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§0. Introduction

We denote by (x, y) the variables of C"*!, where xe C and y=(y,, y')e Cx
C"~1, and by (&, n) the dual variables of (x, y), where n=(#,, n'). In this paper, we
consider partial differential operators of second order written in the following form:

P(X, Y D-"’ DP)= Z xx(i'a)aia(x, y)D.‘\'D;

i+a|<2
Here D,=0/0x, D,=0/0y, and k(i, &), i +|a| <2, are integers defined by

qla if i+|a=2,

’

K(i, 0)=( q if =0, |a|=1,
0 otherwise.

q and ¢’ are integers satisfying 0<q’'<gq—2. Furthermore, a,(x, y), i +|a| <2, are
holomorphic at the origin and a, o=1.

Remark. If g'=g—1, the above operators are said to satisfy Levi condition.
Several authers considered singular Cauchy problems for operators which satisfy
Levi condition. In this case, the solutions have at most poles along the chracteristic
hypersurfaces issuing from the singularities of the Cauchy data provided the latter
have at most poles (See Nakane [5], Takasaki [7] and Urabe [9]). Perhaps we can
also treat this case, but in this paper we only consider operators which do not satisfy
Levi condition.

We assume that the equation

z xq|¢|aia(x’ .V)f"'la=0

i+[a]=2

has two roots £=x94(x, y, n), i=1, 2, where A(x, y, n) are holomorphic at x=0,
y=0, n=(1,..., 0), homogeneous of degree 1 with respect to #, and satisfy
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Mlx, y, M)=Ay(x, y,n) at x=0,y=0,1=(1,0,...,0).
We consider the following problems:
Pu(x, y)=0
1) .
Diu(0, y)=1u(y) i=0, 1.

Here 1i(y), i=0, 1, are multi-valued holomorphic functions defined on {ye C";
|y;|<R, y;=0} with some R>0, which satisfy

|2(»)| < Cexp {Cly,|~(a-1-a)i(a+D}

with some C>0 there.
To state the main theorem, we define ¢(x, y), i=1, 2, by

0xpi(x, y)=x14(x, y, P,pix, )=0
(Pi(o, y) =Vis
and Y(x, y), i=1, 2, by
@ix, y)=0 ifand only if y,=y(x, y).
We have the following
Theorem. Let ¢>0 be small enough, and 0 an arbitrary real number. We
define w,y=w; yU w; 4 by
w;",:{(x, e CxC"; |x|<e, |y;l<e, j=1,...,n,
|arg (v, —Wilx, YD =01 <X +e, i=1,2}
WLp={(r N Cx €75 Ix|<e, Iyl <o, j=Lom,
|arg (v, —¥ilx, YD —=0-rl<F+s, i=1,2}.
Then there exists a unique solution u(x, y) of (1) which is holomorphic on w,q which
satisfies

lu(x, »)ISC T exp {Clo(x, y)|~@=1-a)/a+D}

i=1,2
with some C>0 on w,,.

Remark. Let us fix (x, y’)e Cx C"~! arbitrarily. Let us define 6 by 6=
arg {Y,(x, y')—¥,(x, y’)}+%. Then it is easy to see that w,, is a domain in the

universal covering space of w,={(x, y)e Cx C"; |x|<s, |y;l<e, j=1,...,n, @yx,
¥)=0, i=1, 2} whose projection to w, is w, itself. However, we cannot construct
the solution on an arbitrary domain in the universal covering space of w,.

Remark. Moreover, we can give the concrete representation of the solution
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using some class of operators. The details are given in §2. We can also prove that ‘
the solution is single-valued on {(x, y)e Cx C"; |y(x, y)|<|y:l, i=1, 2}.

§1. Preliminaries

In this section, we define a class of operators which act on some (quotient) space
of holomorphic functions. Our operator class is very much like that of holomorphic
microlocal operators which act on the space of holomorphic microfunctions (for
holomorphic microlocal operators, see Sato, Kawai and Kashiwara [6], Kataoka
[4], and Aoki[1]). Aoki defined the notion of the symbol of a holomorphic micro-
local operator, and this notion is very useful for our study. However, though we
need to know the relation between an operator and its symbol in a concrete manner,
he gave this relation in a rather abstract manner. The purpose of this section is to
give this relation in a concrete manner. However, we have not obtained a result
which is interesting of itself, and our result is no more than a provisional one which
is only enough for our later use. Thus we only give the sketch of our result, and
omit the proof. The idea is due to Aoki [1].

In this section, we fix a real number 6 arbitrarily, and define p by p
=(q—1-q")/(2g—q’). Let R, r and ¢ be real numbers which satisfy 0<e«<r«R<1.
We denote by &R:r the set of holomorphic functions a(y, n) defined on

(2) {(y,MeC"x C; |y;I<R, j=1,....n, [n;|<Rlmy|, j=2,....,n

Iny| >R, |arg (eV~Tn,)| <R,}
which satisfy

la(y, m < Cexp{Cln,|*+r 22 n;1}
£

with some C>0 on (2). Assume that f(y) is holomorphic on {|y;/<R, j=1,..., n}
and satisfies |f(y)|<e there. We define &% by &&r={exp {f(y)n,}a(y. n);

a(y, n)e PR}, If by, n)=exp {f())n;}b(y, ) € LR" we define b(y, z— ) by

¥ 1
b z=p) == %
(y z Y) 27'[\/_1 Z%' (292( ¢_+1))

rRe /- 10

X0y(—2z"—y'),

e_(zl_}'l_f()'))'llaa(y’ "l)d,«’]

where Z, ={0, 1, 2,...}, a,(y, r],)=$[6‘,‘,’a(y, ]y =0, and

= —a I
@a(y) ].:.[211:\/ l( yj) =
Then we can prove that I;( y, z—y) is holomorphic on
(€)) {0, e C"x C" |z, =y, —f(P)| <rR/2€%,

larg {eV=1%(z, — y, —f(y))| <(n + R)/2,
lz;—y;l>2r, j=2,...,n, |y;I<R, j=1,..., n}
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and satisfies
O 1By, 2= <Cexp {Clzy = yy ~f O/} T 1z,— |

with some C>0o0n (3). We denote by S&:" the set of holomorphic functions satisfy-

ing (4) on (3). We remark that —_ 2 —4—1—4"
g@on(d : =1
Let us denote by ¢% the set of functions u(y) holomorphic on

®) {pecms iy OI<R, larg eV 0y, 4100 -nl < E+ R

ly| <R, j=2,.., n}
which satisfy
lu(») < Cexp {Cly, +f(y)|=/(*=}
with some C>0 on (5). We denote bly 0% the set of holomorphic functions u(y)e
0% which can be continued to
e y1+fWI<Ry, Iy <R, j=2,...,n}

with some R, »e¢. If f=0, we write OR (resp. OR) instead of 07} (resp. 0%).
Now let us define the action of h(y, z—y)e S§r from OR|OR to (5’}'2'/0’}‘2'.
We define s, s, € C by

—_Rr —q(g_" _R _ Rr —(p. R
=g ew{V=1(0-3-F)) sa-gren{y=i(e+ 5+ 5
If u(y) € O (resp. OF), we define v(y) by

w)={ | b 2=y, -y, ~f G -y).

Here y; = C is a path connecting s, and s,, y'=y,x--- xy, where y;={z;—y;e C;
|zj—y;l=2r}, j=2,...,n. It is easy to see that v(y)eé’}‘” (resp. 0%~2r). Thus
we obtain a map from OR/OR to (5?‘2’/0’}‘2’. We denote this operator class from
GRIOR to OR->[0R-2r by OpuR,r. If h(y, z—y)=b(y, z—y), b(y, n)e LB,
we denote the above v(y) considered as an element of 07}"2’/0’}‘2’ by b(y, D,)u(y).
We call the function b(y, n) the symbol of the operator b(y, D,), and denote the
symbol of an operator b(y, D,) by a(b)(y, n).

Now we give some elementary results of this operator class Op(R, r). Let
b(y, n)e #%rand by, n), j€ Z., a sequence of functions holomorphic on (2) which
satisfy

1bi(y, DI<C(R)(r +|ny|7j)exp (nrimy])  jeZ,

with some C, R;>0, r«R; on (2). We write b(y, n)~ i‘b b,(y, n) if
j=

J
Ib(y, M= 3 by, MISCR)™( + |~ ) exp (nrimsl) - Je Z,
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on (2). Now we have the following.

Proposition 1. Let us assume that b(y, D,)€ Op(R, r) is defined by the symbol
o(b)(y, Me&LHr. If a(b)(y, n)~0, we have b(y, D,)=0.

