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1. Introduction

Let Q be  a  neighborhood o f the  origin in = R  x R .  W e  c o n s id e r  a
linear partial differential operator o f order in  such that fo r a  non-negative integer
k (0< k<ni) and a positive rational number y,

t"P(x, t, D x , G )= P(x, t, tvDx , tD,)

= (tD ,)m +  E a 1(x, t)(tvD x )a(tD,)i,
I al+ :1<m
j <tn.- 1

, 0 01.1
w here Dt = k iii)- -  M = (1 1 0 1OEI  a x v . . . a x c i,,,, ( a = 1;3, ial = +••• +a„), andat

t) E C '(n ).
Recently, uniqueness in the Cauchy problem for the operator of this type was

considered several authors (G. Roberts [11], H. Uryu [12], and S. Nakane [8]).
In this paper, we give an extension of their results.

For simplicity, we consider the flat Cauchy problem;

(1.2)
{ Pu = 0  in Q

aju =0 , ,j = 0, 1, 2,..., c o  o n  {(x, t) E Q; t = 0} .

Let T -=/1,i(X, t, )  be the characteristic root o f  .P„,(x, t, , 0=0 (P„,(x, t, ', .0=
v . +  E  aœ  i (x, t)i a t i ) .  W e  assume th a t  {Aj (x, t, 0 }7..,1 s a t is fy  th e  following

I a 1+.i'm ''
conditions for all (x, t, ) e  r2 x S" --1 .

(A-1) real roots Ai  are simple, and non-real roots il.i  are at most double,/ 
(A -2 )  non-real roots A i  satisfy iIm 21(x, t, '̀)1..> 8> 0,

(A -3 )  distinct roots Ai , A i satisfy IAA, t, ) .—,1•;(x, i, )I..>- e> O.

Here E is a positive constant. Then, we have
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Theorem I. U n d e r the  preceding hypothesis, there exists a  neighborhood co
of the orig in  such that if  u E C°(Q) is a solution of (1.2), then u=0 in  co.

Remark. H. Uryu considered the case that all roots /1,j  are simple. G. Roberts
and S. Nakane obtained the similar result as above when the lower order terms of P
satisfy a Levi type condition, in the case that 0 k ni, 0 <v 1 and k= m , v  N,
respectively. For the case tha t k=m, v=1, and all coefficients of P  are smooth,
refer to [3 ], [4 ], [7 ], [10], [13], etc....

This theorem is proved by the method of Carleman in the same way as the previ-
ous w orks. The different point from them is that we factorize P,„+ Pm _ ,  instead of

into the product of the (at most) second order operators and in the proof of the
Carleman estimates for these operators we use a microlocal analysis.

In section 2, we reduce the proof of theorem I to the estimates for the operators
of order, at most 2, whose products equal to  modulo lower order terms.
In section 3, we give the proof of this factorization. Finally, in section 4, we prove
the basic estimates.

2. Reduction to Carleman estimates for the second order operators

By hypothesis (A -1)-(A -3), we have a factorization of the principal symbol
t, t )  given by

r+ s(2.1) P,„(x, t, T )= '-  n t, n t, 0)2
j= 1 j= r+ I

(r +2s= m),

where /11 are Coe-function of (x, t, E  x R" \101 and positively homogeneous degree
one with respect to s u c h  th a t  for (x, t, )e C2 x R" \ 101

(2.2) 11m /1(x, t, fo r  j= r  +1,..., r+s,

an d  Im 0  o r  Ilm e fo r  j = r,

(2.3)i f j j ,t h e n 1/1(x, t, t,

In order to use a method of Carleman, we must transform the solution of (1.2)
into compactly supported function in x. T h is  is done by a  singular change of
variables ([1], [2], [8], [9], [I1], [12], [13]),

x= X

1 t =(6 —1X1 2 )2 0T, c5> O; a small positive number.

W e  n o te  th a t for , sufficiently small 6  and 7 > 0 „ it (X , 7')= u(X, (o — LX12)2p T.)

belongs to C'(C2'2 ,3 x  [0, So] )  i f  u(x, t) E Coe(Q) and is flat on T= 0 and 1X12 =
if u(x, t) is flat on t= 0. H e r e  52'2 6 = { X  R"; 1x12 < 26}, and So = To 6- 2 1i.

Hereafter we consider only the case that k=m and v is a positive in tege r. In
other cases, as [11] and [12], it is easy to see that the same argument holds by a
little modification. Therefore we assume that P takes the form given by



Uniqueness in the Cauchy problem 425

(2.5) P(x, t, D x , =14 1 +
<ni

< nt— 1

where each t) is a C" function in Q' x [0, To ], equals to a  (x , t ) if lad + j n i ,
and the integer 1

(2.6) + m =(1+1)10t1+ j, 1+1 =v.

Applying (2.4), t o  (2.5), w e  h a v e  P(x, t, D , , A ) = P ( X ,  — 1X12 )2 T, Dx+
4XT(5 —1X1 2 ) - 1 DT , — IX1 2 )- 2 DT ). I n  t h i s  expression the coeffic ient of /4
equals to ((5— IX12 ) - 2 mil(X, T), where A (X ,T ) is smooth function satisfying A(0, 0)=
I. Therefore, multiplying this operator by ((5 — IX12 )2 'n/A(X, T), we have the oper-
ator P .  For simplicity, writing (x, t) instead of (X , T) and denoting (6 — 1x12 ) 2 " »

by f(x ), we see that

(2.8) P°(x, t, D ,  D,)

= g , " +  E t'-f (x )1"1 i (x, t)DkD i , a!, 1(x, E  C(Q ') x [0 , To ])
kl+f-m
j .

