.
To complete the proof of Proposition 1, we have only to show that the linear

mapping cc—> c,  is  surjective. L e t  be a n  arbitrary element in Hom, (A,1991(a,),
CC) H ) .  Put (f=0(e), where e is the function in L'((5) already given in this section,
then, for any function Fe A r , it follows that

(EF])= (F* M )= R (F)(E e])

and hence, particularly for F = ,  w e  o b ta in  ( [e ])= R ((g )a (g ]) . P u ttin g  = (e i . i )
and ([])=--f(a 1 ( ),..., a ( )), the last equality means

ai(0 = A(c i ) a ( ) (1.G i d ) .
.1=1

L em m a 5. L e t f , g  be tw o functions in  L (G )*h and (l)(f )=(f i i ), 0(g)=(g 11)
the corresponding functions in A , .  If  there exists a pair (1,1) such that T (f )e 1 =
T(g)e1 , then it follows that

d
A (f 1k)ak ( ) = E A ( g ) a ) .

k=1k 1

P ro o f . Let E i i  be the matrix whose (i, j)-coefficient is equal to 1 and the others
are equal to O . Let hi ,  be the (i, 0-coefficient of the product EiA (g), then we have
hik =g i k  ( 1 < i < d ) .  So we obtain

iT (g)e= T(g i ) e =  k  T ( h ik )ek =T (h)e i

where h =0 - 1 (E11 0 (g )), a n d  hence T (f )e i =T (h)e i . P u t .f 1 =0 - 1 (E1i 0 ( f ) ) ,  hi =
4)- 1 (E i i 0(h)), then it follows from Corollary in [12] that

T (f i)ei=T (f )ei=T (h)ei=T (hi)ei,
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T ( f i )ek = 0 T ( h i ) e k ( k  i )

Therefore w e know  that T ( f i — hi)V= {0} , o r  equivalently, [E 11tP (f )]= [E , 1(1)(h)].
Hence we have

E „R (0 (f )A a  1 (), •  a d(0 =  R ( E  f  ))(EeD =([E tif P( f ) ])

* ([E ;i0(h)])= E 11R( 6P(h) )(a 1(), ••• , a d(0),

and consequently

A( fik)c k(0 = A(hik)ak(0 A(9 Jk)ak() •
k= k=1 k= I

Q. E. D.

For a fixed index i, we set

a (T (f)e i)=
J 1

 A( fi i )a=

with I i ( f ) = ( f ) .  T hen  L em m a 5 shows that a  is a well-defined linear mapping of
5 0 to  H  and that it is independent of the index I. P articu larly  for f=  e it follows
that

= a(T(e)e i ) = A(e 1. )d i (0 =  a1( ) (1< j < d) .

Let us show that this linear mapping a  belongs to Homu s )  (5 0 , H ) .  For arbi-
trary functions h e L(S) and f e L (G )* ,  set

h* f (x) =1 s  h(s)f (s -  ' x)d p(s).

Then h* f is a  function in L ( G ) * .  Since the (i, j)-coefficient o f 0(h* f) is equal
to  h* fu , it follows that

ot(T (h )T (f)e 1) =1(T(h* f)e. ; ) = A(h* fi i )a ; ( )
J=1

= A(h)a(T(f)e i ).

So we know that a belongs to Homu s ) (5 0 . H).
For this linear mapping a E HOML(s)(bo, H), the linear mapping OE E HomA  (A,/

)l(a y ), Cd0H) satisfies

U {n )=  R(FAcx(ei)•• • oc(ea))

= R(F)t(a 1(), • • ad())

=  F g (E C ) =  (C F 1 )

i.e., OE= This shows that the linear mapping oc— „ is surjective.
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§ 4 .  Definition of Hom'A. (A °10(a,), C dO ,H )

Let Cd® m H be the space of all vectors a =r(a i ,..., a d ) e Cd(DH such that

A(m)ai = E cli i (m)a i( 1  j
t=1

for all elements m e M =K  n S, or symbolically,

A(m). 0 a=tD (In)a

0  . A (m ) )

for all element m e M, where ID(m) is the transposed matrix of D (m ). For a function
F e A °, the equality Em * F =  r D ( m ) F  (where E *F(s)=F(m - 's)) holds for a ll in e M.
Therefore for every vector a e  C d  m i 1, it follows that

A (m )  0 R (F) a= R (v ,„*F)a= R (tD(m )F)a=tD(m )R (F)a.