Now let us consider the relation between an operator and its symbol. Assume
that h(y, z—y) e S and define h(y, n) by

h(y, '1)=S eGEIMh(y, z—y)d(z—y), y=y,X7".
Y

It is easy to see that A(y, n) € #R//42r Therefore we can define an operator
h'(y, D,) € Op(R/4, 2r) by a(h’)(y, n)=h(y, n). We can prove the following

Proposition 2. The action of h(y, z—y)e S%rcSE/42r from ORI4|ORI* to
(5‘}/“‘2’/0‘}/4'2’ coincides with that of h'(y, Dy).

This means that we can determine an operator from its symbol and vice versa,
though we must replace R (resp. r) by R/4 (resp. 2r) in the latter case.

Now let f'(y) be holomorphic on {|y;|<R,j=1,...,n} and satisfy |f'(y)|<e
there. Assume that b(y, D,)€ Op«(R, r)(resp. b'(y, D,)€ Op;(R, r)) is defined by
its symbol a(b)(y, n) € %" (resp. a(b’)(y, n) e £5r). Then we can define the
composite operator c(y, D,)=b(y, D,)b'(y, D,) in some sense, and we can prove the
following

Proposition 3. Let us define g(y) by g)=fWM+f'(yi+f(»), ¥')). Then
c(y, D)) is an element of Op,(R[4, 2r) which is defined by its symbol a(c)(y, n)e
&RI42r Furthermore, we have

o©0. M~ 5( T 1300, n35e®)0. ).

§2. Reduction of the problem to Main Lemma

In this section, we reduce the singular Cauchy problem (1) to Main Lemma
which we shall state. Let us define A(x, y, D), i=1, 2, by a(A)(x, y, n)=4(x, y, n).
Then there exists an operator u(x, y,n) such that o(uw)(x, y, n) is defined on
{(x, y, e Cx C"x C"; |x| <R, (y, n) satisfies the condition (2)}, |a(w)(x, y, n)<
Cln,| with some C>0 there, and

P(x, Y, Dx’ Dy).:{Dx_quZ(x* ) Dy)} {Dx—qul(x’ Y, Dy)}
+ayo(x, ) {Dy—x14,(x, y, D))}
+xq’ﬂ(x, Vs Dy)+a0,0(x9 y)

Thus if we neglect a function which is holomorphic on some neighborhood of the
origin, the singular Cauchy problem (1) is equivalent to
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{D,—x1A(x, y, D))+ A(x, y, D,)}ii(x, y)=0

(6) bo(y)
E(O’ Y) =
a(y)

Here A(x, y, D,) and A(x, y, D,) are 2 x 2 matrices of operators defined by

A’l(x’ y5 Dy)
Ax, y, Dy)=

A’Z(x9 y’ Dy) /)
and

0 -1
A(x, y, D))= ) .
X p(x, y, Dy)+do,o(x, ¥)  ay,0(x, y)

Furthermore, ii(x, y) is a vector defined by

< u(x, y) )
i(x, y)= .
{D,—x92(x, y, D))}u(x, y)

In §3-§6, we shall prove the following
Main Lemma. We define € R by

00= —arg {[AZ(x* V, ’7)"11("’ Y, n)]x=0,y=0,l]=(1,0,...,0)} >

and 0,e R, le Z, by 6,=0,+nl. We assume that R, r, >0 are small enough and
that e<r«R. We define Q5,=Q} ,UQ3% 0€R, leZ, by

thl-l/(z‘I"l') o

<|x|<esin
| x| 7

95,:={(x, y,MeCxC"xCr;
F’Sin]j

l(q+1) arg x—(6,+6) — /2| <%n,

(y, n) satisfies the condition (2)} s

20n, |~ 2a=a")

£sin ——

12

Q3,={(x y. meCx CrxCr; > |x,

(y, n) satisfies the condition (2)} .

1° Forany 0€ R and | € Z there exist 2 x 2 matrices U*(x, y, n)=U=%(0, |, x,
v, n) holomorphic on Qg , such that
() |U%(x, y, D)< C exp {Cln|a=1-7"7/Ga=a)}
with some C>0 on Q. Thus if we fix a point xe{0}u {Axe.C; |x|<gsin-lzt§,
(g+1) argx—(6,+9)—n/2|<§-:—7t} arbitrarily, we can define U%(x, y, D,)=U=*(6,
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I, x, y, D,) by o(U%)(x, y, n)=U=*(x, y, n). These are 2 x 2 matrices whose entries
belong to Op(R, r) for any x as above fixed. We have

(®) {D,—x9A(x, y, D,)+ A(x, y, D,)}U*(x, y, D)

=U+(X, Y, Dy) {Dx_qu(x’ Vs Dy)}
and
9) Ux(x, y. D)U*(x, y, Dy)=1I,.

2° For any Q€ R, there exists a 2x2 matrix E(x, y, n)=E(0, x, y, n) such that

E(X, Vs 7])=E0(X. Vs ’1)E1(Xa Vs '7)’ El(x~ Vs ’7)=E1(0’ X5 Ys ’1)
Here

(@1(x, Y)—ym
EO(X# Vs 'I)=exP

(@2(x, )=y, >

and E(x, y, n) is a 2x 2 matrix holomorphic on

(10) {(x, y, n)e Cx C"x C"; |x|<e, (y, n) satisfies the condition (2)}
and
(1 CIE(Gx y I <Cexp e 3 Inl}

with some C>0on (10). If we fix a point x with |x| <g, we can define a 2 x 2 matrix
E(x, y, D,) by o(E)(x, y, n)=E(x, y, n). This is a2x2 matrix whose entries belong
either 10 0P, (x.yy-y,(R, F) 0F 10 OPy, 1y~ (R, ). This matrix satisfies

(12) {D,—x9A(x, y, D)}E(x, y, D,)=E(x, y, D,)D,, E(O, y, D,)=1I,.

Remark. Let M=(M,)i<uv<m b€ a mxm matrix. We define |[M| by
IM|=m( max |M, ).
1<p,v<m
Admitting Main Lemma for a moment, let us construct the solution of (6) on
w; . We define 8(x, y)=i(0, I, x, y) by

- fo(y)
i(x, y)=U*(x, y, D,))E(x, y, D)U~(0, y, D) .
i,(y)

Since U*(x, y, D,)E(x, y, D,)U~(0, y, D,) is a 2x 2 matrix whose entries belong to
> , 0Dy ,ix.y) -y, (R/16, 4r), each element of ¥(x, y) belongs to 3 OR/16-8r |
j=1 ji=1,2

@j(x,y)=y1
ORI1e-8  provided x satisfies

3

Z (q+l)argx—(0,»+0)-—lzt- <.

(13) |x| <é&sin 7

4
It is‘easy' to see that

{Dx—qu(xa s Dy)+A(xa s Dy)}ﬁ(xa }’)=0
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Furthermore, since (U*EU) (0, y, D,)=1, it follows that &((x, y) can be represented
as the quotient class of some vector 9'(x, y) whose elements belong to Z (9%},‘3,,‘;’ ™
such that

o(y)

limo'(x, y) E( ) modulo @R/16-8r
x=0

iy(y)
Now let us define v(x, y) to be the first element of the vector 9'(x, y). Itis an element
of Z (Dﬁfg,? -y, provided x satisfies (13), and holomorphic in x there. It is
easy to see that

’ Pu(x, y)=—f(x. y)
lin;DiU(X, .V)=ﬁu(}’)"5:()") i=0~ l’

where f(x, y)(resp. 8(y)) is some function which is holomorphic on {(x, y); x satisfies
(13), ly;I<R’, j=1,..., n}(resp. {|y;/<R’, j=1,..., n}) with some R’> ¢, and bounded
there. Now let us consider the following problem:

(14 Pw(x, y)=f(x, y), lim Diw(x, y)=8(y), i=0, I.
x-0

Since f(x, y) and 8,(y), i=0, 1, are holomorphic on y on a neighborhood of the
origin, we can solve (14) easily. 1In fact, let us define w\)(x.y), je€ Z,, inductively by

wO(x, y)= S: S: Sf(x, y)dxdx +bo(y)+x8(y)

Ww(x, )= —S" S (P(x, 3. 0y, 8,)— 02 wi=D(x, Ydxdx = 1.
0Jo

It is easy to see that wU)(x, y) are holomorphic on {(x, y)e Cx C"; x satisﬁes the
condition (13), |y;l<e, j=1, 2,...,n}, and that the series w(x, y)= E wl(x, y)
converges there. w(x, y) is the solution of (14). Let us define u(x, y) by u(x, y)=

v(x, y)+w(x, y). Since |argp(x, y)—arg {y, —¥i(x, y)}«1,i=1, 2, and 0<e<R,
it is holomorphic on

