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O. Introduction

K. Itô's idea of constructing Mark ov processes from Poisson point processes is
a  powerful tool in various fields of probability theory and has many applications.
One of them is a simple proof of Lévy's downcrossing theorem for Brownian motion:
Let { B (t); t 0} be a one-dimensional standard Brownian motion starting at 0 and
OW be its local time at x = 0;

(0.1) = lim . 0S '  1 ( c ) (B s )ds a s . .
o '

For c>0, t  0, define
(0 .2 ) d(t)= the number of times that the reflecting Brownian motion I B(• )1 crosses

down from x =s to 0 by time t.

If we apply Itô's idea, we easily see that dc(0 - 1 (0) is a Poisson process with intensity
2/s, and from the strong law of large numbers we have the well-known Lévy's down-
crossing theorem (see [14]);

(0.3) lim 0  c d ( t)=2 4 ( t) , t  0, a .s ..

Furthermore, if we apply the CLT (central limit theorem) instead of the law of large
numbers, we have

Theorem 0.1. ([7])

ciAt)= (cd,(t)— 24)(t))/V2E r3(0(t)) a s  e

where .g(-) is an independent copy of B (.).

Here, denotes the weak (i.e. narrow) convergence of the distributions on
the function space D=D([0, co)) (see section 1 for deta ils). Of couse the only thing
that needs proof in Theorem 0.1 is the independence of B( •) and (/)( .), and in [7] the
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author proved it using F. Knight's representation theorem for continuous martin-
gales and did  no t use Itô 's  method explicitly. However, the idea of [7 ]  widely
depends on a Stroock lemma which gives a continuous martingale approximation to
C (.) , and cannot be applied to similar problems for other interesting functionals of
Brownian excursions considered by Itô-M cK ean [6]. In the present article we
return to Itô's approach and give another proof of Theorem 0.1 as a special case of
a CLT for Poisson point processes. The merit of this approach is that the independ-
ence of T3(•) and 4)( • ) can be understood from the well-known theorem for processes
with independent increments (i.e., if (x(t), y(t)) is a vector-valued Lévy process, if
x( .) is continuous and if y( .) is a jump process then x( ) and y( )  are automatically
independent). Using this method we can also prove CLT's for limit theorems for
Brownian excursion intervals: Define

(0 .4 )  th(t)= the number of the excursion intervals in [0, t] of length

(0 .5 )  (;(0= the total length of the excursion intervals in [0, t ]  of length <c.

Then it is well known that

(0.6) lin i.0  \ brc/2 th(t)=20(t), t 0, a .S .,

(0.7) ,(1)- 20(0, a.s.,

(see page 43 of Itô-McKean [6] and Ikeda-W atanabe [5]). For these two theorems
we can prove the following as special cases of a CLT for Poisson point processes.

Theorem 0.2. As

c (t)= nel2 ii,(t)-24)(t)}1(27rE) 1 1 41 7 1 ( 0 ( t ) )

where Él(4)(0) is the same as before.

Theorem 0.3. As c->0,

{ \ 17r12c „(t)-20(t)11(27r819) 1 1 4   9 1 3 (4 )( t) )

where B(d)(t)) is the saine as before.

We now explain the contents of this paper. In section 1 we give a quick review
of some fundamental notations and facts of the Skorohocl function space D .  Basi-
cally we shall follow Billingsley [I] and Lindvall [10] but we shall also state some
fundamental facts which are well known but, as far as the author knows, have not
stated explicitly. In section 2, we prove a CLT for processes of the form X ,(t)=
Z A(A -,,qt)) where (Z i ( • ), A 4 (•)), À> 0 are vector-valued Levy processes. (Notice that
d„ ti„ are typical examples.) Our theorem itself is an easy consequence of well-
known results for Lévy processes. However, it should be emphasized that the inde-
pendence of B (.) and 0( .) in Theorems 0.1-0.3 will turn out to depend deeply on
the fact that B (• ) is continuous. In section 3, we apply the theorem in section 2 to
the case where the process X 4 ( . )  in question is based on a Poisson point processes.
This theorem will be applied to Brownian excursions in section 4 and Theorems 0.1-
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0.3 w ill also be proved. In section 5, we consider a  discrete-time version of the
theorem in section 2. Here the processes in question become sums of random num-
ber o f  i.i.d. (independent, identically distributed) random variables. This kind of
problems has been studied by a number of authors. However, they were concerned
only with one-dimensional marginal distributions, and here we shall consider the
convergence in the function space fo r  a  special bu t the  most interesting case of
Kesten's result in  [9]. which was studied in  connection with the occupation time
problem for Markov c h a in s . In  the  last section, we give an extension to multi-
dimensional cases, and we shall see that the three Brownian motions B( • Ys appear-
ing in  Theorems 0.1-0.3 a re  mutually independent.