0  ..A(m)

Namely, the subspace Cd0„1H is an .24'-submodule of C O H .
O n the other hand, the if-module  A ° / ( a )  naturally can be seen as an  A '-

submodule of A,./9:11(av ) by Lemma 4.

Lemma 6. For any  elem ent e Hom A (A,./931(av ), Cd® H), we have

(A°10(av )) c Cd® m H.

Keep the notations in §3 such as ([(.f.])=- ad( ) )  a n d  e=
Then for any element in e M,

A (m )ag)= A(m)A(e j k )ak( ) = A(s„,*ei k )ak(0
k =1 k=1

=  Ed  t i i i ( 7 7 ) * C i k ) a g )  = d i j ( M ) a g )  •
i,k= I i=

Thus we know that ([0.]) e Cd®,H, and from this fact, it follows that 4 [F])=
R(Fg(N...1) e CdO m H for all functions F e A°.Q .  E .  D .

Now we shall denote by the restric tion of on to  A °/(a). T hen  L em m a 6
shows that is  a n  element in Hom A .(A °P1)(av ), C d O m H ) .  T h e  linear corre-
spondence is in jec tive . In fact, 0  m e a n s  th a t  ( [F ])=  R (F)4 [e ])=
R(F)!([e])=o for all elements [F] e A,./9.12(a y ).

Definition. W e shall denote by  H o m .  (A°/(1)(av ), CdO m H ) the  im age  o f
HomA (A,./901(av ), Cd0H) by the linear injection

Lemma 7 .  Let be  an  elem ent in Hom A o(A°10(av ), C d®  m H ) .  Then
belongs to Hom,i . (A°10(av ), Cd® m H) if  and only  if

Proof.
0 (e) =
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931(av ) c IF e A t.; R (F)'([f l)=01.

P ro o f . Suppose that e Honi.(A`14)(av), Cd O m H ), then there exists an
element HomA (A,.19J2(av ), Cd0H) such that Therefore, for any function
F E M a y ), we have

R (F)'(M )= R (F)(M )= ([F]) = 0.

Conversely we assume tha t 9.11(av )c  {Fe A,.; R (F)'([(f ,])=01. Then we may
define a linear mapping of A./94o v )  to  Cd(DH b y  ([F])= R ( F ) ' ( M ) .  I t  i s
clear that b e lo n g s  to  HomA (Arl9A (ctv), COH) and that Q .  E .  D .

§ 5 .  Identification of two vector spaces H om ,t (A ' 1 0 (a,) , Cd0 ,H ) and
H orni.(o) (51(a), *(11(8 ))

I n  §3, we defined irreducible p-dimensional L'(6)-modules b i (6),..•, bd(6 ).
Since these are mutually isomorphic, we pick up the module b 1 (6).

For the induced representation {bA, TA(x)} of G, as in the case of lb ,  T(x)l,
we consider the continuous linear operators

TA ,  u   El1(6)= d S K TA( u)d i i (u)du

for 1 d , and put bA (5)=EA (6)b^, bi'(6)=EP; (6)b 1. T h e  OM-module
bA(5) is decomposed into the direct sum

S:".0( 6 ) =b4(6 .)e•••E03/(6 ),

and these LIS)-submodules bi'((5) are m utually isom orphic. So we pick up the
module W S ) as above.

Definition. W e shall denote by Homlo o ,(b 1(6), 551(6)) the set of elements
CT E  H O M L . ( 6) (5),(6), 551(6)) such that Q. - 0  o r  the L(G)-submodules of generated
by o-(b i (S)) are (algebraically) isomorphic to the L(G)-module

For a non zero element or E Hom L o(Ô ) (b i (6), 5:);(6)), set (pa =o-(e t ) and denote
b y  V,  ̂the K-irreducible subspace of bA(S) which contains yo,. The vectors (p„,

El 1(6)9, forms a basis of V".

