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O. Introduction

S. Kotani and the author [6] proved two limit theorems for occupation times of
two-dimensional Brownian motion and in [5] we generalized one of them for a class
of Markov processes. This article is its continuation and we will prove a  gener-
alization of the other theorem.

1. Main theorems

L e t B (t)=(B ,(t), B 2 (1)) b e  a  two-dimensional standard  Brownian motion
starting at (0, 0) and f (x ), x  e R 2 be a bounded measurable function vanishing outside
a com pact set. Define

t( t)= lim (40 - ' 1 I, __ (B,(s))ds
0

t ,n i  t i  B 1(u)=i1

Then [6] proved the following two theorems:

Theorem A.

e22,

( 1 //1) f(B(s))ds , )  as co
)o

where .1= (1 /n ) f (y )d y.

Theorem B. If , in addition,.f= 0, then

(10 -) f(B(s))ds  Ï C  B 2 ( t ( a , ) )  as

where C2 = —(2/n2) 55 log Ix— y if (x )f (y )dxdy .
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Here, denotes the weak (or narrow) convergence of all finite-dimensional
marginal distributions. ( In  [6 ], we proved /1/1 1 -convergence. However, we will
not discuss it here.) We now generalize these theorems as follows.

Let S be a locally compact Hausdorff space and (JO ,"  be  a consevative, time-
homogeneous strong Markov process with right-continuous paths in S. Further,
we assume tha t the transition function p(t, x, dy) is absolutely continuous with
respect to  a Radon measure p(dx) and that the density p(t, x, y ) has the following
decomposition:

(1.1) p(t, x, p (t)+q(t, x, y),t 1,

where p (t)( and q(t, x, y) are measurable in (t, x, y) and

(1.2) L(0=1 p (u )du (t oo as t—>oo) varies slowly at co,

(1 .3 ) for every compact set K,

lim dt q(t, x, y)lp(dy)K
converges uniformly for x on compacts. (We define q(t, x, p(t, x, y) if t E (0, 1)
for convenience.)

A typical example is the case of two-dimensional Brownian motion. If we put
p(dx)=(117r)dx, th en  p(t, x, y)=(1/2t) x exp { —y12/2t). Therefore, (1.1)—(1.3)
are satisfied with p(t)= 1/(2t) and L(t)=(1/2) log t. Indeed, we have

Ig(t, x, Y)IpAtlY)

= (1/2t) ( —exp {— —y1 2 /2t1) (1/n) elyK

5( 4 1a2 )- 1 1 —Wdy, t  1

Therefore, (1.3) is clear.
Our main theorems are as follows:

Theorem 1. A ssum e (1.1)—(1.3). L et n (t) (_0 ) be a non-decreasing function
such that L(n(t))It—> as t—>oo. Let f (x )  be a bounded m easurable function v an-
ishing outside a com pact set. T hen

n (A l
OdS - J (a 1 ) a s  ) cc)

), • 0

where f =  f(x )p (dx), and Acr,) is the sam e as before.

Theorem 2. If , in addition, j= 0 , then

(11, /) f(X )ds N/2<f>B2((ut)), )1, CC
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where <f>= dt ,6f(x)f(y)p(t, x, y)p(dx)p(dy)} .

Remark 1.1. If we take the Laplace transforms of (1.1), then (1.2) and (1.3)
imply

(1.4)
ctcc 

e- stp(t, x, y)dt=L(11s)+u(x, y)+ o(1) a s  s 1. 0

where u(x, y)=1
o

p(t, x, y)dt+ q(t, x, y)dt.

Therefore, as a special case a =0 of the result of [4], we see that

u(t) 'S t
o f(X s )ds

converges to  a  bilateral exponential distribution or to  an  exponential distribution
according as f  vanishes or not, where v(t)= \ /L(t) if f=0  a n d  =L (t) otherwise. So
the assertions of Theorems 1 and 2 are already proven for one-dimensional marginal
distributions. T o  see  th e  assumption (A )  o f  [4 ] , notice th a t  if  f = 0 ,  G,f(x)
converges to g(x)=ff(y)u(x, y)p(dy) uniformly on compacts as s 0 .  Thus Gsf (x )
is uniformly bounded on  com pac ts . However, since f(x )  has compact support,
it is not difficult to see that Gsf (x )  is uniformly bounded on the whole space as a
consequence of the strong Markov property.

