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1. Introduction.

In this paper, we investigate the dynamical properties of continuous
maps of a compact metric space into itself. There has been much recent
interest in irregular trajectories, for example, so-called strange attractors
[1]. In Auslander and Yorke [2] some topological concepts of chaos are
investigated. = The purpose of this paper is to examine some of the
consequences of the following definition due to Li and Yorke [3].

Let X be a compact metric space with metric d and C(X) be the
space of all continuous functions from X into itself.

Definition 1. 1. For feC(X), we say that S is a scrambled set of
(X, d, /) if § satisfies the following two conditions.

(i) S is an uncountable subset of X.

(ii) For any x, yE€S, xxy, and for some 6>0,

lim inf d(f"(x), f*(»)) =0
and

lim sup d(f"(x), f*(»))>4.

n-—soco

Without loss of generality, we can assume that § contains no asymptoti-
cally periodic points. Note that if § is a scrambled set of (X, d, f") for
some positive integer m, then § is also a scrambled set of (X, d, f).

Definition 1. 2. We say that feC(X) is 2-expanding on X,CcX if
d(f(x), f(»)) >2d(x, y) for any x, y€ X, and for some 1>0.

In one-dimensional case, there are various results concerning scrambled
sets. Let / be a compact interval and d(x, ») =|x—y|. Combining the
theorems of Li and Yorke [3] and Sharkovskii [4], we have the following:

Theorem 1. 3. If f&€C() has a point of period k2™ for some odd
integer k>3 and for some positive integer m, then there exists a scrambled set

of (1, d, ).
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Concerning the stability property of functions which possess a scrambled
set, Butler and Pianigiani [5] obtained the following result.

Theorem 1. 4. The set of functions in C(I) which possess a scrambled
set contains an open dense subset of C(I).

Recently, concerning the measurements of scrambled sets, J. Smital
[6] showed that

1
2x xE[O, '2—]
1

2—2x, xe[?, l]
has no scrambled sets with a positive Lebesgue measure. Moreover he
constructed a scrambled set with full outer Lebesgue measure under the
continuum hypothesis.

In n-dimensional case, Marotto [7] obtained the following theorem.

Let || || be the usual Euclidean norm and B,(x) be an open ball centered
at x with radius 7.

S =

Theorem 1. 5. Assume that FEC(Q) satisfies the following two conditions,
where Q is a compact set in R".

(1) F(z)=z and F is 2-expanding on B,(2) for some A2>1.

(i1) F™(w) =% and F™ is p-expanding on B,(w) CB,(z) for some positive
integer m>2 and for some p>0.
Then there exists a scrambled set of (Q, || |, F™).

It is clear that the set of functions ¥ in C(Q) which possess a scrambled
set is dense in C(Q). However, it will be an open problem whether ¥
contains an open set or not.

2. Preliminaries.

In this section, we give some notations and definitions. Let M be a
metric space with metric d. Throughout the section 2-4, we suppose
that a system (M, d, f) satisfies the following:

Hypothesis 2. 1. f: M—M is a continuous mapping and there exist
disjoint compact subsets A4, A4;,CM such that

f(Ao) ﬂf(Al) D Ao U Al.

Let Y={0, 1}¥ be the collection of infinite one sided sequences of
0’s and 1’s with a metric
1
2n

|0, —o, |

dE ((D, w,) = i

where 0= (0w®,...) and o= (vjww,...). Then X is a compact metric
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space and the shift transformation ¢: 2 —>2, where ¢ (000,...)=
(w,w,5...), is a continuous onto two to one mapping.

Let % be the set of all non-empty closed subsets of A; for :=0, 1
and put € =4,U%,. If we introduce Hausdorff metric d; on ¥ :

dy(c, ¢) =max {ing'{Ne (¢) D¢}, inf{N.(c") Dc})

for ¢, '’ %, where N,(¢) is an e-neighbourhood of ¢, then € is a compact
metric space by virtue of the theorem of Michael [8].

For any sequence of sets {D,}, we define the limit superior set of
{D,} as follows:

lim sup D,,=a D D..

n—»oo n=1 i=n
Note that if {D,} is a sequence in a compact metric space, then the limit

superior set of {D,} is a non-empty compact subset.
For any we 2, we define

K@)= 0 f™"(4,)

where o= (ww®,...). Since it is clear that K(») is a non-empty closed
subset of 4,U4,; by Hypothesis 2.1, K is a mapping from 2 to ¥.
For convenience, we define the address of xE4,U A4, such that

4, if x€4,

A= =1 4 it re4,

Therefore we have Add(f"(x)) =4, for any n>0 and xEK(w).
Finally we define a mapping F: ¥ —»2" as follows:

F(O) = (f(x); x&c} cM

for ce¢. Since f is continuous, F(¢) is always a compact subset.

