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Introduction.

Let SO(n) be the rotation group endowed with a biinvariant Rieman-
nian metric. In this paper we consider the problem of local or global
isometric immersions of SO(n) into the Euclidean spaces. For general n
it is known that SO(n) can be globally isometrically imbedded into R”,
namely the canonical imbedding of SO(n) into the set of real (n, n)-
matrices (=R™) is isometric (Kobayashi [5]). On the other hand,
in [1] Agaoka and Kaneda proved that SO(n) cannot be isometrically
immersed into RV+®"-3-2n/2-1 eyen locally, by calculating the rank of
the curvature transformation of SO(n). This estimate is best possible
in the cases n=3 and n=4 because SO (3) and SO (4) can be locally
isometrically immersed into R* and R® respectively (see §1). But in the
cases n=5, the estimate in [1] is not best possible. The first main
purpose of this paper is to determine the least dimensional Euclidean
space in which SO(5) can be locally isometrically immersed.

If SO(5) is locally isometrically immersed into some Euclidean space,
then the curvature of SO(5) satisfies the Gauss equation. We prove that
in codimension 5 the Gauss equation of SO(5) does not admit a solution
and hence SO(5) cannot be isometrically immersed into R® even locally
(Theorem 2. 1). On the other hand, it is known that the universal
covering group Spin(5) of SO(5) is isomorphic to Sp(2) and that Sp(2)
can be globally isometrically imbedded into R" [5]. Therefore combining
these two results, we know the best result on local isometric immersions
of SO(5) into the Euclidean spaces. As a corollary of Theorem 2.1 we
can prove that SO(5) cannot be locally conformally immersed into R®.

The second main purpose of this paper is to prove the uniqueness of
the solution of the Gauss equation of SO(5) in codimension 6 (Theorem
2.3). The Gauss equation is equivalent to a system of quadratic equations
and hence it is in general difficult to prove the uniqueness of the solution
of this equation. We prove Theorem 2.3 by using elementary facts on
the exterior algebra. But many calculations will be required (see §4).
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As corollaries of this theorem we prove that any local isometric immersion
of SO(5) or §p(2) into R™ is uniquely determined up to the Euclidean
transformation of R' (Corollary 2.4) and that SO(5) cannot be globally
isometrically immersed into R' (Corollary 2. 5). Finally we prove that
the non-compact dual space of SO(5) cannot be locally isometrically
immersed into R (Theorem 2.6).

In the case n=6 we can prove that SO(6) cannot be locally isometrically
immersed into R*%, using a similar method developed in §3. But we do
not know the least dimensional Euclidean space in which SO(n) (n=6)
can be locally (or globally) isometrically immersed (see §5).

Throughout this paper we always assume the differentiability of class
c-.

§ 1. Curvature of SO(n) and the solutions of the Gauss equation.

We consider the Lie algebra o(n) as a tangent space of SO(n) at the
identity element. We put V=o0(n) and X;=E;—E;EV (i#j) where
E;; is the (n, n)-matrix such that the entry at the i-th row and the j-th
column is 1 and other entries are all zero. Then {X;},cicj<, forms an
orthonormal base of ¥ with respect to a biinvariant Riemannian metric
of SO (n).

Since the Riemannian connection of SO(n) is given by VY =1 /2:[X, Y]
for left invariant vector fields X and Y, the curvature RE A V*QV*QV
of SO(n) at the identity element is R(X,Y)Z=—-1/4-[[X,Y],Z]€V for
X, Y, Z€V. Using the inner product, we may consider the curvature
as a symmetric linear map R: A?V—— A?V. Then by an easy calculation,
the curvature transformation of SO(n) is given by, up to a positive
constant,

R(X3A\Xo) :pi:l X A Xy
R (Xij/\Xkl) =0

(1.1)

for distinct ¢, j, £ and [.