1. Preliminaries from Skorohod's function space

For T >0 and d= I, 2,..., we denote by D(")[0, T ]=D([0, T ]-- R d) the space of
all right-continuous Rd-valued functions on [0, T ] having left-limits. Do ) [0 , co) =-
D([0, co)--, Rd) can  be  defined  i n  a  sim ilar w a y . W e endow  D (d)[0, T ] with
Skorohod's J 1 -topology. Therefore, w„( • ) G D( d ) [0, T ] converges to w E D(d)[0, T]
if and only if there exist strictly increasing, continuous functions {).„( • )1„,., on [0, T]
with A„(0)= 0, 2„(T )=T  such that

(1.1) limn—. SUPOSt< T 11 14' rtR I(0 ) W (t)I + 1 ,10  =  0 .

It is well known that there exists a  metric on Dol[0, T] compatible with this con-
vergence and that with respect to this metric Dol[0, T ] becomes a complete separable
metric space (see Billingsley [1 ] ) .  The topology of Do ) [0, co) (we often denote this
space by Do )  for simplicity) is defined as follows. W e say that w„( • ) E D converges
to w( • ) e Do )  if and only if there exist strictly increasing continuous functions {A„( • )}
o n  [0, oo) with )40)=0, A„(co)= co such that, for every T> 0, (1.1) h o ld s . This
convergence was introduced by C. Stone [II], an d  L indvall [10] showed that this
convergence is compatible with a metric with which D o  becomes a complete separable
metric space. [10 ] also proved that w„ converges to w in  D " )  if and only if r , , w„
converges r ,w  in Doi[0, T] for every continuity point T of w(. ). Here, r r ow denotes
the function in  D (")[0, T ] which is identical to w  o n  [0 , T ] .  (When there is no
confusion, we shall simply write w rather than rr ow in the rest of this p a p e r .)  There-
fore, {wi } c D ( d )  is a convergent series if and only if so it is in D ( ") [0, Tk] for every k,
where {Tk Ik =,,,,... is some sequence tending to infinity (but depending o n  {IA/J }).
Indeed, if { w1} is a convergent series, then choose {TO from the continuity points of
the limit w( • ). Conversely, if { i i .  convergent to woo( • ) e D(d)[0. Tk]  for every
k ,  then we can find a  function w e D o" such  tha t w(k)(1)= w (t) O n [0, Tk )  (but
w(d)(Tk ) 0 w(Tk ) in general unless w is continuous at t = T'k ). It is not difficult to show
that wi  converges to  w in Do), which proves the assertion. This observation leads
us to

Lem m a 1.1. A  subset K  D o) is relativ ely  com pact if  there exists { TO tending
to  in f in ity  such that K  (precisely , r,, , , K ) is relativ ely  com pact in  Do [0, Tk] f or
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every k.

B y re la tive ly  compact we mean that the closure of the set is compact. Since
D(d) and D(d)[0, T] are Polish spaces, a set K is relatively compact if and only if every
sequence in K  contains a convergent subsequence. The reader should notice that
the converse of Lemma 1.1 is false. H e re  is  a counter-example;

Example 1.2. Let A=[1, oo)U  { c c }  b e  the one-point compactification of
[1, cc ). D efine  for a e [1, co), wa (t)- 1 if t e [0, a) and =0 if t e [a, co), and let
w,„(t)= 1 identically. Then clearly {wa ,} converges in D o) to WŒ if and only if {a}
converges to  a . Therefore , {wOE}„,,, is a compact set in D o ) .  However, for every
T > 2, this set (precisely, Ir T .wŒl) is  n o t relatively compact in D" ) [0, T ] because
{w 2._ ( , /D } .; does not contain any convergent series.

Let X ,(  ), 51>0 and X ( . )  be stochastic processes with sample paths in D(d).
By X ,( - ) - - ,X (  ), 51-* cc we denote the weak (narrow) convergence of distributions
in Do ) . We can also define convergence in distribution in D")[0, T ], and we shall
denote it by X 2( .)-2-- X (.) in D(d)[0, T ] as A-*cc. S in c e  D ( d )  and D" ) [0, T ] are
Polish spaces, these convergences can be realized by almost everywhere convergences
without changing the law of each process (see Skorohod [12] or page 9 of Ikeda-
Watanabe [5]). Let Tx  consist of those t in [0, co) for which P[X(t)= X(t-)]= 1.
The complement of Tx  in [0, cc) is at most countable. We say that X ( .) is stochasti-
cally continuous if Tx  coinsides with [0, co). By X ,(  ) tc--)E X ( ), 51-f cc we mean
that the convergence in law of (X,(t i ), X ,(t 2 ),..., X ,(t k )) to  (X (t i ), X (t 2 ),..., X (4))
for arbitrary k= 1, 2,... and {t,,..., tk } in T .  It should be noted that we do not
require the convergence of all finite-dimensional marginal distributions. Clearly,
X ,-14  X  holds if and only if

(1.2) X , -1-" X

and

(1 .3 ) the laws { P,} , of {X ,}, form a tight family.

Of course these notations and facts can be translated to Do)[0, T] in the obvious
m an n e r. For the definition of tightness see page 7 of [5]. It is well known that
tightness is equivalent to relative-compactness for probabilities on D ( a )  o r  D(')[0,
T ] .  We shall use the following lemma repeatedly in this paper implicitly or ex-
plicitly.