(15) {(x y)e |(Cl+1)argx—-(0,+0)—n/2|<%—n},

exln 2 0’

and satisfies Pu(x, y)=0 on (15). Since ling diu(x, y)=1i(y), i=0,1, and the
x>

hypersurface {(x, y)e Cx C"; x=0} is non-characteristic with respect to P(x, y,

0., 0,), it follows that u(x, y) can be continued to a neighborhood of {(x, y)e Cx

C; x=0, y,; %0, |y;| <esin T’%, j=1,2.....,n}, and that @Lu(0, y)=1ii(y), i=0, 1.
Thus we have solved (1) on (15). It is easy to see that any xe C\0 satisfies
(g +1)arg x —(6,+6)—n/2| <%n with some le Z. Let us denote by u(6, I, x, y) the
above solution on (15) to emphasize 6§ and I. We define u(0, x, y) holomorphic
on ©yia 5.0 bY
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u®, x, y)=u®, I, x, y)  if |(q+1)argx—(0,+8)—n/2] <%n.

u(0, x, y) is well defined because of the theorem of Cauchy and Kowalewski. Thus
we have constructed the solution on w/;, .0 We can construct the solution on
W) in 5.0 just in the same way. In fact, we only have to replace 6 by 8+ r in the
above argument. These two solutions coincide on ) ,;, zol O gin .0 because of
the theorem of Cauchy and Kowalewski. It is single-valued on {|y«(x, y)|<|y.l,
i=1, 2} because of the theorem of Cauchy and Kowalewski. Finally, we remark
the fact that the solution is represented in terms of the operators mentioned in Main
Lemma.

Thus we have reduced the problem to Main Lemma. We shall prove it in
§3-§6. Here we give the plan of its proof. In §3-§5, we shall construct U%(x, y,
n). Inspired by the theory about ordinary differential equations containing large
parameters due to Iwano and Shibuya [3], we divide its construction into two parts:
In §3 and §4, we shall construct U*(x, y, ) on ©} , using the classical WKB method.
Then we shall study this matrix on Q3,. In §5 we shall construct E(x, y, #).

Remark. Boutet de Monvel [2] constructed parametrices for such operators as
our P under certain conditions. He treated the case of g=1 and ¢’ =0 in our nota-
tion. Though this case is excluded in our paper, his argument seems to be very
much like ours. He defined a symbol class s#™, meZ, by s#m={a(x, y,n)
e C°(Rx R"x R"); la(x, y, n)| < Cylnl™(|x|?7~9|n| +1)"¥ with some Cy, N=
0, 1,2,..} with g=1, ¢'=0. At first he constructed the parametrices neglecting
those operators whose symbols belong to s#™, and then modified such error terms.
We also consider the problem at first on Q}, where |x|297'||» 1, and then com-
plete the analysic considering the problem on Q3 ,.

§3. Construction of U*(x, y, %) on £} , (I)

The purpose of this and the next sections is to prove the following

Proposition 4. Let ¢, R>0 satisfy 0<e<R, and K, ke Z, satisfy k<K.
There exist 2x 2 matrices U*-X:-¥(x, y, n) holomorphic on Q) such that

(16)%:k  |G05U% K| < CRYRIII (6] R )My | K111 (K + K+ B+ 1)
X exp {|;71|(‘1—1—q’)/(2¢1-q')}

with some C, R;>00n Q},for K. ke Z,. Here R, satisfies Ry>¢ (We may choose
¢ as small as we like, and R is some constant which does not depend on €). Fur-

. A K
thermore, defining UK (x, y. n), Ke Z,, by Ut:k=Y UKk we have
k=0

(AN*HK s UtK— 3 &l—!{ai‘,a(x‘lA—A)é;U*-’—6;U+-’6;a(qu)}=0,

J+|a|=K

an—x o U~k —Hlazlzx ai, {020(x94)03U 7 — 02U~ 02a(x44 — A)} =0,
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and

(18)K | > Lasusieiuto=s, o1,
1+3+Ta|=K &+

Though we can construct U(x, y, n) on Q} , using Proposition 4 (See Proposi-
tion 8), at first let us prove Proposition 4. We consider (17)*:¥, K e Z ., as ordinary
differential equations with respect to x containing a large parameter n,. In this
section we transform these equations to equivalent ones which are more easy to
investigate.

Let us consider 2 x 2 matrices S*X(x, y, n), Ke Z, defined by

0 0
StK(x, y, 'I)=5K,012i .
sk(x, y,n) O

Here s¥(x, y, n), K€ Z ., are defined inductively by

x? g (u)(x, y, n)+x"%ay,0(x, )
Ar(x, y,m)—A(x, y, n)

sK(x, y,m)=

l a a a a
J+1a) 5k, 15k a {5,,}.25},,5"’ —anslayll}

=T, K>1.

These ’funct:ions. are holomorphic on ﬁ‘={(x, y,n)eCx C"x Cr ey, |- 1/ @a=a)
<|x| <&, (y, n) satisfies the condition (2)}, and

(19) 105035 (x, y, )| <alx|~a*a R=K=1B7I |y |7K=I (K + | B +9])!

with some a>0 for Ke Z,, o, fe Z" on (3} provided R>0 is small enough.
It is easy to see that

(20) > Loestagesvi=6, oI,

1+4Te)=k !

Now let us consider the following transformations:

+ 7 +,K — _l,aa5+,laau+,1
2D v 1+J+z|a|=x al™n ’

_ -~ I s e s rm e
(21) U—K= Y 02U -’6,,S A,

I A -
Then we have the following

Lemma 1. 1) We have

+ +,K — L aQ—,I1pal]+,J
(22) Urk= +z| - 410581630

- - 1 d~— a
(22) U—Kk= >  —o0eU~JgaS*1,

1+54Ta=x @17
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2) The equations (17)*K, Ke Z,, are equivalent to the following equations
(23)%K on Q}:

(23)*:K aﬁ%@ﬁ&xé {030(x14)050+ — 620+ 030 (x2 A)}

Loeq15:0+9 =0

I1+J+]a|=K ol%n

(23)~X o0~%— %

J+{al=K o

{aaa(qu)a«U- 8:0-7830(x94)}

_ Z 1 6aU JaaZI_

1+14Ta)=K &
Here AX(x, y, n), 1 € Z,, are defined by
0 -1
(24) Zl=5’(’0
0 a,,o
— sk 0

+ .
< 0. 5K+a, os¥K+ X —,0;s’6°’sJ sk )
, ’ I+J+Ta|=K %:
Proof. 1) We can prove (22)* using (20) and (21)* easily.
2) If we substitute (22)* into (17)¥X, we obtain (23)3c K - where AX(x, y, 1),
IeZ,, are given by , .

LAl = p 1 aaS+ Jaaa S K

J+K¥ a|= =y o!

IS YT a’ﬂ' O3S 00 (x1A — )} O3S

—st 0
=0;,00(—x14+A4)+ .
w5l

Here »/, [ € Z ., are given by

1
! =qu+|aZ|=1 a{@f‘,s’ﬁ;il —0%4,0%57} +a, o+ 0,5’

L 0as'03sK.
J+K+a|=1 o

Substituting the definition of s/(x, y, n) into the right-hand sides of these equations,
we obtain (24). Conversely, we can obtain (17)*'%, K e Z, from (21)t K and (23)%:K,
Ke Z, in a similar way. Q.E.D.

Now let us consider the following transformations:

. 1 . . 1 ‘
Ut K(x, y, n)=( )U*”‘, U-X(x, y, rz)=l7""< )
Cox4d x—atd
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In the same way as Lemma 1, we obtain the following

Lemma 2. (23)*:X, Ke Z, are equivalent to the following (25)*X, Ke Z,:

[P2) RE R /AR 2K%w:o(x«A)a;ff*-’—0517*"0:006“/1)}

J+|a|=

> Loed1o:0+7=0

1+54Ta1=x @!
- = 1 5 -
(25)—k o0,U—K _.I+E|=K m-{&;a(x"A)a;U J—0tU 030 (x9A4)}

1 X M
_ L pafi-11ge 41 =0,
1+14§a|=x al™n %4

Here fi'(x. v, n), le Z,, are given by

. 0 —xate
e )
0 a;o—(g—9q)x!

0

_sl
l 1 )
xa-7 {3_,s’ +a, 08"+ X —6;s’6;s“} st

J+K+a|=1 al
Corollary. From (19), it follows that
(26) 10861 AT) <alx|~+@ R=1=18+21 g, |=1=171(1+ | B+ 7)),
with some a>0for 1e Z,, B, ye Z" on 3} provided R>0 is small enough.