We assume that SO(n) can be locally isometrically immersed into
RV2r»=D+N - We denote by RM the normal space of SO(n) at the identity
element and by a: VXV—— R¥ the second fundamental form of
this immersion. Then a satisfies the Gauss equation R(X, Y, Z, W)
=<{a(X, 2), a(Y, W) —<a(X, W), a(Y, Z)) for X, Y, Z, WEV. We
fix an orthonormal base {£§},c;cy of RY and define symmetric linear
maps L;: V——V (i=1, -, N) by <L;(X), Y>=<{a (X, Y), &> for
X, YeV. Then the above Gauss equation is equivalent to the equation
R=3 LALi: NV—s NV (cf. [3]).

\1/\7:3 now construct solutions of the Gauss equation of SO(n) for n=3.
We set = {(iy, iy, iy, 3,) €2*10<1,<0,<i;<t,=n}. For @) =(y, iy 15, 1,) €1,
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we define a linear map L : V——V by

L(.) (X s ) = 0 lf {ii” lq} (: {ih i21 igy 14}
epqrinrfS if {iy ig, 0,1} = {1y, 13 0, 14}

1234
pbaqgrs

Proposition 1. 1. (1) L, is a symmetric linear endomorphism of V for
each (1)1,
(2) The equality

(1. 2) R:Zd/\ld+()z:1 L(i)/\L(i)
holds.

where ¢,,,, =sgn ( ) Then we| have

Proof. We prove (2) only. The proof of (1) is immediate and left
to the reader. We substitute the vector of the form X, AX,(p, q, 7, s
are all distinct) into (1.2). It is easy to see that (i) = (i}, 10y, 13 0) E1
satisfies L, (X,,) /\L(,)(X,s)qEO if and only if {i), -, i} =1{p,q,7,5}, and
in this case L (X,,) =¢p,:X,s and Ly (X,,) =¢,;,,X,,. Hence we have L,
(X50) ALy (X,0) =505 2X,s AN Xpg= — X3y /\X,;. Therefore (id N\id+ (OZ(]EI Ly N\
L) (X A\X,) =X ANX,s — X0 ANX,,=0=R(X,,ANX,). Next we substitute
the vector of the form X, AX, (p, ¢, r are distinct) into (1.2). Then
(1) = (i3, 4, 13, 1) €1 satisfies L (X,,) AL (X,) #0 if and only if {i, -,
i =1{p,q,r,s} for some s(#p,q,r). We fix such an (i). Then it holds
L) (X,,) =¢5,,.X,. and L (X,,) =¢,,X,. Hence we have L (X,,) ALg
(X)) =050 Xys NX o= — X, NXps =X, AX,,. Therefore (id/N\id+ Z L

AL@) (XpeNX,,) :XM/\XP'_I_#;%., X N\X, = Zqu/\Xsy R(qu/\Xpr)
g.e. d.
Since #I=<Z>, this proposition implies that SO(n) admits a solution
of the Gauss equation (at one point of SO(n)) in codimension <Z>+l
(n=3). We remark that (Z)—I—l is smaller than the codimension of the

canonical isometric imbedding of SO(n) into R” for 3<n<6.

The spaces SO(3) and SO(4) are locally isometric to the sphere S§*
and the product of the spheres $3Xx$*® respectively and hence they can
be locally isometrically immersed into R*and R®. The universal covering
space of SO(5) is isometric to Sp(2) and by Kobayashi [5], Sp(2) can
be globally isometrically imbedded into R¥. Hence SO(3), SO(4) and
S0 (5) admit solutions of the Gauss equation in codimension 1, 2 and 6,
respectively. By an easy calculation we can verify that, if we choose a
suitable orthonormal base of the normal space, these solutions coincide
the ones constructed as above.

In the case n=5, we rewrite the solution of the Gauss equation (1.2)
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in the form a: VXV——>R® (V=0(5)) for later use. Let {e, €123y €135y

€1245 C1a150 €235 D€ an orthonormal base of R® and we put eqk,—sgn@ {] , s)
€sqs for distinct ¢,j, %,/ (£5). Then the solution (1.2) is expressed as:
a (X, Xij) =¢€
(1.3) a (X, Xu) =eiu
a (X, Xy) =0

]’

for distinct i, j, £ and L.

§2. Statement of results.

In this section we state the main results of this paper. The proofs of
Theorems 2.1, 2.3 and 2.6 will be given in §3 and §4.