Lemma 1.3. (i) If th e re  e x is ts  {Tk } , (->co) s u c h  th a t the law s {P A } 2  o f
f A l, fo rm  a t ig h t fa m ily  o n  D" ) [0, Tk ], th e n  it is  a lso  tig h t in  D(d)=D(d)[0, co).

(ii) If there exists {Tk } , (-fco) such that X A = .' X  on D")[0, Tk ] for every k, then
X 2 -2 ,X  in D" ) .

P r o o f .  It suffices to prove only (i). By assumption, for every e> 0 we can
choose a compactum K E A  in D(' ) [0, Tk ] such that

(1.4) sup P A ri![K,,J>  I  - / 2 " ,
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where the restriction operator r is the same as b e fo re . Let
K

 E=  N °
=
-

1  r KE,k• Then, clearly PA [K c ] > l —e. It rem ains to  p rove  tha t K , has
compact closure. However, it is proved in Lemma 1.1.

Remarks. (i) Precisely speaking, the assertion of the above lemma should be
written as follows : I f  the laws { P,r K k }  form a tight family in the space of all
probabilities in (D(d)[0, Tk ], 4-  [0 ,T O ) then {P A } is tight in the space of all probabilities
in D( d). However, the author believes that there will be no confusion.
(ii) The converse of Lemma 1.3 (ii) is true. However, the converse of Lemma 1.3
(i) is false. A counter-example can easily be found in view of Example 1.2. (A
relevant result can be found in Corollary in section 4  of [10]. H o w e v e r , P  (and
hence Tp ) in the statement seems to be undefined, and the author could not understand
his assertion.)
(iii) The proof of Theorem 3 of [10] also proves Lemma 1.3 (ii).

We next remark on another topology on Doo (or D (d)[0, T ]). Since D ( d )  can
be identified with the product space D (' x Do) x • • • x D1 '), we can also consider the
product topology come from J r topology of D o ) .  For simplicity, we shall call it
the product topology. These two topologies are the same if restricted on the space of
continuous functions but, in general, the product topology is weaker than the ordinary
J r topology in D o). Indeed , wi =(w i ()) I converges to w=(w( ) ),, in the product
topology if and only if wy ) converges to wo) in D11 ) for every q ,  by definition.
However, it is known that w i  converges to w in D(d) if and only if (w1, converges
to (w, for e v e ry  e  R d , where ( • , • ) denotes the usual inner product of R d  (see
Appendix (A.26) and (A.28) of Holly-Stroock [4]). However, in the present paper,
we consider only the cases where all coodinates except one of the limiting processes
are continuous with probability on e. In these cases one can easily see that the
convergences in these two topologies are equivalent to each other. Therefore we
shall not distinguish these two in the rest of this article: W hen we need to prove
tightness of measures, we use the product topology and the conclusion may be stated
in D(' ) -topology. However, this abuse of terms will cause no confusion in the
problems we are concerned with.

Finally we explain a notation. Throughout, inverse function (or process) of a
nonnegative, nondecreasing function OW, w i l l  a lw a y s  d e f in e d  b y  0 - 1 (0=
inf Is: (s )>  t} . T h e re fo re , 0 - 1 ( 0 ,  if defined, is assumed to be right-continuous.

2. A limit theorem for Lévy processes

A stochastic process {X(t) ; t  -0} with sample paths in Do) is called a d-dimen-
sional Lévy process if it has independent increments and is stochastically continuous.
It is well known that the law of a temporally homogeneous Lévy process is completely
determ ined by its characteristic function E[exp ia(1)], if X ( 0 ) = 0 . Using the
independent-increment property, we see that the convergence of all finite-dimensional
distributions is equivalent to the convergence of the characteristic functions. Fur-
thermore, Skorohod [13] proved that this also implies the convergence in law in
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D( d)[0, T] (and therefore, in Dio= D( 0 [0, co)).

Theorem 2.1. Let (A A( •), B A( .) ) , )>O  be temporally  homogeneous 2-dimen-
sional Lévy  provess starting at (0, 0) such that A ,k(•) is nondecreasing with proba-
bility  one. S uppose

(2.1) lim A„ E[exp {i0, k(1)}]=e - 4 2 1 2 , E R

and

(2.2) Iirn E[exP { — sAA(I)}]=exP [c — (1 — e- s")n(du)] •
0

for s> 0, where n(du) is a measure on (0, co) such that

(2.3) min {I, uln(du)<oo
10

and

(2.4) c < 0  o r  n(du)= co.

Then,

(2.5) BA(A1 1(t)) =', B (A - 1 (t)) as co

where A - 1 (.) is the inverse process of  temporally homogeneous Lévy process A (t)
w ith  L ap lace  transf orm  exp t{c 4 ° (1 —e- s")n(du)}  a n d  8 ( . )  i s  a standard
Brownian motion independent of A (.).

