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1. Introduction.

In  th is  paper, w e investigate the dynam ical properties o f continuous
maps of a compact m etric space into itself. There has been m uch recent
interest in  irregular trajectories, for exam ple, so-called strange attractors
[ 1 ] .  In  Auslander and Yorke [2 ] some topological concepts of chaos are
investigated. T h e  purpose o f  th is  p a p e r  is  to  examine som e of the
consequences of the following definition due to  Li and Yorke [3].

Let X  b e  a compact m etric space w ith  m etric d  and C (X )  b e  the
space of all continuous functions from X  into itself.

Definition 1 . 1 . For f E C ( X ) ,  w e  sa y  th a t  S  i s  a  scram bled set of
(X , d , f )  i f  S  satisfies the following two conditions.

(i) S  is  an uncountable subset o f X.
(ii) For a n y  x , y E S , x z y , and for some 3>0,

lim  in f  d (P(x ), (y)) =-0

and
lim  su p  A fn (x ) , fn ( y ) )  > 3 .

n-s.0

Without loss o f generality , w e can  assume th a t S  contains no asymptoti-
cally periodic points. Note that i f  S  is  a scrambled set of (X , d , f " ')  for
some positive integer m , then S  is a lso  a  scrambled set of (X , d , f ) .

Definition 1. 2. W e say  th a t f E  C (X ) is  2 -expand ing on  X, c X  if
d(f  (x ), f  (y ))>2d(x , y ) fo r  an y  x , y E X 0 and for some 2>0.

In one-dimensional case, there are various results concerning scrambled
sets. L e t  I  be a compact in terval and d(x , y ) =  — y  I. C o m b in in g  the
theorems of Li and Yorke [3 ] and Sharkovskii [4], we have the following:

Theorem 1 . 3 . I f  f E C ( I )  h as  a p o in t o f  period k•2'n f o r  some odd
integer k >3  and f or some positive integer m , then there ex ists a  scrambled set
o f  ( I , d , f ) .
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Concerning the stability property of functions which possess a scrambled
set, Butler and P ian ig ian i [5 ] obtained the following result.

Theorem 1. 4. T h e  s e t  of  functions i n  C ( I )  which possess a  scrambled
s e t  contains an  open d en se subset o f  C (I).

Recently, concerning the measurements o f  scram bled sets, J . S m ita l
[6] showed that

 

t 2x , x [ 0 ,  -T1 ]

2 - 2 x ,  x [ -1 I ]
2 '

f  (x )  =

     

h as no scrambled sets w ith  a positive Lebesgue m easure. M oreover he
constructed a scrambled set w ith fu ll outer Lebesgue m easure under the
continuum hypothesis.

In  n-dimensional case, M aro tto  [7 ] obtained the following theorem.
Let H H be the usual Euclidean norm and B ( x )  be an open ball centered
a t x  with radius r.

Theorem 1. 5. Assume that F E C (Q )  satisfies the following two conditions,
where Q  is  a  com p a ct s e t  in  IV.

( 1 )  F(Z)=---z and F  is 2-expanding on  13,.(z) f o r  some 2>1.
( i i )  F " ( u ) ) = z  and Frn is  p-expanding on  B s (w ) cB ,.(z ) f o r  some positive

integer m > 2 and for some ft>0 .
Then there exists a  scrambled s e t  o f  (Q, H H, Fm).

It is clear that the set of functions T' in C (Q ) which possess a scrambled
set i s  dense in C ( Q ) .  H ow ever, it w ill be an open problem whether T .

contains an open set or not.

2. Preliminaries.

In  th is section, w e give som e notations and definitions. L et M  b e  a
m etric space w ith  m etric d. Throughout the section 2 - 4 ,  w e  suppose
that a system  (M , d, f )  satisfies the following:

Hypothesis 2. 1. f :  M - - M  is  a  continuous mapping and there exist
disjoint compact subsets A , A i c M  such that

f (A 0 ) ni(A i ) D A ,U A,.

