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Introduction

As is well known L. Bers [9] initiated the investigation of boundary groups of
Teichmiiller spaces. Afterwards m any authors have been studying Teichmiiller
spaces and their boundaries ([1], [2], [16], [19], [20] etc.). Recently some geo-
metric methods and results related to 3-manifolds are used in order to investigate
Kleinian groups and their Teichmfiller spaces (cf. Thurston [23]).

In contrast with the methods in these studies, we shall investigate, in this paper,
the boundaries of Teichmfiller spaces by using the methods familiar in the complex
function theory. Namely, our main tools are the Grunsky's inequality and some
theorems on bounded analytic functions in the unit disk, e.g. the Fatou's theorem
and the Riesz' one. The method using the Grunsky's inequality was motivated by
the recent work of Zuravlev [24].

In the first part of this paper, we shall show a geometric property of Teichmiiller
spaces and the holomorphic convexity with respect to a family of holomorphic func-
tions (Corollary I, Theorem 4).

In the second part of this paper, we shall investigate the boundary behaviour of
holomorphic mappings of the unit disk to a Teichmiiller space (Theorem 5), and
consider the boundary approach in Teichmilller disks as the special case - (Theorem
6). Further, we shall study the boundary behaviour of periods of holomorphic differ-
entials of the first kind as functions of the Teichmiiller space (Theorem 8).

§1 . The Bers' embedding of Teichmiiller spaces

Let G be a non-clementary Fuchsian group acting on the unit disk A. W e de-
note by Q„(G) the set of all quasiconformal self-mappings of z1 that are compatible
with G and leave 1, + i  fixed. T he Teichmiiller space T(G) of  G is the set of all
w  w ith  w  e  Q„(G ). The Teichmiiller space T(G) is a metric space with the Teich-
miiller metric t T ( G ) . I n  particular, w e call T= T({1}) the universal Teichmilller
space and denote by t T  the Teichmtiller metric on T. If G is of the first kind, then
T(G ) is identified with the set of all Fuchsian groups which are quasiconformal
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deformations of G modulo conformal automorphisms of d.
Let Loo (4) 1 denote the set of all measurable functions it on A such that <1,

and let Lo.,(4, G) 1 denote the set of it e L(A ) 1 such that

p(g(z))g'(z)gr(z) - 1  = p (z ) , g E G, z e

For each p e L co (d, G), we denote by w the quasiconformal mapping of C which
leaves I, +  i fixed and satisfies ((0),(z)=p(z)(wiL),(z) on d and (w"),-_-- 0 on E  = C -
71, and denote by wb, the quasiconformal self-mapping of .4 which leaves 1, +  i fixed
and (w ,),(z )=p(z)(w p )(z ) on J.

Then the Schwarzian derivative {wP, z } of Iv" on E belongs to B(G), where B(G)
i s  the complex Banach space o f holomorphic functions 4)(z) on E  su c h  th a t
0(g(z))g'(z) 2 = 4)(z) (g e G , z E E )  and 11011= sup ),(z) - 2 10(z)l< co, w here ), is the

Poincaré metric on E. Furthermore, the m a p p in g  w
n le {

10 ,  z  is well defined
on T(G) and injective. Thus the Bers' embedding of T(G) to  B(G) is ob ta ined . In
the sequel, we identify T(G) with i(T(G)) in B (G ). It is known that T(G) is a bounded
domain in B(G) and T(G) c S(G) c B(G), where S(G) is the set of Schwarzian deriva-
tives of meromorphic functions schlicht on E contained in B(G).

Bers [9] showed that if G is of the first kind, then each 0  in T(G) corresponds to
a Kleinian group G4'  which is isomorphic to G and for each 0  on OT(G) Go is a
b-group, i.e. it has only one simply connected invariant component.

