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0. Introduction

S. Kotani and the author [6] proved two limit theorems for occupation times of
two-dimensional Brownian motion and in [5] we generalized one of them for a class
of Markov processes. This article is its continuation and we will prove a gener-
alization of the other theorem.

1. Main theorems

Let B(t1)=(B,(t), B,(t1)) be a two-dimensional standard Brownian motion
starting at (0, 0) and f(x), x € R? be a bounded measurable function vanishing outside
a compact set. Define

0 =lim (48)~" S | o By(s))ds
&0 0

o=inl{u; Bj(u)=1}
Then [6] proved the following two theorems:

Theorem A.

(1/,1'>§ F(B(s))ds 95 [ d(a,) as / — oo

where f=(1/n) Bf(y)dy.
Theorem B. If, in udu’mon f 0, thcn

(1/\/,1)3 F(B(s))ds L4 C Bz(ﬂ(a,)) as A— 0

where C2= —(2/n?) SS log |x — y| f(x)f(y)dxdy.
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Here, f:4:, denotes the weak (or narrow) convergence of all finite-dimensional
marginal distributions. (In [6], we proved M, -convergence. However, we will
not discuss it here.) We now generalize these theorems as follows.

Let S be a locally compact Hausdorff space and (X,),»o be a consevative, time-
homogeneous strong Markov process with right-continuous paths in S.  Further,
we assume that the transition function p(t, x, dy) is absolutely continuous with
respect to a Radon measure u(dx) and that the density p(1, x, y) has the following
decomposition:

(.1 pt, x, y)=p)+q(t, x, y), t=1,

where p(f) (20) and ¢(t, x, y) are measurable in (¢, x, y) and

(1.2) L(t)=S' p(u)du (1 oo as t—o0) varies slowly at oo,
1

(1.3) for every compact set K,

A N
th dtSK lq(, x, Y)lu(dy)

N—-woJ1

converges uniformly for x on compacts. (We define g(t, x, y)=p(t, x, y) if te (0, 1)
for convenience.)

A typical example is the case of two-dimensional Brownian motion. If we put
u(dx)=(1/m)dx, then p(t, x, y)=(1/2t) x exp { —|x—p[?/2t}. Therefore, (1.1)~(1.3)
are satisfied with p(t)=1/(2t) and L(t)=(1/2) logt. Indeed, we have

[ttt % wiudy)
= [, (1120 —exp {=Ix=yP126}) (1]m) dy

sneyt{ x—yPdy, 121
K
Therefore, (1.3) is clear.

Our main theorems are as follows:

Theorem 1.  Assume (1.1)-(1.3). Let n(t) (20) be a non-decreasing function
such that L(n(t))/t—1 as t—o0. Let f(x) be a bounded measurable function van-
ishing outside a compact set. Then

—ITg"””f(xs)ds“—d-»fe(a,) as A —— o0

Jo
wheref:j'f(x)p(dx). and €(o,) is the same as before.
Theorem 2. If, in addition, f=0, then

N S:“" F(X)ds 80 JITSBy(U(0)). 4 —
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where (fy ="t {|{ £GPt 5, Doy}

Remark 1.1. If we take the Laplace transforms of (1.1), then (1.2) and (1.3)
imply

(1.4) gw et p(t, x, y)di=L(1/s)+u(x, y)+o(1) as 510
(4]
where u(x, y)= S; p(t, x, y)dt+ Sw q(t, x, y)dt.
1

Therefore, as a special case a=0 of the result of [4], we see that

v(f)"‘S;f(Xs)ds

converges to a bilateral exponential distribution or to an exponential distribution
according as f vanishes or not, where u(t)=m if f=0 and = L(¢) otherwise. So
the assertions of Theorems | and 2 are already proven for one-dimensional marginal
distributions. To see the assumption (A) of [4], notice that if f=0, G f(x)
converges to g(x)={f(»)u(x, y)u(dy) uniformly on compacts as s | 0. Thus G,f(x)
is uniformly bounded on compacts. However, since f(x) has compact support,
it is not difficult to see that G,f(x) is uniformly bounded on the whole space as a
consequence of the strong Markov property. ' :

Remark 1.2. In the definition of {f), it should be noted that

S: di| Sgﬂx)ﬂy)p(n X, Pu(dx)p(dy)| < oo

althoughg p(t, x, y)dt diverges because of the recurrence. Indeed, for (=1,

keeping f=0 in mind, we see that

[§reorom. x. yuouay
=(f)217(f)+ng(x)f(y)q(l, X, y)dx)u(dy)

= ({07000 5. puxutay).

