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§ 1. Introduction.

Recently, th e  problems in  th e  mathematics are  often considered in the
G e v re y  c la s s e s  a n d  som etim es i n  m o r e  general "ultradifferentiable
classes". H e r e ,  w e  say  th a t a  linear subspace o f C -  (Q ) [S 2  c  RI, open]
is  the ultradifferentiable class w ith weight {M ,} ,7=o , w hen each elem ent
f  (x )  satisfies the following condition ;

vK : com pact set in Q , 2 R > 0 , 3 C > 0 depending on  K  and f  (x ) , such
that,

(x)
la l

Mk,' on K  fo r  V a  Z ,,

E f a )  (x) — 41).i  .......

z+,(0,1, 2, ..........
W e write it C  (M „} ([2)

(—aax i( x ) , I a  =  al+ • • • • + a l , and

}
=  tm cm]. W e call especia lly  C {e}  (u> 0)

the Gevrey class of order u.
Considering the problems in C tM,} (Q ), sometimes the following condi-

tion is assumed :

(S) R > 1 , M n 4 .„, R "M „M n i f o r  vm,

W e ca ll it "the separativity condition".

It is sometimes called "stability under ultradifferentia l operators". However, it seems too long.
The reason of our naming originates from the following conclusion of (S)

For the open set Q , in (i=1 , 2 ) ,  we set
C{M„, M„} (Q i x12 2) =  { f( x, y) ((21 X 9.2,) ; K , , v K2; compacts in Q1 and S"22, respectively,

n C > O ,  R > 0  such that
I pal..2 )(X , y ) CR1.11+1a2I M 1/1"I la21 on K 1 XK 2 f o r  v a ,E (i= 1, 2)1 •

If f ( x , y ) in  C{M„} (Q1X122) is separated in the form f ( x , y )  =f  1(x )f 2(y ), it belongs also to

*) The essential part of this work was achieved at l'E cole  polytechnique, Centre de M athé-
m atiques in  1980-81.
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CM ,, M .} (S21 Xf22)• However, if {M.} satisfies the condition (S ) , all f(x, y) in C{M.} (f21 Xf2z)
belong to C{M,., (DI XS22) regardless of the form.

In  th is paper, we offer some equivalent conditions to  th e  separativity
condition or to a  weaker one which w ill be introduced later o n . Further,
w e try to characterize them  by the order of (A1,}.

I n  o rd e r  to  m a k e  c le a r  t h e  in fe re n c e , w e  c o n s id e r  t h e  spaces
ti1 I „} ( R I ) a n d  a , M n }( R 1' x 1'1'2) in s te a d  o f  C (M ,)(S 2 )  and

C [M „, 1171,,} (Q, x Q2 ) ,  where
2 {M n } (k) =- f  f (x) (Ri); C>0, 2 R > 0  depending on f (x) such that

If (a) ( x) CR ia l
m i c d i n  I V  for v a E .4 1 ,

and

, x = If (x, y) E .  ( I i 1 + '2 );
C > 0 , R > 0  depending on f ( x , y )  such that

I f ( a '' a 2 ) (x ,y ) I <  CR al 1 1+ la2 1
M 1 /7 1 1 Œ 2 1  in  R 11+12

for va i E Z + ii (i =1, 2)}.

T h eorem . (Kolmogoroff)
On the function f ( x )  which is n-tim es differentiable o n  11', we have the

estimate;
I f  M,= sup If (x )I and M n =  sup I f  (a) (x ) I  are finite, M k =  sup If ( a)  (x ) Ix. lal=n x , lal=k

is also finite and majorized as follows:

(r/2)'(M 0) 1 - ( k i n )  ( M O k In( k  = 1 ,  2, •••, n —1).

T he proof was given in A . K o lm o g o ro ff  [1 ] . (See also S. Mandelbrojt
[ 2 ] .)  By this theorem , in  case o f (211,1 (1?̀ ) a n d  M IM„, A71,1 (R 11 x ,
the sequences [M n } an d  [M- „ I can be replaced to logarithmicly convex ones
keeping the classes.