where 0 ' is a sufficiently small neighborhood of the origin in R " ,  independent of 5.
The factorization (2.1) and the same argument as [11] imply that if (5 and To are
sufficiently small, there exist a  neighborhood of the origin ‘25 contained in  ST and
independent of 5 such that for (x, t, e 0  x [0, T0 ] x R" \ {0},

r+s

(2.9) Pl(x, t, ç ,  T)= f i  er—tif(x),14(x, t, ) )  j j — tif(x),11(x, t, ) ) 2 ,
j 1j = r +  I

where /1.1(x, t, )E C'42" x [0, T0 ] x R"\IOD satisfy

(2.10)

Ilin /11(x, t,

lm, 0 or Ilm )1(x,

1(4 AD1x, t, 01 - BK.1

for

if

j=  r + 1

i jo n

r+ s,

for j=1 ,..., r, and

SP x [0, To] x R"\{0}.

Here, we note that the positive constant g which may be different from one in (2.2)
and (2.3), can be chosen independently of S.

Now, we state the Carleman estimate;

Theorem 11. T here ex ist positiv e constants C, yo , To an d  a neighborhood co
of  the origin such that if  O < T < T o , >y o  and co' co, then

(2.11) 11/-7+0+01,11-1±7f(X)I'l MMV 2 C l r Y PO 2 ,ki+i‹m-2
f o r  v e C (w ' x [0, T ]),

(T r
where dull 2l u l 2 d x d t .

o  R"

Theorem I follows from this theorem II by a standard argument. (For example,

H ere w e give som e notations. Let L i  b e  th e  space o f  pseudo-differential
see
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operator on R " of order j ,  introduced by L. Hiirmander, i.e., A E L i if A E L 0  and
the symbol of A  has an  asymptotic expansion in terms of positively homogeneous
functions. W e work with the operators A (x, t, D x )E Li depending smoothly on t.
See [5], [6], [10 ], ... for details. Let T i be the space of the operator B of the form

B .= E  t(t+i)i+k-if (x )iA ,,,(x , t, D x ) D ,  A l k  E
i+ k< j

Then it is easy to see that Ti+ 1 t - 1 T i and t[A, 13] E  T 2 1 - 1  if  A , B.E Ti.
In [8], [9], [11], they made a hypothesis on the lower order terms so that an

estimate fo r pincipal p a rt o f  P 11 can absorb its low er order term s. B ut, in  this
paper, we do not any assumption on the lower order terms, so that we must handle
P, +P,_ 1 d ire c tly . T o  d o  this, we factorize it into products o f at m ost second
order operators. By modifying ).5 appropriately, we may assume th a t Al(x, t, ) e
SI, o (R ") a n d  {Ay} satisfy (2.10) o n  R" x [0, To ] x R"\{0}. L e t u s  denote D,—
tif(x),14(x, t, D x )  by ei , where .15(x, t, D x )e  L 1 h a s  a  symbol .15(x, t, Then we
have

Proposition 1. Fo r any  perm utation tr o f  {1, r+ s} , we have a factori-
zation

P e r= ; ...e 7
( 1 ) 76 + s ) -1- r  r !2  m-29

where erj.---a i +t - lat.} (x , t, D,) if 1=-1, 2,...r, e7= 83 +tl-lf (x )177(x , t, D x )+
t - la7(x, t, D x )D, i f  j= r+ 1 , . . . ,  r+ s ,  and E T"7 - 2 . H e re  al(x , t, D x )e  L°
and b.7(x, t, D ) E-

Proposition 2. For r,„_ 2 e P" - - 2 , we have

r+s r+ s r+ s
r m - 2 = t, D x )  j j  elkt+ gi(x , t, D x )

k=1 j= r+ 1 Ic=1
i< j k 4 j

where r 3 E Tm- 3 , and q1,j , (Li e L°.

For each el, we have the following estimates.

Proposition 3  (See [9 ], [1 1 ], [1 2 ].) . Let Q(x, t, D„, D,) be an operator of  the
form

Q(x, t, D, D,)=D,+ttf (x )/1.(x , t, D„)+ t - la(x, t, D r ), w h e re E  L ' h a s  the
symbol A (x, t, (.;) satisfying 1m A-a-0 o r 11m Al...>, 811 and a(x, t, D,) e  L ° . Then f or
any relatively  compact neighborhood S2' of the origin, there exist positive constants
C, T 0 , y o such that for 0<  T <T 0 , 7> yo , and v e M O ' x [0, T])

)111i' - ' 11 112 CIli- Tv112 .
Proposition 4. Let L  be an operator of the form

L(x, t, D x , D,)={D,— t'f(x).1(x, t, D,)} 2

+ f(x )b(x , t, D )+ r'a(x , t, D x )D „
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w here  e L' has a symbol t, satisfy ing Ilm ),(x, t, P i >  > 0 on Rn x [0. To] x
S"- 1 , b e L .' an d  a e  L °. T hen there ex ist a  neighborhood co of  the origin and
positive constants C, To , yo s u c h  th a t  f o r  0< T <T 0 , y>y o ,  an d  co' C co, if  y e
CZ;)(co' x [0, T]),

(*) 1 A 1 4 2 + 111-7+1-1f(X)Dx1,112+ yt Y T ./. 1 .(X) -12 A 1 V 112

Here A 2 e L 2 h a s  the symbol ( 1 + 112 ) 4 • We note that f  2 (X )  E e ° by the defini-
I .1

tion of f.