Remark 1.2. In the definition of <f>, it should be noted that

duf (x ) f (y )p ( t , x , y )p (d x )p (d y ) l < co

although 1
0  

p(t, x, y)dt diverges because o f  th e  recurrence. Indeed, for 1,

keeping f = 0  in mind, we see that

55f(x)f(y)p( x, y)p(clx)p(dy)

= ( j ) 2 p(t)+11f(x)f(y)q(1„x, y)p(dx)p(dy)

=5S.f(x)f(.0(i(t, x• Y )11(dx)P(IlY )•

Since .f (x )  had compact support, this function belongs to Ll(d t) by assumption
(1 .3 ). It should also be noticed that

<f> e-'fdt i11f(x)f(y)p(t, x, y)p(dx)p(dy)} .
s 4 0  0

Therefore, using the notation of (1.4) we have another expression:

(1.5) <f>=1.1.(x1.1.(Y )11(x• Y )1i(dx)P(dY ).
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Remark 1.3. Formally, Theorem A  (o r B ) is included in  Theorem 1 (or 2,
respectively). Indeed, as we have seen before Theorem 1, two-dimensional Brownian
m otions satisfy (1.1)-( 1.3) with it(dy)=-(1/tr)dy and L(t)=(1/2) log t ( 40 =  e 2 t ) .

Clearly, f  in Theorem A is compatible with that in Theorem 1. TO see that C 2 in
Theorem B equals 2<f>, recall the well-known formula;

dx = log (b/a), a, b > 0.

Therefore,

2 <f > = rr- 2 d i  11ç1(x)»y)( I/0 exp ( — Ix  Y12 /2t)dxdyl

= 7c 2) 1  (  f C X P ( /Ix — y12 / 2)d x d

=  7 T  2 di f ( -x)f(Y){exp ( — /Ix —y12 /2)—e - t/2 0  dxdy
. o

=7r - 2 1S f(x)f(y) log (1/1x— y1 2 ) dxdy

=C 2 .

Thus, formally, Theorems A and B are special cases of Theorems l and 2. H ow ever,
we shall use Theorem B to prove Theorem 2 (see Lemma 3.4), and therefore Theorem
2 does not materially Contain Theorem B. Nonetheless this inconvenience can be
removed if one note that Lemma 3.4 can be proven without using Theorem B but
with tedious calculus.

Remark 1.4. If f (x )  is nonnegative, then Theorem 1 is already proven in [5]
as we mentioned in the previous section. In the general case where f (x ) may take
negative values, observe that f (x ) can be expressed as a sum or two functions f 1 (x)
and f2 (x): J 1 (x ) is nonnegative or nonpositive and 12 =0. Thus Theorem 1 follows
from the result of [5] combined with Theorem 2. Therefore we need only to prove
Theorem 2.

2. The case of Cauchy process

In this section we consider the case of one-dimensional Cauchy process as an
exam ple. The transition function is given by

p(t, x, dy)=t1t(x— y) 2 +t 2 1 (117r) dy, x ,  ye  R.

In this case, p(t, x; y)=t11(x— y) 2 +12 1 and p(dx)=(1170dy satisfy the assumptions
o f Theorems A  an d  B  with L(t)= log t  and  17(0=e'. * Indeed to see (1.3) holds,
note that for every compact set K,•

lq(t, (I 17)d Y
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= {(110-11{(x—
.02+ i l } }  

(I ln)dy

(x— y)2 (11)dy.

Thus (1.3) is satisfied and therefore We have,

Theorem 3 .  Let {X,} be the Cauchy process stated above and f (x ) be a bounded
measurable function vanishing outside a compact set.
Then,

( i) ( 1 / )0  e Â 'f (X s )ds f •d '› f  t(o - r ) aso  .1 on

where 1=(i/n) ff (x )x ,  and
(ii) if f=0,

(  I /\/ f  (X )ds  i
\ /2<7  >B2(40-0 )  a s  ) GO

where <f>= —(1 hr2 ) if log lx—ylf(x)/(Y)dx dy.