Theorem 2. 1. Let R: N\2V—— AV (V=0(5)) be the curvature irans-
formation of S0(5) If there exist symmetric linear maps L; (i=1, -+, k)

such that R= ZeL AL; (=1 or —1), then k=6. In particular SO(5)

cannot be zsometrzcally immersed into R™ even locally.

As a corollary of this theorem we have

Corollary 2. 2. SO(5) cannot be locally conformally immersed into R™.

Progf. We assume that SO(5) can be locally conformally immersed
into R®**¥. Then by a result of Moore [7], SO(5) is locally isometrically

immersed into R“"+¥ | where R“"*" is the Minkowski space of signature
11+N

(—,+,+,, +). Let a be the second fundamental form of this isometric
immersion and let {&, -, &y} be a base of the normal space such
that <§,§>=0 (i#)) and —<&,§>=(&, & ="={lyin En»=1. We
define symmetric linear endomorphisms L; (i=1, -, N+2) of V by (L,
(X), Yo=<(a(X, Y), £&>. Then the Gauss equation of this isometric

N+2
immersion is expressed in the form: R=—L, AL+ iL,-/\Li. Hence by
=2
Theorem 2.1 we have N+2>6 and the corollary is proved. q.e.d.
Remark. Since the image of the canonical isometric imbedding of Sp

(2) into R*(Kobayashi [5]) is contained in the sphere S¥CR", SO (5) can
be locally conformally immersed into R™.

Theorem 2. 3. A solution of the Gauss equation of SO (D) in codimension
6 is unique up to the action of O(6) on the normal space.

Remark. The last statement in Theorem 2. | follows immediately from
this theorem. In fact if SO(5) admits a solution a of the Gauss equation
in codimension 5, then by the action of O(6) it can be expressed in the
form (1.3). Hence we have dim {a(X,Y) |X, Y&V} =6, which contradicts
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the assumption.
As corollaries of Theorem 2.3 we have

Corollary 2. 4. Let U be a connected open Riemannian submanifold of
SO (5) or Sp(2) and let f, f, be isometric immersions of U into R®. Then
there exists a Euclidean transformation ¢ of R such that ¢of,=f,

Proof. We denote by N, the normal bundle of f, and let a,: TU XTU
——N, be the second fundamental form of f,(k=I1, 2). We define a
bundle isomorphism @: N;——N, by @a,(X, Y) =a,(X, Y) for X, YET,U
(p€U). We identify T,U with V in a natural way. Then by the
uniqueness of the solution of the Gauss equation, we may consider that
a, and a, are expressed in the form (1.3). Hence @ is well defined and
@ preserves the metrics and the second fundamental forms. Since vectors
of the form «,(X, Y) (X, YET,U) span the normal space of f, for each

p€U, we can apply Theorem 2 in Nomizu [8] and obtain the desired
result. g.e. d.

Remark. Since the canonical isometric imbedding of Sp(2) into R'*
is parallel (cf. [10]), the normal connection I+ of any isometric immersion
of U(cSO(5) or S§p(2)) into R® is given by F%a(Y, Z2)=a(FxY, Z)+
a(Y, P3Z2)=1/2 « {a([X, Y], Z)4+a(Y, [X, Z])} for left invariant vector
fields X, Y and Z.

Corollary 2. 5. SO(5) cannot be globally isometrically immersed into R

Proof. We assume that there exists a global isometric immersion f:
SO(5)——R¥. Then composing the double covering map =: Sp(2)—
SO(5), we have an isometric immersion for of Sp(2) into R, which is
not an imbedding. But by Corollary 2. 4 this immersion must be congruent

to the canonical isometric imbedding of Sp(2), and hence a contradiction
follows. g.e.d.

We remark that SO(5) can be globally isometrically imbedded into
R?%, as stated in Introduction. But we do not know whether SO(5) can

be globally isometrically immersed into a lower dimensional Euclidean
space.

For non-compact dual space of SO(5), we have
Theorem 2. 6. Let SO(5, C)/SO(5) be the non-compact dual space of

SO(5). Then SO(5, C)/SO(5) cannot be locally isometrically immersed into
RY.

§3. Proof of Theorem 2. 1.