R em ark. I f  [M „1  satisfies

(1.1) cn 
M n - F i / M n  ( n >  1) for a positive number c,

also  in  case  o f C [M n } (Q ) an d  C [M n , (Q, x S22 ) ,  the sequences [M n }
a n d  {M n }  c a n  b e  r e p la c e d  to  logarithm ic ly  convex  ones keep ing the
classes. (See S. M andelb ro jt [2 ].)  T hen , if P M  is  o r ig in a lly  logarithmicly
convex or it satisfies (1. 1), a l l  o f the results in  th is paper a r e  v a lid  for
C [M„1 (Q i  x Q2).

From now on , w e assume th a t  [M „1 is  logarithm icly convex. Further,
w e  assum e th a t li m (M n ) "  = 0 0 ,  because when lim (M n ) '/ '< c o ,  th e  class

[M,,) )  is well characterized. (See, S. M an d e lb ro jt [2 ].)  In conclusion,
w e m ay assume also  that ((log  M,) /n] is  in c reas in g  an d  diverging.
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For the purpose of the application to  th e  theory o f  pseudodifferential
operators o n  th e  ultrad ifferen tiab le  classes, w e in troduce tw o w eaker
notions.

W e  s a y  th a t  {M n ) satisfies th e  w eak  se p a ra tiv ity  condition or the
differentiability condition, according as the following holds :

(W. S) >0, {.A1",,,} (Nm > 0), Rn111„N„, fo r vn , M  E Z+

or

(D) C > 0 ,  M ,  C M „ fo r vn E Z+ •

R em ark . W m }  in  (W . S )  is not necessarily logarithm icly convex, but
it can  be rep laced  to  a  logarithm icly convex sequence.

Corresponding to the notions on (M n I ,  w e say  th at M (R11+`2) is
separative, weakly separative o r differentiable according as

(M„} (R 1 1 -1 4 2 ) ç {A4„, 114„} (R 11 X le 2 ),
a {M )  ( R 1 1 +1 2 ) ç  g i {M„, N,1 (.1 1' X Ri2 )  for a suitable sequence [NJ ,

or {
m n }  ( R i1+12) c  a i i ( R 1 2 ;

{A4',,}
 ( k ) ) ,

respectively.

In the section 2 , we announce the theorems. Since the differentiability
of a {M } ( l i 1 + 1 2 ) w as w ell characterized  (See S . M a n d e lb ro jt  [2 ]  ) , we
only prove the theorems on the separativity and on the w eak separativity
in the sections 3 , 4  and  5 .  We essentially follow the proof in case of the
differentiability.

In  th e  forthcoming paper, w e  w ill ap p ly  th e  results in  th is paper to
show the impossibility of the "nice" theory of pseudodifferential operators
on the ultradifferentiable classes larger than  the G evrey classes.

§ 2. Notation and results.

In  order to describe the theorems, we need some functions linked with
. W e set R + =  {xE R ; x> 01 and Z + =  (0 , 1 , 2 , ......... 1 .  Let us set

(2. 1) T (r) =sup r /  M , ,  ( r> 0 ) ,

and c a ll it  the associated function of (M ,,) . B y  v ir tu e  of the logarithmic
convexity of (M ,,) , w e  have

(2.2)M n  =sup r"/T (r) 0).
r>0

Both i n  (2 . 1 )  a n d  (2 . 2 ) , in  re a lity , "sup " c an  b e  rep laced  b y  "max"
o w in g  to  th e  assumption of 1im

( M 0 1 / n  
= C O . Further, n  a n d  r which
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attain  the m axim um s in  (2 . 1) and (2. 2) are non-decreasing an d  diverg-
i n g .  I n  view  o f th e  logarithmic convexity of [M } , it is  co m b in ien t to
use the followings :

(2.3)a „  =log M „ H ( t )  = sup [tit —a„} .