P ro o f . Let A( .) and B (.) be the processes in (2.5). Observe that (2.1) and
(2.2) imply B - -- B and A respectively. T here fo re  the laws of ( A (  ), B a(.))
form a tight family (apply Lemma 1.3 (i) with Tk= k). Clearly we see that any
limiting process (;1- (  ) , B(• )) does not have fixed points of discontinuity and hence
is a temporally homogeneous Levy process and that ;4- and .11 are identical in law to A
and to  8 , respectively. H ow ever, since B is continuous a.s., it is independent of
increasing process ;I-  (consider the Lévy-Itô decomposition of 13+ J ) .  This proves
that

(2.6) (AA(.), B ) ( (A (• ), 8( •)) as

By the Skorohod theorem we stated in section 1, we can realize the convergence in
(2.6) by an almost everywhere convergence. Since there is no confusion, we assume
that (A A(•), BA( )) itself converges to (A (•), 8(•))a.s. to avoid complicated notations.
Since A (.) is strictly increasing by assumption (2.4), A - 1 (-) is continuous a.s.. Now
we can choose {TA • )},i. such that AATA • )) and TA .) converge to A( . ) and T(0= t
uniformly on every finite intervals a . s . .  This proves that the inverse process of
AATA), which can be defined by the strong law of large numbers, converges to  A - 1

uniformly on every finite intervals. From  this it follows that A V  converges to  A -'
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in  Do ) . (The reader should notice that if nondecreasing functions converge to  a
continuous function on a set which is dense in [0, oo) then the convergence is uniform
on every finite in te rva l.) However, since the limit process is continuous, this con-
vergence also implies the uniform convergence on every finite intervals a.s. . Now
it is easy to see that B2 (A ;') converges to B(A - ') uniformly on every compact interval,
which proves the assertion.

The reader should observe that in Theorem 2.1 the independence of A (.) and
B (.) widely depends on the assumption that B (.) is a  Brownian motion and that the
condition (2.4) played an essential roll to prove the weak convergence in D(' )-topology
instead of that of all finite-dimensional marginal distributions since inverse processes
are involved.

We next consider the case where (A A(i), .13,1(t)), , >0 are of the form ((v(2)) -  A (21),
(11.v g.)Z(20) for a fixed Lévy process (A (t), Z(t)) and for a suitable normalization v(i.)
tending to oo as 2 goes to oo. Clearly, (2.1) is satisfied if

(2.7) E[Z(1)]-= 0  a n d  E[Z( 0 2 ] I.

(2.2) holds if A(1) belongs to the domain of attraction of one-sided stable law of
index a (0 < a  < 1 ). We can state this condition using the Lévy measure of A ( t) . We
have

(2.8) E [e-"A )]=ex p  { — i( 1  —e- su)n(du)} , s > 0

for a Radon measure n(du) on (0, co) such that

(2.9) min { I, ti} n(du)< co.

It is easy to see that (2.2) holds if and only if

(2.10) 5
n(du)-11{1-(1— cx)x2 L (x )}  a s  x

[x,o0)

for 0 <  < I  and a slowly varying L (x ) .  Here a(x)— b(x) as x-+ cc denotes that the
ratio converges to  1 as x -- cc. I f  (2.10) holds then letting u(x) be the asymptotic
inverse of u(x)= x"L(x) (i.e., u(v(x))— u(u(x))—x as x -+ oo ), we have

(1/u(2))A(2t) A ( t )  a s  A co

or equivalently,

(112)A(u(2)t) A Œ(t) as oo

where A (t)  is the one-sided stable process such that

E[exp ( —s,61,c(t))]=e - ts'.

(cf. page 446 of Feller [3 ] replacing L(x) by 1/L(x) and p  by 1  —  . Therefore, by
Theorem 2.1, we have
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Theorem 2 .2 .  Let (A(t), Z(t)), t - 0 be temporally homogeneous Lévy process
satisfying (2.7) and (2.10). Then,

()ŒLG1))-112z(A-1() B(.€„(t)) a s  1, oo

where is the inverse process of the one-sided stable process with Laplace transform
e t s ' a n d  B (.)  is  a  B row n ian  motion s ta r t in g  a t 0  which is independent of

P ro o f. Observe th a t  the inverse process o f  (11v(2))A(At) i s  (11 /1)/1- 1 (v(A)t).

Since u(v(.1)) ,-  ,  the assertion is clear from the above argument.

Remark 2.3. From  the  relationship between the stable law and the Mittag-
Leffler function (see page 453 of [3]), it follows that

E[exp IsC,(01] = Eic°=o (st")4//(1 + ka), se R  and that

E[exp {,sB(t (t))1]=ET, 0 (s2 t2 12)k IT(l+ka), s e R f o r  t O.

3. A CLT for Poisson point processes

We refer to the textbook of Ikeda-Watanabe [5] for the definition of Poisson
point processes and throughout we shall use the notation and terminology of [5].
Therefore, we shall only explain a  few notations which are necessary to state our
theorem.

Let (Q, F ,  P) be a complete probability space with a right-continuous increasing
family (F,),, o o f sub-a-fields of .97  each containing all P-null sets. L e t  n(dx) be a
a-finite measure o n  a  measurable space (X, .F 5 ). By p  we denote a  stationary
(. )-Poisson p o in t  processes o n  (0, cc) x X  with characteristic measure n(dx).