L e t I=  {0, U N b e  the collection of in fin ite one sided sequences of
O's and l 's  w ith a  metric

-  1dE (co, (d) =E 104 ,-04,1

where w = (woo yo , ... ) and co' =  (wo'coi'w,' . . .  ) .  Then E  is  a compact metric
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sp ace  an d  th e  sh ift tran sfo rm a tio n  a: 2' —> 2', where c i  ( 0 0o1w2• • • )
(w1co2 w3 . . .  ) ,  is  a  continuous onto two to one mapping.

L e t W  b e  th e  se t o f all non-em pty closed subsets o f A , fo r i = 0, 1
and put e  =  0 u I f  we introduce Hausdorff metric d , o n  W

d,(c, c') = max (inf {N (c )  D c') , inf UVE (c') D cll
E > 0 E>0

for c, c' E V , where N e (c ) is  an  e-neighbourhood of c, then  W is  a compact
m etric space by virtue o f the theorem of M ichael [8].

F or any sequence o f  s e ts  [D J , w e  d e f in e  th e  li m it superio r set of
(Du)  a s  follows:

00 co
lim  sup D „= n u D i .

n = 1  i= n

Note that i f  (D J  is  a  sequence in a com pact metric space, then th e  limit
superior se t o f [D„1 is  a  non-empty compact subset.

For an y  w EE, we define
00

where

K (0 )) = n f - n (A a, )
n=0 n

(t) =
 (W 0 W 1

W 2  •  •  •  ) .  S in ce  it is  c lear th at K(w) is  a  non-empty closed
subset of A o U A , by Hypothesis 2. 1, K  is  a  m apping from  I to  W .

For convenience, we define the address of x.A.,U  Ai  such  that

A d d ( x )
Aoi f  x  A,
A 1i f

Therefore we have Add (P (x)) = A,„ n fo r  an y  n >0  an d  x EK ((o).
Finally w e define a  m apping F: --->2m a s  follows:

F(c) = U(x) ; x Ec} e M

for cE Since f  is continuous, F (c ) is  a lw ays a com pact subset.

3. Some Properties of K.

In  th is  section, we discuss some fundamental praperties o f K: .
If we define M* = U K(0)) cM  and  W * = K (X ), then we have the following.

co e l'

Lemma 3. 1. (  i ) co#(.0/ implies K(w) n K(a) =çb and  therefore K
*  is  an  onto one to  one mapping.

(ii) M *  is  a com pact subset of  M .
(iii) K (u(o))) = F (K (w )) f o r any wE E.
(iv) F: W *— >W * is continuous.

Pro o f . P lain ly ( i )  follows from the definition of K . For any x EM — M *,
w e have f n(x ) A 0 U.A., for some n > 0 .  Since P  is continuous at x  and
A o U A , is closed, there exists a  neighbourhood U  of x  such that f " (U )
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(21W = O. T h en  w e h ave  Un M* = 0  an d  therefore M *  i s  a  closed
subset o f M .  T h us M *  i s  a com pact set s in c e  M * cA 0 U A,. F o r any
x E K (a(o ))) , w e have A dd(f "(x )) =A 1 fo r  a n y  n > O . S in ce  x E A o U
cf  (A p o) ,  th ere  ex ists y Eitoo s u c h  t h a t  x  =f (y ). T h e n  A dd(f "(y )) =
A dd(f" - '(x )) =A ca n fo r  an y  I/ > 1 and  we have y E K ( w ) .  Hence K(o- (w )) c
F ( K ( w ) ) .  Conversely, fo r a n y  x E F (K (w ) ) , there exists y  K  ( w )  such
th a t x  = f ( y ) .  T h en  A dd (P(x )) = A dd (P+1 (y )) =A 1 + 1 a n d  w e  h ave  x E
K (o- (w)) . T h u s  w e  h a v e  K (o(w )) =- F (K  (w ) ) . A lso  th is  show s that
F(W  * )  c  W * . F in a lly , ( iv )  follows since f  is uniformly continuous on a
compact set M * .