In this section we prove Theorem 2.1. Let X, -, X,, Y, -, Y, be
elements of V(=0(5)). Then using the inner product of V, we consider
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Z X/\Y €AV as a skew symmetric linear endomorphism of V: (Z X: N\
Y)Z Z KX, 2>Y,—<Y, Z2>X;} for Z€V. In the following we denotc

by Im(Z X;/\Y;) the image of this linear map.
The followmg lemma is easy to verify (cf. p. 351 [6]).

Lemma 3. 1. Let X, -, X,, Yy, -+, Y, be elements of V.

Yy If {Xy, -+, X,} is linearly independent and _Zk:Xi/\Yi=0, then Y,
(X, - X)) for i=1, -, k. -

(2) If dim {X,, -, X,} =k—1 and Z X;/\Y.=0, then there exists Z&
V such that Y, € {X,, -, X,, Z} for z=l , k.

Now we prove Theorem 2.1. We assume that there exist symmetric

linear maps L, : V—V (i =1, -, 5) such that R= ZeL/\L (e;=1 or
—1). For XV we define a subspace V' (X) of V' by V(X) {L: (X))} 1<i<s

Then we have
(%) dim V(X;)<4 for any X;€V (i+#)).

Proof. Suppose that dim V(X,;;) =5 for some X;;. By the symmetry
we may assume that dim V(Xp,) =5. Then from the equation 0 =R (X,
AXz) —ZeL (X)) AL;(X,) and from Lemma 3.1 (1) we have V(X,) C
V(Xp). In the same way, from the equation R(X;;,A\Xy)=0 we have
V(X)) CV(Xy). On the other hand since R(Xy,AXy) =X, AXis+ Xo/\
X25+X31/\X35—216L (X34) AL;(Xy), we have Im R(X;,AX3) = { X, Xis
Xy Xos, Xy, Xgsb =Im {ZE L(X3) NLi(Xg)} CV (Xy) +V (X)) CV (X))
But this is impossible because dim {X,, -, X3} =6 and dim V(X)) =5.

g.e. d.

Next we prove
(#4) dim V(X;;)=4 for some X;EV.

Proof. We assume that dim V(X;)=<3 for all X,.,-EV(i;tj) From
the equality R(X;,/A\ X)) = Xp AXis+ Xoo/ A\ Xyt Xos/\ Xgs= Z &;L;(Xp) NL;
(X)), we have Im R(X;; AXy) = (X, Xigy Xow Xoy Xap 35} CV(Xp) +V
(Xy3). But since dim V(X,)=3 and dim V(X,;) <3, we have dim V(X))
=dim V(X;;)=3 and {Xy, -+, Xy} =V (X)) DV (X},) (direct sum). In the
same way, using the terms R(X;,AX;,) and R(X,;AX5), we have V(Xy,)
@V(XM) ={Xip X1y Xogy X, Xa, X45} and V(X)) DV (Xy) = (X1 Xis, KXo
Xy, X, X5} Hence we have V(Xy,) C{ Xy, Xy Xy Xos, Xay X} N { X,
Xy Xoy Xos, Xy X} N {X1py Xis, Xipy Xoy X, X} = {Xyp}, which contra-
dicts dim V(X)) =3. Therefore dim V(X;;) =4 for some X, ;EV.



Isometric immersions of SO (5) 719
g.e.d.

From (+) and (x+) we know that there exists some X;EV such that
dim V(X;;) =4. By the symmetry we may assume that d1m V(X =4.
Since R(X ;AX,) = Z &L, (X)) N\L;(X;) =0, there exists Y,€V such that
V(X)) CV(Xp)+ {Yl} (Lcmma 3.1(2)). In the same way from the equa-
tion R(X;,AX3;) =0, there exists Y,&V such that V(X)) c V(X,,) + {Y,}.
Considering the image of the linear map R(XyAX3y) =X, A X5+ Xo/\Xos
+ Xy Xy, we have {Xy, Xis, Xopy Xiy Xap X} CV (X)) + V(X)) CV
(X)) +{Y,, Y,}. Since dim V(Xy,) =4 and dim {X,, --+, X} =6, it follows
that dim {V(X};) + {Y}, Y;}} =6 and {Xy, -, Xy} =V (Xp) @Y} D{Y2}
(direct sum). In particular we have V(X)) C{Xy, -, X3}. Similarly
using the equalities R(X,/\ X3) =R (X,,\ X)) =0, we can prove that V
(X1) € {Xiy, Xisy Xy, Xos, Xy, X5} Hence we have V(Xy,) C{Xy, Xy, X
Xy Xayy Xast N {X1gy, Xisy Xy, Xos, Xy Xisb = {X15, Xis, X3y} But this is a
contradiction because dim V(X);;) =4. Therefore the curvature R of SO