§2. Teichmiiller spaces and holomorphic mappings

Let f ( z ) =z + E  a„z - "  be a univalent meromorphic function on a neighbour-
n=1

hood V of co. W e can define the Grunsky 's coefficients b„,„ (m, n= I, 2,...) of f  as
follows;

Then it is known that for every sequence [)„,}f' of complex numbers the Grunsky's
inequality:

00

(2.1) E E 1 ,1n12 /nm,n=i n=I

holds whenever f  is univalent on E (cf. Pommcrenke [22]).
By using the inequality (2.1) Zuravlev [24] showed the following remarkable

result.

Proposition 1. L et F: À --B(G) be a holomorphic mapping on A  and continu-
ous on A . S uppose that F(ad)c S (G). T hen it holds that

I) F(d)OES(G),
2) i f  F(A )n T O O , then  F(A ) c T,
3) i f  F(d) n T ( G ) 0 0 ,  then  F(t)c  T (G ).
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As a corollary, Zuravlev showed that T(G) is the component of Int S(G) in B(G)
containing the origin.

Now, we shall extend Proposition 1.

Theorem J. ( a )  L e t  F: A -43 (G ) be  a bounded holomorphic !napp ing  of J .
Suppose th a t fo r a lm o s t a ll ei° c a d  (0._.0_27t) the cluster set o f F  a t  e "  is con-
tained in S (G ) . Then we have

1) F(d)c S(G),

2) i f  F(.4) n ToO , t h e n  F(d)c T,
3 )  i f  F(A) n T ( G ) 0 0 ,  t h e n  F(4)c T(G).

( b )  Let D be a bounded domain in C "  and let F: D-43(G) be a holomorphic
m apping of D . Suppose that for every z E OD the cluster set of F  at z is contained in
S (G ). Then the same results as 1), 2) and 3) of (a) are valid  for D .

P ro o f .  Since the proof is essentially the same as that of Proposition I, we shall
prove (a)-1) only.

O'J

For each 0  in B(G) we denote by X (0 )(z )=z+  E c„z - "  the locally univalent
n 1

meromorphic function on E  such that {X(0), z} = 0 (z ).  There exist and M=
M(r)>0 such that X(F(0) is univalent in Er = {z e C; Izi > r} and sup IX(F(C))(z)I_
M for e v e ry  in zI because F is bounded and 11011 <2 implies the univalençe of X(0).
Therefore, we can consider the expansion

x (F(C))(z )— x (F(0)(w )  _ _ E  bm n (FG))z-mw-log z -

for (z, w)e E,.x E,. and 'e A .
Since X (F ())(z ) is a  holomorphic function o f  e A, b„,„(F(C)) (m, n=1, 2,...)

a r e  holomorphic, too. P u t  gc(z)=,- - 1 X (F ())(rz )= z +  E a„z - "1-('+ 1 ) (z e E),
n= 1

then g(z) is univalent o n  E .  For the Grunsky's coefficients ii (0  ( in , n=1, 2,...)
of

E f; (0z - mw—  = lo g  g '(z ) — gqW )
,  II Z

-  log -X(F(C))(rz)- X(F())(rw) 

=  E  b„,„(F(C))(rz) - m(rw) - " =  - E  b„,„(F(())r - 0 "+")z - mw- n

for (z, w)e E x E.

(2.2) b,„,1(F (C ))= r "" ."6 (0  (m, n 1, 2,...).

On the other hand, from the Grunsky's inequality (2.1)
cc

(2.3) E 6„,„(0;t„,,1„1.5 E I).,,1 /n.
I In =  1

From (2.2) and (2.3), we have

r Z ,  rw
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k
I E b„,„(F(C))1),„I = I E bm g)() ,,,r' n )( ).„r")1m, 11 , 11

12,1 12 I n r 211 ) . n l 2
n=1 n=1

fo r  a rb itra rily  fixed ),k. H e n c e  E b„,„(F())it.',„),„ is  a  bounded holomorphic
m,”

function  o f  i n  A .