Since f(x) had compact support, this function belongs to L!(df) by assumption
(1.3). It should also be noticed that

(> =lim S e-sdt {Sg.f(x)ﬂy)p(r, %, Pdx)udy)]
s10 JO

Therefore, using the notation of (1.4) we have another expression:

(1.5) fy= S Xf(xv(y)u(x, Pu(dx)u(dy) .
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Remark 1.3. Formally, Theorem A (or B) is included in Theorem 1 (or 2,
respectively). Indeed, as we have seen before Theorem [, two-dimensional Brownian
motions satisfy (1.1)=(1.3) with (dy)=(l/m)dy and L(1)=(1/2) log t (n(t)=e*").
Clearly, f in Theorem A is compatible with that in Theorem I. To see that C? in
Theorem B equals 2{ [, recall the well-known formula; '

Sw (em4x—eb%)/x dx=log(b/a), a, b>0.
0
Therefore,

W [y=n- § mMfm/m(|/:)pr(-|\—\|/vr)dxdy}
0

H

dt ; SS fCOL) (1) exp (—1]x —.\'|2/2)dxdy}-

w),
n 2\ dt SSf(.\')f(y){exp(—llx—yIZ/Z)—e 123t dxdy
0

n2 3 F(x)f () log (1/x — y[?) dxdy
=C2,

Thus, formally, Theorems A and B are special cases of Theorems | and 2. - However,
we shall use Theorem B to prove Theorem 2 (sec Lemma 3.4), and therefore Theorem
2 does not materially contain Theorem B. Nonetheless this inconvenience can be
removed if one note that Lemma 3.4 can be proven without using Theorem B but
with tedious calculus. ‘ , ,

Remark 1.4. If f(x) is nonnegative, then Theorem 1 is already proven in [5]
as we mentioned in the previous section. In the general case where f(x) may take
negative values, observe that f(x) can be expressed as a sum of two functions f(x)
and f,(x): f,(x) is nonnegative or nonpositive and f,=0. Thus Theorem 1 follows
from the result of [5] combined with Theorem 2. Therefore we need only to prove
Theorem 2.

2. The case of Cauchy process

In this section we consider the case of one-dimensional Cauchy process as an
cxample. The transition function is given by

pit, x, dy)=t/{(x—y)2+ 2} (1/n) dy, x,yeR.

In this case, p(1, x; y)=t/{{x—y)*+1?} and p(dx)= (l/n)dy_ satisfy the assumptions
of Theorems A and B with L(l)—-logt and n(t)=e'. lndecd to see (1.3) holds,
note that for every-compact set K, SR R TS

XK lq(t, x. y) (1/m)dy
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= { ==+ 3 (mdy

<t 3 SK (x— y(1/m)dy.

Thus (1.3) is satisfied and theréfore we have,

Theorem 3. Let {X,} be the Cauchy process stated above and f(x) be a bounded
measurable function vanishing outside a compact set.
Then,

f.d., fé(o,) as A — 00

i am 7 ros
where f=(1/n) [ f(x)dx, and
(i) if f=0,

A 100 L JIT5BA BN a5 ) —s

where {f>= —(1/n2) [{ log |x — y|f(x)f(y)dx dy.

Proof. The only thing remaining to be proven is

(1.6) () | " e (e o=+ eydsdy

= —(1m) {{ tog 1x = ylf(x)f()dxdy.
However, since
g; H{(x— )2+ 2Ydt=(1/2) log {(x — y/T? + 1} +log T—log |x— |
we have that the left-hand side of (1.6) equals
w21im ({4(1/2)1og {(x= 2/ T2+ 1) ~log Lx— I} (x) £ (Vdxdy.
thanks to f=0. But this equals the right-hand side of (1.6).