R e m a rk . If  b(x, t, is sufficiently small on =1, then  the argument in
[8 ], [9 ], [1 1 ] sh o w s t h a t  t h e  s im ila r estim ate , yllt- Y - 2 012 +11t- Y - TiviI 2 +

(x)Dx vii2 < ClIt- YLvil 2 , holds.

The proofs of the above propositions are left to the next sections. In the rest
of this section, we show that the theorem II follows from these propositions.

Let co' C o.) be  a  subneighborhood of the  origin a n d  x(x)E C (w )  such that
z(x)=1 if x e .  Then for any v E CP° ((.0' X [0, T]), proposition 3 implies that

y 2iir y -2v ii2 CY II t- Y -  0 0 2

<CYllt - Y - t x(x)eivII 2 +CYllt" - qap Au11 2

< C t - l'eixei v 112 + CTY II f-  2 012

AvI1 2 +cTyllt - Y- 2 v112

‹c lIt - Yaiai v112+cTilt - Y-  iaj oi2+CTyllt - Y- 10 2 ,

where C is a positive constant independent of y and T, possibly changing from line
t o  line. Therefore since Cyllt- Y- vIi2 <CIII - Yazai vII2 +CTYlIt - Y- 2 0 2 , th e  above
inequality implies that if T is sufficiently small, and y is large, we have

y 2 p - y - 2 0 2 ‹  Cl T a ia i l l  2 '

Applying this inequality and proposition 4 to each therms in proposition 2, we see
that for Ial +j= m  —2,

(2.13)

• r • rrts r+s r+s
‹ C  I  Mi 

-
2ZOO I 1 eZull 2 C  E 1 2 X(x) fJ e v  12

i,j=1 I , 1 j=r+1 k= I
i<j V V i,j k*-,j

+ Cllt 3rm_3v 12

r-l-s r+s .
‹ C y - 2 i 111 -Y e7 e3 X (X ) re f

 eZV I1 2E  1 1 1 - Y  e lZ (X )  FLeZv112 }
I k=1 j=r+I k=1

i< koFj

+ 011-1- 3r„,- 3v112



r+s
(2.17) E y in - k E 111A-,+,/±1,d+i-,, x )d A da t , 112 ‹ E E  e ,,tr11 , 112,

k = 0 IT j=
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where r„,_. 3 e T"1 - 3 . Let w" C a l b e  a  neighborhood of the  origin a n d  k' E  C-Pc (a ),
= 1 on co". Then for y e C ( c o "  x [0 , T]), we have

[e7e7, z] il l' s  e lk( V=[e7e7, x] ref e au = {(R i e7 + R2 e7,1) ra  eZ+ t - 'R}v, and

w here R j ---Ri (x , t, Dx )E L - '  w ith  its support c  a ,  a n d  R, R' eTin - - 2 . Applying
Proposition 3 and 4 to each terms in (2.14), from (2.13) we see that

(2.15) 1.1 A HMO 2 C y - 2  E  Ilt- Y4 ( 1) . . . 40.+ 0 11112

lai+j=tn - 2

+  C  E
Ifil+kGm - 3

if  y  is large and T is sm all, sufficiently. A s for the  term s o f o rd e r  < in -3 , f ro m
proposition 3 it follows that for vE C(W ' X [0, T]),

)12 1Al21 Dil v 2 <C yl llt— Y+ 1„ ,
x(x).f (x)la lA l a lDtv 112

C j t

Mcv " - i f (x) 1' 1-1 AH - 1 D1142 ;

l' -'- i.x.i 4 'Drz(x)f(x)1114111Dhq 2

+ C T y lr ' +1 i - 1 f (x ) 1Œ1 -1 Alal - V,v11 2

<Cdt - Y+G, J+IfoolalAlalat+Iv11 2

+CTyll( - Y+1 '" - I f (x ) 1 .1 - 1 A 1 .1 - 1 Mv11 2 .

These two inequalities (2.15) and (2.16) implies that if v C ,T (a fx  [0 , T])

1r
k=1

(2.14)
r+s r.+Ç r+s

z] U  q v =  [e7, {(R ,D , + + t - lR'}v,
k=1 k=1 k=1
k j k 4 i, j k j

k=1 k=1

(2.16) Yllt - " - -̀ i f (

for large y and small T. O n  t h e  other hand, proposition I implies that %
r+s

CMI — Y H e7t111v112
20 2 . Combining (2.17) with this inequality, we have

i=1

r+s
(/* +  s) !l P v 2  C t l H  e u i v112 — E m1- Y+/-400 1. 1A1. 1mv112 1

itJ = 1

"I— 2
E  I -I-lid 4 j— mf( x )d Ad Di. 012,

.1c=0 d-I j=in—k

for large y and small T  This is the desired estimate ill theorem II.

3. Proof of the factorization

In th is section, w e give the proofs of Proposition 1 and 2. W e need some
lemmas.
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Lemma 1 (See [9], [11], [12].).  i f  i=  j ,  then f or any  R , E T ',  there exist
QkE (k = 1, 2 ,3 )  such that

RI =Q1ai+Q2a i + t - T3.

Lemma 2. I f  i =j, f or any  R2 E T 2 ,  there ex ist Q, E L °  an d  Q kÉ  T' (k=  2, 3)
such that

R2= Q i ef-i-Q 2 0J +r'1 2 3 .

Lemma 3. I f  i = j, f or any  R 3 e T 3 ,  there ex ist Qk e T ' ( k = I, 2) and  Q 3  e T 2

such that

R3 =Q,of + ,2233+ t - 'Q3.