Lemma 8. L et a be  a n o n  zero elem ent in  Homu l a ) (5),(6), b1(6)). Then a
belongs to Homf,,, ( 6 ) ((6 ), g q (6 ))  if  and only  if

901(av ) c {0(f)eA r ; TA (f)V,1 = {0}1

P ro o f . First of all denote by the L(G)-submodule o f b61 generated by
'a(5 1(6)), then it is clear that

= {TA(f)cp,7 ; f  E L(G) 11. .

Suppose that a  is an element in Hon-11. (Ô ) 05 ( ), b l(S )).  Then, by the above
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Definition, there exists an  isomorphism 6  o f  th e  L(G)-module onto  Yea . As
was stated in §1, a general element of b o is of the form T (f )e 1 ( f  E L (G )). It follows
from  this fact th a t  6%0E11 (c5)= 4 0 )0 d  o n  b o ,  a n d  hence d(bi(6))=EMaptec.
Since we have cpa =a(e 1 ) =0-(T(e)e 1 )= TA (e)p,, (the function e e L;(6) was given
in  §3), the vector cpr i = E M S », = Elif1 (6)T A (e)9 is  in  E11 (6),Y4, = ã( (ö)). T h u s
two irreducible L'(6)-modules a(b 1(6)) and ii(b 1(6)) contain at least one common
element cp,, O. Therefore it follow s that not only a(  5» = ã ( , 1(ö)) b u t  also d
is a non zero scalar multiple of a. T h u s  w e  have t3 (V )=V. Now we know that,
for every function F =0(f ) E 9.11(av ), TA(f) -1/1 = 6-(T( f)1/) = &({0}) = {0}.

Let us prove the "only if "  p a r t . A s  was stated before, the subspace S5(6) is
the direct sum of mutually isomorphic L°()-modules 5 d ( 6 ) :

S3(6 ) = S51(6 )0 • • • CI bd(6 )

= 1(6)( E2105 »51(6 )0 • • • 0 Edi(6 )b 10) •

Accordingly a  can be extended in  a  obvious way to a  linear mapping a' o f 5(6)
into 5A(5), namely,

( 6 0 =  E  Eil,(6)0-(1) For v =  E  E i i ( )v i ,  vie ...)1(6)•
1=1 1=1

It is not so difficult to show that

a'0 T (f )= TA( f )oa' f o r  f  e L '(6),

T(u) = T^(u)og' f o r  u e K.

Now we must remark the fact that the set {e„*f ; u e K, f E L°(6)} , where su * f (x)=
f (u -  i s  total in L(6) = x d *L(G)*x 6  (see Lemma 11 in [3 ] ) .  Then we know that the
pd-dimensional subspace o-'(b(6)) is L(S)-invariant, and that

o-'0 T(f)-= T n( f )0a' o n  .(6)

for all functions f  e L (6 ) . Now set .Y4,(6)= EA(6).V9,, then it follows that

Yt,,(6 )=IT A (.1)(P,T; fe 1-(6 )} = ta' (T(f)e 1) ; f E 1,
(

5)1

= 0-'07.) (6 ))

i.e., a' is an isomorphism of the irreducible L(5)-module 5)(6) onto the L(5)-module

Now let ...(  be an L(G)-submodule of ,Ye, which is not equal to Ye,. Put .Y ((6)=
EA(6).Y( . Since the operator T(e) is the identity operator o n  b ( ),  the operator
Tn(e) is also the one on dP,(6). Thus .Y(*(5)= T A ( e ) E ( ) , 111- = TA(e)..,r •  .  Suppose
dr(6)0 {0 }, then the equality dr(6)= Y e,(6) holds because o f the  irreducibility of
the L(S)-module •Ye,(6). B û t  i t  i s  impossible since T h e r e f o r e  w e  o b t a i n
,Y ((6)= {01.