T he following plays an im portant and fundamental role in our discus-
sions.

Lemma 3 .  2 .  For any sequence (w(")}  cE, we have

lim  sup K(coN) E  U  K(w)
e

where / 0 =lim  sup (cum} .

Proof. L et lim sup K ( w )  = K * ..  Since K ( w )  C M *  a n d  M *  i s  a

closed set, we have K* C M * .  T h erefo re , for an y  x EK*, there exists some
(DE /  su c h  th a t  x E K ( o ) ) .  B y  th e  definition o f  th e  li m it superio r set,
th ere  ex ists a  subsequence Ni l  su ch  th a t d(y i ,  x )  —>0 as j _ - c o  w h e re
y i eK (w ( n i ) ). S in c e  d(A o ,  Ai ) > 0 ,  fo r  fixed  k ,  w e  h a v e  A dd(/' (x ))
Add (fk (y i ))  =A a,k fo r  sufficiently large j .  This shows that dz (co( ")) , w) -->0
as j —> 00 . Hence wE1im sup {w( } a n d  this completes the proof.

Corollary 3 .  3 .  I f  d I (w ( ") , w) —>0 as  n--->c> 0 , then we have

lim sup K ( w )  cK(w).

W e say that f ,  is topologically conjugate to f ,  if f ,=h o f ,o h - ' for some
homeomorphism h.

Theorem 3 .  4 .  The following three statements are equivalent to one another.
( i ) K :  E *  is  a  continuous mapping.
(ii) W* is  a  closed subset of .
(iii) F: * —>W * is topologically  conjugate to the  sh if t a: E— E.

P ro o f .  F irs t w e  w ill p ro v e  ( i )  is  e q u iv a le n t to  (ii). C le a r ly  (ii)
follows i f  ( i )  holds. Assume that *  is closed. F o r  any sequence
(con  c /  such that d 5  (w ',  w)—>0 a s  n-->00, a  sequence IK(0)(0 ))
contains a subsequence which converges to some K (w *) since W* is compact.
T h e n  it  is  c le a r  th a t  K(w*) d im  s u p  K(e) ( ")) an d  using C orollary 3. 3

71, 0 0

w e have K (w * )  c K (w ) . Hence w*=-0) an d  th is  im p lies  th a t di.,(K(w(")),
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K (co)) -->0 a s  n c o ,  th a t  i s ,  K  is  con tinuous at w. T h u s  ( i )  follows.
Since K  is  a  continuous one to one mapping onto a com pact space W *, K
must be a  h o m e o m o rp h ism . T his im plies (iii). F in a lly , it is  c lear th at
( i i )  follows i f  ( i i i )  holds.

A  mapping K  m ay h av e  a  discontinuity p o in t . A ctually  w e have the
fo llow ing . T he proof is straightforward.

Lemma 3 .  5 .  I f  K (co) has an  interior p o in t ,  then co is a  discontinuity
p o in t o f K .

4. Existence of Scrambled Sets.

In  th is section, we give some theorems concerning the existence of a
scrambled set.

Theorem 4 .  1 .  A ssume that K is continuous at some point (DE E . T h en
th ere ex ists a scrambled se t o f (W  * , d H , F ) .

P r o o f .  L et w= (wo w,w,... ). W e define for TE [O , 1] and n > 0 ,  corn =
[im] —[r (m — 1)] if  n =m 2 an d  0=co,, i f  n > [ 11 n ] 2 w h e r e  k =n — [ 11—n ] 2  —1
an d  [ x ]  denotes th e  greatest integer w hich does not exceed x. Then it

n
easily follows that lim E wr.2= r . L et wr= (wrowri 02 ... ). Then we have

n =1

a n2
+1 (op) (0 )0 (010 )2  . • • ( 0 272 -1 • • • )

therefore, for a n y  r, tan2 +' (0)01 „ , 1 i s  a  sequence i n  E  w hich converges
to  w .  T hus, by the assumption of K , w e have di ,(K (a '4 1 (cor)), K (co)) -->0
as  n- 4 0 0 •