W e call H ( t )  the trace function of { a } .  T h e  following relations hold.

(2.4)T ( r )  = e x p  H (  log r ),

(2.5)a ,  = sup tnt — H (t)1 , 0) .

( (n ,  a , ) }  forms a  convex polygon, w h ich  is  ca lled  the Newton polygon
of (a ,} .  T h e  t r a c e  function H ( t)  is  convex (or, m ore exactly, concave)
and piecewise l in e a r . W e  set

(2. 6)
d  h (t) — (

d t
) H ( ( i )  i s  the right derivation.)

T h e  function h ( t )  is obviously non-decreasing and piecewise constant.
O f co u rse , " su p "  in  (2 . 3 ) an d  (2 . 5 ) can  be a lso  rep laced  by "m ax",
and the m axim um s are attained by n =h ( t )  and t= a +1—a,, respectively.
Therefore, we easily see the following relations :

(2. 7)H ( t )  =  t h ( t )

(2. 8) a„= n (a,,, —an ) — an) ,

because of — H(t) =inf (t(x — n) -Fa n } L „ an d  —an =inf . in (x  — n)+H(t)}  I
W e  s a y  th a t  (a }  is  of order p (n) o r has a  sm aller order than p (n),

a n d  w e  w r ite  a ,=0 ( p ( n ) )  o r  a n = 0 (p (n )) , according a s  it satisfies the
following :

(2 .9) sup a,/p(n) < co ,
n

or

(2.10) lirn a,/p(n) = 0 .

R em ark . Even i f  w e replace finite elements of (M ,} and modify T (r)
o n  a  bounded s e t ,  sup rn/M , a n d  sup r" / T ( r)  are invarian t fo r large
n  an d  fo r la rge  r , respectively, and  then, the class a {M }  is unchanged.
T h u s, acco rd in g  a s  w e g ive  assum p tio n s o n  (A 4 ,1  fo r la rge  n  or on
T  (r) fo r large  r, we m ay consider them  to be valid for a l l  n  or for all r,
respective ly . T h is also holds on { a } a n d  o n  H (t).

O n  th e  other h a n d , if  there ex ist tw o  positive constants R , an d  R2,
such that
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le ,M „ N n  1 4 A  n ,

the classes (k )  a n d  a (N  ( l e )  coincide. I n  such  case, we say
th a t (N J  is  equ ivalen t to  {M„ }

F ir s t , w e  g iv e  so m e  e q u iv a le n t  cond itions to  t h e  separativ ity  of
(MnI (k 1 + '2 ).

Theorem 1. (Separativity.)
The following conditions are all equivalent.

1) ,R {Mn } (11'1+ 12 )  is  separative.
2) (M a  satisfies the separativity condition (S).
3) R > l ,  m 2 n  < R 2n ( I "  ) 2 1 (n>1).
3 ')  lirn sup  (a 2„ — 2a,)/n < c c .
4 )  9 R>1, (r / R)} 2 T  ( r )  ,  (r» 1 ) .
4 ' )  9 r > O , 2H (t _ _ H (t), ( t>1 ).

W e prove th is theorem  in  th e  sec tio n  3. N ow, w e  c a n  show some
necessary conditions to  th e  separativity.

Theorem 2 .  If  (111,) satisfies the separativity  condition (S), the following
equivalent conditions are satisfied. The converse is not alw ays true.
i) (n>1).
i ' )  an = 0(nlogn).
i i )  9 x > 0 ,  T (r) exp r ,  (r »1).
ii')  lim  inf (log H (t))  / t  > O.t--
iii) lim  inf (log h ( t ) ) / t  >  O.t--

T he theorem 2  implies th e  following ;

Corollary 3. I f  (M 1  satisfies the separativity condition (S), {M „}  (k)
is  a  Gevrey class or its  subclass. The converse is not alw ays true.

