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§1. Introduction.

Recently, the problems in the mathematics are often considered in the
Gevrey classes and sometimes in more general “ultradifferentiable
classes”. Here, we say that a linear subspace of C~(2) [2C R', open]
is the ultradifferentiable class with weight {M,};,, when each element
f(x) satisfies the following condition;

VK: compact set in 2, FR>0, 3C>0 depending on K and f(x), such

that,

|f@(x)|<CR“'M,,, on K for vacZ},
lal

Lo =( )" (5o )0, lal =at oo+ and

Z.={0,1,2,0000ee } 1.
We write it C{M,}( D) [=&{M,}(@)]. We call especially C{n!"} (v>0)
the Gevrey class of order v.

Considering the problems in C{M,} (2), sometimes the following condi-
tion is assumed:

(S) 3R>, M,,.,SR*""M,M, for Ym, neZ,.
We call it “the separativity condition”.

It is sometimes called “stability under ultradifferential operators”. However, it seems too long.
The reason of our naming originates from the following conclusion of (S);
For the open set 2; in R"(i=l, 2), we set
C{M,, M.} (2 X2)={f(x, ») €C~(2,X2,) ; YKi, YK, ; compacts in Q; and O, respectively,
3C>0, AR>0 such that ,
| fee122 (x, ») |SCRI=IM=2l A, M, on KyXK, for Ya,€Zi(i=1, 2)}.
If f(x, ») in C{M,} (2:X£;) is separated in the form f(x, y) =f1(x) f2(), it belongs also to

¥) The essential part of this work was achieved at 1’Ecole polytechnique, Centre de Mathé-
matiques in 1980-81.
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C{M,, M} (2,X82;). However, if {M,} satisfies the condition (S), all f(x, ») in C{M,} (Q1X2;)
belong to C{M,, M,} (2,X#2;) regardless of the form.

In this paper, we offer some equivalent conditions to the separativity
condition or to a weaker one which will be introduced later on. Further,
we try to characterize them by the order of {Af}.

In order to make clear the inference, we consider the spaces
Z{M)R) and @ {M,, M}(R"x R? instead of C{M,}(2) and
C{M,, M,}(2,x2,), where

B M, }(R) ={f(x) =% (R"); 3C>0, 3R>0 depending on f(x) such that

|f@(x)| <CR"M,, in R' for vacz.},
and

# (M, , M) (R"XR? = {f(x,y)€ B (R"™");
3C>0, 3R>0 depending on f(x,y) such that

f? (%, 9) |SCR™™ M, M, in R™
for va,e 2z, (1=1,2)}.

Theorem. (Kolmogoroff)
On the function f(x) which is n-times differentiable on R', we have the
estimate;

If My=sup |f(x)| and M,= sup |f@(x)| are finite, M,= sup |f@(x)|
x z, lal=n z, lal=k

is also finite and majorized as follows:
My (n/2) (M) (MDY (k=1,2, -, n—1).

The proof was given in A. Kolmogoroff [1]. (See also S. Mandelbrojt
[2].) By this theorem, in case of # {M,}(R") and Z{M, M,} (R"XR?),
the sequences {M,} and {M,} can be replaced to logarithmicly convex ones
keeping the classes.

Remark. If {M,} satisfies

(I.1) cn=M,. /M, (n>1) for a positive number ¢,

also in case of C{M,}(2) and C{M, , M,}(2,X%2,), the sequences {M,}
and {M,} can be replaced to logarithmicly convex ones keeping the
classes. (See S. Mandelbrojt [2].) Then, if {M,} is originally logarithmicly

convex or it satisfies (1.1), all of the results in this paper are valid for
C{M,} (2,x92).

From now on, we assume that {M,} is logarithmicly convex. Further,
we assume that lim (M,)Y*=oo0, because when lim (M,)Y"< oo, the class

% {M,}(R') is well characterized. (See, S. Mandelbrojt [2].) In conclusion,
we may assume also that {(log M,)/n} is increasing and diverging.
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For the purpose of the application to the theory of pseudodifferential
operators on the ultradifferentiable classes, we introduce two weaker
notions.

We say that {M,} satisfies the weak separativity condition or the
differentiability condition, according as the following holds:

(W.S) =R>0, 3{N,} (N,>0), M,,.,<R'M,N, for Yn, meZ,,

or
(D) 3C>0, M, ,=CM, for VnEZ,.

Remark. {VN,} in (W.S) is not necessarily logarithmicly convex, but
it can be replaced to a logarithmicly convex sequence.