Therefore, the counting measure N p (dtdx) is a Poisson random measure such that
E [N p (dt dx)]=dt n(dx). For U e F  such  tha t  n (U )< cc  we define a martingale

p (t, U) by

(3.1) p(t, U)=N p ([0, t]x U)- tn(U).

We now state our theorem. Let {gA(x), 1,> 0} be measurable functions on X  satisfy-
ing

(3.2) 1x g A (x)2 n(dx)=1

and

(3.3) lirn , g A (x)2 n(dx)= 0,
(x:10,1.(x)i>6)

for every 5> 0.
A sufficient condition for (3.2) is

(3.4) limA- op 1 19(x)12 + En(dx).= for s o m e  a> 0.
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Define
1+

(3.5) BA(t)= 1 0 x  g A.(x)N p (dt dx).

The right-hand side of (3.5) is the stochastic integral with respect /Zip defined in (3.1),
and if g (x ) is integrable with respect to n(dx), (3.5) can be written as

t+
(3.6) 13,(0 =1 0  S x g A (x)N p (dt dx)—t x gA.(x )n(dx).

Theorem 3 . 1 .  Suppose (3.2) and (3.3) (or (3.4)) are satisfied. L e t  .f (x )_0 be
a measurable function on X . W e further assum e

(3.7): m i n  {1, f (x)} n(dx)<oo

and

(3.8) 11 {X : f (x )>0} =oo.

1+
Define A (t)= \

o
 j r A i.f(x) p (dx ds). Then,

BA(A - i( t ) ) - -  B (A - '(t)) as  À oo

where B(.) is a standard Brownian motion independent of A (.).

Pro o f . Applying Itô's formula (see page 66 of [5]) and taking expectations, we
obtain

E[exp V 3 A(t)]

=1+ E [1: {exp i (B A(s)+g Â(x))— exp i 3(s)

— i exp  i011,,.(s)• g,,(x)}n(dx)dx]

= 1 + :  E[exp iO32 (s)]ds (exp A(x )-1—  ig ,1.(x))n(dx).

Consequently, we have,

(3.9) E[exp iO3,1(t)]

=exp (exp i g(x))n(dx)}  .

Observe that from (3.2) and (3.3) it follows that

(3.10) limA_ 1 x  (exp A(x)— 1 — ).(x))n(dx)= — (1/2 ) 2 .

Indeed, by (3.2) it suffices to prove

1(3.11) lim,t_co (exp ).(x)— 1 — i0 l (x )+ A(x)2)n(dx)=0.
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However, for every 3> 0, the left-hand side is less than or equal to

lim sup,„
SXô  

(exp 1-  i g 2 g i ) n ( d x )

+ lim sup .( e x p  i0 A -  1  -  ig ;„+:21-  2 gi)n(dx)

lim sup,‘ ( 0 / 6 ) 1 g ( x ) 1 3 n(dx)

+ lim sup ,t_ 2g).(x)217(c/x)

lirn sup,„  (0 / 6 )  g,(x) 2 n(dx)+0

where X6= { X :  IgÂ (x)I S}, 6> 0.
Since 3 >0 is arbitrary, we have (3.11) by letting 6-00. Therefore (3.9) combined
with (3.10) implies that (2.1) of Theorem 2.1 is satisfied. W e can  a lso  prove in a
similar way that

E[e - 8 4 ( 1 =e x p  i t  (e- s.f(x' - 1)n(dx )}  , s>0.

This implies that the Lévy measure of A (-) is ii(f (x)e d u ) .  Since (A( .), B ( .)) is a
temporally homogeneous Lévy process, our assertion follows from Theorem 2.1.

Similarly, it follows from Theorem 2.2 that

Theorem 3 .2 .  Let .f (x)._.0 and g(x) satisfy

g(x) 2 n(dx)= I

and

(3.12) nfx : f (x ) . ul -1 Ifn i  ---a)u 2 L ( u ) ; a s  u oo

for a (0 <a < I) and slowly varying L(u).
Define

Z(t)=S g(x)1V(ds dx)

and

A (t)= 0 1 f (x )N p(ds dx).

Then,

(.11 L(.1.))- ' /2 Z(A - 1 (2t)) B (ic ,( .))  as A oo,
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where B (t œ) is the same as in Theorem 2.2.

4. Applications to Brownian excursions

Let us start with construction of a Brownian motion and its functionals 0(0,
d ,( 0 ,  (t) a n d  E(t) defined in section 0 using a Poisson point process. As in the
previous section, we refer to the textbook of Ikeda-Watanabe [5] for details.