3. Some Properties of K.

In this section, we discuss some fundamental praperties of K: 2—>¢&.
If we define M*=U K(0) CM and ¥*=K(2), then we have the following.

el
Lemma 3. 1. (i) oxo implies K(w) NK(0w') =¢ and therefore K: X
—%* is an onto one to one mapping.
(i1) M* is a compact subset of M.
(1) K(o(w)) =F(K(w)) for any wE2.
(iv) F: €*—>€* is continuous.

Proof. Plainly (i) follows from the definition of K. For any x&M — M?*,
we have f"(x) &A,UA4, for some n>0. Since f" is continuous at x and
A,U4, is closed, there exists a neighbourhood U of x such that f(U) N



692 Masayoshi Hata

(4,UA)=¢. Then we have UNnM*=¢ and therefore M* is a closed
subset of M. Thus M* is a compact set since M*CA4,UA,. For any
x€K(o(w)), we have Add(f"(x)) =A‘,,n+1 for any n>0. Since x€4,U4,
Cf(4,,), there exists yE4, such that x=f(y). Then Add(f"(»))=
Add (f*1(x)) :Aa,” for any n>1 and we have yEK(®»). Hence K(s(w)) C
F(K(»)). Conversely, for any x€F(K(w)), there exists yEK(w) such
that x=f(»). Then Add(f"(x)) =Add(f**(»)) =A‘,,"+1 and we have x&
K(o(®w)). Thus we have K(o(w)) =F(K(w)). Also this shows that
F(¢*)yc%*. Finally, (iv) follows since f is uniformly continuous on a
compact set M*. []

The following plays an important and fundamental role in our discus-
sions.

Lemma 3. 2. For any sequence {0™} C2X, we have
lim sup K(o™)c U K(w)
n-—»oo wez‘o
where 3y=lim sup {0™}.

n—»o0

Proof. Let lim sup K(o™)=K*. Since K(o™)cM* and M* is a

closed set, we hav’go}(*CM*. Therefore, for any xEK*, there exists some
o€l such that x€K(w). By the definition of the limit superior set,
there exists a subsequence {n;} such that d(y; x)—>0 as j—>oco where
y,€K ("), Since d(d4, A4;)>0, for fixed k, we have Add(f*(x)) =
Add(f*(y;)) =4,, for sufficiently large j. This shows that ds (0", @) >0
as j—oo, Hence w€lim sup {®™} and this completes the proof. []

n->00

Corollary 3. 3. If ds(0™, ©)—>0 as n—oo, then we have

lim sup K(o™) cK(o).
We say that f; is topologically conjugate to f, if fi=hof,oh™" for some
homeomorphism 4.

Theorem 3. 4. The following three statements are equivalent to one another.
(i) K:ZX—->%* is a continuous mapping.

(i1) & * is a closed subset of €.

(i) F: €*—>%* is topologically conjugate to the shift o: 3—2.

Proof. First we will prove (i) is equivalent to (ii). Clearly (ii)
follows if (i) holds. Assume that €* is closed. For any sequence
{0} X such that dy(e®, w)—>0 as n—oo, a sequence {K(o™)} C#*
contains a subsequence which converges to some K(w*) since ¢ * is compact.
Then it is clear that K(w*)Clim sup K(o®) and using Corollary 3. 3

n-»oo

we have K(w*) CK(w). Hence w*=o and this implies that dy(K(o™),
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K(0)) >0 as n—oo, that is, K is continuous at o. Thus (i) follows.
Since K is a continuous one to one mapping onto a compact space € *, K
must be a homeomorphism. This implies (iii). Finally, it is clear that

(ii) follows if (iii) holds. []

A mapping K may have a discontinuity point. Actually we have the
following. The proof is straightforward.

Lemma 3. 5. If K(w) has an interior point, then o is a discontinuity
point of K.

4. Existence of Scrambled Sets.

In this section, we give some theorems concerning the existence of a
scrambled set.

Theorem 4. 1. Assume that K is continuous at some point wE 2. Then
there exists a scrambled set of (€*, dy, F).