This fact shows that there exists the largest proper L(G)-submodule X .  o f
and that .,r(6)= EA (6),%* = {0 } .  Let f ,  g  be arbitrary two functions in  L(G),

then
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o-'(E(S)T(g)T(f)e i ) = o'(T(xog * f * x6 )e 1 )
= TA(L,,, g *  f  ) ( 6 ) ( p c , = EA(6)TA.(g ) TA(f) ( p e r .

Therefore, if T(f)e i = 0, then {TA(g)TA(f)9,; g e L(G )}c drcc . Since the subspace
Ora,  must be closed in .Yeacr and  TA (f)9 ,e fe ,, it follows that TA(f)9„ E Y c c . Now
we obtain a linear m apping of 5 0 to  ,YeJ.,G such that

a(T(f)ei) = TA ( f

This is obviously a n  isomorphism of the  L(G)-module 5) 0  o n to  the  L(G)-module
MV.Yçc a .

The last step of the proof of Lemma 8 is to  show Yiço, = {0}. Since .Yea .(6) is
isomorphic to the irreducible pd-dimensional L(6)-module W ), there exists a function
h e L(6) such that

TA(h)9,=yo f f , TA(h)E1 1(6)i,o,=0 (2<, jj<  d).

Let qi be an arbitrary element in .3G .  Find a function g E L(G) such that TA(g)(p,=
, and put f =g*h, then the relations

TA (f)9 = tP, TA(f )E11(5)q, = (2< j< d)

shows that TA( f)171 c dr,c . This means that a (T (f)V )=  {0} and hence that T (f)V =
{0 } .  Thus the function F = P (f )  belongs to 9:Wa ), and accordingly TA(f)V1 = {0}
b y  th e  condition 9.11(av )c  {0 (f ) E A,; TA( f)1 (1= {0}}. Therefore w e have  tif =
TA(f)9, = O. W e  have now proved that ,tc"„ ={0}. Q. E. D.

Corollary. The set Homi„ ( 6 ) (5,(6), .51(5)) is a vector space.

W e shall denote by di ,a , fo r every vector a e H , th e  H-valued continuous
function u—>cli aii)a o n  K .  Now we identify the function p =  c l i i a i  with the
vector a =t(a i ,..., ad ) e C d 0 H . Then it is not difficult to show th a t ip E 51(S) if
and only if a e C aO ,H . Moreover, for a function fe  L IS), the function TA(f)q)
is given by

(TA( f)(p)(u)=(TA(u)T^(f )(p) (1)

=(TA( f)TA(u)cp) (1)

=S(T A (s)T A (v )T A (u)9)(1)f (sv )dy (s)dv
K  S

= Ic s, A (s)(p(vti) .1- ( s  )dp(s)dv

= it I SK  . 5. A (s ) d i i ( v u ) g i f ( s v ) d a ( s ) d v

d
= dii(U ) A(s)dij(v)aif(sv)dg(s)dv

i,J= 1 JK JS

= di1(11)( A(s)aifii(s)dp(s))
J=1 i=1 JS
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d d

=  E  di i(u )(E  *M ai)i=1

where 0 ( f ) = ( f i . )e  A ' .  Namely the function TA (f)co is identified with the vector
R (F )a . This shows that, through identification of 1.,° (6) and A ° via  0, the Lc(ô)-

module b1(6) is identified with the  /1°-module C d O , H .  In  addition the  L °(ö ) -
module b' 10 )  is also identified w ith th e  A°-module A° /P ( a ) .  T h e  following
diagrams show these identifications:

d
,•."51(6) 3  = E d  i a  + - - - >  a= 'a l E  C d

 m H
t=1
I  T A (  f )

s.:4 (6 ) TA(.f)(p <

!!..51(6)3T(1)ei

ad,
R(F) I
R (F )a  e C d

 m il,

[G] e A°0)(0)

T( C) F* I
5, ( 5)9 T(*f )T (g )e l .-- - - -  F 4 , [G ] e/ ° /P (a )

where f ,  g el:(6 ) and F = 4)(f ) e A°, G = 0(g) e A °. Therefore we may identify the
vector space Hon-4,0(Ô)(bi(6), bi( 6 ) )  w ith  th e  v e c to r  sp a c e  HomA.(A °/0 (av),
C d  A IR).