Pro o f . The only thing remaining to be proven is

(1.6) (1 /7r2 ) 10  d t (x)f (01{ (x— y) 2 +t 2 }dxcly

= — (1/7r2 ) 1  log Ix — ylf(x)f(y)dxdy.

However, since

1 t i { ( X  — y)2 + t2 }dt = (I /2) log {(x — y)2 /T 2 + +  log T— log lx—0

we have that the left-hand side of (1.6) equals

11{( l /2) log {(x y) 2 /T2 + I } — log Ix — yl f (x ) f x d y

thanks to f= O. But this equals the right-hand side of (1.6).

3. Proof of Theorem 2

As we mentioned in Remark 1.4, we will only prove Theorem 2, so from now on
we will assume all assumptions in Theorem 2, and for simplicity we will assume that
< f>  =1 . Let

(3.1) A,(t)=(l/Vil)no(At)f(X )d,  ) > O

and for s.>0, define o n )  (k = . 9 2,...) as follows by induction.
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(3.2) 4)(2)(s1, s2 ; t )= e- (8 , +s2)  cl + e - ( d1+8 2) t

(3.3) s2k;

= e 1+s2g0(2k-2)(s3,..., s2k: )
.  t

+ t e -
(s,+s,)(4,(2k-2)( s 3 , s2k; t).

Then, we have

Proposition 3.1. For ev ery  xe S, and k=  1, 2,...,

(3.4) lirn ..99 EZAAtt)A,P2) . - A)(4)](51,..., sit )

=
E (1 ) (k ) (S k (  1 )

,
 • • • k (k ) ;

{
if k is even

Here 18F denotes the Laplace transform of F:

if k is odd.

(3.5) t2,..., tk ) (s ,,  s2 .............  sk )

Ic
= S i S 2 • • • S k Ç

°e x p  (  —  E tk) dt,•••dtk .
o o

W e will postpone the proof of Proposition 3.1 until section 4. Our next step is to
obtain the convergence of Ex [24,1(t,)•••24(4)] itself from (3.4). It should be noticed
that if f ( x )  is non-negative, this follows immediately from (3.4) by the well-known
continuity theorem for Laplace transforms (cf. [2 ] page 431). However, in  our
case, f (x )  is not non-negative and we need the following auxiliary result.

Lemma 3 .2 .  For every xe  S, and k=  1, 2,...
(i) {E x [A A(t,)•••AAtk ) ] } 2 , ,  is egui-continuous.
(ii) There ex ists C > 0  such that

sup lEx [il l (t,).••A 2,(tk)]1_ C (1 +
t i 1

P ro o f .  As we mentioned in Remark 1.1, we can apply the results of [4 ] .  Define
co

g (x )= dtç p(t, x, y )f(y )p(dy).
o .

By (1.3) g(x ) is locally bounded, and it is not difficult to see that g(x) is bounded on
S by the strong Markov property. We can also prove that

(3.6) /14,= g (X 1 )+  1 :f (X s )ds

is a m artingale. In [4] we have proved that for k =  1, 2,...,

(3.7) E [M ]/ L ( t ) " (2k)!,
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E , [ 6 t  f (X ,)ds) 2 k 1/L(t)k (2 k ) ! , a s  t oo(3.8)

Since L(n(At))IA—>t as )— cc for every t 0, (3.7) can be written as

(3.9) Ex[Mg`Ai (2k)! tk a s  A co.

If a sequence of non-decreasing functions defined on [0 , co) converges to a continuous
function, then the convergence is uniform on compacts. Therefore, (3 .9 ) holds
uniformly for t on compacts. Keeping in mind that g(x) in (3.6) is bounded, we have
from (3.9) that

(3.10) Ex[AA(t)29 (2k)! tk a s  A co

uniformly for t on compacts.
As a special case of k  =1, we have

(1/.1)Ex [( M„ ( A 0  — Mo A s ) )21 = ( 1//1.)Ex[Mu(At)2 ] — (1())E . Nu-n ( As)
2 ...

converges uniformly for (s, t) on compacts in [0, oo) 2 . Thus we have

(3.11) lim lim s u p  s u p  (1/))E,[(M„", ) — M„( „ ) )2 ]=  0, T> 0.
A—Ko

0 5 t , s 5 T

By the definition of Mr, (see (3.6)), we obtain from (3.11) that

(3.12) lirn lirn s u p  s u p  (1/2)Ex [(A A (t)— A A(s)) 2 ] = 0 , T >  0 .
(5—.0 I t— s l< 6

Now it is easy to prove (i) by combining (3.10) and (3.12) with Holder's inequality.
(ii) is clear by (3.10).