Proof. Let o= (ww0,...). We define for y=[0, 1] and n>0, o]=
[rm]1—[r(m—=11] if n=m? and 0=, if n>[{n 1> where k=n—[{n]?—1
and [x] denotes the greatest integer which does not exceed x. Then it

n-soco

easily follows that lim 1 i}le,z:r. Let o’ = (wlwlw}...). Then we have
=

2
0" (") = (00w, . .. gy .. L),

therefore, for any 7, {o"*'(@")},s, is a sequence in Y which converges
to w. Thus, by the assumption of K, we have d,;(K(s"*+' (")), K(®))—0

as n—oo,
Now we define S= {K(w"); r€[0, 1]} €% *. Plainly S is an uncountable
subset of €* and for any a, [0, 1], a8,
dg(F*™ (K (%), F**'(K(0#)))
<dy(K(0™1(07), K(@))+dy(K(0"*1(0"), K(@))—0 as n—oo.
Hence we have
lim inf dy(F*"(K(0®)), F"(K(0?)))=0.

On the other hand, there exists a subsequence {n;} such that
w:zz\;wﬁz, and therefore
i

I('(cr’ﬂ%(co"‘))CAs and K(a":z'(wﬂ))CA, for sxr.
Hence we have

lim sup dy(F"(K(«%)), F*(K(0®)))>d(4, A4,)).

This completes the proof. []
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Theorem 4. 2. Suppose that K(w) consists of only one point. Then K is
continuous at w and there exists a scrambled set of (M*, d, f).

Proof. Let {0™} be any sequence in 2 such that d;(e™, ©)—>0 as
n—oo, By Corollary 3. 3, we have lim sup K(0™) =K(w) since K(w)

consists of only one point. Therefore d’;,(K(w(”)), K(w))—0 as n—>o0 and
this shows the continuity of K at w. By the above theorem, there exists
a scrambled set §S={K(o"); r[0, 1]} of (¥*, dy, F). Choosing suitably
x"eK(0), we define &= {x"; r€[0, 1]} cM*. Then cleary & is a
scrambled set of (M*, d, f). [

Corollary 4. 3. Assume that K(w) consists of only one point for any wE 2.
Then f: M*—M* is topologically conjugate to the shift o: 3—2.

Proof. By the above theorem, K: Y—>%* is continuous. Thus F:
¢ *—>%* is topologically conjugate to o: 2—3 by Theorem 3. 4. Since
K(w) consists of only one point, we can identify M* with &€ *. This
completes the proof. []

Theorem 4. 4. Assume that there exist v>1 and s>0 such that f is
v-expanding on A NS AN NS for any iy, by e iy € {0, 1}
Then f: M*—M* is topologically conjugate to the shift o: ¥ —2.

Proof. For any x, yEK(w) and for any n>0, we have f"(x), f"(») €
Aa,nﬂf_l(Aa,"H) Nn... ﬂf‘S(Aa,m), and therefore

Lacreo, 00

d(x, ) <—;
g%diam(AoUAl)eO as n—»co,

Hence K(®) must consist of only one point. []

5. Marotto’s Conditions.

In this section, we will prove the following theorem as an application
of our results to finite dimensional case. Let Q be a compact set in R"

and d(x, ) =[x —y||.

Theorem 5. 1. Suppose that f&C(Q) satisfies the conditions (i) and
(ii) in Theorem 1.5. Then there exists a compact set Q* CQ and a positive
integer p such that ft: Q* —Q* is topologically conjugate to the shift o: 3—2J.

We remark that Shiraiwa and Kurata [9] obtained the same conclusion
assuming that the differentiability of f and some transversality condition.
Before proving the theorem, we need the following lemma.

Lemma 5. 2. Suppose that f is a continuous v-expanding mapping on
B, (x;) for some v>0. Then there exists >0 such that B,(f(x,)) Cf(Ba(x,)).
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Proof. For some d€ (0, a) and for any x€dB,(x,), we have ||f(x) —
f(x)||=>v6 and therefore By(f(x)) Nf(0Bs(x,))=¢ for any B&(0, vd).
Hence for any xEBy(f(x,)), deg(f, B,(xy), x) =deg(f, Bs(xo), f(x,)).

Now consider the homotopy 4 (x, ¢): mx[o, 17->R" such that

hix, ) :f<x° 1+t>_f<x° 1+t >
Then we have ||h(x, ¢)||>vd for any (x,t)€0dB,(0) X [0, 1] and therefore

deg(h(x, 0), B;(0), 0) =deg(h(x, 1), Bs(0), 0).

Since h(x, 1) f<x0 >—f<x0 i) is an odd mapping, deg (A (x, 1),
B;(0), 0)x0 by Borsuk’s theorem ([10], p. 99). Thus we have deg(f,
By (%, ), f(x)) =deg(h(x, 0), B,(0), 0)0. This implies that Bs(f(x)) C
S (B (%)) Cf(Ba(x0)). [

Proof of Theorem 5. 1. Without loss of generality, we can assume that
s<2m llz w|| and v<{A4. By the above lemma, there exists an open

ball B (z) such that f: B,(w) nf"(B,(z)) »B,(z) is an onto mapping.
If we put fo=f15 s, then f5' is a contraction mapping with the Lipschitz

constant % We define a sequence of open sets {B_,},»; as follows:

B_,=B,(w) Nf"(B,(2)), B_,=fs"(B_,s1) for n>2.