T he first half o f the  theorem 2  is proved in  the section  4. Here, we
give tw o exam ples o f  separative { M }  a n d  sh o w  th e  la t te r  h a lf  of the
theorem 2  by constructing a n  example.

Example 1. M n =  t i t  (logi n) 9i} n , where k E  Z  v o > 0 , v i E R 1),
logo n = max (1, n )  a n d  log ;  n = max {1, log (log ; _i n)} (j 1).

Example 2. M n = n!"' f i nIvii I ° g •i' for 2, v o > 0  and  v;  E R  ( 2  j  k ) .
i=2

T h e se  M I  s a t is fy  the condition (S ), since

log ; ( p + q )  log ;  p + q (ill lo g , p ) - i , ( j > l  and p,

Especially, th e  G evrey  w eigh t n!, w h ic h  is  e q u iv a le n t  to  the case  o f
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k  = 0  and  vo = v  in  th e  example 1, satisfies the condition (S).

Proof of the theorem 2 .  (The latter half)
W e give an  example o f  ((L i w hich  does not satisfy the condition 3')

in  th e  theorem 1  but does log an = 0 (n log n).
Fixing v >0, w e set, for large n,

bn =  ( v —(log log n) - - 9  n  log n** ) ,
c„ = v n log n,
sn c2n b „)/n  a n d  t„=-b n —b,_1 .

It is seen that

(2.11) s„ = v log n (log n )/(log  log n) 2v log 2,

(2.12) tn<  v  log n — (log n)/(log  log n) ,

because o f (log n) — 1/n — 1/n 2 < log (n —1) < (log n) — 1/n — 1/(2n 2 ) ,  and
log log n — 2/(n logn) < log log(n — 1) < log log n — 1/(n logn) ( n 4 ) .
Moreover, it holds that

(2.13) bn+,<cn ( n 9 14>0).

N ow we are  in  a  position  to define a„( = log M „ )  inductively. F i r s t ,
we take

(2 14)
no =  max {74,14}  , a n o

-= 140 , a 2 n 0 = - 2,0  9. fo(x ) = a n0 (2n 0 — x) /no ±  a 2 „0 (x —no) /no .

L e t  n , be th e  sm allest integer in  (12; and f o (n) <b,}. B y  the
relation  ( 2 .1 3 ) ,  n , must be greater than 2/20 + 1 .  W e set

{ an = f o (n) for n -5 711 - 1 ,  a , 1 = b, 1 , a 2 ,1 = c2 ,1 ,

From the definition of n1 ,  the following is satisfied:

(2.16) no < — a 1_1t , 1 < s , i .

L et n , b e  th e  sm allest num ber i n  (n ; n 2 n i  an d  f 1 (n) <6 n ) . It is
seen that 2/21+2 b y  ( 2 .1 3 ) .  Setting

(2.17) an = f i ( n )  for ni l< n n 2 —1,

ta,} ' is  convex.
R e p e a t in g  th is  p ro c e d u re , t h e  seq u en ce  ta n } i s  c o n v e x  and

(2.15) f 1 (x )=a (2 n 1 — x) /n i — n i )  /n ,.

* * )  B oth I b a  and {c.} satisfy th e  condtion 3'). l e x p b . }  is e q u iv a le n t  to  [M a  in the
example 2 for k=2, v o= v  and
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Hm an / (n logn) = v < c o  but (a2 n i —2ank)/n k [ = 2 log nd(log log nk) ±21) log 2]
tends to infinity. Q. E. D.

Next, we consider th e  w eak separativity.