Suppose tha t F( 1)  converges to  4)(0)e S(G) a s  1 —*e. 1°  in  a  S to lz dom a in  w ith

vertex ei°. Then  X (F (0 ) converges to  X(0(0)) no rm a lly  on  every com pact subset

in  E .  There fo re , b,„„(F(C./ )) converges to  th e  co rre spond ing  G runsky 's coefficient

b„,„(0(0)) o f X(0(0)) fo r each ni, n.
F ro m  the Grunsky 's inequality again , we have

I E b„,„(0(0))),2„1 1),„12/n.
,  11 n=1

Hence, as C.—ei° non tangentially

(2.4) li m  E E l).„I 2 /n
O n=1

holds fo r a lm ost a ll ei° e ad.

S in ce  E b(F(C))).„,2„ is  a  bounded holomorphic function, it can be represented
m,n

by the Po isson  in teg ra l o f its  non  tangentia l lim its. H e n c e  f r o m  (2.4) we conclude

that

±(2.5) bmn(F())2m1m1 12,,12 /n
111, 11 11

holds fo r e v e r y  in A . F u rth e rm o re , th e  in eq u a lity  (2.5) ho ld s  fo r every k  and fo r

a rb itra r ily  f ix e d  1 , 2 2 ,..., 4  in  C .  So , X (F()) is  un iva len t on and we conclude

that F ( )  is in  S(G) for every in d ,q .  e .  d .

AbikolT [2] showed that if  is in  aT(G) (d im  T(G )< + c o )  and if 0  is a cusp or

the area of the li m it set of Go is zero, then 0 is on 0(Ext T (G )) .  (But this statement

is  p ro ved  fo r e ve ry  0  in  OT(G) a s  a  co ro lla ry  o f P ro p o s it io n  I.) H e re , w e sha ll

show  m ore detailed resu lts from  the above theorem.

Theorem 2. L e t I l k b e  a  k-dim iensional co m p le x  hyperplane in  B(G) such

that n T(G) 0 ,  a n d  le t  1",, deno te  the  (un ique ) com ponen t o f  Hk — Hk n T(G)
w h ic h  is  n o t re la t iv e ly  c o m p a c t in  k . Then every 4) in  0( H k n T(G)) is  conta ined

in where the boundary  opera to r c  is  cons ide red  in  I l k .

P r o o f .  Le t 0  be in  a(Hk  n T (G )) .  Suppose that 0  is  not in  017
s,. There exists

a suffic iently sm all ne ighbourhood U N )) o f 0  in  H „ such  tha t U(4)) n V. =0. F rom

Theorem  1, (/) is in  a( H ,— H k n T(G )). In fact, if (/) is  no t in  i3(H k —H k n T(G )), then

1.1(0 )c  T( G)  S(G), and id. lu(0), restriction of the identity m apping to U(4)), satisfies
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the condition of Theorem 1 (b)-3). H ence U (0) is contained in T (G ) . This is
absurd because q5 is in OT(G).

Let V  ( i=1 , 2,...) be com ponents of H k— H k n T(G ) su c h  th a t U (0 ) n 17,00.
Since each Vi is  b o u n d e d  and av ,.T (G )c S (G ) , we conclude that V S(G) and
U Vi cS (G ) from  Theorem  1 (b)-1). Therefore, U (0) is contained in S (G ) . On
the other hand, U(0) n T(G)0 0 .  Thus we have a contradiction as above. q. e. d.

Corollary 1 (cf. A bikoff [2]). I f  dim T(G) is f inite, then every  4> in  OT(G) is
contained in the boundary  of  the unbounded com ponent of  Ext T(G).