Proof of Lemma 2. Let R2 have the form
A o(X , t, D x )D -Ft' f (x )A ,(x , t, D O D ,*  f (x ) 2 A 2 (x , t, D v ), a n d  Q „ have the

form

Q i (x , t, D x , D r )=a,(x , t, D .,„)

Q2(x, t ,  D.,, D r )=a 2 (x, 1, D x )D( + ti f (x)b(x , t, D x ), w h e r e  Ao , ak E L°

A I , b e L ' and  A 2 e L 2 . We consider the eqUation;

Ao (x, t, e) r2+t/f(x)A.
1
(x, t, f(x)2A2(x.,

=Q ,(x , t, t' f (x )A i(x , t, ')) 2 H-Q2 (x , t, r)(t —  t i f (x ) 1(x , t,

where Ai (x, t, is a principal symbol of Ai (x, t, etc.,... In this equation, we
compare the coefficients of T j ( j  =2, 1, 0) in each hand side. Then we have a system
of equations;

a ,(x, t, ) +  a 2 (x , t, A o(x, t,

(3.1) —2.14x, 1, ) a  ( x , t ,  ) ( 1 2 (x , t, (')= A ,(x , t,

),?(x, t, 2.1(x, 1, )b(x, I, (;) =A 2 (x , t,

For the unknown vector X = a2, b), the matrix of the coefficients in this system is

/ I I 0  \

—22 ; — A ; I

0 — 2 J

Since i =j, the determinant of this matrix =.11+),3-2A ;Ai =(,1,—ki )2  does not vanish.
Therefore, th e  equation (3.1) h a s  a  so lu tio n  '(a 1 , a 2 , b). L e t a'i  = a t, )(1;•( )
a n d  b' =b(x , 1, )(1)(0 w here cp()e C'(R"), (P= O i f a n d  (p =1 ifI .
Then it is easy to see that di  e S° and b' E S '. Let d i (x , t, L° and  b(x, t, D x ) e
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L ' be the operators with symbol a";  and  b', respectively. Using these operator, we
have the desired result.

Proof of lemma 3. Let R 3  and Q,, have the forms;

R y  (rip o k A ax , t, D.314, Ak e L k

k+d=3

Qk =  ak(X> t, Dx)D t+ f(x)bk(x. t, D r ), a k e L° a n d  bk E L i  ( k =  1, 2).

By the same arguement in  the proof lemma 2, we have the system of equation;
AX=B, X  =i(a ,, a 2 , b l , b 2 ), B = i(A o , A l , A 2 , A 3 ), where

/ 11 00 \

—22, —21 f 1 1

)f. — 2). ; — 2 2;

\  0 02 .13 /

In this case, too, the determinant of A  does not vanish since > e .  Therefore
the same procedure as before gives the desired result.

Proof  of  proposition 1. Using lemma 1-3 repeatedly, we see that fo r  jai +
j =  m -1,

(3 .2 ) ti , , Jf(x)IIIAIIIDi=plal - m+iai+if(x)111AIdelat =t 1lal - lf(x ) 111 Al 21 Df

= ( - 1 ( 1'fA)I'"IDi" {(Q1Dt+Q2)a"+5_1+(Q3 1),+■24)a+5}

t - 2 1 . rn— 2(5c, t, Dx , D1)( Œ 'I  + j '  =m -1—  3)

_ r+s
= cif(x, t, el, O f + y  cji (x, t, D x , Dr) ak

 r t Y
i= 1 k=1 j=r+1 j=r+ I k=1 k=r+ Ik j k * j

+ t - 2 r'„,_2 (x, t ,  Dx , D,),

where q;  e L° if j= r, q i  E T ' if j=  r+1 ,..., r+s , and r _  2, E P n - 2 .
Let r'; = 1" Tr I • . • °7r(r + s), where Of  =a ;  if j=1,..., r and 0j =03 if j= r+ 1 ,... ,

r + s .  Then since r„_ 1 e r T m ,  from (3.2) it follows that

r+1
t, D i ,)) k

k=1
k j

1f(X)b7(X, t, Dx ) + t - 1 a3(x, t, D x )D,} F 1 k t-2r , Ili — 2j=r+ I k 1
k4j

r+s
= y 0„( 1 ) 4 2 ) •••Z7

,
( j
_i ) tt -  I C4(  j ) ( X , I, Dx )D ,+ t' - 'f(x )b ; ( j ) (x, t, D x )}

n(j)=r+ I

&c(j+1)•*.ils(r +s)

A =
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+ o ,
1
,•••o.„„- 0 - 1 4 ( ; ) (x , t , D o }a „„ ,,,• • •4 „ + „ + t -2 r , _ 2 ,

)=1

where a3E L °, be  L ', and r _  2, r„' ,_2  e Tm - 2 . From this equation, we have
r+s

P 5 =11 0,0 D +1 - 1 4 ( j ) (X, t, Dx , Dr)} + 2, where c'.1 e L° if  j= 1 ,..., r, and

( le  T ' i f j= r + 1 , . . . , r + s .  This completes the proof of proposition 1.

Proposition 2 is proved by the same procedure as the proof of proposition 1.
So we omit it.

4 . Proof of proposition 4

In  order to prove (*), we use a microlocalization. Namely, let Q o c R" be a
neighborhood of the origin and we pick a  cover of n o x [0, To ] x Rn \ {0} by conic
neighborhood U such that for each U, there exists a  neighborhood VD U in which
one of the following three conditions holds;

f1) if (x, t, ) e  V, il =1, 1m A (x, t, )<  —a and  1(b+a))(x, t, 01<2 - I 2 a 2 ,

2) if (x, t, )E Y , W =1, Im il(x, t, 0 < —  E  and 1(b + a ))(x , t, )1 > 2 - "a 2 ,  or

3) if (x, t, )E  V, Il = 1, Em .1.(x, t, ) >  a,

w h e re  4 x , t, ), a (x , t, 0 , b (x , t, ) a re  th e  p r in c ip a l sym bol o f  .1(x, t, Dr ),
a(x, t, Dr ), b(x, t, D i ), respectively.