5
(5) cannot be expressed in the form R=7}]¢L;/A\L; and we complete the
i=1
proof of Theorem 2. 1. qg. e. d.

84. Proof of Theorems 2. 3 and 2. 6.

In this section we prove Theorems 2.3 and 2.6 in parallel. The proof
will be divided into several steps.

We denote by R the curvature transformation of SO(5), as in the
previous sections. Then the curvature of the non-compact dual space
SO(5, €C)/SO(5) is given by —R. Now we assume that there exist sym-
metric linear maps L;: V——V (i=1, -+, 6) satisfying the Gauss equation
eR= ZL/\L (¢e=1 or —1). For X&V we define a subspace V(X) of V
by V(X)— {L:(X)}1gig as in §3.

The following lemma is easy to prove.

Lemma 4. 1. Let X, -, X,, Yy, -, Y, be elements of V. If dim Im
k
(% X;A\Y)=2m, then dim {X|, ---, X,} =m and dim {Y,, -, Y,} =m.
i=1

We prove

Lemma 4. 2. dim I'(X};;) =4 for all X;€V (i+)).
Proof. Since R(X,A\(Xi3+2X,)) = Xy AXiz+ Xpg A Xay+ Xps AXss+2X,
NAXp+2X3 A\ Xy —2X5 A\ X5, we have dim Im R(XIZ/\ (X13+2X,)) =8.

Then from the equation eR(X;, \(X;;+2X,,)) = Z L( X)) NL; (X;3+2X,,),

we have dim V(X;;,)=4 (Lemma 4.1). By the symmetry we conclude
that dim V(X;)=4 for all X;E€V (i#j). Next we assume that dim V
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(Xi;;)=5 for some X;=V. Then by the symmetry we may assume dim
V(X)) =5, Since eR(Xyp N\ X3) = Z L;(X,) AL;(X,) =0, there exists a
vector Y,V such that V(X,)C V(Xlz) + {Y;} (Lemma 3.1). Similarly
using the equality R(X,AXsx) =R(X,,AX) =0, we have V(Xy) CV (Xy,)
+{Y,} and V(X) V(X)) + {Y,) for some vectors Y,, YEV Then by
the equation eR (X3 A\ Xa5) =e (X1 A X5+ Xopo A\ Xos+ Xoy AN X3s) = Z L:(X3) N\L;

(X3), we have {Xy, Xis, Xop X5, X3y Xos} CV(X3) +V(Xy) CV(XIZ) + {Y3}
+ {Y,}. Now we prove that there exists Z, €V such that

(4. 1) V(X)) C{Xw Xis, Xopy Xos, Xayy Xasy 21}

If dim V(Xy,;) =6, then we may put Y,=Y,=0 and hence V(X},) = {X;,

, X} because dim {X,, ---, Xx} =6. Hence if we set Z,=0, (4.1)
holds. If dim V(Xy,) =35, then the dimension of the space V(Xy,) + {Y;}
+{Y,} is at most 7. Hence there exists Z, &V such that {X, ---, X,
Z} =V(Xyp) +{Y}+ {Y,} and in partlcular (4.1) holds. In the same

way using the equation eR(X;AX;) = Z Li(Xe) AL (X)) =¢ (— Xis \ X5
— XA Xps+ X3u/AXi5), we can prove that there exists Z,EV such that

(4.2) V(X)) C{X Xis, Xy Xos, Xuyy Xis, Zo}.