§ 3 .  The Carathéodory metric and the holomorphic convexity of Teichmiiller
spaces

Let M  be  a com plex m anifold . Then the Carathéodory  m etric c m  on M  is
defined by

cm(x, y)= sup { p(f (x ),f (y )); f : M -4/1 holomorphic1,

where p is the Poincaré distance on A.
Earle [14] show ed that the Carathéodory m etric on T (G) is  c o m p le te . At

first, we shall give another proof of the following result due to  Krushkal [18] and
Kra [17].

Theorem 3. I f  T(G) is f inite dim ensional, then every  closed cr ( G ) -bounded set
is compact.

P ro o f .  Let K  b e  a closed set in T (G) such  that sup  Ic T ( G ) (0, 0); e  K  =

M < (X). For arbitrary ). 1 , /I.N in  C , set f(/1 1 , (P)=( E b,„„(0,1„,;.„) •
,  n

E  1,1„12 /n) - 1 ,  where 4> i s  in T (G) and b„,„(0)(m , n=1, 2 ,...)  are the Grunsky's
n 1

coefficients of X ( 0 ) .  Then f (),,, • ) is holomorphic in T (G) and from the
Grunsky's inequality (2.1) we have

If(2 1 , 4 :  0 1  I (4) e T(G)).

Since f(.1. 1 , 4 :0 ) = 0 ,  we have

(3.1) PCf()-1, 4>), M

for all 0 e K .  Since .1,, 41  are arbitrary complex numbers, we conclude that
for every 0 E  K

(3.2) I E — I )(em + 1) -  
I ,  I IF I =

Therefore, by using a result of the univalent function theory (cf. Pommerenke [22]
Sec. 9.4) we verify that X (0) has a K(M)-quasiconformal extension t o  A  for every
0e K , where K(M) is a constant depending only on M .  That is, K is bounded with
respect to  the (universal) Teichmtiller metric t r ,  so  K  is compact because T (G ) is
finite dimensional (cf. Kra [17] p. 239). q .  e .  d .
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By using the above theorem, Krushkal [18] and Kra [17 ] showed that if
dim T(G)< cc, th e n  T(G) is convex with respect to  / I  (w h ic h  is  the family of
bounded holomorphic functions on T(G )). This obviously implies the holomorphic
convexity of T(G) shown by Bers-Ehrenpreis [13].

Here, we shall give a stronger version of their result.

Theorem  4. Suppose tha t dim T(G)=N <oo. Let 9(C") denote the set of a ll
holomorphic functions in  C " .  Then T(G), as a bounded domain in  C", is convex
with respect to e(C").

P r o o f .  Let K be a compact subset o f T (G ). We define the e(C )-hull k of
K by

k ={x; If(x)1 suP If(y)1 for every f  e OCR
) }  •

G

It suffices to show tha t k is compact. Since c,-( G ) __ t, ( , ) (cf. [18]) and K is tT ( G ) -
bounded, M =sup fcT ( G ) (0, 4)); E KJ- < co. W e  c a n  e a s ily  v e r ify  th a t for arbi-
trarily fixed 2„ in C, 2„: •) defined in the proof of Theorem 3
is in e(C w ). Hence we have

sup) , . „ :  0 1 ;  O e

(em —1)(e" +1) - '.

And for every 4)e K

(3.3) f (21, 22,—, , 1„: (t.)I (em —1)(em + 1 ) ' .

Since the inequality (3.3) holds for arbitrary 2 ,, /1„, we conclude that k is
bounded with respect to  the Teichmfiller metric by the same argument as in the
proof of Theorem 3. So, k is compact. q. e. d.

§ 4 .  The boundary approach in Teichmiiller spaces

In this section, we shall consider a Teichmiiller space T(G) of finite dimensions
and holomorphic mappings of z1 to T(G).

Theorem  5. If  dim T(G)=N < c o  a n d  F  is  a  holomorphic m app ing  o f  d  to
T (G ). Then we have the followings.