Lemma 3.3. For every  x  e S  and k= 1, 2,

0(1,,..., tk) =Iim E,PA(/1)•••A2(tk)], 0,
A—cc

exists and its L aplace transform  equals the right-hand side of  (3.4).

Pro o f . By Ascoli-Arzea's theorem, we can choose  <■12 G  •  •  •  — >  co such that
Ex [A A(t i )•••A A(tk )] converges on [0, c c ) .  B y  Proposition 1.1 and Lemma 3.2 (ii),
we see that the Laplace transform of the limit function equals the right-hand side of
(3.4). By the uniqueness of Laplace transforms, we have the assertion using a
standard argument.

Lemma 3 .4 .  L et Z (t)= \ 72B 2 (i(o -,)) be the process as  before and 0(t 1 ; ..., t k )
be the same as in Lemma 3.3. Then,

(3.13) 0(t1,..., t k)=E[Z (t i ).—Z(tk)],

P ro o f . Since the Laplace transform of 0  equals the right-hand side of (3.4),
0  does not depend on the choice of X , and f ( x ) .  Therefore, it suffices to show (3.13)
for suitably chosen X , and f ( x ) .  Let X ,=B , and f (x )  be as in Theorem B .  Then
as we have seen before, all our assumptions are satisfied. (R eca ll th a t C2=2<f>.)
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Keeping Lemma 3.2 (ii) in mind (cf [2] page 251), we see from Theorem B.

lirn E,124
2
(1,).—A,(t k )] = E[Z(t,).—Z(t k )] .

(We assumed that <f> = I . )  Therefore, by Lemma 3.3, we have the assertion from
the uniqueness of the limit.
Now it is easy to complete the proof of Theorem  2. Observe that by Lemmas 3.3
and 3.4 we have

lim E,[21 2 (t ,)•••A l (1 ,)]=E [Z(t,).— Z(t k )]

for arbitrary k= 1, 2,... and Since repetition is allowed, we obtain

lim E,[11 ) (t,)"• • • A,,(t j
)ki]= E[Z(t,)k,...zo i)kd

-

for 0, k1 = l, 2,... and j=1,
By Lemma 3.2 (ii), this proves our assertion thanks to the well-known Carleman
test (see page 227 of [2]). For details see section 4 of [5].

Remarks 3.5. (i) This moment method is due to Darling-Kac [3] and Bingham

(ii) Combining Lemma 3.4 with (3.2) and (3.4) we have

.rE [z (t 1)z (t2 )]( ,  , s 2 )= 2 . (1)(t,, 1 2 )(s 1 , s2 ) = 2/(s, + s 2 ).

Reversing the Laplace transform, we see

E[Z(t 1 )Z(t 2 )] =2 min (t,, t2 ).

This fact can be confirmed by a direct com putation : If t, t2 ,

E[Z(t, )Z(t 2 )] = E[2B 2 ( e(o- r i ))/32 (4 6 -,.2 ))]

=2E[min {i(cr t i ), .8(o- ,2 )} ]

=2E[i(cr t ) ]

=2t,

because A ar) is an exponential random variable with expectation t.

4 .  Proof of Proposition 3.1

In this section we will prove Proposition 3.1. For simplicity, we assume again
that <f> = 1 .  Now observe that, by integration by parts,

(4.1) Ex[A,t(f1)...A.PkA(st,..., sk)
co 5' co

=  1  •  •  • exp (— E s  i )E ,[1 1 f (X „ ( 1 ,0 ) ]  n
Therefore, taking the symmetry in mind, we see that it suffices to show
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(4.2) lim (1/\ / 2.)k S• • • exp(— Es i ti)Ex [Flf(X„ 0 . 0 ])11 dt .n(2t i )
0<t i <•••<,,,

=4)(k)(s i , s2 ,..., sk ; 0).