We transform the equations (25)*:X, Ke Z,, once more. For this purpose,
let us prepare the following

Lemma 3. There exist 2x2 matrices ®/(x, y, 1), B%i(x, y,n), 0<j<q—¢,
and B'(x, y, ), which are holomorphic on Q1 such that
1) @° is an invertible matrix. ®J,0<j<q—q’, and B’ satisfy

|®i|<alxl, |[(@°)'<a, |Bl<a

with some a>0 on 3.
2) B%i,0<j<q—q’, are diagonal matrices satisfying
|E0-f| <a|x|“1+‘l'+j
with some a>0 on 3}.
3) Defining ®(x, y, n) (resp. B(x, y, n)) by
a-q’

9=000', 0'=1,+ S 0 (resp. B'= "3, Bo),
i= =0

-

we have

27 ' ®-1{o(x14) — A%} — ™13, & =0(x44)— B+ B'.
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Proof. (27) can be rewritten as
(28)  {o(x94— A°}dOP’ — O’ {5(x4A) — BO} = (0,8°)®’ + D00, & + POD'B'.

At first, we choose @°(x, y, n) to be the non-singular matrix which transforms
a(x14) — _A4° into the diagonal matrix a(x44)— B9, ie., (#°){o(x24)— A°}d>°—
o(x24)— B%°, Remark that

. = niti, 1 )
xq,, {o(x94)— A% = - +5ap A
1 2
Since
In71A(x, ¥y, m)—n7'd5(x, y, MI>0
and

1
xn,

Ao(x, y m)| <alx| =200 In,| " <astrv 1

on 3}, such a transformation exists and it follows that
|90, [(P9)7'I<a, |B™°|<alx| et
with some a>0 on Q). Defining ®° and B%° in this way (28) can be rewritten as
{o(x94)— B*°}®' — ®'{5(x94) — B°} =(9°)~10,9°P' + 0,9’ — d'B'.

Setting each (u, v) element of both sides equal, we obtain

_a-g’ -q _
(3900, = 2) = B+ BYSY 'S @ty BY;
IS gk Bo-k 0V-15 BOPJ j
= _jgl {k=1 ¢(u.v)B\':v _(¢ ) ax¢ ¢1)(n,\')+ax¢(u,v)}
—((@)710,9%) u,v)+ D' B) 4,0y I<p, v<2.

We define @}, ,, and B{;!,), 1<u, v<2, by

. [ 0 u=v
¢( V)= _
! ((8°)710,8) v,/ {X9(A, — 4,) — BEO, + B0} uxv

and
50, 1 [ _(((po)_lax(po)(u,v) n=y

B( ! V) =
0 JTE R

Let us define &/, ,, and B%/,), 1<y, v<2, j=2,3,..., g—4q ' by induction on j as
follows:
0 u=v

J = .
Plum=( — z (@, BUI} +((9°)10,0°0771), ) —8,8{x 1,

x"(l lv) B(“ “)+B?;?v)

Hxv
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Z {(p (u, v)B?vlv)k} +((¢0)_1ax¢o¢j_l)(u,v)_ax¢{;l\:) =y

0 TERR
Furthermore, let us define B’(x, v, n) by
B'=®1{o(xi4)— A%} & — &~13, & —a(x94) + BO.
It is easy to see that 1), 2) and 3) are valid. Q.E.D.

Let us assume that we have chosen R>0 small enough. Then it is easy to see
that ®(x, y, 1) is an invertible matrix on (} and that

|0507@1, 1050)(@)~ 1| <aR™1P* ;|11 B+ 9!
10503 B°| <alx|~a*a R71F*71|n, |7171| B+ ]!
with some a>0 on @} for B, ye Z. We can easily construct 2 x 2 matrices ¥X(x,

y, n), K e Z,, holomorphic on (3} such that

l a“'f"la“(b Z l aad’a’ _51(,012.

J+ia|=K ol J+fal=K al
It is also easy to see that if we have chosen R >0 small enough, we have
050 VK| <aR™E-1B+YI |y | "K-IVI(K+ | B+ 7])!
with some a>0on Q) for Ke Z,, B, ye Z.

Now let us consider the following transformation:

yrk= ¥ L 5aq/laaU+J

14J4Ta|= K“'

_ 1 _
- 20120
J+|§i koln y

As before, we can prove the following

Lemma 4. 1) We have

i}-hK_ z l'aa¢aa V+.l
J+[z]=k %*

o 1 -
oV ol
o 1+J+Z|a| -k o! Y
2) The equations (25)*'X, Ke Z ., are equivalent to the following equations
(29K, Ke Z,:

l 5, «
(29)+ o v+rk— ¥y Lox(xaal—Bhyozy

1+J+Ta|=K ol

Loay+62(x149 =0

J+ia|= x“'
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(29)~K oK~ ¥ Loxxea0asv -

J+{a|=K %*

1 -
L gay-ga(xa Al - BIy=q.
1+a4Ta=x 2" > )=0

Here we have defined AX(x, y, n), BX(x, y, n), Ke Z,, by
A0 =6(A), B° = xia(A)— A — PO{a(x44) — A%} — P05 b,

and
A= 5 mlﬁ—!a;(agwg/;au))aw
Bt = 1+7+{z+pI=K a!lﬁ! 61;(6‘,’,‘1”6’;,43)0;@
- E Loswi030,0
ifK>1.

Corollary. If we have chosen R>0 small enough, we have
(31) |050y AK| <@R™K-18+7\ [, |1 =K IVI(K + B + 7)) !
(32) 10507 BX| <alx|~a%9’ R=K=18+71]p, [=K=D (K + B +y])!

with some a>0 on Q) for Ke Z,, B, ye Z%. Furthermore, we have B°=B°+ B’
and

10507 B°| <alx| 99" R71F*+71 [, |~171| B+ y|!
(33)
10503 B'| <aR™1#+7Vn, | =171 B+ y|!

with some a>0 on Q) for B,ye Z". We remind the reader that A° and B° are
diagonal matrices.

§4. Construction of U* (x, y, %) on £} , (II).

In this section, we solve the the equations (29)*-X, Ke Z,, on Q} ,, and using
these solutions, we construct the matrices U%(x, y, n) mentioned in Main Lemma,
on Q},. We solve these equations in two steps. At first, we consider the following
equations (34)*'X, Ke Z, :

(34)+,K ax W +K _(quo__BO) WK 4 W+,K(qu0_EO)=F+,K
(34)~K O, WK —(x94°—BO)YW K+ W~ K(x44°— B®) = F~K,

where F:-K=F+*:K(x, y n), Ke Z,, are given by
(35)+K Frk= 3 Lasxapr—physzw+
kol

I+J+lal=
JxK
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1 —
—J+IZI—K W 185 (x14° - B)
Tk

(35)—:k F—K _—:“—%:K éja:(quo_BO)a;WﬂJ
I%K

1
—_ _aaW-..laa qu_ 1 .
1+s4Tg=k 217" yx B

J2=K

Then, we consider the following equations (36)*X, Ke Z, :

(36)"’,1( axX+,K +BOXHK=GHK

(36)—K 8, XK — X~KBO=G-K,

where G*'¥=G*K(x, y, ), Ke Z,, are given by

@ner Gri= s Lase 0 Boyssx s —gr x4 as(xa40))

J+iai=K
%K

GN-K  GKk= ¥ Liae(xan0)aex -7 — 2 X~15(x1 40 — BO)}.
J+fel=k a.

Remark. If W*:X (resp. X*:X), K € Z,, are solutions of (34)%:X (resp. (36)%:K),
Ke Z,, then VK Ke Z,, defined by

' 1
(38)*:K V+.A=I+J+zm=x~—!ag,w+.la;«.x+.f
(resp.
- K L sy v sz -
(38)~- vV ’A=I+J1§&|=K &—!6,,X Aoz )

are solutions of (29)*:X, Ke Z,.

From now on we assume that the integer / which defines the domain Q} ; is even.
Let us define Xt =x%(6, /), v=1, 2, by

oh_ o -1 ob_ om -1
XT=x3=¢-exp {E+—1(0'+0)}’ Xt=x7=¢-exp {m(6,+0+ n)}

(If 1 is odd, we define X%, v=1, 2, by

or _em .. -1 } ot o— .. { —
Xt =x3 sexp{——~q+l(0,+0), X3 =X7=¢-exp 2

Then the following arguments are also valid for this case).
Now we solve the equations (34)*X, Ke Z,, by successive approximation.
Let K, ke Z,, and consider the following initial value problems:

O W Kk — (x44° — BO) W +: Kok W +Kk(x4 A0 — BO) = F+.K.k
(34) K.k :

W-('.u'-xl")k J%-\t-..v.'l) =5K.06k.05y.v’
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where

FHKk= 1 ~
L03(x9A! = B1)Oz W Ik

I+J+Tgl=K aln

- J. a +.J.k—17a 0_ RO
J+I_§f_:i=l( 0w 0%(x4A°—B%)  k>1.
JA-K

Now we prepare the following

Lemma 5. Let (x, y, n)eQ},. Then there exist two piecewise smooth paths
y(X)=C, v=1, 2, such that
1° y(x) is a path which connects X} and x. If 1ey,(x), then we have (t, y, n)<= Q).
2° We denote by d (1) the length along y(x) from X} to tey(x). Ifs, tey(x) and

d(s)=d (1), then |arg {( = 1)"(s7*' — 19+ 1)} —0,—0| <%.
3° Iftey x), then we have |d (x)| <al|x|, |x| <a|t| with some a>0.