(a) There exist measurable sets E, and E2 on 84 w ith  mes E 1 =mes E, =0 such
that

i) F has a  non-tangentia l lim it a t every e" E 84 —E 1 , and
ii) the non-tangentia l lim it at every e"e  84 —E 1 u E 2  corresponds to a quasi-

Fuchsian group or a  to ta lly  degenerat group.
( b )  L e t  {a„}3° b e  a  se q u en ce  in  A  su ch  th a t lim F(a„)=0 0  e 8T(G) exists.

L e t {b„}c,c be another sequence in  z1 sa tis fy ing  lim p({a„}T, b„,) d  and Fan p(a„„

{b„}1°) .< d fo r  a  constant d < o o . Then
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i) si(F({b„})) c {x E CN ; Ix — 41,31.__c\ / N(ed —1)(ed +1) - 1 1
where si(F({ b,} )) is the set of accumulation points of  { F ( b ) } ,  I • I the
Euclidean distance in C " and c  a constant not depending on { a} T  and
{1) }T .  Especially, if  d=0, lim  F(b,,)=0 0 .

n .0 0

ii) If (ko  corresponds to a cusp, then every in sit(F({ bn })) corresponds to a
cusp.

P roo f. ( a )  Since T(G) is identified with a bounded domain in CN, each F(j) is
a  bounded analytic function on 4 , where F(i) is the j-th coordinate function F as a
mapping of .4 to  C N . B y  the Fatou's theorem about bounded analytic functions,
each Fu ) has non-tangential limits almost everywhere on ae. Hence we can find
the exceptional set E l o n  ed.

Next, we denote by II= (z e z1) the group isomorphism of G to the Kleinian group
corresponding to F(z ) in  T(G), which is defined in Bers [9], and put #(z)--- (trace
hz (g))2 fo r each g e G .  Then we can easily verify that 4(z ) is  a  bounded analytic
function on A .  B y  the R iesz ' theorem about non-tangential limits o f  bounded
analytic functions, non-tangential limits of #(z) exist almost everywhere on 04 and
are not equal to 4 almost everywhere on (14 whenever g is a hyperbolic transformation.
Since a point in T(G) corresponding to the non-tangential lim it 4 of, for a hyper-
bolic transformation g E G, is a cusp and G consists of a countable number of trans-
formations, there is the exceptional set E2 on 04 such that the non-tangential limit of
F  a t ei° E, U E2 is  a  non -cusp . Hence we verify from Maskit [20] Theorem 4
that E2 is the desired exceptional set.

( b )  L e t x= (x ,, x 2 , ... , x N )  b e  a n y  p o in t o f  si(F({ b„} )). W e m ay assume
that lim F(b„)= x. S in c e  T (G) is a  bounded domain, IF(i)(z)I_ c ' ( j= 1 , N)
for a constant c'. By the assumption, for any E>0 there exist sufficiently large n
and m = m(n) such that

(4.1) 11) d+

P u t  HV ) (z)=(F(j)(z)—  F(i ) (a,„))(c'—F(j ) (z)F(i ) (a„,)Ic') - ' ,  th e n  HV ) is  h o lo -
morphic on 4, IHV ) (z)i a n d  HY ) (a„,)=0 . Hence by the Schwarz's lemma we
have from (4.1)

I f i (b„)1--(ed + ' - 1 )(ed + c +

and this implies

(4.2) IF(i)(k.)—F((12,01 2c'(ed+E-1)(ed±'+1)-1 ,

IF(bn) —  F(am)1- 2 c',FAT(ed + ' — I) (e"  + 1) -  .