We assume that dim V(X,,) =6, then we may put Z,=Z,=0, and hence
V(X)) ={Xy, -+, Xy} ={Xy, -+, X}, which is a contradiction. Hence
we have dim V(X)) =5. Now we modify Z, and Z, such that Z, and
Z, are contained in the orthogonal complements of {X;, -, X5} and
{Xy -+, X5}, respectively. We assume that Zi& {Xy, -+, Xig}. Then it
can be easily proved that {X,, -, Xg, Z)} N { Xy, -, Xis} = {Xis, Xos, X} -
Hence dim {X,,, ---, X&, Z;} N {Xy, -, Xgs, Z,} =4, which contradicts (4.1),
(4.2) and dim V(X;)=5. Therefore Z,€{Xy,, --, X}. Similarly we
can prove that Z,€ {X),, ---, X3} and hence we have V(X)) = {X;5, X35, Xa,
Zy, Z,}. In particular {Xy, X, Xy} CV(Xy,). Next using the equation

6
5R(X35/\X45) = ZlLi (X3) AL; (Xyg) =e(Xi3 N\ Xy + Xpn A\ Xy + Xs AXys), we

can prove in the same way as above that there exists Z;&€V such that
(4.3) V(X)) C{X Xipy Xozy Xoy X5y X5, Z3).

Then from (4.1) and (4.3), we have {X,,, X,, X3} cV(Xy). Therefore
combining the above results, we have {Xj;, Xy, X3} DXy, Xy X}V
(X5,). But this is impossible because dim V' (X;;) =5. Hence if we assume
dim V(X,) =5, we obtain a contradiction. Therefore dim V(X;,) =4. By
the symmetry we conclude that dim V(X;;) =4 for all X;EV. q.e.d.

We express the solution of the Gauss equation sR=%}L,-/\L,~ in the
i=1
form a:VxXV——>RS Then it can be easily verified that V(X)+= {Ye&
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Via(X, Y)=0} for any XeV. We prove
Lemma 4. 3. «a(X,;, X,)=0 for distinct i, j and k.

Proof. Let {v}, -+, v} be a base of V(X;;). Then we have v, A-- Ay,
AR(X,A\Y) =0 AV for any YEV because eR(X,/\Y) =Zs: L (X)) N\L;
(Y). We prove that @ AV satisfies AR (X, A\Y) =0 f(l)r1 all YeT if
and only if @ is a constant multiple of X, AX;; AX;AXse We express @
in the form @=Za(il_iz)...(;7,i8)Xi1;2/\-*-/\X,.7,~8€ AV (4,<dy, -+, 1;<ig). Since
R(Xpu N\ Xi3) = Xip/\ Xis+ Xog/\ Xay+ Xos A\ X35 and @ AR (Xp/\ Xip) =0, we
have OAR(X; AX) AXpuAXps =P NAX, AX1s/A\Xp/\ Xp;s=0. Hence if the
indices (i, 2,), -+, (i;, 33) are all contained in the set {(l, 4), (1, 5), (2,
3, (3, 4), (3, 5), (4, 5}, then a(;l,;z),..(;T;s):O. We change Y=X,; and
X, A\Xy; to other elements and repeat the same procedure as above.
Then we know that most of the coefficients AGiigini, of @ are zero and
finally it follows that @ is contained in the 9-dimensional subspace {X),
AXuAXuAXs, XA Xos/N\Xoa/\Xosy, X3\ Xos/A\Xau/\Kss, Xia/\Xaa AN Xai N\ X s
Xis A Xos A X N\ Xsy Xe AXse/ A\ X35 N\ Xisy X2/A\X13/N\XKos/\ Xy X12/\ X1a/ A Xou/\
Xy X AXisAXpsAXy) of AW, We express @ as a linear combination
of these 9 vectors and once we substitute @ into the equations @ AR(X,,
AY)=0. Then it can be directly verified that @ is contained in the 1-
dimensional subspace {X,AX;uAXis/A\Xgh of A'V. Therefore we know
that {X,,, X, X X, is the base of V(X,). Then by the symmetry
we conclude that V(X;)={X;, Xu X, X} for distinct integers i, j, k,
[ and p. Hence as remarked above, {YEV |a(X};, Y) =0} =V (X;))+={X,,
Xy Xipy Xjiw Xjiy Xjp}. In particular we have a(X;; X;,)=0. gq.e.d.