Proof. Let us assume that v=1. If x satisfies
(g + 1) arg x—(6,+60) <=,
we may take as y,(x) the segment between X{ and x. Assume that

—775<(q+1)argx—(0,+0)<—i—n.

We define x; € C by

=ep (g5 )fim (enn (=G o) ~(tan £ )Re(= 57 )}
x,—exp(q_'_1 +2 Im{( exp PES| x tang Re 7+ 1 X )¢ .
It is enough to take as yl'(x) the union of the segment between %{ and x}, and the
segment between x| and x. In the same way we can construct y,(x) in the case

—%n<(q+ l)argx—((),+())<g~.
Thus we can construct y,(x) if
[(g+1)arg x—(0,+0)|<%n.
In the same way we can construct y,(x) if
l(q+1)argx—(0,+0)—n[<—i—n. Q.E.D.

The following proposition is one of the most essential parts in this paper:

Proposition 5. Let (x, y, n)€ Q},, and let y(x) be as in Lemma 5. There
exist solutions W+ K.k(x, y ), K, ke Z,, of 34)* X% such that
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(39)%:* |50 W Kk (2, v, m)

S CRyZKK=IB U |=K4=17(d () (K + | B+ 7])!

with some C, R,>0 for K, ke Z,, B, ye Z%, |<u,v<2, if tey(x). Furthermore
w+Kk=0 if K<k, and W+ is an invertible matrix.

Proof. We use the classical WKB method in the theory of ordinary differential
equations. We define e, (x, y, n), I <y, v<2, by

e, v my=exp " (x92, 05,y ) = x32,x. y. |-
Here we prepare the following
Lemma 6. If (v, n) satisfies the condition (2) and s,teC satisfy

|arg (s7*! —t9+1)—0,— 0| <§, then we have

(40) lea,s (1, y, mea, (s, y, mI<exp (= R{t*! =541, ])
provided R>0 is small enough, and |s|, |t{| <e<R.

Proof. Consider the Taylor expansion of 4,(x, y, 1) with respect to x at x=0:

Adx, y,m)= OZO: x*A, (¥, m). We have 1Ay, mI<a**!|n,| with some a>0. Now
=0
we have

St {x925(x, y, M —x%(x, y, N)}dx

=T = 5T G gy ) = 2oy )

+ Z k—+_q—+—(tk+q+l — skt (A (y, ) — A4 4 (¥5 M)

=(1)+ (i) + (i) + (iv) .
Here
(1)— ’h(’q'” =54 [ 000, M) = A1,0(0s My=0m=c1,0...,00
(ii)= q-}-l (1% = $71) (A oy, 1) =11 22,000, My 0= (10,00}
(i) = (601 = 1) 21,000 M) =i Lhr oy D]y=0ir=t 0100
and

R e e N et s (G CR B G

Since
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(21+—5—>n +Tn2—<the argument of (i) <(21+—g—)n —% ,
it follows that
the real part of (i)< —<Sin —{%)lmﬂ — 9% n,].
It is easy to see that if R>0 is small enough, we have

|G, |G R[197 ! =591 |, .

To estimate |(iv)|, we remark that if |s|, |1| <e,

1 (tk+q+l_sk+q+l)‘ —

k+q+1

t
S x“*‘fdxl
s

_ |S::: q__:-l(xqﬂ)k/(qﬂ)d(xqﬂ)

ek
< +1 |t‘l+]—S"+l|.
Thus we obtain
: 2a_ 3 k|patl _ gq+1
[(1V)|<mk§] (ae)k|t —s9*1 n,|
2a%

q+1 _sq+1|.

=GFDi=as "
Q.E.D.

Proof of Proposition 5 (continued). Let us consider the Oth approximation
(34)rK:0 Ke Z,, of (34)*'K. We solve (34)"K0 KeZ,, themselves also by
successive approximation:

+,K,0 — +,K,0,j
W +:K.0 = W K0,

~.
i

where W+.K.0.J K je Z,, are the solutions of
O W K0 (x4 AO — BO) W/ +K.0uj 4 P/ +.K.0. (x4 A0 — BO)

0 j=0
(34)+,K,0,j —

— B' W +:K,0,j-1 j>1
W LK (XF, v, 1) =0k 00,00,

It is trivial that W*K.0.J=0 if K>1. Thus we consider the case K=0. We can
solve (34)*:9-%:J by induction on j=0, I, 2,.... We may assume that the diagonal
matrix B°(x, y, 1) is written in the form

_ by(x, y, n)
B(x, y, n)= » V)
2 X, y9 ’7.
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and that
10503b(x, y, mI < alx|~a+a R1E*I |, |~171| B +y|!
with some a>0 for B, ye Z% on O}, provided we have chosen R>0 small enough.
We define é,,(x, y, 1), 1<u, v<2, by
2, v, M= e, v myexp {7 (b,(x, y, )= bytx, v mas}

From Lemma 6, it follows that under the condition of Lemma 6, we have

(41) 10503(82,1(t, ¥, m)[e3,1(s, y, M) < aR™1F*+71p, |7171|B 49|,

Let us consider (34)*:%:%:J.  Assume that (x, y, n)eQ},, the paths yf(x), v=1, 2,
are as in Lemma 5, and that te y(x). Then W{;%:9:i(t, y, n) are given by

S

W-(h,o\,'?’j(t’ Y, ’7)= L
’ S elrm) s g sy
"‘t euv(s’ Y, ’7) x=1,2 e

j=0

X WL s, v mids =1
In the above integrand, we have
eu(t)=2,(s)=1
if p=v. Furthermore, if (u, v)=(2, 1), we have (41), and if (u, v)=(1, 2) we have
41y 1050321, 2(1)/€1,2(s))| = 1050}(&5,1(5)/22,1 ()]
<aR=18+ 7, ||1718 431!

because of the definition of y,(x), v=1, 2. Using (41) and (41)’, we can prove easily
that

42) 1050 W %+ (%, y, M)

2*73a?d,,(x) )j I ARl !
< 1—4R‘/R Rl y|’11| y|ﬁ+},"

with R; <R/8 for B, ye Z% on Q},, by induction on j. Since |d(x)| <a|x|<ae, it
follows that

10505 W 1,05 (x, v, M1 = 10307 22 W Gl |

j:

__207%a% N7 pojpeyiyy -1l !
<(1 T:zm) Ry |71 B+ y]!

with R, <R/8 for B,ye Z% on Q}, provided ¢ is small enough. Furthermore,
since W+:9.0.0=], and

0
| > w0.0)«1, if ¢ is small enough,
ji=1
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it follows that W++9:° is invertible. Thus we have proved Proposition 5 in the case
k=0.

Now let us assume that k> 1 and that (39)"'_"', are valid if k'<k—1, and that
W+Kk =0if K<k'<k—1. Then we can prove that if (x, y, n) € Q} , and tey,(x),
we have F*K:k=0 if K<k and

(43) 10503 F ke, v, )

23gR,

_ LAl CRy2Kk=18ty|py | K+  (d, (1) !
< (I—8R,/R)? CRj 7Im] W(K+[B+y)! .

(k—1)1

Let us solve the kth approximation (34)*:K:* of (34)*:X. We solve (34)*K:k, K,
ke Z, themselves also by successive approximation:

WHKkk= § WKk
f=o

where WKk K. k, je Z,, are the solutions of
O W HKikii — (x1 A% — BOY W +K.koi  J/ +.Koksi (x4 A0 — BO)
FHK.k =0
— B WHKki-1 ji>1
WEKsI(x1, y, 1) =0.
It is easy to see that W+.K.k.j =0 if K<k. As before, we have
WEESI(t, y.om) |

‘ M— +,K,k -
Si* NE) FEKk(s, y, n)ds =0

t é v(t) ! j— 3
—Symk___z]:’zB(u.x)(s» v MW LKk (s, y, ds j>1.

Thus we can prove that if (x, y, n) € Q} , and t € y,(x), then we have

10505 W &K (2, v, )

(1, v)

R-‘-ZK—k—Iﬂ+yl|m|-K+k-lvl

<< 241:—3a2 J 23"“(1R1 c
1—4R,/R ) T=8R,/R)?

x(K+|B+v|)!—(—d“]£t,—))k.