In order to make use of induction, we introduce a new parameter t ,  and prove the
following proposition. Of course, (4.2) can be obtained by putting t =O.

Proposition 4 . 1 .  Define (1),=4) (,k ), k =1, 2,„., by
(4.3) 0)(s t,•••, sk ; x, t)

= ••• exp (— Es i ti )E,[11f(X „" ; ,,M 1d t i n(Àt i )
t < 1 , < • • • < t h

where n(À; t , ,  t) = n(Àt i).— n(.1.1)+ n(0). Then,

0).(s1•••• , sk; x• t)=45("(si ,•••, 5 k; 0.

To simplify notations, we assume that n(0)=0 and define Q  as follows.

Definition 4 . 2 .  For bounded measurable function 40(x, t), xe  S , t 0, we define
for s> 0 and 2>0,

(x ,  t )= e - s 4 TH(Â4)-ti(Ar)
(1)( • ) ( x )  c ie (g )

where 7'/i(.)(x)=E x [0(x,)].

It should be noticed that by Markov property we have

(4.4) sk ; x, t)

= (I /\ 72)01, [f (x)4)(
2k - " ( s2 ,..., sk ; x, t ) ] (x, t).

Lemma 4 . 3 .  Le t K  be a compact set in S and O M , t..0  be a bounded meas-
u rab le  function . Then

sup 1(2,1[.f (x)0(t)](x, e-s( • s u p  1001xo‘

where CK is a positive number which does not depend on À, t or ( t ) .

P r o o f .  Since f= 0  by assumption, we have

f (x ) q(t, x, y).1.0911(d ,v) •

Therefore,

1,21f (x)(1)(07(x,

e- s4 0 ( ) d  . q(n(2)— n(At), x, y)f(y)p(dy)
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sup I 4)(01 .çt e — s4 d e (2 )  1 9 (n ( ) )— n (0 , x , y).f(Y)1/1(cly)

= sup 100Is e- s a 5 . n ( 1 ) - n ( A r )  du1Iq(u, x, A f(Y )1P(d1')
0

<sup 146(01 e - st citt lq(u , x , A f (1 1)111(dY)

However, by assumption (1.3),
co

C K = s u p du
. 

lq(u, x , y )f(y)lp(dy)< co.
x e K  0  

Lemma 4 .4 .  For every T>0,

lim s u p  IL(T+ n().0)11.— tle - st =0.
A- . 00 tao

P roo f. The assertion can be proved by the assumption that L (t) varies slowly.
The details are easy and hence omitted.

Lemma 4 .5 .  For every compact set K,

(i) sup  sup  (1/.1)1 ep ( n ( ) ) — n ( 1 .0 ) d o (1 ) < 00
A>1 t ao

(ii) sup sup sup e- s4 c/o(g) lq(n(2)— n(2t), x , y )f (y )lp(dy )< co.
A > 1  x e K  t O  t

P roo f. (i) By integration by parts, we see that the left-hand side equals
oc■ y(.1..4)—n(At)

sup sup s e- s4 a  (111) p(u)du.
tao

n(01)
However, since (1/) ) p(u) du converges to  1 by assumption, it is easy to see

y

o

( ) )—n(At) J O
th a t (1//1.) p(u) du is dominated by C(1+ ) f o r  suitably chosen C> O.
Therefore,

sup sup (1/A) 5 e-sp(n(14)— n(.1,0)del())
A>1

.sup C s e- s4 ( 1 + ) a < o o .t o t

(ii) As in (i), we have,

c
t
° ed e ( A ) 1 1 q ( n ( g ) — n(At), x, Af(Y )Iii(dY )

r;().4)—n().t)
= S e—s4 d u  If(Y)q(u, x, Y)1/2(4) •

i t 0

which is clearly dominated by
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s So e - s4 (.1 50  d u i f ( y ) g ( u ,  , .01,u(dy) .

By assumption (1.3), it is easy to see that this is bounded on compacts.