3. Proof of Theorem 2

As we mentioned in Remark 1.4, we will only prove Theorem 2, so from now on
we will assume all assumptions in Theorem 2, and for simplicity we will assume that

{fY>=1. Let
(3.1) A0 =(1/D) § * fxde, 2>0

(
0

and for s;>0, define $2¥) (k=1, 2,...) as follows by induction.
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(3.2) d(s,. 553 )= Sw e~ (1+sDE JE 4 o= (si¥s)t

1

(3.3) ¢@M)(sy,..., S303 1)

= V) e (¥l (k=D (g, 55,5 &) dE

JI
+ re—(s1+s2)'¢(zk—'-’)(_g3q cees S2k3 I).
Then, we have

Proposition 3.1. For every x€ S, and k=1, 2....,
(3.4) ll_.n; ZLE [A(t A1) A (t)1 (5,00 8)

{ 2 OFN(Se(iyseens Suirys 0) if kiseven
0 if kisodd.
Here #F denotes the Laplace transform of F:

(3.5) LF(ty, tyoy 1)(S1, Sosmens Sp)
© (oo k
=555 So So exp (— X sit)F(t,,.... 1) dt,---dt,.
1

We will postpone the proof of Proposition 3.1 until section 4. Our next step is to
obtain the convergence of E [A4,(t,):--A,(t,)] itself from (3.4). Tt should be noticed
that if f(x) is non-negative, this follows immediately from (3.4) by the well-known
continuity theorem for Laplace transforms (cf. [2] page 431). However, in our
case, f(x) is not non-negative and we need the following auxiliary result.

Lemma 3.2. For every xe 8, and k=1, 2,...
(i) {E.[A;(t))---Axt)]},1>, is equi-continuous.
(ii) There exists C>0 such that

K
ig}? |EL[Ax(t)A(t)] | £ CH‘ (1+1)
Proof. As we mentioned in Remark 1.1, we can apply the results of [4]. Define
g(x)= So dt g p(t, x, )f(y)u(dy).

By (1.3) g(x) is locally bounded, and it is not difficult to see that g(x) is bounded on
S by the strong Markov property. We can also prove that

(3.6) M,=g(X)+ S;f(Xs)ds

is a martingale. In [4] we have proved that for k=1, 2,...,

(3.7 E[M]/L(* — (2k)!,
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t 2k _
(3.8) E, [(g f(Xs)ds) :|/L(t)" 2K, as t— o0
0

Since L(n(At))/A—t as A— oo for every 120, (3.7) can be written as
(3.9) E [M2k,, /A — k) ¢ as 1 — o0,

If a sequence of non-decreasing functions defined on [0, co) converges to a continuous
function, then the convergence is uniform on compacts. Therefore, (3.9) holds
uniformly for ¢ on compacts. Keeping in mind that g(x) in (3.6) is bounded, we have
from (3.9) that

(3.10) E[A; (0] —> (2k)! t* as 1 —s o0

uniformly for ¢t on compacts.
As a special case of k=1, we have

(l/l)Ex[(Mn(M) - Mn(}.s))z] = (I/A)Ex[Mn(iJ)z] - ( I /)')E.r[Mll(As)z]
converges uniformly for (s, f) on compacts in [0, 00)2. Thus we have

(3.11) limlimsup sup (1/A)E[(M,)—M,;5)?1=0, T>0.
o © lt—sl<o

-0 A
0=t,ssT
By the definition of M, (see (3.6)), we obtain from (3.11) that

(3.12) im lim sup sup (DEL(AN—A,(s)#]=0, T>0.
a0 t—sl< -

1
50 i~ ;
0<t,s<T

Now it is easy to prove (i) by combining (3.10) and (3.12) with Hélder’s inequality.
(ii) is clear by (3.10).

Lemma 3.3. For every xe S and k=1, 2,

¢(1|,..., ’k)=q|im E.V[AZ(II)...AZ(II()]’ t,'go.

exists and its Laplace transform equals the right-hand side of (3.4).