Let Yit+ (or i r - - ) be the totality of all continuous functions w: [0, o)-+R such
that w(0)= 0 and there exists a(w) >0 such that if 0 <  t < a(w) then w(t)> 0 (resp.
w(t)<O), and if t?:_o-(w) then w(t)= O. Then it is known that there exists a-finite
measures n+ and n -  o n  1V+ and on IV -  such that

n±({w: w(t,) e A ,,..., w(t k )e AO)

= K (t,, x, )dx, Ç p ° (t 2 — t 1 , x l , x2 )dx 2
•  •  •

AJ A2 A3

e ( tk-  tk-  Xk-  XIMX10
Ak

w h ere  K (t, x )=(2/trt 3 ) 1 1 2 1x1exp ( —x2 /21), t > 0, x e R  a n d  e (t, x , y )= {exp •
(—(x — y)2 12t)—exp ( — (x + y)2 12t)} 1V 2irt. Let n  be the G-finite measure o n  Yr.=
Y r+ UY r -  such that til* - ±  =n± . The reader should notice that YV and w correspond
to X  and x in the previous sec tion . Define

B ( t ) =

0(0+ (
(4.1) w(t — A(s—))/V p (ds dw)

o

where 440 is the inverse process of

t+
(4.2) A (t)=10 a(w)I■1 p (ds dw).

Here, N p  denotes the counting measure of the Poisson point process p with character-
istic measure n. Then B(t), t. - 0 is a standard Brownian motion having OW as its
local time at x  =0 . (Therefore this notation is not in conflict with B(-) in the previous
sections.) We also have

(4.3) n({w : m a x  lw(t)I >u }) = 2/u
0<t‹,,,(w)

(4.4) n({w: a(w) 2.\/2/nu, u >0

and

(4.5) E[e-sA0)] =exp ( — 2Vrs), s > 0,

(see Ikeda-Watanabe [5] pp. 123-131). By (4.4) we have

(4.6) a(w)n(dw)=\/8Elir

(4.7) a(w)2n(dw)=(80/907r)'/2.
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Now define for e> 0,

(4.8) 91,c(w)=(E/2)1/21(max,iw(t)ItI(w)

(4.9) g2(w) = ( 7r8 /8 )1/41 { 0v)> c}(w)

(4.10) (97r/8e3)1/40-(w)11,7(w),"(w) .

Then we have,

1g ,,,(w)n(dw)= (21 ) 1/2 =21(2)' 12 ,

g 2 ,r (w)n(dw)=(8/irc) 1/4 =2/(270'/4 ,

and

g,,,(w)n(dw)=(72/7r6) 1/4 =2/(2ne/9) 1 /4 .

By (4.3)-(4.7), we also have that each of g L E O =1, 2, 3) satisfies the assumptions of
Theorem 3.1 as e=11,1-30. Thus it follows that

(4)(t)-+
(4.11) gi„(w)gp(ds ciw)

Jo

g (w)N p (ds dw)— gi,,(w)n(dw)

rio( • )) a s  e 0,

where B is an independent copy of B.
One the other hand, keeping in mind that 49( ) is continuous a.s., we easily see

(4.12) g „(w)N p (ds dw)_ ,(t)
J o J 7

0(0+

'

g , p(ds dw).

where CIE is the same as in Theorem 0.1. Applying Theorem 3.1 with o(w ) in place
of f (x), we see that the right side of (4.12), converges to 173(0(t)). On the other hand
the difference of the left and the right side of (4.12) is less than or equal to

suPossso(r) 113,(s)— Be(s—)I, T,

where Bc (t)= g 1 „(w)IS 7,(ds d w ) .  However, this clearly converges to 0 in distribu-

tion  because Be (t) converges to a Brownian motion which is continuous. Therefore,
we have proved that cl,(-) itself converges to ij(4)( • )), which completes the proof of
Theorem 0 . 1 .  Theorems 0.2 and 0.3 can be proved in a similar way from (4.11).

As another example of Theorem 3 .1 , we next consider the occupation-time
problem for Brownian motions. Let V(x), x e R be a bounded measurable function
vanishing outside a compact set. Define
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g(w)--.-- (1 (w ) V(w(s))ds.
Jo

Then it is not difficult to see

V = = 2 V(u)du

and

(4.13)< V> g(w)2n(dw)

=8Y °V ( u ) d u ) 2 d t  +8 
10 Or 

V(u)du) 2 dt.

Let A(t) be as in (4.2). By (4.4) all assuptions of Theorem 3.2 are satisfied with
L(u)=T h u sThus we have

2- i/42(A - 1 (.11)) (<V>/V8)1/2B(iii2(t)) a s co.

However, 8- 1 /4 B(i 1 1 2 (.)) is equivalent in law to 1-3(0(•)). Therefore, we have the
following well-known theorem due to  Papanicolaou-Stroock-Varadhan (see page
137 of [5]).

Theorem 4.1.

A.-114[ V(B„)du — 2 V(x)dx• 4)(t)1
Jo

< V>112 R(4o(t)) a s  A oo

where 14(40) is the same as in Theorem 0.1.

Proof . The only thing to be proven is that the error term  converges to  0.
However, this can be proved in a similar way as in the proof of Theorem 0.1.

For more general theorems for occupation-times of Markov processes, see [2]
and [8].

5. Sums of random number of i.i.d. random variables

Let {(Xi, Ti); j=1, 2,...} b e  R2 -valued independent, identically distributed
random variables. Notice that we assume that X ;  (or t i ) is independent of {X 1 ,

but that X ;  is not necessarily independent of r .  W e  fu r th e r
assume

(5.1)

and

(5.2)

Define T(t)=T(t, (a), 0 by

E[X 1]=0 , E [X f ]=

P(T 0) = 1.
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(5.3) T(t)=
ko if Ti +•••+Tk _t<T,+•••+T k + ,

if t<T,.