Now we define S= (K(cor) ; r E [o, 1 ])  c  W * . Plainly S is an uncountable
subset o f W. *  and  for a n y  a, 19E[0, 1 ],

c1H (Fn 2 +' (K (0 0 ) ,  F n 2 + I ( K (O P 8 ) )

<dH(K(O n 2 + 1 ( 0 / ) ) 5  K ( 0 ) ) )  ±dH ( K ( a n2+1 (W 8 )  ) 3  -COO -->0 a s  n—>oo.

Hence we have

li m  in f  di ,( F"(K (co")), F"(K (cos))) =0.

O n  th e  o th e r  h a n d , th e re  e x is ts  a  subsequence {ni } such  that
(0 "2# ( 0 2, and therefore

n
J

K (a n l(w "))cA , a n d  K(an;(0 9) ) c A ,  for s r.

Hence we have

li m  sup di ,(Fn (K (o )")), Fn (K (cos )))>d (A „

This completes the proof. E l
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Theorem 4 .  2 .  Suppose that K (w ) consists o f  only one point. Then K  is
continuous at w and there exists a  scrambled se t o f  (11f*, d , f ) •

Pro o f . L e t  lo) ( 9  be any sequence in su ch  th a t d5  (w , co) -4 0  as
n—>co. B y  C o r o l la r y  3. 3, w e have lim  sup K ( w )  = K ( w )  since K(w)

n - 1 . 0 0

consists of only o n e  p o in t . Therefore di i (K (o P )), K(o)))---->0 as n--->co and
th is shows the continuity of K  a t  w . B y th e  above theorem, there exists
a  scrambled set S= {K(coT) ;  r E [ 0 ,  1 ]} o f ( W*, di i ,  F ) .  Choosing suitably
xrEK (w 7 ) ,  w e  d e f in e  Y  txr; TE  [O , 1 ])  C M * .  T h e n  c le a r y  Y  i s  a
scrambled set o f (M *, d , f ).

Corollary 4 .  3 .  Assume that K(w) consists of  only one point for any co G E.
Then f: M* — >M* is topologically conjugate to the shif t

Pro o f . B y  th e  above theorem , K: X—>W * is continuous. T h u s  F:
r* — >r*  is topologically conjugate to  a: E-->E by T heorem  3. 4. Since
K (w ) consists o f  o n ly  one po in t, w e  c an  id en tify  M *  with *. This
completes the proof. El

Theorem 4. 4. A ssume that there  ex is t v >1  an d  s >0  such  that f  is
v-expanding on A io n f  (A id  n  •  •  •  n f - s(Ai s)  f o r any  tio, •  . .  ,  i 5) E  [0, 11 s+1.
Then f: M* — >M* is topologically conjugate to the shif t a: E—>E.

Pro o f . For an y  x , y EK (o)) and for any n >0, w e have P ( x ) ,  f ( y )  G

f - '(A 1) n  .  •  •  n f - s (A . , , , , ) ,  and  therefore

d(x, y )  < d ( f " ( x ) ,  f ( y ) )

< 1 diam (A 0 U Ai ) --->C1 as
vn

Hence K (w ) must consist of only o n e  p o in t. El

5. M aro tto 's  Conditions.

In  th is section, w e w ill prove the following theorem as an application
of our results to finite dim ensional c a s e . L e t  Q b e  a com pact set in
and  d(x , y ) =iix  — Y(1.

Theorem 5. 1. Suppose that f E C (Q ) satis f ie s  the conditions (i) and
( i i )  in  Theorem 1. 5. Then there exists a com pact set Q * cQ  and a positive
integer p such that P: Q* — >Q* is topologically conjugate to the shif t u:

W e remark that Shiraiwa and Kurata [9] obtained the same conclusion
assuming that th e  differentiability of f  an d  some transversality condition.
Before proving the theorem, we need the following lemma.