When n, oo and s .1 0, we have the desired inequality

x — chi cf/V(ed — 1)(e +  1) - 1
,

where c=2c'.
If 40  is  a cusp, then there exists a  hyperbolic transformation g  in G such that
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lim #(a„)=4. Since h (g ) is a loxodromic transformation for every z  in LI, 4(z )

[0, 4]. Let W be a conformal mapping of e- [0, 4] onto  lz e es'; Re z> 11 such
th a t W (4)=1 . Then log I W.:4(z)1 is a positive harmonic function on A and lim •

W.4(a„)= I. On the other hand, from Harnack's theorem there exists a constant
g(d)( 1) depending only on  d  such that q(cl) -' log IW.4(a,„)1_ log1W.(b„)1_
g(d) loglWo0a)1, where m is a natural number satisfying (4.1) for a fixed E. When
n, lirn I

 Wcg(b„)1= I  and lirn g(b,)=4. Hence, our statement is proved.
o•-•",

q. e. d.

A special case (Teichmüller disks).
Let So be a Riemann surface of type (g , n) with 3g +n —3>0. W e consider the

set of all pairs (S, f )  where S is a Riemann surface of type (g , n) and f  is a quasi-
conformal mapping of S o o n to  S, and define the equivalence relation as follows.
(S i , f,)  and (S2 , f,)  are equivalent if .f 2 4 -, 1 : S,--*S2  i s  homotopic to  a conformal
mapping. W e cenote by T(S 0 ), the Teichmiiller space of S o , the set of all eqivalence
classes [(S, f)]. The origin of T(S o ) is taken as [(So, id.)].

The Teichmtiller space T(5 0 ) of So is naturally identified with the Teichmüller
space T(G0 ) of Go , where G o is  a Fuchsian group of the first kind acting on A such
that S o = A/Go (cf. Ahlfors [4]).

Let Q(S0 ) be the space of integrable holomorphic quadratic differentials on So

with the norm  11011= k d x d y  for 0=4)(z)dz 2 in Q(S o ). By the Teichmtiller
so

theorem, T(S 0 ) can be idetified with Q,(S o ), the open unit ball of Q(S 0 ). Further,
for each [(S, f)] in T(S o ) a quasiconformal mapping f  can be taken as so-called
Teichmtiller mapping, that is, the quasiconformal mapping for the Beltrami coeffi-
cient k/14)1 where k< I and 4) is in Q(So ) (cf. Bers [7]).

We call (/) in Q(50 ) a Jenkins-Strebel d iffe re n tia l if all horizontal trajectories
of 4) are simple closed curves except finite number of critical trajectories.

For a fixed 4) in Q(S o ) we consider the mapping of d  defined by z-+ — z /4 ) (110

( z e d ) .  And we define the Teichmüller mapping f z : so , s z  w ith  the Beltrami
coefficient —z(T)/101. Then, by the Teichmilller theorem the mapping P:
f z )] is a injection of d  into T(S o ). Furthermore, by the canonical identification of
T(S o ) with T(G 0 )  V' is a holomorphic mapping of in to  T(G 0 ), i.e. V' satisfies the
condition of Theorem 5. We define th e  Teichmiiller d isk  D(4)) by P(d).

Theorem 6. Let So , G o , 0 and V' be the same as above.
(a) I f  0 is a  Jenkins-Strebel differential whose closed horizontal trajectories

are homotopic to a closed curve on S o , then for every horocycle H  in d  that is tangent
to ad at z=1, every point in the cluster set of V' at z= I fro m  the inside of H is a cusp.
In  p a rticu la r, if dim T(G 0 )=1, then V' has a  li m it from  the inside of H  and its  lim it
is a cusp.

(b) Suppose that dim T(G 0 )= I. L e t  E, be the exceptional set on ad obtained
in  Theorem 5 (a) fo r  P .  T h e n  fo r  d is tin c t points ei°1 a n d  ei°2 on ad — E,, non-
tangen tia l lim its  o f 'I' a t e l° , a n d  e1 0 2 are distinct.
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Proof. (a) L e t  H o be  the horocycle in z1 passing through z =O. It is known
(cf. Marden-Masur [I9]) that the Dehn twist about the homotopy class of closed
horizontal trajectories of q5 determines a Teichmiiller modular transformation and the
transformation which can be an automorphism of D(4)) (hence, an automorphism of