Since no X [0, To ] x S" - 1  i s  compact, Heine-Borel theorem gives a  finitely
covering {I/ i }r1= ,  o f  n o X [O, To] X R"\{0 1 . W e  m ay  assume tha t for sufficiently

small T,, t I i n 12-  x  [0 , T1 ] x 12"\{0} and U 1 ,1 , Vi  have the form; w x [0, x Wi ,
J=1

etii  x [0, x 1,r i , respectively, where coi  x Wi  and (ti i  x 1T/ i  are open conic sets such
that w  W  n Su -

1 eb ;  x W. n S ' ' .  L e t O i (x , ) 2 be a partition of unity, smooth,
positively homogeneous of degree 0 in supported on the open conic set coi  x Wj;

E o(x,  ) 2 i o n  Do X R"\ {0}. Let (pi (x, be  a  Coe-function, positively homo -
J = t
geneous of degree 0 in supported on eb i  x and (pi = 1 on the support of tk i .
W e denote by i/i (x, Dr ), i (x, Dr ) e  L ° th e  operator w ith th e  symbol tfr i (x,
9(x, respectively. Then we have the microlocal version of proposition 4.

Proposition 5. Under the saine condition of proposition 4, there ex ist positive
constants C, To , yo such that 0<  T <  To , y> yo , and v E cN [o , T ]; ,9 '(R "))

p x )v)<C1111"1-All + (T +  -- )E y (v)}

1-i 1.
where E,,(u)= Y2 11 t" - 2 1 4

2

 +  t 1f(x)A u 112  +  t- 7 - i pt14 112 +Yll t - Y +  - 1 1 2  (x)A -
2 -1 4 112 .

Remark. A s mentioned before, in  the  case  1 ) th is  proposition essentially
follows from the arguments in [11], [9]. But, to make clear our argument, we give
a slightly different proof in this case, too.
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Before proving proposition 5, w e show th a t th is  proposition implies prop-
osition 4. Since E 107(x, D x )tli j (x , , ) —  1}Z(X) E for x(x) e q(0 0 ), x = 1 on

i=1
(u, we have

_
(4.1) E„(y)-=E (yr)< Ey (tki v)+c,E,(A 2 0,

i= 1

where C , is a  positive constant depending on ji a n d  (pi  b u t  independent of y, T.
In the application, the coefficients of L  may be depend on S .  But it is easy to see that
we can choose U1 ,  1/j  independently of S. This consideration shows that the constant
C, in (4.1) is also independent of (5. Therefore, using the fact that MA  2u"2II < 11 110 2

for any small d > 0, if the support of u  is sufficiently small, we see that there exists a
neighborhood u; of the origin such that if u e CW(o; x [0, T ])

c, E) ,(A- ÷ 0 ‹ . - - {y2 111- v-2 v112 +11t- 7-1 D,v1121.
t-  I

+Ctilt 2 . 1. 2 A 2 0 2 ±Yllt - V - 2 0 2 } •

Combining this inequality with (4.1), we have

(4.2) Ey(y)<C Ey (tlf i y) for V  e Q,c(co' x [0, T])

if y is sufficiently la rg e . Applying proposition 5 to  the right hand side of (4.2), we
have

E(v) <„ Cf rYLik -F(T-Fy - 1 )Ey (v)}

<C I (11r Y ikiLvIi 2 +11l - Y [L, tki]V11 2 ) +(T ±Y - 1 )E y (V)}
i=1

<c{lIFYLv112 +T(Ilt - r" -  'fAy112 + It - Y- ID,v112 + Y v I1 2 ) + (T+ Y- 1 )Ey (v)} •

Therefore if y is large and T is small, this inequality implies that (*) in proposition 4
holds.

Now we proceed to the proof of proposition 5 .  It is based on the following
two lemmas.

l -1 
Lemma 4 .  Let Q = 0 + t 2 f ( x ) 2 a 1 (x , t, Di ), w here a 1 e  L 2 . Suppose that

2 2
the case 1) or 2) holds in V1 . If  T is small, y is large, sufficiently, and tlf E L ° with
support c  V»  then for y e g ° ([0 , T ]; Y x (R"))

I - I I I
(4.3) (1+1)/61y11 "-11/1012+Ellt-7± 2 f 2 A 2 04 2 / ±CY - ' ll ( - 7 Dt11/0 2

Ilt- ''04112 +cTIlt - v- 1 /1- 1 0 2 .

H ere  is .a positive constant appeared in proposition 4.

Lemma 5. S uppose that the case 3) holds in  V»  T h e n  f o r an y  M >0 , there
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exists such th at if T is sm all, a n d  E L° w ith support OE I/1 , f o r  y  e Cg)
([0, T]; . (R"))

(4.4) MIYIlt-v-ili/v112+11CY+1-2f /11 Ov112 1 + Cy -  ' Ilt" DtIP vI12

‹Ift"atPr11 2 + C T IrY - 1 A- '13112 .