Lemma 5 .  2 .  Suppose t h a t  f  i s  a  continuous v-expanding m apping on
B a (x o)  f o r some 2)> 0 .  Then there exists /3> 0  such that B s (f (x 0)) cf (Ba(x0)).
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Pro o f . For some ô E (0, a )  and for an y  xE aB ,(x ,), w e h ave  I If (x ) —
f (x 0 )11> va  a n d  th erefo re  B s(f (x0)) n f  (aB ,(x 0 )) =ç  fo r  a n y  PE (0, .
Hence for an y  x e ./3 (f  (x 0)), deg ( f ,  B,(x 0 ), x) =deg ( f ,  135(x0), f(xo)).

Now consider the homotopy h(x, t): B,(0) X [ 0 ,  1 ]  - - >R n such  that

h(x, t) =f (x 0 +  1 +
t
 t   x).

Then w e have I Ih ( x ,  t )  _>_:)3 for a n y  (x, t) aB ,(o) X [0 , 1] an d  therefore

deg (h (x , 0 ) , B a (0) , 0) =-- deg (h (x , 1), ./36 (0), 0).

S in ce  h (x, 1) = f (x0 + —f (xo —  )  i s  a n  odd  m app ing, deg (h (x, 1),
B1 (0 ) ,  0 )  0  b y  Borsuk's theorem  (  [1 0 ] , p . 9 9 ) . T h u s w e  h ave  deg (f ,
./38 (x0 ) , f (x 0 ) )  = deg (h (x , 0 ) , B1 (0) , 0) 0 .  This im plies that Bs ( f ( x ) )  C
f (B a (xo) ) cf(13„(x0))•

Proof  o f  Theorem 5 .  1 .  Without loss of generality, w e can assume that
2"2-1s < 2 „,± 1 — E v il and 1. < 2 .  B y the above lem m a, there  ex ists an open

ball B a (z )  such that fm : B, (w) of — (B,r(z)) — >Ba(z) i s  a n  onto mapping.
If we put f o =f Iv ,»  then f (T' is  a contraction m app ing  w ith  the Lipschitz

constant 
1

W e define a  sequence of open sets {B_,} a s  follows:

B _ ,=B s(w )  n i - m (k (z )), B — i=f cT m (B -.+1) for n >2.

Then note th a t B_ 1 n B - - 0  i f  n  > 2 . Thus there exists a positive integer
p  such that B_ n cB a (z )  for an y  n >p and 2 m - ')p> 1 .

Now if  w e put
00 00

Ao = U B _„U {z} an d  Ai = n/6 -m( U B_„ U {Z}
n=P+1 n=P

then  it is c lear that A, n 95. Moreover, we have Pm (A0) A o U and
f  " (A ) D Ao U A i . Hence

f 'm  (T ) =fP'n (T )  DP"' (A i) D Ao U

for i =  0 , 1 and f inn satisfies Hypothesis 2. 1. Also one can  easily verify
th a t  fPm  is  2 0 (m- 1 )p -expand ing o n  e a c h  co m p act se t Ai n f - Pm(A5)  for
fi, E {0, 1}2. By Theorem 4. 4, this completes the proof.

6. De Rham Equation.

I n  th is  section, w e w ill g ive ano ther resu lt concern ing a  scrambled
se t  u s in g  a  con traction  p rincip le  i n  com plete m etric  space in stead  of
Cantor's intersection theorem in  com pact space. W i t h  t h i s  situation we
will discuss the connection with D e Rham 's functional equations [ I l ] .

Let E  be a  complete metric space with metric d  an d  T o ,  T 1 : E--->E be
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two continuous mappings. Then consider the following De Rham equation:

( * ) L(w) = T ‘00 L (a (co)) ,

where L  is  a  mapping from E  into E .  First w e have the following.