Theorem 4. (W eak separativity)
The following conditions are all equivalent.

a) a {X }  (R 1 1 + '2 )  is weakly separative.
b) {N M  satisfies the weak separativity condition.
b ' )  9 r > 0 ,  { k J : ,  (b,n .. 0), an + ,„<a n +nr
c) R > 0  independent of  m , lim  sup (Mn+./Mn) 1 in R
c ')  s tririp  Dim sup (a„,„— an) /n} <00

d )  lim  (M ,,n /M„) 1/n = I .
d ' )  lim (a ,, n —a„ )/n = 0.

e) v e > 0 ,  B n0 >  0, M 0  e x p  (en2 ) , ( n  n , ) .
e ' )  an = o(n 2 ) .
f) v K > 0 ,  9 r,> 0 ,  T  ( r )  rK lo g  r ( r > r  0)

f') l i m  H (t) / t 2 = 00 .
g) lim  h(t)/t= oo.t--
h) R > 0 , v K > 0 , T (r) rKT(r /  R ) , (r >1 ) .
h') 7.> 0 ,  l im  {H (t) — H (t =00V

R em ark. In  b ') ,  {b,n }  is not necessarily convex.
W e give the proof of this theorem in the section 5.
In comparison, we present the well-known result on the differentiability.

a)
fi)
fi')
r)
r ')
3)
3')
e)

C)
C')

Theorem 5. (Differentiability)
The following conditions are equivalent.

{M,,} (R 1 1 + 1 2 )  is differentiable.
04 0 1 satisfies the differentiability condition.
lim sup (a„,,— a„) /n <CO .

71-1co

Bv>O, M n ex p  (v n 2 ) , ( n  » 1 ) .
an =  0 (n2 ) .
°K > 0 , T (r) r K  log (r >1).
lim  inf H (t) / t2 > 0 .t--
lim inf h(t) /t >0 .
vmEZ ± , B R = -R (m )> O , T (r ) .r "T (r/ R ) , (r> 1 )
lirn{ lim inf (H (t)— H (t - 1) ) / t ) =00.

§ 3. Proof of the theorem 1.

In  order to see the relations of the conditions on ai (M n } and those on
tM „), the following proposition is available.



674 W aichiro Matsumoto

Proposition 6 .  Fo r two sequences o f  positive numbers [L ,}  and {K }, we
assum e that {L } satisfies the logarithmic convexity and the conditions  11m (L a ) "
-=  0 0  and

lirn inf (KJ L)lin =O.

T hen, there exists a  periodic function f ( x )  in  g  n } (R )  which does not belong
to  g  , j ( R )

R em ark . T h e  sequence {K J need  not necessarily  satisfy th e  loga-
rithm ic convexity and  the cond ition  lim (K r) = co . T h e  proof of the
above proposition w as given , for example, in  S . M andelbrojt [2].

Now, w e can  start th e  proof o f the theorem 1. T h e equivalences of
the pairs of 3 )  an d  3 ')  and of 4 )  and  4 ')  are  obv ious. O ur program to
show the rest is  th e  following :

1) 3) 2) 1) a n d  3'),#>4').

1) 3 ) .  Assuming the assertion 1) and the condition lim inf { (M n ) 2 /M 2 „}v"
=  0 ,  w e  f in d  a contradiction. W e  regard I =  (MO 2 , K2k1-1 =  MkMk-Fi
(k Z + ) a n d  L„-= M,, ( n  F  2 4 ) .  B y the proposition 6 ,  th e re  ex is ts  a
function f ( t )  in  a IL „Y R ) which does not belong to g { K ,I(R ).

Let us set g(x, y ) =f (x i -Fy i ) , where x = (x i , , x1 i )  and y =  •  •  •  y l , ) •
Then, g(x , y )  belongs also to g {M„} (R '12 ). O w in g  to  th e  assumption,
g(x, y )  belongs also to a {M  ,  M„} (R 11 X R'2), th a t  is , there is a positive
number R  such that

(3. 1) s u p  (a/ax i ) n (a/ay,)"'g(x, y)  I (= su
p  If ( 2 . - 1 - e ) )

C R 2"-F e M n A ln + e  = C R
2 n  e K 2 n +

(v n Z  e  = 0  o r 1).

T his m eans that f ( t )  b elo n gs to  a fK „}  (R) and  we are led to a  contra-
diction.
3) 2 ) .  W e show the follow ing inequality by the induction on m  from
n  to  1.