Corresponding to the notions on {M,}, we say that & {M,} (R is
separative, weakly separative or differentiable according as

%M.} (R C & (M,, M} (R*X R,
Z{M.,)} (R"'2) c#{M, N,} (R'X R™) for a suitable sequence {N,},

or & {M} (RS &}(R" &M} (RN,
respectively.

In the section 2, we announce the theorems. Since the differentiability
of gf{M,.}(Rllwz) was well characterized (See S. Mandelbrojt [2]), we
only prove the theorems on the separativity and on the weak separativity
in the sections 3, 4 and 5. We essentially follow the proof in case of the
differentiability.

In the forthcoming paper, we will apply the results in this paper to
show the impossibility of the “nice” theory of pseudodifferential operators
on the ultradifferentiable classes larger than the Gevrey classes.

§2. Notation and results.

In order to describe the theorems, we need some functions linked with
{M,}). We set R,={x€R; x>0} and Z,=1{0, 1, 2, «+-.. }. Let us set

2.1 T(r)=sup /M, (r>0),

n20

and call it the associated function of {A{,}. By virtue of the logarithmic
convexity of {M,}, we have

(2.2) M,=sup r/T(r) (n=0).
r>0

Both in (2.1) and (2.2), in reality, “sup” can be replaced by “max”
owing to the assumption of lim(M,)"=co.  Further, n and r which



670 Waichiro Matsumoto

attain the maximums in (2.1) and (2.2) are non-decreasing and diverg-
ing. In view of the logarithmic convexity of {M,}, it is combinient to
use the followings:

(2.3) a,=log M,, H() =sup {nt—a,}.

n20
We call H(¢) the trace function of {a,}. The following relations hold.
2.4) T(r)=exp H(logr),

(2.5) a, = sup {nt—H(@)}, ((n=0).

{(n,a,)} forms a convex polygon, which is called the Newton polygon

of {a,}. The trace function H(t) is convex (or, more exactly, concave)
and piecewise linear. We set

(2.6) 10 :<di;>’H(t). <(dit) is the right derivation.

The function A(¢) is obviously non-decreasing and piecewise constant.
Of course, “sup” in (2.3) and (2.5) can be also replaced by ¢“max”,
and the maximums are attained by n=~A(t) and t=a,,, —a,, respectively.
Therefore, we easily see the following relations:

(2.7) H(t) =th(t) —auy,
(2. 8) a, = n(an+1 _an) _H(an+l —an) 3

because of —H(t)=i£1f{t(x—n) +a,} |,-0, and —a,,:irllf{n(x—n)+H(t)} | e=0-

We say that {a,} is of order p(n) or has a smaller order than p(n),

and we write a,=0(p(n)) or a,=o(p(n)), according as it satisfies the
following:

(2.9) sup a,/p(n) < oo,
or
(2. 10) lim a,/p(n) =0.

Remark. Even if we replace finite elements of {,} and modify T'(r)
on a bounded set, sup r"/M, and sup r"/T(r) are invariant for large

n and for large r, respectively, and then, the class # {M,} is unchanged.
Thus, according as we give assumptions on {AM,} for large n or on
T(r) for large r, we may consider them to be valid for all n or for all 7,
respectively. This also holds on {a,} and on H(¥).

On the other hand, if there exist two positive constants R; and R,
such that
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RIM,< N, < R;M,,

the classes Q{M,,}(Rl) and Q{N,,}(Rl) coincide. In such case, we say
that {N,} is equivalent to {M,}.

First, we give some equivalent conditions to the separativity of
1+l
& (M.} (R™).

Theorem 1. (Separativity.)
The following conditions are all equivalent.
1y #{M,} (RIIHZ) is separative.
2) {M,} satisfies the separativity condition (S).
3) =R>1, M,<R"(M)}, (n»1).
3) lim sup (a5, —2a,) /n < co.
4) 3R>1, {T@/R)})=T(r), (r>1).
4’y 3r>0, 2H(t—7r) = H(t), (t>1).

We prove this theorem in the section 3. Now, we can show some
necessary conditions to the separativity.

Theorem 2. If {M,} satisfies the separativity condition (S), the following
equivalent conditions are satisfied. The converse is not always true.
1) >0, M, =nl, (n>]).
i) a,=0(nlogn).
ii) >0, T(r) = exp 7%, (r>1).
i) lirrtlaiwnf (log H(t))/t > 0.

iii) lim inf (log 4(#))/t > 0.
The theorem 2 implies the following;

Corollary 3. If {M,} satisfies the separativity condition (S), & {M,}(R")
is a Gevrey class or its subclass. The converse is not always true.