by P) corresponds to a Möbius transformation y on J . F u r th e r , y is a  parabolic
transformation with the fixed point z= I, and {P(y"(0))}" converges to  a  cusp as
n-4+ co. Since y"(0) e H o (n = + I, +2,...), the first statement of (a) for Ho follows
from Theorem 5 (b). L et H  be another horocycle and let {b„ }T be an  arbitrary
sequence on H  converging to z = I. Then we can easily verify that {y"(0)};' and
{b„}T satify the condition of Theorem 5 (b), that is, lim p{y"(0)}i±", b,„)< + oo and

r

litn  p(rn(0), tbn IT)< + co. Hence every x e sif({P(b„)}) is a  c u s p . Since {b„}T is

an arbitrary sequence on H , by the same method as in the proof o f  Theorem 5 (b)
the first statement of (a) is proved.

Since cusps are discrete when dim T(G 0 )=  I, the second statement immediately
follows from the connectivity of the cluster set of 'If from the inside of H.

( b )  Suppose that there are distinct points e 1 0 ' a n d  e1 6 2 o n  ad  such  that the
non-tangential limits o f  'P  a t  e1 0 , and  e i 0 2 are  the  sam e. L et .6, and .6 2 are the
lin e  segments f r o m  z  = 0  to  z=e 1 0 ' a n d  z=e 1 0 2 respectively. Then VI(.8,)u

T(€ 2 ) bounds a Jordan region R and  'P b : D  R  is a conformal mapping of D  to
R, where D  is a  sector bounded by i 2  and an arc between 6.1 0 1 and e i°2 . From
the theory of conformal mappings, P(D) R , that is, there exists x e 13T(G0 ) n R.
But this contradicts with Corollary I in §2. q .  e .  d .

Of course, for P: zl—>T(Go ) defined by any clo e Q(S o ) Theorem 5 (a) is valid,
and the cluster set of 'I/ at each point on ed consists of b-groups. Applying the
Fubini's theorem for the spherical measure on 0,2 1(S0 ) and the linear measure on
OD(0), we have the following theorem from Theorem 5.

Theorem 7. There exists a  measurable set E3 o n  0Q 1(S0 ) w ith  the spherical
measure zero such that every geodesic ray r(0) (w ith  respect to  th e  Teichmiiller

m etric) in  T(S 0 ) corresponding to a  line segm ent from  zero to  OE 10121(S0 ) — E3 in

Q i(So) converges to a  point on  3T(G 0 ), which corresponds to a  totally degenerate
group by the canon ica l identifica tion  from  T(S 0 ) to  T(G o ).

Denote by Mod (G o ) the modular group of Go . Bers [I l] showed that every
m e Mod (G o ) has a limit at every point on OT(Go ) corresponding to a totally degen-
erate g ro u p . Therefore, from the  above theorem we can show immediately the
following.

Corollary 2. L e t E 3  b e  th e  sam e a s  in  Theorem 7 .  Then f o r  e ve ry  in e
Mod (G0 ) and for every geodesic ray 40)(0 e 8,2 00- E3 ) m(r(0)) term inates to a
point on OT(G 0 ).

§ 5 .  The boundary behaviour of holomorphic differentials

In this section, we assume that S o (= 4/G 0) is a compact Riemann surface of
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genus g> 1. D enote by {A i , Bi l l  a homology basis on So , and denote by Of  (j = 1,
2,..., g) the first order holomorphic differentials on So satisfying

(5.1) Oi=6;, (j, k  = I , g).
A k

For a holomorphic mapping F: /1--+T(G 0 ) we denote by [(Sz, f (e T(S 0 )) a
point identified with F ( z ) .  Then lf z (il i ), fz(131 )}1 is a homology basis on S .  D e -
note by 01 (z ) (j= 1, 2,..., g )  the holomorphic differentials on Sz satisfying

(5.2) ./..(Ak)0 .5i (z )= i k ( j ,  k =  1, 2,..., g).
•

Then it is known that T i k (z)= Oi(z )(j, k = I, 2,..., g) are well defined and
f(Bk)

holomorphic as functions of z e d (cf. Bers [8]).