Thus T(t) is the inverse process of

(5.4) S(t)= Ek_st TIc•

Recall that T, belongs to the domain of attraction of a stable law of index a (0<a <1)
if and only if

(5.5) P(T, >x)-1/{F(1—a)x"L(x)} a s  x co

for slowly varying L, and if (5.5) holds, then

(5.6) S(it)/v().) L L  / M t )  a s  )1. - ->  co,

where 4.1) is the (asymptotic) inverse of u(A)=AIL(A) and A (  )  is the stable process
with Laplace transform c s 't  as before. (See page 448 o f Feller [ 3 ] .  The reader
should notice that L(x) of [3 ] plays the roll of the reciprocal of L(x) in (5 .5 ) .)  Now
by an easy modification of the proof of Theorem 2.2, we have

Theorem 5.1. Suppose (5.1), (5.2) and (5.5) are satisfied for 0 <a < 1, and define
T(t) by (5.3). Then

T(At)
X  -IL , B(11 ( 0 )  a s  A co

1=1

where B(1(t)) is the same as in Theorem 2.2.

We next apply this theorem for occupation-time problems of Markov chains.
Consider a  recurrent, irreducible Markov chain Yo , 1'1 ,  Y2, ... with a  denumerable
state space, say Z= {0, +1, +2,...}, and k-step transition probability P (

i"). Let
N(0)=0, N(j)=m in {k >N ( j -1 ) : Yk = 0}, j=1 ,  2 , 3 ,.... Thus N(k) is the time of
kth visit to 0. Define Ti = N( j)—N(j —1), for 1=1, 2 ,... and T (t )= min {k: N (k)>
t}. Let V(j), j E Z be a  function vanishing outside a  finite set and we define the
occupation-time process by « 0 =  V (  Y 1 ). T h e n  4t) is approximately equal to
A(t)= E i , T (,)  X  where X i = EN( i - 1 ) 5 k <N ( j ) -  1 V( 370 .  It is w ell know n that 17 =
E0 [X 1] and  <V> =E 0 [Xf]—  V 2  are finite. B y  the strong Markov property, we see
that {(Tk , X k ); k= 1, 2,...} are independent and identically distributed. If

(5.7) ET=0 zkpi(pk: -.. (1 z ) )  a s  z 1 —

for some slowly varying L ( ), then we have

(5.8) P o (T1 >n)-1/{F(1—a)nŒL(n)} a s  n cc.

Indeed, since

E Z1-0 zkPo(Yk= 0 ) = { ( 1 — z) ET=o zkPo(Ti>

(5.7) and (5.8) are equivalent to each other in view of the Tauberian theorem (see
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page 447 of Feller [ 3 ] ) .  Thus we have from Theorem 5.1 the following;

Theolem 5.2. Suppose (5.7) is satisfied. T h e n

(/1.aL(A))-"21Eig,tt Yi ) —  V T(.11)}

\ /<V >B (.8(t)) as co,

where B(C,(•)) is the same as in Theorem 2.2.

For the proof that the error term is negligible, see section 4. As we mensioned
in section 0, this kind of problems has been studied by many authors, and Theorem
5.2 is a functional-version of a theorem in [9] by Kesten. The constants f  and <f>
are also given in [ 9 ] .  Another way to compute these constants is also given in [8]:
As we have seen in  Remark 2.3, E [B ((1 )) 2 ] =1/T(1+ ka). Therefore, <f > can
be obtained by computing the second moment of V (Y i). For details see [8].

As an example, let us consider the simplest random walk {Yi } on Z ={0, +1,
+ 2 ,...} . Let V (j) be a function on Z  vanishing outside a finite set. Then it is well
known that E f_o zkK,k), = (1 — z2)- 1 / 2 .  Therefore, (5.7) is satisfied with a =1/2 and
L(I)= 1 / ,/ .. By Theorem 5.2, we have, as 1—,• oo ,

/ 4 {E V(11;)— PT (lt )} <V>2-1/4B(t

where V ' 2 E.; v(i) and < V> = 4 E f iro2 + E i < s i P o r ( i )  E i  P(D2 -4 - 2 EL ;

E j  P(i)2, (Po = 1/(0) — Ek  V(k) if j= 0 and V (j) otherwise). This
result is a  functional-version of Dobrusin's theorem ( [1 5 ] ) .  To find the constants
V and <V>, compute the first and the second moments using

E k  P " )0 / 2  a s  k coi=o o,o

LT-0
and

{ P ) -  PSk,b = - fe z.

6. Multi-dimensional case

In section 2 we considered the limiting process of BA(A ii(t)) when (A A(.), B ( .)),
1>0 are temporally homogeneous Lévy processes such that AA and BA converge to an
increasing process and to  a  Brownian motion, respectively. However, all ideas we
used there can be applied to more general cases where B (.), 1> 0 are vector-valued
and converge to a  Gaussian process.