Theorem 6 . 1 . Suppose th at L  i s  a  continuous solution of  ( * )  and that
T , an d  T 1 are  one to  one m app ings such  that T o (E ) n T i (E )  O. T h e n  w e
have the followings:

( i )  E *  = L (E ) is  a compact subset and E* =T o (E*) U T i (E*)
( i i )  I f  w e put f (x ) = T 1 (x ) f o r  xE T ,(E * ) ,  i = 0 , 1 , then  f: E* —>E*

is topologically  conjugate to the shif t a :  — > f

P ro o f .  ( i )  is  o b v io u s. For an y  w co'E 2', there exists n > 0  such that
con k  c/,  a n d  co i = co.; f o r  0  j  < n .  T h e n  w e  h a v e  L(co)  e  L ( c o ' )  since
T L(an+ 1 (CO)) T n ,„ L (a 1 (w')) . T herefore L: E —> E* i s  a  homeomor-
phism . Since f (L  (co)) =T ,--

00
1 ( c o )  L (a (co)) ,  this completes the p ro o f . 0

In  the above theorem, we remark that f :  E* —>E* is continuous and  a
system  ( E * ,  d , f )  satisfies Hypothesis 2. 1.

Theorem 6 . 2 . Suppose that there ex ists s > 1  such that T 11 T 12 . is
a contraction mapping on E f o r any  1i1,  i 2 , ,  i j  E  (0 , Os.  Then there ex ists
a  continuous solution L  o f  (*)

P ro o f .  For some xo E E , we define

an = . . . T,, (x 0 )  for any w E E.

T hen w e h ave , fo r som e 2<1,

d (a n + i ,  an ) d ( T 0 0 .  .  . . . . T 0  1 (x 0 ) )  <2 [ ÷ ] d*

where d* =  M ax d (T i i( x 0 ) , T ii i (xo) ) .
isiss

Therefore, for an y  n> m ,

d (an , a m ) <d(a„ a,„_ 1 ) . . . d(a0+1, am)
r ki

<d*  E s
It=m

d*
<

f t  
Pm-s,

w here p= H ence fa n } i s  a  C a u c h y  sequence i n  E .  Now we
define L(w ) = lim  a ,  Note that this lim it is independent of the choice of
xo e E , since

d (T  .  .  .  T

0n 0(x ) T ' .
T

a' 1(x  )) —>0 a s  n—>oo.0 n 
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C learly L  satisfies th e  e q u a t io n  (* ) . L et E * = - U  L (w ) . T hen  w e have
d* coe

diam (E *)< oo since d (L (w ) , x 0 ) < 2(1 ) for any co  e  E . I f  w i = a;  fo r
—te

0 < sn , then

d (L (w ) ,  L (w' ) )  <2nd (L (cr" (w)), L (a"' (a)))
<2' diam (E*)

This shows the continuity o f L .  E l

It should be noted that f  may possess a  scrambled se t even if f  i s  a
lin ear o p erato r. For example, i f  w e pu t E = C [0 , 1 ] and

T o (g ) p ( t ) g ( t ) d t  and T 1 (g )  = S  p  ( t )g ( t )d t  + 1

for some positive function pEE, th en  it is  eas ily  v e r if ied  th a t T,: E—>E
is a one to one mapping for i = 0, 1 and dist(T o (E ), 'T ,(E )) >  1. Moreover,
w e have

V ii . . .T in ( g ) . Tin(h)11= IlTg(g—h)11

n !  11g—h11

for any g ,  h E E .  Then, by Theorem 6. 1. and  Theorem 6. 2, there exists
a  scrambled set of (E*, H II, f )  where

1 d  
p  (x )  dx •

In  th is case, using T,, n ( g )  = T 0 (g) +a)„, w e have

—
L(w) =  E w„T'o' (1) — E p (t ) d t ) .(SIn=0 n-0 n ! 0
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