Proposition 2. Under the abov e identif ications, the vector space H o m . ( )

(51(6), 51(6)) is identified with the vector space Hom 1,!( .(A °10(a v ) , C dO ,H ).

P ro o f  L e t  a n  elem ent cre Hom,. ( a ) (b,(6), 5 1 (6 ) )  be identified with e
HomA .(A°/0(a v ) ,  Cae) m H ) .  Then the vector e i =T ( c ) e ,  is identified w ith the
element [(1, (e )]=  [e ] A °/1)(4). Hence the function (pd = 0-(e i )  is identified with

( [ e]). S o , if  (pa = d itai, t h e n  ([e])_— (a i ,.. • , ad). For any elements s e S
and u e K, it follows that

(T^(su)E1,(6)(p,) (1)= d 1 A (s)(p(uv)d i ,(v)dv

A(s) (v)d1 1 (u - 'v)dv

=d d
j k

(u — ')A (s)a i1  d i i (v)dk i (v)dv
i,k="1

d 
.d p (u -1 1 )4(s)a

Thus, by Lemmas 7 and 8, we know that

e Hom 4 . (A ° /19 ( a ) ,  C d  m H)

 R ( F ) ( [ e ] ) =  0  for all F e l31(a)

A (I i i )a1 =0 (1 d )  fo r  all F ---(fu )esJii(n v )
I= t
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d
   E dji(u- ')A (s)a if  (su)dudp(s)= 0 (1< d )  for all

1=1 S K

fe L (G )*)(6 satisfying T(f)V= {0}

 ( T 4 (f )E1 1(6)(Pa ) (1)=0 j <  d )  for a l l  fe  L(G)*Z6

satisfying T( f )V= 101

   (TA (f)E1,(6)(p,) (1)=0 (1 < j <  d )  for a l l  f  e L(G)*x j

satisfying T (u 1 )T (f )V = {0} for any u e K

>(TA (u)TA (f)E),(6)(p,) (1)=0 (1G j<  cl) fo r  all u e K

and f e L(G)*x, satisfying T(f)V= {0}

<>  T A (f)E1
1
(5)(p,, = 0 (1 j  d )  for all f e L(G)* ---i r

6

satisfying T(f)V= {0}

 T A (  f )V,1 = {0} (1 < j  < cl) for all f  e L(G)* -;{, satisfying T(f ) V= {0}

<  a e Homito o )  (S 31 (6), S31(6)) . Q. E. D.

§ 6 .  The last step: proof of Proposition 3

Let a be an arbitrary non zero element in Hom1. 0 ) ( (6), 531(6)). B y the
arguments-in- the proof of Lemma 8, it turns out that there-exists an-isomorphism if
of the L(G)-module onto of,= {T- 4 (f )cp; f  E L(G)}  such that 5- (e 1) =a(e 1) =
Then 6- is of course an element in HomL ( G )  (bo, Srq).

This correspondence o-+  is obviously linear. Suppose a- =0, then a(S3,(6))=
{o-(T( f )e 1 ) ; .f e 12(6)1 = {T A( f )a(e 1); fE 12(6)1 = {0}. T hus the correspondence is
injective.

Now let us prove that the linear mapping 0-, 6  of Homi o (6 ) (S ,(6), S31(6)) into
H om ",(ti o , is  surjective. Let a ' b e  an arbitrary element in Hom m G ) (5 0 ,

Since the equality o- '(E „(6)T(f)e,)= E1 1(6)o- '( T (f )e 1 ) holds for all function
fe L (G), we have a'05,(6)) 551(6). So the restriction a of a' onto S3,(6) is an ele-
ment in Hon-11.0 ) 05 ( ), k);(6)) and it is clear that = a'.

Therefore we obtain the following

Proposition 3 .  The vector space H o m ," b)1(6)) is  isom orph ic  to  the
vector space HomL ( G ) G.50 ,

Hom o) ( (5),. b ' ( 1 1 )  •

Now by thc definition of Horn.(A°/(1)(a i,), Cd(),H ) and by  Propositions 1,
2, and 3, the Theorem in §1 follows.
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