Proof. By Ascoli-Arzela’s theorem, we can choose A, <1, <--+— 00 such that
E,[A;(t;)--A,(t,)] converges on [0, co)k. By Proposition 1.1 and Lemma 3.2 (ii),
we see that the Laplace transform of the limit function equals the right-hand side of
(3.4). By the uniqueness of Laplace transforms, we have the assertion using a
standard argument.

Lemma 3.4. Let Z(1)=./2 B,(4(5,)) be the process as before and (t,;..., 1,)
be the same as in Lemma 3.3. Then,

(3.13) ®(t,,..., t)=E[Z(t,)Z(t)], =0.

Proof. Since the Laplace transform of ¢ equals the right-hand side of (3.4),
@ does not depend on the choice of X, and f(x). Therefore, it suffices to show (3.13)
for suitably chosen X, and f(x). Let X,=B, and f(x) be as in Theorem B. Then
as we have seen before, all our assumptions are satisfied. (Recall that C2=2{f).)
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Keeping Lemma 3.2 (ii) in mind (cf [2] page 251), we see from Theorem B,
/Ilin; E[A,(t)A,(t)]=E[Z(t,)---Z(1,)] .

(We assumed that (f>=1.) Therefore, by Lemma 3.3, we have the assertion from
the uniqueness of the limit.

Now it is easy to complete the proof of Theorem 2. Observe that by Lemmas 3.3
and 3.4 we have

I;i_l;r;)Ex[Az(tl)"'A).(Ik)]=E[Z(t1)"'z(rk)]
for arbitrary k=1, 2,... and 1;=20. Since repetition is allowed, we obtain
lim E [A,(1,)% - Ay(1)) ] = E[Z(1 )1 Z(1)1]
for 1,20, k;=1,2,...and j=1,2,....

By Lemma 3.2 (ii), this proves our assertion thanks to the well-known Carleman
test (see page 227 of [2]). For details see section 4 of [S].

Remarks 3.5. (i) This moment method is due to Darling-Kac [3]and Bingham

[1].
(ii) Combining Lemma 3.4 with (3.2) and (3.4) we have

LE[Z(1)Z(1,)](5,, 52) =L (1, 1;)(5, 5)=2[(s, +5,).
Reversing the Laplace transform, we see
E[Z(1,)Z(15)]1=2min (t,, ;).
This fact can be confirmed by a direct computation: If t; <t,,
E[Z(1,)Z(1,)]=E[2B,(4(0,,))By(£(0,,))]

=2E[min {4(o,), 4(6,,)}]
=2E[4(0,))]
=21,

because 4(o,) is an exponential random variable with expectation f.

4. Proof of Proposition 3.1

In this section we will prove Proposition 3.1. For simplicity, we assume again
that {f)=1. Now observe that, by integration by parts,

(4.1) E [Ax(t) - A:(t)] (5155 5i0)
- S: S: exp (— i sit)E.[ lf[f (X)) ﬁ[ d, n(it).

Therefore, taking the symmetry in mind, we see that it suffices to show
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@2 lim A (] exp (= SSELTS Ko DIT dyn(ir)

0<r;<+<r)

=®)(sy, $35.... 83 0).

In order to make use of induction, we introduce a new parameter t, and prove the
following proposition. Of course, (4.2) can be obtained by putting 1=0.

Proposition 4.1. Define ¢, =¥, k=1, 2,..., by
4.3) Gi(S1,eny Sis X 1)

- §§ exp (— S5t ELTT (X JTT doyni(21;)

1<ty <<ty
where n(A; t,, )=n(Ait;)—n(At)+n(0). Then,
Mm@ (s,,..., g5 Xo D=F(s,,..., 55 1)
A0

To simplify notations, we assume that n(0)=0 and define Q3 as follows.

Definition 4.2. For bounded measurable function @(x, 1), x € S, 120, we define
for s>0and A>0,

I (x. = e T, (- () den32),

where TW(-)(x)=E.[y(X,)].
It should be noticed that by Markov property we have

(4.4) AP (Sqsees i3 X, 1)

=(1JA O3S () 50y 515 X, D] (x, 1)

Lemma 4.3. Let K be a compact set in S and ¢(t), 120 be a bounded meas-
urable function. Then

sup [Q3[f(x)$(N] (x, NI=Cy e -sup (S|

where Cy is a positive number which does not depend on A, t or ¢ (1).