Thus we obtain (39)X:*, provided that R, e>0 are small enough. Q.E.D.

Thus we have constructed the solutions of (34)*:X:* which satisfy (39)%:*. Now
let us consider the equations (34)~:X:k.  For this purpose we prepare the following

Lemma 7. Let W*K.k(x, y, n) be as above. Then there exist 2x2 matrices
W= Kk(x, y, n), K, ke Z,, holomorphic on Q}; such that
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(44) ‘ al!a;l,W+,l,i6;W—,.’,j=6'(,05k’012,

(45) 14y al!a;W—'l'iagW+’J'j=6x'06k’012.
i

r+
||R

J

Furthermore, we have W*-X:k=0 if K<k, and
(46)=:Kk A3 W 2Kk (x, y, n)| < CRYZKIDHII(RT ), |~k
x(K+|+yD)/k!

with some C, Ry>00n Q} for K, ke Z,, B, ye Z'.. We may choose ¢>0 as small
as we like and C, R;>0 are some constants which do not depend on e.

Proof. In (39)Xk, let us take as t the end point x of y,(x). Since d(x)<alx| <
ag with some a >0 independent of ¢, we obtain (46)*:X:* directly from (39)K-¥, Let
us construct WXk We define

(W Kkt (K, k)=(0, 0)
WKk = — (W *:0,0)-1 ,+J+z|,| . O:'aa w1 .aa - J,j (K, k)= (0, 0).
J, J‘;#?k k).

Then (44) follows directly. We can also prove (45) and :(46)““-" easily (We may
have to take another constants (‘ and R, in (46)~-K:¥), It is also easy to see that
W-Kk=0if K<k. ' s Q.E.D.

K
From (46)%:K-k it follows that W*.K=3% WKk Ke Z,  converge on Q},
k=0
Furthermore, we have the following

Proposition 6. We define Wt-K(x, y, n), Ke Z,, as above. WK satisfy
(34)*:X and we have

(47) >  LoswriaiwEI=5 0,
I+J+]a|=K ol
(48) |0Bor W *Kok(x, y, )| K CRYIR-1+3l g [=K=11I(K + | B+ y])!

xexp { Ry 'eln [}
with some C, R, >0 independent of € for Ke Z,, B,ye Z'\ on Q4.
Proof. We only have to prove that W—X Ke Z,, satisfy (34)—K. Other
statements are direct concequences of the previous argument. Now it is easy to sec

that W= 0=W=0.0=(W+.0.0)~1 = (W+. °)‘ satisfies (34)70. Assume that K>1
and that W—X' K'< K—1, satlsfy (34)‘ . From (47) it follows that

a{ Z ]aaW+ IaaW-J}

I+J+a|=K al

= v Liasowriozw -t oW 1oz, w1} =0,

I+J+]a|=K
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From (34)* K, K'< K and (34)~*, K'< K—1, it follows that
W00 W K=(i) + (i)' + (iii)’ + (iv)’

where
()'== Lo 02 (08 (xa A — BEYOB W 1} Og W,
H+I1+J4+Ta+p|=K %* ﬁ
ey o aﬁ +,laﬂ qu_Eo 3L W -
(i1)’= J+J+{arBl=K a'/i' oW y(x )}03
i) = a +,1 aa quEO aﬂ —J
(iii) 1+1+§+m=x a'ﬁ' — i 02 W 103 {08(x Yok W=},
J+|B|%K
and
(iv)' = 3 ey (3a W+ laa{ali W Jaﬂ(quH BH)}.
H+1+J5Tg+p1=k 0! I3
H+J+|8|%K

From (47) it follows that

) = — ‘(3" q Al HY)a aﬂ +,1 ﬂW—,J
_( P Il+l+l-§a+ﬂ| -x a!p! (1 AT = B30, W % )
—_ _(qul\ BR)
(iv) = oW 1o2{08 W —Jdh(x1AH — BH)}

H+1+J+Ta+f|=K “'ﬂ'

|

— W+
H+I¥p|= x,B'

()ﬁW—J@ﬂ(quH BH)
=(x1AK—BKy—w+o % —6” W —908(xa41" — BY),
H+J+]p|= -k B!

Furthermore, it is easy to see that

(i) + iy = w3 l% b(x9A0 — BO)OE W =,

Thus we obtain (34)~-K. Q.E.D.
Now let us consider the equations (36)*:X, Ke Z,. We solve these equations

also by successive approximation. Let K, ke Z,, and consider the following
initial value problems:

d. X+ Kk + on+.K.k =G+ K.k
(36)+,K,k [ x ‘
XHKk(x, R 1) =0k,00k,012
b X—,K,k_X—,K,k§0=G—,K,k
(36) Kk [ i
X~ Kk(xt, y, 1) =0k 00k, 01>

where
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0 k=0
GHKk= 1
o A1 (OO BOGX IR G XI5k A0} k>,
Jee
0 k=0
G Kok = | B
H;%’:K B AR X Ikt —ga X =k 108(x A0~ BO)) k> 1.

Let us solve the kth approximation (36)*X:*, Ke Z,, of (36)*K themselves
again by successive approximation. Let K, k, je Z,, and consider the following
innitial value problems:

(‘;v/\f:t.x,k,j =GE. K.k

(36)1,K.k.j
XHRET(RY v ) =0k 604,00 .012,
where
0 i=0
— BOX+.Kkj- j=21, k=0
GHKikii = _ )
—Boxrkuimty 5 Lo g0 Boygaxm k-t
.I+J|£:=I_=K .
— Q2 X+ k=1 192(xa A0)) Jok>1
0 j=0
X~ Kkii-1Bo jz1 k=0
GHKekj = o .
X—-,K,k.j—lBO+ Z 'a_li{az(quO)a;X—.J,k—l,j—l
I+ falek %
— 02X k"I 192(xa 40 — BO)) j k=1

Now we have the following

Lemma 8. Assume that (x, y, n)e Q) and that arg x=arg x7. Then we have
Xt:Kki=0if K<k or j<k, and

(49)%-K-k.j |ﬁ£62;Xi’K'k‘j(~’C- v, n|
S CRyE-I=1By1 |y | =K =K 4 | B+ y])!

X076 ([x] gt
G-k Al

X

with some C, Ry>0 independent of €>0, for K, k, je Z,. S, ye Z.

Proof. If j=0, X*.K.-ki =g, o6, o[, and the statement is trivial. Assume that
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Jj=1and that the statement is valid if j'<j— 1. Then it is easy to see that G*:K:k.j =0
if K<k, and thus

YKk = Si GEK-kidx=0
X1

if K<k. Now let us prove (49)+K+Ji K ke Z,.. From (31), (32), (33) and
(49)+-X:kj=1 K, ke Z,, we can prove that

|agaz(gox+,l(,k.j—l)|

4"aR,  ~p-2k-j-|ptyl|y |-K+k=-]7] Y
< (I=4R,/R)? CRy#I=18+vl | WK+IB+yD!

|x|~a=1=a)G k=1 (|x]| —g)
(k=) k!

if j— 1>k, and that

af;a;{H%:K Losxana- BO)@;XH-*-M—I} |
JK

5£a;{ﬁz la:X+,J.k—1.j-1aa(xq'A0)} ‘

=g o! y
i

< 8"aR,

\TI—WCRIZK"j"'”+7|In,['K+k'|7|(K+ 1B+yD!
—OR,

|x|~ta=1-aDU-k) (| x| —g)k!
(j—Fk)! (k=D

if k=1 (We have assumed that R, <R/16). Since

X+,K.k,j(x’ ¥, '7)=Sf+ G+’K'k'j(t’ Y, ’7)dt

we obtain (49)HK-kJ K ke Z,, using

|x|~ta=1=a")—k)

(j—k)!

Sx |t|—w~l—q’)(j—k)—l

& GmR=nT <

ifj—1>k, and

A t]—g)k-! |x| — &)k
Si: (l(k—el)! d"< (x'k!8

if k—1>0. We can prove (49)~-K-%J K, ke Z,, similarly. -Q.E.D.
Now let us estimate X*-K:k.i(x, y, ) on 3):

Lemma 9. If (x, y, n)e ), we have
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|050y XKk (x, y, )l

S CR7I-i=1B+21|p |~K+k=IV (K 4+ | B+ 9])!

Ik k {|x|—(q—l—q'>u—k—j') (Ix] —e)x=*

(j=k=j)! (k—k)!

X |x|~@=1-a"1 "+ g+ np |a1g x —arg XF|7HE }
T7 Y]
(J'+k)!

with some C, R, >0 independent of >0 for K, k, je Z,. B, ye Z".
Proof. Though the estimate looks rather complicated, we can prove Lemma 9
just in the same way as Lemma 8. We note that X*-K-%.J can be given inductively by

XEKki(x, y, ’7):5K.05k,05j.012+g).:+ G=ELI(, y, .