Proposition 5 is proved by use of these lemmas, repeatedly. Let us consider
each cases more in details. In the case 2), since (b+a).)(x, t, does not vanish in
1/1, we can take q i (x , t, Dx )e  L 2 su c h  th a t (the symbol o f q 1 )1v  = { b(x, t,

2 2  j1
a(x, t, 02(x, t, 2 . Then for some d  (x , t, D ,)E  2 , do , j(X, t, L°(j=1, 2)

2
and d o,../ (x , t, Dx )E ( j= 1, 2), L can be written as follows;

(4.5) bpi = Q I (x, t, D ,  D,)Q 2 (x, t, D , WO' I , t, D A 2 (X , t, Dx , D,)0„

/- I _ 1/ -  I▪ t 2, f  2 (x)d (x, t, 2 (10,2(X, t , DMIP ;

2
(1 0 , I (X ,  t. Dx) ±

I-I ,
▪ tt 2  "d „ ,(x , t , D x ) +d 2 (x, t, D )} ,

I-1
Qk(x, t, Dx , t, Dx ) + (-1 )k t 2  f  2 (x)q (x, t, Dx ) ( k = 1, 2).

2

Applying lemma 4 to Q2, we have

(4.6) y 2  Ili-
y-21pjv 112 + y g ili- 7+ I 21  - I f li A l lpi t 4 2 +

6y11/- 7 - 1 Q201V 112  CyT111 - Y- ' /1- '0 2

< 6 y{111 - Y - 1 0N2v11 + 11/- Y- ' [Q2, 0]011 2 + CYT A -102

<121, 11t- 7 - '01Q2v112 +CY111- Y- 1 /42 + C yn t - Y- 1 A - I v112 , and

/-1
(4.7) B2111-

y f jv 112 < e 2 Y+ 2  r Xjf 2 A -
2- v1I +C111 ' + ' - 'v1112

<2c 2 Mt-Y + 1  2 1  f l2J ( 1 L 2 1  . ( 12- /1÷ W  2  + CT Ili-Y-2v 112

1 (/1 -2 1 .t"  1 / 1 I v. ) 112

/ -

2
1

1.2
1

A 2

1  1

1 2  + cnrY - - ,

+ CTO - Y- 2 v 112

I -  I 1 1
<2481I1 2 /1 -2- ip i Q2 0 2  0 11- 7[Q 2 , f  2 A 2 ]0 12

1-1
+ t-27 f 2 A 2  V201 2 +  G ilt - Y - 2 /12

<24E111
+1-1 1 I2 f  2 A 2 O1Q20 2 + CO - Y + L . 2 1 - 1 /

1-
A

I
V 112

+ CT D1v112 ± CT ill- Y - 2 012 .

These two inequalities (4.6), (4.7) give

I - I I I
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(4.8) y2111-7-2 i vV, 112 +7 8 1It 7 + 1  2 1  I AA j1,112 C11 1 - Y - 1 Dr0 JV 112

1 
+ 8 2 111 - 7 + -  I f A  jt/112

12{y11 - 1
 j Q 2 1 , 1 1 2  +Bil 1 - 7 + 1 7 1 1 f -1/- Y 0 1/1 Ill jQ211 112 }

+ C(yT + yT 2 )111- Y- 2 012 + Clli 71-1 1A l v112

+ CT 111- 7- 1  D rv112 + CT 111 - 7 - 2 1 1 112 .

Applying lemma 4 to Q1 , we have

(4.9) the right hand side of (4.8)

<72111- 'Q I ON20 2 +CTIlt - Y - I A- 1 Q20 2 + CC+, T + iy- + T +

< 1 4 4 111" 421■220 fv112 + 'IQ 1[0 p 122]v112 + C(y - 1  + T)E y (v)

<14411t - T 1Q2 0 0 2 + C(y - ' + T)E y (v).

Therefore (4.5), (4.8), (4.9) imply that

(4.10) IIt- YLOg 112 - 1 2-  t - Y Q 422 .v 112 C{ llr 1aQ21v 112

,./-1 I I 1
+ Ill œ r f  2 A 2 iv112 + T  l r 2 vll 2 + T T  Ill - 2 A 112 }

2-10 { y 2 111- y-20 i v  112 + y g L - 7 2 j -  1A  kfr i v 112  + Olt" -  D v 112

-

+ TE2 111 - Y + 1 - 1 f Alk Pli 2 } C(T + y - ')E y (v)+ -
411 ' M20 ivil 2

- Cy - 1 111 - 7 Q0221/1 iv112  - C(T+ ) - 1 )Ey (v).

Therefore, if y is sufficiently large and T is sufficiently small, (4.10) leads to prop-

osition 5 in the case 2).
In the case 1), applying lemma 4 to 0 with a  (x, t, Dx )=0, then by the same

argument as above we have

(4.11)l l 1 2 v 112 ( I  / 144)11/2 lIr 2 v 112 + Ili-
 Y+ L711-1 f + A+  v 112

} - C(y - 1 + T)E y (v).

Then by the definition of L, we have

(4.12) II r YLAPPII 2t - '0 2 0 ; v 1 I 2  - f(b+aA)(x, I, .13,)+ t- Y- 1 aa}l/ii v112

1
,Tt . hr ( b  +  a A)t/I



f
I- 1  1

(4.14) X = Dt — t'f(x)).,(x , t, 1),)+ t 2  f  2 (x)a;(x, t,

Ilt- TkIli=11s2y 0wIlf=11x0wIli+ II NwIli +2 Re (X w , Yw)k,

1- I  
Y=(11 Oyt - ' — it lf(x)A 2 (x, t, D x ) + i t  2 f (x )a 2 (x , t ,  D r ),
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1+ —

4  
II — 2II t- Y - 1 a8 tfriv112 .

Since the principal symbol of (b + a 1)I <2 - 1 2 E2  in 1/i  n s"-  ', the sharp estimate which
is obtained from the sharp Girding inequality implies

(4.13) III-Y+1-1/.(b+(i2)1Pi 2-1200-y+/-1A0102+(-711t-y-2012.