Next we fix an orthonormal base of the normal space in the following
way. We first remark that a(X;; X;;), a(X;;, Xu)#0 for distinct ¢, j,
k and [ because eR(Xib X Xijy Xi) :<a(Xij, Xij)a a(Xy Xu)d _||0‘(X;j,
Xik)||2:<a(Xij, Xij), a(Xy, Xy)>=1 and eR(X;;, X, X, Xu) :<0‘(Xija
X;), a(Xy, Xkl)>_<a(Xija X)), a(Xy, X)) = —<Ka(Xy;, X)), a(Xy, le)>
=1. Then using the Gauss equation directly, we can prove that the 6
vectors a(Xy, Xip), @ (X Xo), a(Xis, Xp), (X Xi), a (X, Xi), a (X
X)) are orthogonal to each other. For example a(Xy,, X)) 1L a(Xy X,
follows from the equation eR(X),, Xy X X)) =<a (X X)), a( Xy, X))
—a( Xy X0, (X Xip)) =<{a(Xy X1, a(Xy, X3)>=0 and a(X,; X;,)
la(Xy, X, follows from the equation eR (X3, Xis, Xy Xo) =<a (X Xa),
a(Xys, X)>=0. Hence {a(Xy, X)), -, a(Xy, Xix)} forms an orthogonal
base of the normal space RS Let {e), €, €13 €2 €13 €2} be an
orthonormal base of R® such that

(4.4) a( Xy, Xio)/leoy a(Xuzy, Xa) flerm @ (Xis, Xi3) [lerss
) a (X Xos) [lerzsy @( Xz, Xis) [lerassy @ (Xpsy Xas) [Je3ese
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We put eiiklzsgn<{.’ Jq /: ;>epq,s, as in §1. Using Lemma 4.3 and the Gauss

equation in full detail, we prove

Lemma 4. 4. a(Xy;;, X;) /e, and a(X;, Xy)/eju for distinct i, j, k
and .

Proof. We first prove that a (X, Xy) [, From the equalities R(X),,
X3, Xy Xy) =R(Xypy Xos, Xppy Xi3) =R(Xyyy Xps, X, Xp) =R(Xyyy, Xos, X,
X =R(X,, X3, Xs, Xp) =0 and Lemma 4.3, we have easily a (X, X,)
Leg €130 Crosss Crassy €235 Since the dimension of the normal space is 6,
we have a(Xy;, Xyx)/ewzs In the same way, using the Gauss equation
and Lemma 4.3, we can prove that

a(Xyy Xop) e, a( Xy, Xas) [leras, a (X5, Xyy) 125
(4.5) a (X, X)) s, @( Xy, Xis) flegss, a(Xos, X3 lezas
a( Xy, Xap) /e

Next we use (4.4), (4.5), a(Xy3, Xs)/le1s and the Gauss equation once
again. Then we obtain a (X, Xi) /ey a(Xy, Xi)/fens and a(X;;, X))
Jleo (i#Jj). For example from the equalities R(X,,, Xg, Xy X)) =R(Xp,
Xy Xoy Xyg) =R(Xyyy Xipy Xos, Xag) =R (X3, X5, Xis, Xip) = R(Xy, X5, X,
X1;) =0 we have a(Xy, Xix) Ley €y €1 €1 €5 and hence a (X, Xy)
/e Also from the equalities R(Xy, Xy X Xig) =R (X, Xigy Xps X13)
= R( X1 X135, Xos, X13) = R(Xyyy, Xygy Xos, Xig) = R(Xyy, Xiy, X5, Xip) =0, we
have a(Xy, Xy3) /e, Finally (X, Xi)/ens, can be proved in the same
way, using the equalities R(Xy, X Xy X5) =R (Xy, Xy Xy, Xa) =R
(X1 Xipy Xosy, Xa) =R(Xp3y Xy, Xis, X)) =R(Xpy, Xy, X, X3p) =0, There-
fore we have a(X;;, X;;) /e and a(Xy;, Xu)/eiju. g. e. d.