We take the path of integration to be the union of {te C; argt=arg x{, e=|t|>|x|}
and {te C; |t|=|x|, |argt—arg XT|<|argx —arg xT|}. Lemma 9 is a consequence
of direct calculation as Lemma 8. Q.E.D.

We define X*:X:k K, ke Z,, by

YKok i XKk
= A /
Then we have the following

Corollary. Assume that ¢>0 is small enough. lf (x,v yin)eQ}, we have
Xt Ek=0 if K<k. XKk K keZ,, satisfy (36)K-* and

N
< C,Rr“‘"f”vl(R;ls)k|r,,|—K+k—|>-|__(ﬁIkL'tzD!_

xexp {271 [, | - 1oD20m00)
with some C,, R, >0 independent of ¢>0 for K, ke Z,, f, ye Z%.
3n

2(q+1)
of Lemma 9. Q.E.D.

Proof. Since |arg x —arg X}|<- on Q) this is a direct consequence

Now let us define X*:K, Ke Z,, by
.y
(S Xi.:\':AZ XEKk
A <o

Thesc power series converge on Q} ,, and we have the following

Proposition 7. Assume that ¢>0 is small enough. X*X Ke Z.,, satisfy
(36)+:K and

(52)K y  Loextapaxvi=s, L.

1+4Tay=k 21"
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Furthermore, they are written in the form (51)¥ using 2 x2 matrices X*'X:k which
satisfy (50)K-kon Q} |

Proof. We only have to prove (52)K. Since X*:° satisfy (36)*-K-and X*:0(%?,
y, n)=1,, we obtain (52)°. Now let K>1 and assume that (52)%", K'< K—1, are
valid. Then we can prove that

a{ ¥ ‘a«Xi'aX“} 0

I+J+Ta|=K a!

using (36)*-X", k'< K, and (52)X", K'< K—1. Furthermore we have

[ > ‘a«Xt'a«XH} .=0.

I+J+]a|=K a!

Thus we obtain (52)X. Q.E.D.
Now we give the

Proof of Proposition 4. Let us define VEKk K ke Z,, by

V +.Kk = aa W+ I, taaX+ J.j
1+J4Tal=K “'
itj=xk .

V—.K.,k= Z l'aaX— J, jaz - ’,l'.
147 {Ta=k 1"
i+j=k

Then we have V*:K:k =0 if K<k and
|50} V2K K (x, p, I < CRYKIIHII(RT o)y | K417
X (K= k+|B+7) ! exp {27! ||~} = )/ 2aa)

with some C, R, >0 independent ofe>0 forK,keZ,,B,ye Z% on Q},. Thus we
may define V+:K, Ke Z,, by VK= Z y*.K.k  They satisfy (29)*-X, and we have
,0’ VEIGV T =0 o1,

I+J+]2|=K %!
Using Lemma I, Lemma 2, and Lemma 4, we may write the transformations which

transform VK Ke Z,, to UK, Ke Z,, in the form

U+,K_ Z l aaS+ laaV+J

I+J+]a|=K a!

U-K= s _aa - Jagg-,l”_

140 iTer=k 01"
with some 2 x 2 matrices K, K e Z;, which satisfy
|05078% K| < a|x|~2¢=a") R=K=18+71 1, |"K=I71(K 4 | B+ y])!

with some a, R>0for Ke Z,, p ye Z} on Q},. Furthermore, we have



414 Keisuke Uchikoshi

Lazgi”ags:‘:’l =éK.OIZ'

1+ 4£Ta=k !

We define UKk, K, ke Z,, by

1 a a .
UtKk= Z _a"§+,lay[/+,.l k

1+04Ta )=k 0!

) | &
U-Kik = L ge I ka1
1+1+%:|=K al™n y

Then we can verify that (16)k, (17)*X, and (18)X, K, ke Z,, are satisfied.
Q.E.D.

Now let us construct U%(x, y, #) on 2} ,.

Proposition 8. Assume that ¢, R>0 are small enough and that e<R. Then
there exist 2x 2 matrices UX(x, y, #) holomorphic on Q} , such that

(53) |U%(x, y, mI< Cyexp {lny |7 1ma)/2ama7}

with some C;>0 on 9} ,,

(54)* oUt- 3 L (830(x14 - 33U 63U+ B30 (x94)) |
<C R K|ny|"XK!exp {R™e|n| +In |(q_1_q’)/(zq-q/)},
1
(54)" oU- T Los0(x)osU- - o3U-d30(x 34 — A} |
<C R K|n|"XK'exp {R™'eln,| +|n,| (a7 1740/ Za=a},
and
(55) . Lavtosu* -1,

<C R¥|n KKl exp {R™'e|n, |+ [n,| 471747/ @amaD}
with some C;>0 for K=1, 2,..., on Q} .
Proof. Since
UK < C(Ry/2)7 K[, |"KK L exp (R el |+ [ (471 =0/ 2a=a)}

for Ke Z,, there exist 2 x2 matrices U*(x, y, n) holomorphic on Q}, such that

(56) U= U]

J=0
< CRFin,|"KK! exp {R"eln,| + |, |(a= 1=/ (2a=a"0}
for K=1, 2,..., on 9}, provided R>0 is small enough. Here we can choose ¢>0

as small as we like, and R>0 is some constant which does not depend on e. Now
let us define U*X, Ke Z,, by
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Utk= Y U,

J-j=K
Since we may assume that ¢ <R3}/2, we obtain
| UK <2CR7|n,|"KKlexp {|n,| 47174/ 2a=aD}

for Ke Z, on Q}, Let us remark that

K-1 —
COND LR AT S ]
J=0 o<<J—-j<K-1
K<J
<= (R PRI KL exp (R7 el + 47 -e/2a-00)

kor K=1,2,..., on Q},  From (56) and (57), it follows that
K=1 _
U =" U1 <2CRK|n,|-KKLexp {R™"eln, |+ ;|41 =0/ 2e=a}
J=0

for K=1, 2,..., on @}, if we have assumed R<R3}, (R{/2)*>. Since we may also
assume that e < R3 and that R« 1, we obtain (53). To prove (54)* and (55), we must
estimate the derivatives of U+ with respect to y and #, and for this purpose we must
rewrite R/2 and ¢/2 as R and ¢, respectively. We define the domain Q}; using these
new constants. Then (54)% (resp. (55)) follows easily from (56) and (17)*:X (resp.
(18, Ke Z,. Q.E.D.

§5. Construction of U* (x, y, ) on £23.

In this section, we investigate U*(x, y, #) on Q3, which are already constructed
on Q}, in the last two sections.
Now let us define a 2 x 2 matrix T(n,) by

1
T= .
,,‘—(q—q’ )/ (29—4")

Let UtX(x, y,n), Ke Z,, be as in §4. We define 2x2 matrices Y*X(x, y, n),
KeZ,, by

+,K — _l_ a aa +.,J -K_J1/-.KT-1
Y J+|§“I=Ka!6,,1 U+, Y K=U—KT-!,
We have the following

Lemma 10. 1) We have
+,K — l aT-13ay +,J - K_-Vy-.K
U —H|§1|=K a!a,,r osy*J, UK=Y KT

forKeZ,.
2) (IND*K Ke Z,, are equivalent to the following (58)*X, Ke Z , :
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(58)+K o, Y+K— 3 1 0xC1 o2y

1+J4]a|= KO"

+ ¥ Lory+isg(xin)=o,

l
J+fal=k ol

(58)~K oY k- ¥ l&—!(‘)f;a(x"A)ﬁ;Y‘J o

J+|x|=K

Losy-vazcr=o.

I1+J+a|=K ol

Here C!(x, y, n), [ € Z., are given by

(59) Cl= ¥ &Tﬁf‘,Ta“a(x‘lA—A)T“.
la|=1
3) We have
|a/'a Cl|<aR~K-1p+yl|p |ta=a)/@a=a ) =I=Iy(J 4 | B+ y|) !,
Iaﬁaza(qu)l<aR—Iﬂ+v||,7l|((q—q')/(20—q’)—lvl)|/}+yl!
1
with some a, R>0 for IeZ,, B.yeZ} if |x|<6<ssm 12> [n(|=12a=4) gnd
(y, n) satisfies the condition (2).
Proof. We only have to prove 3). From (59) it follows that
Cli,1y=0k,0x4(x, y, 1), C{; 2 =0k,o,

D S AR R
Clany= =71 G, (72 ={x o () (x, y, 1) +do,0(x, ¥)}

C(’2,2) I’ a (nyta—a)@aa ))1{\‘712(" Y, ’7)+a| o(x. M}
X n(lq—q')/(zq—q')_
(59) is a consequence of direct calculation. Q.E.D.