(4.11)-(4.13) imply that

I
111 - 1 1 AP j0 2 2 - "IY2 1It- Y- 2 0

I-
.1142+Yellt 2 f  2 A 2 'P jt/112

± O lt-y -144 10  2 + r 2 r" - IfAlli i t,112 }

+ — Cy - 1 )111- 7 52 0 .11,112  — C(Y - I  +T ) E y (v).

Therefore, if  y  is  large nad T is small, sufficiently, this inequality implies prop-
osition 5 in the case I).

Finally, in the case 3), applying lemma 5 to 0, twicely, with M  such that M2 /16
> max Ib(x, t, )+ a(x , t, )A (x , t, )11(1  12) 2 b y  the  same arguement as above,
we have proposition 5.

The above consideration shows that it suffices to prove lemma 4 and 5 in order
to end the proof of proposition 5.

instead of the standard norm  HI. H e r e  k is a  real number determined later. L e t
v= tYw and Q ,--t - YQtY . Then, we have

12,-= D1 +(110yt -  —ttf(x).(A i (x, t, k)+ 0, 2 (x, t,

/- I I
+ t 2  f  2 (x)fa ,(x, t, D x ) + ia 2 (x, t, D )} ,

w h e r e  E L', and a i  E (j =1, 2) are the operators, depending smoothly on t  and
having real symbols Re /1(x, t, lm A(x, t, Re a -1 (x , t, a n d  Im (x, t,
respectively. Then for v e CdQ, ([0, T]; 9 '(R ")),  we have

Proof  of  lem m a 4. W e  u se  th e  modified norm Il u IIt ÇT

.ç t- uI2k 12dXdt
0  R .

where (u, v) k =(t - ku, t - kv)= 1-2kuMxdt.
0  R "

We are going to estimate 2 Re (X w, Yw)k from below. First, integration by parts
with respect to t gives
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(4.15) 2 Re (D rtPw, (1/()Yr 1 0w)k = (1 + 2 0711( - 1 0v11/i •

Let us denote AI e L l and a7 e L 2 b y  L 2 -adjoint of )..; and a»  respectively. Then,
we have

1- 1
(4.16) 2 Re ( —Pf/1 1011', { —it'f/1, +it  2-7 2 a2} 1/1 w)k

/- 1 3 3
02/(,71f2,7 1 ____A ff2 )0 )0 , , , + / -  2  ( a lc. f 2 ) 1 _ A4'f  2 a , ) 11 ,1, , i tfrw ) k ,

1- 1
(4.17) 2 Re (( + i  2 f  2 0 1/1 1v, ( 1 /i)Y1 - 1 1 1/w)k

= y e t i" — A7f)+1 2  1 ( f  2 a,— atf 2 )11//1V, ilfrO k  and

1- 1  ±
(4.18) 2 Re (t  2 f  2 a i tim, i ( / 2 +1 2  f 2 a2) til W)k

/-
-
1 3

=  ( { 1 2  (IV  2 al — 4 1 .  A 2) +1"(al.fal — affa2)} Ow, itGlv)k.

Since 2'21̀ ,f2Ai _ 4 f2 ,2A  e L ',  the  asymptotic expansion of this symbol implies that

1-1 1 1
10,2/(2,

21•f2 ) 1f  27 1 7'1'4' ")kl I k ilt 2  - P  2 •J 2
±  t -  1  tPW Ili)-

Estimating the other terms in (4.16)-(4.18) by the same way, we have

/--1
(4.19) 1(4.16)1+1(4.17)1+1(4.18)1<CT(011-f2 A 2 IPW1q ± r i tPWIlli) •

1Here we use the fact that 1 a1)1 <-2 (1a12  +1612 ). Now we consider the most important
term;

1-1 1
2 Re (D t tPw, i(—Pf) 2 +1 2 f  2 a2 )0w) k

_
=  (1— 2 k ) ( 0  ,  — i t -  If 1).2 1// 1))„ +  1 12 k ) ( 0 1 , , t i

f  2 a21w )k

!

-F(Ow, — tif, 12,t +1 2 1 2 a2,t - 1 . 1 1 (W - 12 2)Dr

• / - 1  
+ j I  2 (aIf  2 —  2  aDD f l  w )

— 11 + 12 +13 .

L4 a aHere A2 ,t e Ll and a,,, a L 2  has the principal symbol -a /12(x, t, ) and —a-i-a2 (x, t, ),

respectively. Let us consider each terms I. By use of the identity Di = X + t'f), —
1-1 1

t  2 f  2 a l , we have

/-1 1 1 1
I/31 CT{ hi - 2 7 f T fl 2 4(w l 2 111 - 1 1 41W + C T 2 Mt- ' 111 14)11k1IXtfrwIlk.