Now we prove Theorems 2.3 and 2.6. We put a(X};, X;) =a;e, (a;;=
a;) and a (X, Xu) =bjueij (b =bju=0b;;=>by;;) for distinct 4, j, £ and [
We first assume that a satisfies the Gauss equation of SO(8): R (X, Y,
Z, W)=<a (X, Z), a(Y, W)> —<a(X, W), a(Y, Z)>. Then from the
equation R(X;;, Xy, X Xu) =<a(Xj;, X)), a(Xy Xw)d>=1, we have g
az=1. Then 1=a;a;,=a;a,; and we have a;=a; for distinct i, £, | and
hence aja;=a,*=1. Considering the action of O(6) on the normal space,
we may put a;=1 for all i, j (:#j). Next, from the equalities R(Xs,
Xy Xy Xp) = —R(Xypy Xuyy Xy, X3p) =R(Xyp, X3, Xppy X3y) =1, we have by
b1yo3 = 129401433 = D193sb13s= 1. Hence we have by =b135, =b13= 1. By the action
of O(6) on the normal space we may set by =013, =by3=1. In the same
way we have b, =1 for distinct ¢, j, £ and /. Then the solution «,
which we obtain in this way, just coincides the one constructed at the
end of §l and therefore we complete the proof of Theorem 2.3. Next we
assume that a satisfies the Gauss equation of SO(5, C)/SO(5): —R(X, Y,
Z, W) =<La(X, Z), a(Y, W)>—<a(X, W), a(Y, Z)>. Then from the equ-



Isometric immersions of SO(5) 723

ality —R(X;;, Xy, Xy, Xa) ={a(Xy, Xij), a(Xy, Xu)>=—1, we have a;
ay=—1. Hence in the same way as above we obtain a,?= —1, which
does not admit a real solution. Hence the Gauss equation of SO(5, C)/
SO(5) does not admit a real solution in codimension 6 and therefore SO
(5, €)/SO(5) cannot be isometrically immersed into RY even locally.
g.e. d.

§5. Final remarks.

Let a: VXV——R® (V=0(5)) be the solution of the Gauss equation
of SO(5) in codimension 6. Using an element ¢&50(5), we define a
new symmetric bi-linear map «a,: VXV——R® by «a,(X, Y) =a(Ad(g) - X,
Ad(g)+Y) for X, YEV. Then it can be easily verified that a, is also a
solution of the Gauss equation. Hence by Theorem 2.3 there exists a
Lie group homomorphism p: SO(5)——0(6) such that a,(X, Y)=p(g)"
a(X, Y) for X, YEV and ¢&50(5). We differentiate this equality. Then
we have

G.1) a([X,Y],2) +a(Y, [X, Z])=p(X) -a(Y, Z) for X,Y,ZEV,

where p: 0(5)——0(6) is the differential of p: SO(5)——0(6). By an
easy calculation, we can prove that p is equivalent to a sum of the 1-
dimensional trivial representation and the identity representation of ¢(5).

The solution of the Gauss equation of SO(3) (resp. SO(4)) in codimen-
sion 1 (resp. 2) is unique and hence it also satisfies (5. 1), where p is a
trivial representation in this case. Therefore in the cases n=3, 4 and 5,
the least codimensional solution of the Gauss equation of SO(n) satisfies
the condition (5.1) for some representation p of o(n).

In the case n=6, we can prove that in codimension =15 there does
not exist a solution of the Gauss equation of SO(6) satisfying the condition
(5.1). On the other hand the solution of the Gauss equation which we
construct in §l satisfies (5.1) for any n(=3), where p is a sum of the
1-dimensional trivial representation and the irreducible representation of

degree (Z) In particular SO(6) admits a solution of the Gauss equation

in codimention 16 which satisfies the condition (5.1). We can also prove
that SO(6) does not admit a solution in codimension =7 by a similar
method as in §3. But at the present time we know neither the least
codimension in which the Gauss equation of §O(6) admits a solution nor
the least dimensional Euclidean space in which SO(6) can be locally
isometrically immersed. (We remark that the double covering space of
§O(6) is isometric to SU(4) and SU(4) can be globally isometrically
imbedded into R* [5].)
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