Lemma 4 .6 .  For every  com pact set K ( S ), there ex ists a positive constant
C such that

sup sup 1(1/2)Qi1[f(x)Q2[f(x)P(x, t)]](x, t)I
xel( A .>1

C e - siti2  sup {1'11(x, 01; f  (x)0 ,

f or every bounded measurable function iff(x, t), x e S,

P ro o f . It is harmless to assume that K  includes the support off (x). Define

rA(t)= 5 e- 5 24 p(n(g)—  n(1t)) f (y )W (y)f t(dy)d 4 n(g )

and
oo

u) .(x , t)= e- s24 do(.1.) g(n(À )—  n(A t), x , y )f (y )P(y , )/.2(dy).
. t

Then, of course we have,

02[f(x )W (x , t)1= r l (t)+14,1(x , t).

By Lemma 4.5, we also see that there exist constants C1 and C2 such that

(4.5) (1/2)1r,t(01 sup 11P(x, 01; x e K l, 2>1, t

and

(4.6) luz(x, - C2 sup fl W(x, 01; x e K1, 2> 1 , t_11), X E K.

On the other hand, by Lemma 4.3,

(1/1)QII E.f123.1.fTE (x,
1QPU (x) (I /2)r,1(1)]1 + 1(1 /1)02V Ef (x )u(x , 071
c„c, e - sit sup 1(1/2)r1(01

+sup IluA(x, 01; f(x ) O , t_ol (I /A )Q V /2 [1 .f (X )1 ]  e — s 1 t /2 .

By Lemma 4.5, it is easy to see that ( 1 /2 )Q11 / 2 [1f1](x, 0 is dominated by a constant
(and that it converges to  f If lp(dx)x  (s 1 12) e - s14 /2 T h i s  combined with
(4.5) and (4.6) implies our assertion.

Lemma 4 .7 .  L et OW, be a bounded continuous function and h(x ), x e S
be a  bounded m easurable function vanishing outside a c o m p ac t se t. Then, for
every compact set K( S),

( i )  lim $21[0(t)f(x)](x, t) =e - " q5(t)g(x)
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the convergence being uniform  f o r (t, x)e [0, co) x K , w here  g(x)=S f(y)q(t,
x, y)p(dy).

(ii) l im  (1/A)Q1[0(t)h(x)] (x, t) = e- s44)()d + t e - st OW),
.1.00

the convergence being uniform for (t, x)e [0, oo)x K.

Proo f . Obseve that Q1[0(t)f(x)]=Qpre-st12 f ( x ) " . Therefore, without
loss of generality, we can assume that (/)(t) vanishes at infinity. Further, by Lemmas
4.3 and 4.5, we can apply standard approximation arguments, and it is easy to see
that it suffices to show the assertion for smooth functions. So we assume that OW
has continuous derivatives vanishing at infinity. By integration by parts, we obtain
that

Q1E(1)(t),f(x)]( t, x)
r . r n ( g ) - 0 1 , )

= e- s 4  140 — (/)'(Old 
) o

T,, f ( x)d u
i t

=g(x) e {sch()— ch'( )lde. +OA, x, t)

where

c(A, x, t)= e - s4 {OW— 0' ( )W  Sx T u f ( x ) d u
n(24) — PI(At)

= e— s' {s ) — '( ) } d
 

1 ::(A )— n ( ) . t )  
d u  q(n, x, y)f(y)p(dy).

However, by (1.3), we have that for every q >O there exists T > 0 such that

sup .ç  du119(ti, X, y)f(y)lp(dy)<q.
x e K  T

Therefore,

*A, x, t)1<q:>111:
 

1440 —(15'()1(1 Is) e— s '  +

ct(r+n(..r))/A _
e {4)(0 — 4)'( )lci du q(u, x, y)f(y)p(dy)

n(AO — n(At)

oo

E{(11))L(T+n( 4 )) — tI
o

du11q(u , x, Af(Y)11,1(d.Y)

+(q/s)] e t
 s u p  IsOW OV)I •
4 _4 0

Combining this with Lemma 4.4, we have

lirn sup le(À, x, t)I e t  (1/s) sup IsW) — (Y( )1 •g4o

Thus we obtain (i) letting n—*(). (ii) is proved in Proposition 5.3 of [5].