Then note that B_,NB_,=¢ if n>2. Thus there exists a positive integer
p such that B_,CB,(z) for any n>p and 2™ Du>I1.
Now if we put

A= U B_,U{z} and 4,=B_ 1nfom( U B_,U {z}),

n=p+1

then it is clear that 4,n4,=¢. Moreover, we have f*"(4,) D4,U4, and
Sfm(4,) DA4,UA4;,. Hence

St (4) =ftm(4,) o f"(4;,) D4, U4,

for i=0, 1 and f?" satisfies Hypothesis 2. 1. Also one can easily verify
that f*™ is X" Dy-expanding on each compact set A;Nf~*"(4;) for
{i, s €{0, 1}2 By Theorem 4.4, this completes the proof. []

6. De Rham Equation.

In this section, we will give another result concerning a scrambled
set using a contraction principle in complete metric space instead of
Cantor’s intersection theorem in compact space. With this situation we
will discuss the connection with De Rham’s functional equations [11].

Let E be a complete metric space with metric d and T,, T,: E—E be
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two continuous mappings. Then consider the following De Rham equation:
(*) L@=T, L),

where L is a mapping from X into E. First we have the following.

Theorem 6. 1. Suppose that L is a continuous solution of (*) and that
T, and T, are one to one mappmgs such that T(E)NT\(E)=¢. Then we
have the followings:

(1) E*=L(2) is a compact subset and E*=T,(E*) UT,(E*).
(i1) If we put f(x) =T7'(x) for x€T;(E*), i=0, 1, then f: E*—>E*
is topologically conjugate to the shift o: ¥—2.

Proof. (i) is obvious. For any wxw'&2, there exists n>0 such that
0,50, and o;=w0; for 0<j<n. Then we have L(w) = L(¢') since
Ta,nL(o”“(w)) #TwnL(a"“(w’)). Therefore L: Y —-E* is a homeomor-
phism. Since f(L(co))=T;01L(w)=L(o(w)), this completes the proof. []

In the above theorem, we remark that f: E*—FE* is continuous and a

system (E*, d, f) satisfies Hypothesis 2. 1.

Theorem 6. 2. Suppose that there exists s>1 such that T.T,...T; is
a contraction mapping on E for any {i}, i ...,1} {0, 1}5. Then there exists
a continuous solution L of (¥).

Proof. For some x,EF, we define
a,,=T,,,0T(,,1 ee. Ta,n_l(xo) for any we 2.
Then we have, for some A<lI,
d(@uy @) =d(Tyy .. Ty (3, Ty ... To_ ()) <ALHa,
where d* = Max a’(T T;j(xo), T"1 - T,-j_l(xo)).

lSJSS

Therefore, for any n>m,

d(a,, a )<d(an, an 1)+ .. +d(ap,, a,)
d*
—u

< l ‘um_s9
where y=2%<1. Hence {a,} is a Cauchy sequence in E. Now we
define L(w)=lim a,. Note that this limit is independent of the choice of

n-»oc0

x,EE, since

d(Tyy .o . Ty (x0)s Ty ... Ty (%)) >0 as n—oo.
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Clearly L satisfies the equation (*). Let E*= U L(w). Then we have
diam (E*)< oo since d(L(w), x°)<l(ld ) for any wel. If wj=0; for
0<j<sn, then

d(L(®), L(o')) <2d(L(o*"(@)), L(o*"(@")))
< A*diam (E*)

This shows the continuity of L. []]

It should be noted that f may possess a scrambled set even if f is a
linear operator. For example, if we put E=C[0, 1] and

To(g)=S:[7(t)g(t)dt and T)(g) =So p()g(di+1

for some positive function pEE, then it is easily verified that 7:: E>E
is a one to one mapping for i=0, 1 and dist(7,(E), T,(E)) >1. Moreover,
we have

IIT.-I.-.T;”(g) —Tfl.-.T;n(h)||=l|T8(g—h)||
Al —
<Pl ig—py

for any g, h€E. Then, by Theorem 6. 1. and Theorem 6. 2, there exists
a scrambled set of (E*, || ||, f) where

_ 1 d
/= p(x) dx”

In this case, using Ta,n(g) =T,(g) +v, we have

L@)=F oT5(1)=5

(L pwar).
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