(3. 2)
m

i) The case of m =n  is  ju st the assertion 3).
ii) A ssum ing that (3 .2) holds for m =k  (1 . k - n ) , we consider the case
of m =k  —  1. B y v irtue of the logarithmic convexity, it holds that

(3.3) M n + k -1 / M n + k  Mk-1/Mk •

Producting M M n+le to the either side of (3 .2 ) f o r  m =k  and applying
(3 . 3), w e have

(3. 4) Mn+k eM nM k-i.
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Thus, (3 .2 )  holds for 0 m n .
Replacing R 2 to  R', we see the assertion 2).

2) 1). This is trivial.
3') 4'). For some positive constant y and  t > 1 ,  w e  have

H (t) = sup {nt —a„} sup ( 2nt sup (2nt — 2a,-2n}
= 2 sup In (t —  =2 H  ( t

4') 3'). For sufficiently large n , it holds that

a2 n  =sup { 2nt —H(t)}  sup (2nt — 2H (t - 1)}
t>, i>,

=- 2ny+ 2 sup In (t — H (t - 1)1  =  2ny +2a n . Q. E. D.
t>r

§ 4. Proof of the theorem 2. (The first half)

The equivalences of the pairs of i )  and j ' ) ,  a n d  o f i i )  and ii') are
obvious. Then, we show first the assertion i ' )  from 3 ')  in the theorem 1
and next the equivalence of the assertions i ') ,  i i ')  and iii').
3') i'). From 3') , it holds that

(4.1)a 2

for a suitable positive constant c. (4 .1 )  implies

(4.2) 2k-3a  <  2 k - i+1 a + e.

Summing up (4 .2 )  on j  from 1 to k , we have

(4.3) a Vai ± k  21 - 1  e.
2-

As we may assume that { an ) is non-decreasing, the following majoration
holds good :

( 4 . 4 )  a„,/ (m log m ) { 2 'a 1 +  (k +1)2kc} / (k2k log 2), (2k m  2 k + 1 ) ,

and it implies lim sup a„,/ (m log m ) c /log  2 .
ii') <=> iii'). As h ( t )  is non-decreasing, we see that

(4.5) H(0) ± th(t)  H ( t )  H ( 0 )  +  h ( s ) d s  H (0) + (t/2)h (t/2).

From (4 .5 ) , it follows that

(4 .6 ) lim  in f {log h(t)1 /t lim inf {log H (t)1 /t lim  in f {  log h (t) } /t.

i') O w ing to the assertion i ') ,  it holds for a positive number v
that

(4.7) an S v n log n .
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Therefore, the following inequality holds for sufficiently la rge  t:

(4.8) H  ( t )  =  sup (nt — a n) max (nt —n log e x p  /  — 1 }  —v.
n 0 0

T his implies

lim inf {log H (t)} /t .

ii') O wing to i i ') ,  it ho lds that

(4.9) log H (t) t,

for a positive constant K .  Then, for sufficiently la rge  n, we see that

(4. 10) an = sitip {nt — H (t)} m a x ( n t  e v ) =  K- 'n log n — (l -I- logK) .

T his implies

lim sup a,/ (n log n) Q. E. D.

§ 5 . Proof of the theorem 4.

T he equivalence o f th e  p a irs  o f x )  an d  x ' )  a re  obvious (x  = b , c ,  d,
e , f , a n d  h ) . T h e n , w e show the rest under th e  program:

a) c) b) g) d') c ')  an d  d'.#>h').

T h e last equ ivalence is show n by th e  sim ila r  w a y  to  th e  proof of the
theorem 1.

First group . a) c) .

Assuming the assertion  a) and  the condition :

(5. 1) sup Dim sup (M ,,n /M „)v n )  = 0 0

,n 1) n—”0

w e find a  co n trad ic tio n . (5. 1) implies

(5. 2) sup { lim sup (M„± „,/ M„N„,)'In } =  0 0 •

Due to  the condition (5. 2), w e can  find  a  sequence of positive integers
{m(n)} 0 such that

m (n +1) m ( n ) ,  n  m ( n )  ( n  0 )  and
I lim sup (M „„,(n)/M nN „,(0)1/n =  0 0  .