Proof. Since f=0 by assumption, we have

TS(x0=| att, x NSO
Therefore,

1Q*Lf (x)(D](x, D)

= ’ S;” e"S{(‘b(é)dé Sq("(}.g) - "(}-1). X, ,V)f(_)’)ll(dy)
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<sup |¢(é)|§f° €55 dn(2¢) S 1g(n(A8) = n(Ar), x. Y)f)Iu(dy)
=sup |¢<:)|s§ et de S"‘“’ " dug lq(u, . Y)FOu(dy)

<sup |p(&)] e~ §°° dug la(u, x, ) ()](dy)
& 0

However, by assumption (1.3),
C,<=su’](3 So du g lg(u, x, y)f(W|u(dy) < 0.

Lemma 4.4. For every T>0,
lim sup |[L(T+ n(At))/A—t| e™s' =

A=00 t2>

Proof. The assertion can be proved by the assumption that L(t) varies slowly.
The details are easy and hence omitted.

Lemma 4.5, For every compact set K,

(i) supsup (1/4) Sw e3¢ p(n(AE)— n(AN)dgn(A&) < o0
A>1 t20 t

i) supsup sup { " ex¢dn(12) [ 1a(n20) =20, x NI < 0.

A>1 xeK 120

Proof. (i) By integration by parts, we see that the left-hand side equals

supsup s S =SS dE(1]A)

gn(l{) n(ar)
A>1 120

p(u)du.

n(a

However, since (I/A)S ) p(u) du converges to 1 by assumption, it is easy to see
n(ag)-n(ar) JO

that (l/l)g ' p(u) du is dominated by C(1+¢) for suitably chosen C>0.

Therefore,

supsup (1/1) | e*¢p(n 20— n(a0)den(2)

<sup Cs{" e (14 0E<o0.
(ii) As in (i), we have,
|7 et an §lanae - n0, x 970y
=5 (" e ar " au § fatu, x, plur).

which is clearly dominated by
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s07 e de | aul 1 £t x, »iady).

By assumption (1.3), it is easy to see that this is bounded on compacts.

Lemma 4.6. For every compact set K(<S), there exists a positive constant
C such that

sup sup [(1/A)Q5:[f(X)QLf (x)P(x, H]](x, _t)I

<Ces'2sup {|P(x, N; =20, f(x)#0},
for every bounded measurable function ¥(x, t), xe S, t=0.
Proof. Tt is harmless to assume that K includes the support of f(x). Define
= {7 e pn2)— nae) | SV POOUENdn(iE)

and

wx, =" entdn(30) | qnGO - nG0. x. NIV, Outay).
Then, of course we have,

0L/ () ¥(x, D]=ri(D+uy(x, 1).

By Lemma 4.5, we also see that there exist constants C; and C, such that
4.5) (DrDISCy sup {|¥P(x, 1)]: 120, xe K}, A>1,1=0,
and
4.6) luy(x, )| £C, sup {|¥(x, 1)|; 120, xe K}, A>1,1=0, xe K.
On the other hand, by Lemma 4.3,

(105 LfOL P (x, 1)
S LAY (1 Ar (O + 11/ AQ5 L (e)u(x, 1)]]
SCxCest S‘ig [(1/A)r (D)

+sup {Ju;(x, OI: f(x)#0, 120} (1/)Q5/2[| f(x)[] e=s1/2.

By Lemma 4.5, it is easy to see that (1/4)Q3$/2[|f|]1(x, t) is dominated by a constant
oo

(and that it converges to jlflu(dx)x(s1/2)g e 51812 &£ dE), This combined with
t

(4.5) and (4.6) implies our assertion.

Lemma 4.7. Let ¢(t), t =0, be a bounded continuous function and h(x), xe S
be a bounded measurable function vanishing outside a compact set. Then, for
every compact set K(<S), -

(i) lim Q3[d()fC](x, D=e=" $(1)g(x)
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the convergence being uniform for (1, x)e[0, 0)x K, where g(x)=j~f(y)q(t,
x, y)u(dy).
(i) llm (1/DQs[¢(Mh(x)](x, 1)= F(S e P(E)dE+ e (1)),

the convergence being uniform for (1, x) e [0, o) x K.