Taking 2k—  1 ;
1  , we have

12=0.
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W ith this choice o f k, since the  sym bol o f ill  < —8<0 in  V1 , the sharp G irding
inequality implies that

1I  = - .“1 + 1) (Ow, t' - ' f(-22)tPw)k

/7t I-1 I
> 1 (1+ 1) (t - 2  f 2 w, q( 22)t 2 1.2  OW)k — CTO - 1 0WMi — CT P - 1 A - 1 W hi

1 + 1
/ -

8 1*  2  f 2 2  OW Ilk— C 1 1 0 - 1 0 W ilt+ 0 - 1 /1 - 1 WHI,

where q) e L° has the symbol q)(x, t, )EC(V1) satisfying q=1 on the support of 0.
Therefore, we have

1=1

I - 1 1-1
? -- .1 (1+ (111 2  f  2  A 2  tlIwIlk - 11(1 —  (p)1 2  f  2 A 2 0 1010 2

/-1 I
—CTIdi 2  f  2 A 2 1P1Vq+ 111- 1 0wIli+11r 1 A- 'w1lil

- CT 2 111 -1 0 14, 11k• M X 0 1 tik

1 /-1 11 /-1 11
2 f 2  /1 2 lVdi — CTOI 2 f 2  A 2 OW0c+ M1 - 1 1 1/WH+ 111 - 1 /1 - 1 Whi}

- CT 2  { 111- 1 0w1q+ 11x1Pwili }.
This inequality and (4.14), (4.15), (4.19) show that

(4.20) 11Q,OwIli-71,1x0wIli+11YOwlq+ ( 1 +
5

1 ) 8 111L2-1.»
1+1 — C713

if  T  is sufficiently small, and  y  is sufficiently large. O n  t h e  other hand, since 12
is elliptic, there exists q1 e L° (  =  1, 2) such that

=q 1 (t'f1 2 )+q 2 .

Using this equality, we have

I - I I
1),---X+P/2 1 —t 2  f  2  a ,

/— I 1
=X+q 1(t'/2 2 )—t 2  f  2  a 1 + q 2

1-1 I-1p  a 2 ) _ t  2 f  2  +  q 2 ,= X +(11i)q,(— Y+(11i)yt - 1  + i t  2 so that

/ - 1 I 1

Y11/W + 2 1.-2- 11 0W117(+Y2 t11 - 1 1 11WID•

This inequality and (4.20) im ply that if T is small and y is large, sufficiently, then
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W y tilwiii> --
L
if. (1+ 1 )Y111 -1 0w q+ 1 +

6
1 alif r f T A Iiw 1 1 2

This proves lemma 4 if we take y  yo (k).

Remark. It is easily seen that the above argument also is valid if k is chosen
such that l —2k> 0. Therefore if 1>0, we do not need the modified norm 111,.

Proof of lemma 5. In this case, we have

ay = rY atY ±  Y,

X =D e — t1 f(x).1,(x, t, D,), a n d  Y=0/0yri — it' f(x).1 2 (x, t, D„).

Since the symbol of /1.2> e > 0 in V»  if we take k such that 1 + 2k > 2M and —(1 — 2k)>
3M/e, the same arguement as the proof of lemma 4 implies lemma 5.

Remark. In this case, the use of the modified norm 11.11k is not essentially one.
In fact, we have more sharp estimate than (4.4);

y 211t - 7-101,112± v iit 7.0 -f i f i  AI 002 + cy - lli rYDrOv112

(Cil t- Y8k112 C T y  t " - 1 /1 -1 v112 .

This estimate follows from the same arguement as above and the inequality

/-1 1
il YOW 112 % Y2 11 t- 1 0 ) 112 y 8 11t —2-1 2 A 2 OW112 —

which is a  consequence o f  th e  sharp Girding inequality an d  th e  fac t tha t the
symbol of 2.2 >s> 0 in  V»

Acknowledgement. I would like to thank Prof. S. Mizohata for his invaluable
advice and encouragement. I would also like to thank Prof. W. Matsumoto and
Prof. T. Nishitani for their useful remarks.

DEPARTMENT OF MATHEMATICS

KYOTO UNIVERSITY

References

[ 1 ] S. Alinhac and M. S. Baouendi, Uniqueness for the characteristic Cauchy problem and
strong unique continuation for higher order partial differential inequalities, Amer. J. Math.,
102 (1980), 179-217.

[ 2 ] M. S. Baouendi and E. C. Zachmanoglou, Unique continuation of solutions of partial
differential equations and inequalities from manifolds of any dimension, Duke M ath . J.,
45 (1978), 1-13.

[ 3 ] A. P. C alderón , Uniqueness of the Cauchy problem for partial differential equations,



Uniqueness in the Cauchy problem 439

Amer. J. Math., 80 (1958), 16-30.
[ 4 ] L. H brm ander, On the uniqueness of the Cauchy problem II, M a th . Scand., 7 (1959),

177-190.
[ 5 ] L. H iirm ander, Fourier integral operators 1, Acta Math., 127 (1971), 79-183.
[ 6 ] H. K um ano-go, Pseudo-differential operators, Iwanami Shoten, Tokyo, (1974) (in Japanese).
[ 7 ] S. Mizohata, Unicité du prolongement des solutions des équations elliptiques du quatriemè

ordre, Proc. Jag. Acad., 34 (1958) 687-692.
[ 8 ] S. N a k a n e , Uniqueness and non-uniqueness in the Cauchy problem for a class of operators

of degenerate typ e , Proc. Jap. Acad., 58 (1982), 141-149.
[ 9 ] S. N a k a n e , Uniqueness and non-uniqueness in the Cauchy problem for a class of operators

of degenerate typ e , to appear in J. Diff. Eq..
[10] L. Nirenberg, Lectures on linear partial differential equations, Regional Conf. Ser. in

Math., 17, C.B.M.S. (A.M.S.), (1972).
[II] G .  Roberts, Uniqueness in the Cauchy problem for characteristic operators of Fuchsien type,

J. Diff. Eq., 38 (1980), 374-392.
[12] H. U r y u , Uniqueness for the Cauchy problem and its applications, Tokyo J .  Math., 5

(1982), 117-136.
[13] C. Z u ily , Lectures on uniqueness and non-uniqueness of the non-characteristic Cauchy

problems, Univ. Federal de Pernambuco Inst. de Math. Notas de Curso, No. 18 (1981).