Setting n (k) k  m (k ),  (n  (k )}  7 _ ,  is m onotonically increasing. W e take

Kn a , =
(5. 4) K„ = max {K„(0 ) , K ( „ , ) ) for n (k )< n < n (k  +1 ),

an d  L  M„

(5.3)



Characterization of the separativity

B y virtue o f (5 . 3 ), it follows that

(5.5) lim kinf )L  n  lim inf(M N m (k) / M k + m ( k ) ) 1 / ( 2 k )  ,
n 1i —  
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Applying the proposition 6, there exists a  fu n ctio n  f(t) in  a  (L n )(R)
which does not belong to .1  ['CYR) .
Set g(x , y) =-f(x i -Fy i ) •  As g(x, y )  belongs to a {Mn }(R 1 2 ), it also belongs
to  awn , N,,) (R 11 x R 12)  b y  the assum ption . T hus, w e have

(5.6) sup I (a/ax ,) k (a/ay ,) m g(x, y)1 (sup if (k+m) ) CR k + m M,N,n ,
x ,y

fo r a  suitable positive constants C and R.
W e take m = m  (k ) , then, it holds

(5. 7)s u p  If ("(k )) ( t)  < C  R n (k )  K
n (k )  •

Applying Kolmogoroff's theorem, the following holds good :

sl..13 if ( n )5 _  CR"Kn , ( n

Thus, we a re  led  to  a contradiction.
c) As lim sup (M,„,/M n ) 1/ is non-decreasing o n  m , there exists a

positive constant R  independent of m such that

(5.8) li m sup (M, + „z/M„) 1/n R.

Setting sup (M n + m / =R  F ( k ,  m ) ,  (5. 8) m eans that

(5.9) lirn sup F (k, m) 1 .

As J im  { F (k  m) /21 k = 0 ow ing to  (5 . 9 ), w e see that N „,= sup (F(k , m)/2)k-•
is fin ite for a l l  m .  Therefore, it holds that

M k + m  R k  M k { F(k ,m )l k 5 (210 / 1 frN,n .

b) a). T h is is  trivial.
Second group. T he equivalence o f  e ') , f ')  a n d  g )  is shown by th e  similar
w ay to  the proof o f the  theo rem  2 . Then, w e  show here "c') e ' ) "  and
"g)
c') e ' ) . A s  lim  sup (an + ,n — an )  /n  is non-decreasingon m , there are a
positive num ber r  independent o f m  and  an  integer no =n o (m ) such that

(5. 10) (a„,m —an ) r n no).

Summing up (5. 10) from n o + 1 to  n - 1 ,  w e  have
n+m-1 no+m

(5.11)E  a;  —  E  a; ( n +  no) (n —n0 - 1)712.
=n =n0+1
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S in ce  {a i }  is increasing, it follows from  (5. I l )  that

(5. 12) m(a„—a„0,) {n2 —n —no (no +1)} r /2.

Thus, w e have

(5. 13) (an/n2) — a n o , „,/ (n2  — 20}  5  / (2m) for n n o (no + 1).

This implies

(5. 14) lim sup ad n 2 5 r/ (2m).

B y the arb itrarity o f m , we obtain lim  ad n 2 =0 .
g) d'). B y  th e  p ro p erty  o f  h (t) , th e  followng relation h o ld s  for
t =(a„,— a n)/m :

(5.15)n < h ( t )  n  m

Since we have the inequality :

an ) /n = (mt) / {t / h(t)} m {1 ± (m/n)} ,

it follows that

lim sup (a„,,„ — a,)/n = m lim sup t / h (t) .
n--soo /-

d ' ) c'). This is  trivial Q. E. D.
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