Proof. Obseve that Q3[@(1)f(x)]=Q2[e s/ (1)f(x)]. Therefore, without
loss of generality, we can assume that ¢(r) vanishes at infinity. Further, by Lemmas
4.3 and 4.5, we can apply standard approximation arguments, and it is easy to see
that it suffices to show the assertion for smooth functions. So we assume that ¢(t)
has continuous derivatives vanishing at infinity. By integration by parts, we obtain
that

QIHDF (1, x)
= [ et e -penae

g n(A)—n(it) T"f(x)du

= g(x) §°° =58 {s(&)— ¢'(E)}dE + (2 x, 1)

where

e(A x, ,)_g e~ {sp(£) — ¢(c)}dc§ T, f(x)du

n(Ag)—n(at)
= (e tp0-s@ael] aufam x sy,

However, by (1.3), we have that for every n>0 there exists T >0 such that

sup {” du { gtu, x, ) flutan <.
xeK JT
Therefore,
le(, x, DI sup. 1s$(&) = ¢ (OI(1/s) €™ +

l SL(T+n().I))/).

e (sp(@ - @ [" - dul glu, x, ) Sy

<SHAMLT+nG) —1} | du { g, x 9)10)lcdy)
+(n/s)] e~ sup [s¢(&)—'(&)l.
§20
Combining this with Lemma 4.4, we have
lim sup [e(4, x. ] sn e~ ( 1/s) sup Is(&)— (&) .

Thus we obtain (i) letting n—0. (ii) is proved in Proposition 5.3 of [5].

Lemma 4.8. Let ¢(t), t =0, be a bounded continuous function. Then
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4.7) Jir}l(l/l)Qi‘[f () (2L ()OI (x, 1)

= Sw e~ (s1ts2)§ d)(é)dé +t e (si+sa)t d)(t)

the convergence being uniform for (t, x) € [0, 00) x K for every compact set K.

Proof. As in the proof of the previous lemma, we can assume that ¢(¢) has
continuous derivatives which vanish at infinity (cf. Lemma 4.6). By Lemma 4.7,
we see that the left-hand side of (4.12) equals

m (1/A)Q5[f(x) e ¢(t)g(x)] .

Using Lemma 4.7 again, this equals

[ reogeaman {{ et g + remermi o)

This proves the assertion.

We are now ready to prove Proposition 4.1. In Lemma 4.7 (i), set ¢(f)=1.
Then we have

lim Q3[/1(x. N=e™" g(x).
Thus we obtain that

(4.8) (s: x, 0=(1/JDQ[SI(x, ) — 0 as L — 0.

Similarly, by Lemma 4.8, we see

(4.9) Us1s 525 %, )=(1DQ#[fQ=[f11(x, 1) — $)(sy, 555 1)
We will prove Proposition 4.1 by induction. Assume that

(4.10) ii_l}:oqﬁﬁz""’(s,,..., i x, 1)=0

and

(4.11) !i_‘tg¢}2“’(s,,..., 3 X, =0 (s,..., 5 1).

Since @K+ V(sy,..., x, 1) =(1/A)Q9[fQ2fd2* V], we see that ¢{2**V converges
to 0 by (4.10) and Lemma 4.6. Here, it should be noticed that if ¢$2¥~1 converges
to 0 uniformly on compacts, then f(x)¢2k~!’ converges uniformly on S because
f(x) has compact support. Similarly, we have from Lemma 4.7 (i),

lim @2k+2(s,,..., x, 1)
A=

=lim (1/)Qy[f05f$¥]

A=

=lim (1/2)Q5:[fe 52 ¢p2g]

A—00
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However, by Lemma 4.8, this equals

Sw e—(S|+sz)f¢(2k)d¢ + te—(s.+sz)r¢(2k)

1 .

By definition (3.3), this is equal to ¢2¥*2)| which completes the proof of Pro-
position 4.1. Therefore, as we mentioned at the beginning of this section,
Proposition 3.1 is proved.
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