Theorem 6.1. Let (A (.) , e k a(•),..., 1V ) (•)), 2> 0 be temporally homogeneous
(d+1)-dim ensional Levy process such that A A .) is nonnegative and nondecreasing
with probability one for every 1 > 0 . Assume that there exists a d x d  matrix Q=
(Q i k ) such that

(6.1) lim . E [e x p  i E  kB(k)(i)]=exp - - f g ,  Q 0,
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f or every ,i) e Rd,
and

(6.2) lim . E [exp — sA (1)] =exp Le —10 (1— e- 8 4 )n(du)1, 5 >0

where n(du) is a Radon measure on (0, oo) with

(6.3) min {1, u}n(du)< oo

and

(6.4)c <0 o r  5
o  

n(du)=oo.

Then,

(6.5) (BY ) (A-V(t)),..., BV ) (AV(t)))

(X(1)(A-qt)),..., X(d)(A - qt)))

where A- '-(t) is the sam e as in Theorem 2.1 and X =(X 0 ) ),..., X(d )  i s  a  Rd-valued
Gaussian process w ith covariance m atrix  E[X(i)(t)X ( k) (s)]=Q i k  min {t, s} an d  is
independent of A(.).

Pro o f . This theorem can be proved by a  slight modification of the proof of
Theorem 2 .1 .  The details are omitted.

Theorem 6 .2 .  L et p be a Poisson point process w ith characteristic m easure
n(dx) as in section 3. Suppose measurable functions e ) (x) (k= 1, 2,..., d) defined
on X satisfy

(6.6)l i m a . . . ) (x)ec ) (x)n(dx)=Q i k  (e R), 15_ j, k d

and

(6.7) 1im A Ç gçlk)(x)2n(dx) = 0
tx:191k)(x)1>a)

for every  .5>00 and k=1,..., d.
Define

Z (» = 5 " - g!tk) (x) Flp (ds dx), k= 1, 2,..., d.
o x

Then, as )..-+oo,

(Z!»(A - 1 (t)),..., Z (,td) (A -

x(0(A-1(0))

where (X(')(.),..., X(d)(•)) is  a  Gaussian process w ith  cov ariance m atrix  (Q i k ) •

min {t, s} and A- ' ( . )  is  the sam e as  in T heorem  3.1 and (X ( ' ) (•),..., X ( d)(•)) is
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independent of A(.).

Pro o f . The proof can be carried out in a similar way as in section 3. The
only thing we need to prove is that (6.7) implies

lim A gA(x)2n(dx)=
: I gA (x)1 >8}

for every linear combination g (x ) of {g ( x ) } .  However, this can be easily seen by
the following lemma.

Lemma 6 .3 .  Let gA(x), A>0 be measurable functions on X such that

(6.8) lim s u p .  1x g A(x) 2 n(dx)< cc.

Then,

(6.9) lim g,(x)2n(dx)= 0
tx:19.1(xii>s)

holds if  and only  if

(6.10) lim ,_ g A(x) 2 n(dx)=0
EA

f or arbitrary  { E A } c a x  such that sup n(E A) <cc.

P ro o f . Assume (6.9). Then we have

g (x) 2 u(dx)=1 +
EA EAnligÂ(x)1561 EA1l{igÂ(x)1>6}

g (x ) 2 u(dx), 6> 0.( 5 2 . n ( E ) . )  +  

tig,t(x)i>,3)

Letting oo and then letting 6—>0+, we have (6.10). Suppose (6.10) is satisfied.
Since (6.8) implies that rifx: I g A(x)i > 61 is bounded for every ô>0, (6 .9 )  follows
immediately from (6.10).

As an example of Theorem 6.2 , let us consider g L E (w), j= 1, 2 , 3  defined in
(3.9)—(3.11). Then we have

lim  sup ,o (092„(w)n(dw)

lim sup,_., (s/2)' 12 (ne/8) 1 /4 n{w : r(w) s}

= lim sup„, (s/2)-112 (ns/8) 1/4 2(2/irs) 1 /2 = 0.

Therefore it is easy to see that (6.6) is satisfied with (R i k ) =/( 3 ), where /( 3 )  denotes
the identity matrix of dimension 3. ( 6 .7 )  is already seen in section 3. Thus we have,

Theorem 6 .4 .  Let äg , 4, and be as  in  Theorems 0 .1 - 0 .3 .  T hen, as e  0,

(dA r i c ( • ) , E c ( • ) ) - 2- - .  (B  1(0( • )), B 2(46( • )), B3 (4( • )))
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w here (B 1(.), B A .), BA . ) )  i s  a  three-dim ensional s tandard  B row nian motion
starting at 0 and 0( •) is the local time at 0 of a one-dimensional standard Brownian
motion independent of (B 1 (•) , 8 2 (.), B 3 (•)).

Added in Proof

In  th e  p roof o f  Theorem 3.1, w e proved  d irec tly  that 13 ,(t) converges t o  a
Brownian m o t io n . However, this fact can also be proven as a  special case of CLT
for semimartingales studied by a  number of authors (see eg. Liptser-Shiryayev [16]).
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