Let us define x € C by

. T\7! ' V-1 Y9
o —1/(2q- T N
x—2<881n 12> r’ll( 4 ‘”exp{q_l_l <9'+6+2) zq—q,}

If (y, n) satisfies the condition (2), it follows that (X, y. )€ Q} , U Q32
Now for some holomorphic function f(x, y, n) defined at (%, y, /), where y
and # are some points of C", we define 0%f(%, y, 11), jeZ, aeZ, by

onfi(X, y, m=[0051(x, y, M)]e=s-

Since Y*:K(x, y, ), Ke Z ., satisfy (58)*K at x=%, we obtain
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(60)+K G+ K= 1+J+Z ;,Eg(c')j,ag;( Yol o
Qi -J o

-3 "aa(yﬂ) 20 (x14);.
J+ial=K %
P

60K GHD(Y =N = ¥ L), aur-),

— 1 aa(Y— J) aa(Cl)J
for K, je Z,. Now we can prove the following lemma directly from 3) of Lemma
10:

-1
Lemma 11. If |x|<6<ssm—7£— 7|~ 2a-4) and that (y,n) satisfies the

condition (2), then we have

5 esinm/12 \ ,_x_ ) (2a—q’ ) =K =

[ayéz;(cl()jlga e R-K-1B+yl|p, |ta=a’+D)/(24=¢")=K=]7]}

x(K+|B+yD!
sin /12 \/ ,,_ i) (Ca—a )~
Boa(xi11):.|<a et ke B * Sl V] {a=q'+i)/2a—a)=1r}
| yYn ( )jl\ 6 |'7||
x|B+yl!

with some a, R>0 for K, je Z,, B, ye Z%.

Now we have the following

1
Proposition 9. Assume that |x|<6(esm 12> |n~Y2a=4> qand that (y,n)

satisfies the condition (2). Then there exist 2x2 matrices (Y*:K:k)(%, y, n), K, k,
Jj€Z,, such that (Y*-X:k),=0 if K<k, and that

(61); (Yi‘K)f=kiO(Yi-K‘k)f’
(62); |a(Y K K) | < C(_Linsr_t/_lz__)jR;zk-lﬁ*'ﬂ(g/Rl)k

X |y [~KH I Ca= ) (K — ke + | B+7])!

>< _1'_(C|,7 [(a=1-4)/(24=a"))

W Ms.

X exp {lrll |(‘1-1“1')/(2‘1-q')}
with some C, R, >0 for K, k,je Z,, B, ve Z".

Proof. 1If j=0, this is nothing but Proposition 4. Assume that j>1 and that
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there exist 2 x 2 matrices (Y*-X:¥), K, ke Z,, k<K, j'’<j—1, such that (61); and
(62); are valid. Let us define (Y*-X-¥); by

N 1 1 "
(Y“"*)FT-{ 1 BHCD B KR

1
j—1

_ LBrER) LB xe ) b

Ldzo(xan), o5v -0y,
1

Then (61); and (62); are direct consequences of (61);.,(62);., j'<j—1, and Lemma 10.
Q.E.D.

-1
Corollary. 1f|x—52|<4(s sin 1_7r2> [n,|=1/9=9) the power series

YRy = 5 (e YRR R,y )
converege. We have Y&-K-k=0 if K<k, and
|80} YKk < SCRTPKI11 (o] Ry [ K111 (K — ke + B+ 7!
xexp {(C+1)|n, |14/ RamaT)}

with some C, R, >0 for K, ke Z., ff,ye Z}.

Now we have the following

Proposition 10. There exist 2x 2 matrices Z+-X-¥(x, y, n) such that
(63) |0503 Z % K-k S CRYZKIPHYI(g] R)K |, |TXH DK+ b+ B+ 9!

xexp {(C+1)|n,|~amima/2aman}

with some C, R,>0 for K, ke Z,, B,ye Z on Q}. Here C and R, do not depend
on €>0. Furthermore, we have Z*-X:¥=0 if K<k, and

(64) Ui,l\'= i Zi,l(,k(= i U..-‘:,K.k)
k=0 k=0

on Q4,0 Q% Thus U*X satisfy (17)*:X and (18)% also on Q.
Proof. We define Z+-X% K ke Z,, py

Z+ K.k =1+§|=K aL!agz’T—la;Y'hJ,k, Z-Kk = Y- KkT,
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Since |x—5e|<4(s sin |- 1@a=a) on Q3, (63) follows directly from Corol-
lary of Proposition 9. It is easy to see that ZtKk=0if K<k. Now let us remark
that Z YKk gatisfy (17)fX and that Z YEKk(%, y,G)=UtK(x, y, n). Thus
we obtam (64). Q.E.D.

This means that UK, Ke Z,, satisfy analogous conditions as Proposition 4
also on Q3, this time U*X4 K, ke Z, replaced by Zt-K.k.  We define U* on
Q},U Q3 by (56). Then arguing just in the same way as Proposition 8, U*(x, y, 1)
satisfy (54)%, (55), and the following (53) on Q},U Q%:

(53y |[U%(x, y, M| <C, exp {C,|n, |1~/ 24a=a")}

Thus we have proved 1° of Main Lemma.

§6. Construction of E(x, y, ).

In this section we construct a 2 x 2 diagonal matrix E(x, y, n) mentioned in 2°
of Main Lemma. Let us define @, (x, y, 1), v=1, 2, by

ax(ﬁv_quv(x’ y,n+ Vy(ﬁ(xa Vs ’7))=0
?,(0, y, n)=0.

These problems are easy to solve and we obtain holomorphic functions @(x, y, n)
defined on (10), homogeneous of degree | in . It is easy to see that

o(x, Yy =[@(x, y, M1y =0+yimy,  v=12.

We have written E(x, y, n) in the form E(x, y, n)=Ey(x, y, n)E(x, y, n) in Main
Lemma. Now consider 2 x 2 matrices Eq(x, y, ) and E(x, y, n) which satisfy

—_ (ﬁl(xv ys r’)
EO(X’ ¥, n)=exp _ s
?a(x, y. 1)

E\(x, y, D=E(x, y, D(Eo(x, y, n)~".

Now let us construct E,(x, y, n). At first we prepare the following lemma which
we can prove just in the same way as Lemma 5 of Uchikoshi [8]:

Lemma 12. Letae Z" and ke Z, satisfy 0<k<|a|. Then there exist 2x2
matrices EZ*(x, y, n) holomorphic on (10) which satisfy

10503 Eg¥| <aR=21«1=1B+¥I(g[n, ) 121 =k|n | =171 (k +| S + y])!
with some a, R>0 on (10),
o 5 o
=0 lal _ n
33E°= 3 Eg*E, Eg°=]]

k=0 j=1 0
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Now let us consider the following equations (65X, Ke Z, :

K EK _ L
(65) 0-E} J+Ia§1I=K alf!
k+181%0

01 o (x1A)Eg S E] =

We have the following

Proposition 11. There exist 2x2 matrices EX-*(x, y, n), K, ke Z,, such that
- K _
EXk=0if K<k, > EX%k Ke Z,, satisfy (65)%, and that

k=0

(66)¥ 8303 EX-¥| < CRy2K~17*01 (el )X K[| =X~ 121(k + |y + 6]) !
with some C, R,>0 for K, ke Z,,y, € Z'. on (10).

Proof. At first we remark that in the right-hand side of (65)X, we have J< K —1.
In fact, if J=K, we must have a=8=0, thus k< |a| =0, and it follows that k+ || =
Thus we can solve (65)K by induction on K=0, 1, 2,....

If K=0, it is enough to take E9:°=1,. Assume that K> 1, and that we have
already constructed EJ-/ for 0<j<J<K—1. We define EX-*, 0<k<K, by

Eft= Sx { J+Ia;ﬂl a'ﬁ' 0“+ﬂa(qu)Eg’i6ﬁE{vfdx} '

i+.i+|ﬁ|=k+1
i+|p10

= BK K
It is easy to see that EX-¥=0 if K<k, and that EX= Z K.k gatisfies (65)K. We
can prove (66)X using (66)!, J< K—1, and Lemma 12. Q.E.D.

Corollary. We have
|8507 EX| < CRY2K=15+71 | |7K=IVI(K + | B+ 7]) ! exp {e|n, [}
on (10).

Now let us define E,(x, y,n) by E, ~ Z EX on (10). Then it is easy to see
that E(x, y, n)=Eq(x, y, DE(x, y. n) satlsﬁes

0.E~Y ( v L 6“a(x"A)a°‘E)

=o\ja=j &

on (10). Since we have

(@ax. )=yl 1@2(x, v, mi<e 3 In)

on (10), arguing just in the same way as Proposition 8 we can verify that E(x, y, n)
satisfies the requirements of Main Lemma.
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