Theorem 8. L e t F  be a holom orphic m apping o f  d  to T(G 0 ). T h e n  e ac h
t i k (z) has f inite non-tangential ji m its alm ost everywhere on A.

iO gi,k= tP ro o f . It is well known that the g x g  matrix (I m T is positive definite
for each z. Hence our assertion can be led from the following lemma.

Lemma. Suppose that g x g matrix (fik(z))1,
k =  1 

is symmetric and holomorphic
on A  and (Em f ik )k = is positive definite for each z  e d .  Then each fi k  has f inite
non-tangential limits almost everywhere on ad.

Proof  o f  th e  le m m a. Since (ImfJ k (z)) k = 1  i s  positive definite, Imf1 i (z)>0
(j= 1 , 2 ,..., g). Consequently, exp ( — — I f o (z )) is  a  bounded analytic function
on A .  B y  the Fatou's theorem exp ( .\/ — 1fi i (z )) has non-tangential limits almost
everywhere on OA, and by the Riesz' theorem the set on which exp ( — ,/ - 1 f i i (z))
has non-tangential limit zero is measure zero . This implies that the statement is true
for f i i (z) ( 1 = 1, 2 ,..., g).

Since am f i k (z))1,, = ,  is positive definite, we have

det
/  Im  f i i ( z )  Im  f ik (z)

>0
Im  fi k (z )  Im  f ,(z )

(I m f i k  = Im f k i ),

11m f ik (z)i < (1m fu (z)) 1/2 (im f„(z))1 /2

5(1m f ( z )  + fin fkk(z))12.

Thus I Imfi k (z)1 has a  harmonic majorant, and this implies that Im f i k (z ) is repre-
sented by u 1 (z)—(4 2 (z) where u• (i = 1, 2) are positive harmonic functions on A . B y
the above argument, the statement is also proved for f i k  (JO k).

Corollary 3 .  L et F and [(S z , f z )] be the sam e as  abov e. W e hav e a fixed
holomorphic differential Go on S o and denote by 0(z)(z  e .4) the unique holomorphic
differential on Sz such that
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5 e(z)=5 e
f ( A )  Ai

( j= 1, 2,..., g),

where {A i ,  Bi }g, is  a fixed hom ology basis on So . T h e n  5 0 (z ) (1 =  I, 2,..., g)
f (B.o= 

a n d  110(z)Miz=ç 0(z)0(z) have fin ite  non-tangentia l lim its a lm ost everyw here
. s .

on 061.

g
P r o o f .  Set cii = S  0 (j =1, 2,..., g), then  0(z)=  E afiAz) where e») are

holomorphic differentials satisfying (5.2). Hence from Theorem 8, 1 0(z )=
g g f(Bk)
E  aj Oi(z)= E af r i k (z ) has finite non-tangential limits almost everywhere
j=1 .1- .(ek) - J=1
on A .  Furthermore, from the Riemann's bilinear relation (cf. Ahlfors-Sario [6]),
we have

II ( z ) 1 1 i .  =  1 (1 0  (Z . ) (Z )
j= 1 f ( A i ) f 2 0;1

(Z ) 0(z))
P (A il

=  — 2 1m (± a i 6 ( z ) ) .
j=.1 f  (13 j)

Hence our assertion is also true for 10 (z )li- q.e.d.

Remark. From the above result, it is easy to show that B-periods and norms of
holomorphic differentials with prescribed A-periods, as functions o n  T(G 0 ) , have
finite limits along geodesic rays almost everywhere in the sense of Theorem 7.

D E P A R T M E N T  OF M A T H E M A T IC S

K Y O T O  U N IV E R S IT Y
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