Lemma 4.8. Let OW, be a bounded continuous function. Then
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(4.7)u r n  ( 1/2 )Qi1lf (x)(123.2[f(x)0(0 ]( x ,

= e—(51+S2g  (l)(Otl + t e- ( s1- 1- 5 2) i 4)(0

the convergence being uniform f or (t, x) E [0, CO) X K f or every compact set K.

Pro o f . As in the proof of the previous lemma, we can assume that (/)(t) has
continuous derivatives which vanish at infinity (cf. Lemma 4.6). By Lemma 4.7,
we see that the left-hand side of (4.12) equals

urn (1/.1)Q1i[f (x) e - s2i 0(t)g(x)] .

Using Lemma 4.7 again, this equals

1f(x )g (x )p (d x )IS  e - (8 1+ 8 2)4 )(1 +  t e - (s1+52)4 OW } .

This proves the assertion.

We are now ready to prove Proposition 4.1. in  L e m m a  4.7  (i), set 0(0=1.
Then we have

lirn Q [ f ]  (x, t)=  e- 5 (  g(x).
A•CO

Thus we obtain that

(4.8) 0(2')(s; x, t)=(11 \ 1 Q I [ f ] ( x ,  t ) - -  0  as

Similarly, by Lemma 4.8, we see

(4.9) 44.2)(si, s2; x, t) = (  i IA )V I [IQ '[f ] ] (x ,  t ) - - - *  0 ( 2 ) (s 1 , s2 ; t)

We will prove Proposition 4.1 by induction. Assume that

(4.10) urn 4) (12k— I )(s i ; . . . ;  ;  x ; 0 = 0

and

(4.11)
A.,0
lirn ,j42 "(s ,,..., ; x , t)= 02k)( s  1 ; .. .; ; 0 .

Since 4)?k+' )(s ,,..., x , t ) = 0 / /1 /4 2 1 1 E f Q /2 f 0 S .2 k - 1 1 )  w e  s e e  th a t  
4,(1.2k+1)

 converges
to 0 by (4.10) and Lemma 4.6. Here, it should be noticed that if  

o s 2 k -1 )
 converges

to  0 uniformly on compacts, then f ( x ) o k
- 1 )  converges uniformly o n  S  because

f (x) has com pact support. Similarly, we have from Lemma 4.7 (i),

urn
„l(2k+2)( s 1 ; . . . ; t )

= lim  (11),V1'[M 2 M 2 k) ]
2 .0 o

= lin t  (1 li t )Q s2 i [ f e — s2 t 49(2k)g]
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However, by Lemma 4.8, this equals

e - (s1-1-s2)4 ( 2 k)d + te - (s1+.2)t4)(2k)

By definition (3 .3 ), th is is equal to  0 ( 2 k + 2 ) ,  which completes th e  proof o f  Pro-
position 4.1. Therefore, a s  w e  m en tioned  a t th e  beginning o f  th is  section,
Proposition 3.1 is proved.

INSTITUTE OF MATHEMATICS,

UNIVERSITY OF TSUKUBA

References

[ 1 ] N. H. Bingham, Limit theorems for occupation times of Markov processes, Z . Wahrsh.
und verw. Geb., 17 (1971), 1-22.

[ 2 ] W. F e lle r , An introduction to probability theory and its applications, Vol. 2, Wiley, New
York, 1966.

[ 3 ] D. A. Darling and M. K a c , Occupation times for Markov processes, Trans. Amer. Math.
Soc., 84 (1957), 444-458.

[ 4 ] Y. K asahara, Two limit theorems for occupation times of Markov processes, Japan. J.
Math. New ser., 7 (1981), 291-300.

[ 5 1 Y. K asahara, A  limit theorem for slowly increasing occupation tim e s ,  An. Probab., 10
(1982), 728-736.

[  6 ]  Y. Kasahara and S. K o tan i, On limit processes for a class of additive functionals . of recurrent
diffusion processes, Z. Wahrsh. und verw. Geb., 47 (1979), 133-153.