The first half of the theorem 2 is proved in the section 4. Here, we
give two examples of separative {M,} and show the latter half of the
theorem 2 by constructing an example.

k
Example 1. M,= {JI=10 (log;n)"7}", where kEZ,, v,>0, v,ER (j=1),
log, n=max {1, n} and log; n=max{l, log(log;_n)} (j=1).

k
Example 2. M,=n!"1I n""%" for k=2, »,>0 and v,ER (2<j<k).
These {M,} satisfy the condition (S), since

j—1
log;(p+¢) Slog; p+q (I log, )7, (j=1 and p, ¢=1).

Especially, the Gevrey weight n!”, which is equivalent to the case of
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k=0 and y,=v in the example 1, satisfies the condition (S).

Proof of the theorem 2. (The latter half)

We give an example of {a,] which does not satisfy the condition 3")
in the theorem 1 but does log a,= O(n log n).

Fixing v>0, we set, for large n,

b, = {v—(log log n) '} n log n**),
c,=vnlogn,
s, = (¢, —b,)/n and t,=b,—b,_;.

It is seen that
(2.11) s, =v log n+ (log n)/(log log n) +2v log 2,
(2.12) t,<v logn — (logn)/(loglog n) +v, (n=3n,>0),

because of (logn) —1/n —1/n?<log(n—1) < (log n) —1/n—1/(2n%), and
log log n —2/(nlogn) <loglog(n —1) <loglogn —1/(nlogn) (n=4).
Moreover, it holds that

(2.13) b <e, (nz3Fn5>0).

Now we are in a position to define a,(=log M,) inductively. First,
we take

(2.14)

{ ny =max {ng, ng}t, @y =b,, g = Cony
fo(x) =a,,0(2no—x) /no + aZnO(x —ny) /1.

Let n, be the smallest integer in {n;n>=2n, and f,(n) <b,}. By the
relation (2.13), =7, must be greater than 2n,41. We set

(2.15)

an:fo(n) for nénl_la anlzbnl, a2n1262n19
{ fl(x) = anl(in_x)/nl + aZnI(x_nl)/nl'

From the definition of #,, the following is satisfied:

(2° 16) sno<an1_anl—1 étn1<snl'

Let n, be the smallest number in {n;n=2n, and fi(n)<b,}. It is
seen that n,=2n,+2 by (2.13). Setting

(2.17) a,=fi(n) for ,=n<n,—1,

ny—=1 .
{a,}.2 is convex.
Repeating this procedure, the sequence {a,] is convex and

**) Both {b,} and {¢,} satisfy the condtion 3"). {expb,} 1is equivalent to {M,} in the
example 2 for k=2, yy=v and v,=—1.
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lﬂi_{{le a,/(nlogn) =v<{co but (az,,k—Qa,,k) /n, [ =2 log n,/(log log n;)+2v log 2]
tends to infinity. Q.E.D.

Next, we consider the weak separativity.

Theorem 4. (Weak separativity)
The following conditions are all equivalent.
a) #{M,} (R is weakly separative.
b) {M,} satisfies the weak separativity condition.
b,) ET>0a a{bm} °7;=0 <bm_20), an+m§an+nr+bm'
c) 3R>0 independent of m, lirzl_.swup(M,,M/M,,)l/"é R.
c¢’) sup {limsup(a,,,—a,)/n} <co.
d) !li_.rg (Mn+m/Mn) Va = 1 .
d,) }li_’r{cl(an+m_an)/n =0.
C) Ve>0, 3n0> 0’ Mn é CXP (enZ) H (ng no) .
e’) a,=o(n?.
) YK>0, 3, >0, T(r)y=riler (r=r,).
) !}g] H(t)/t?=o00.
g) glz’l h(t)/t=o0.
h) 3R>0, YK>0, T(r)=rXT(r/R), >1).
h”) 3r>0, lf.rf {H@)—H({t—7)}/t =00.

Remark. In b’), {b,} is not necessarily convex.
We give the proof of this theorem in the section 5.
In comparison, we present the well-known result on the differentiability.

Theorem 5. (Differentiability)
The following conditions are equivalent.
a) B{M,} (RIIHZ) is differentiable.
B) (M.} satisfies the differentiability condition.
8" limsup (a,4,—a,) /n<oo.
7 >0, M, <exp(vn?), (n>1).
) a,=0(n?.
d) 3K>0, T(r)=rKler (r>1).
8" lirrtx_’i”nf H(@)/t2>0.
e) liminf h(#)/t >0.
&) Ymez,, 3R=R(m)>0, T(r)=r"T(r/R), (r>1).
g ;i__rg{lir{hinf(H(t) —H(t—7))/t} =co.

§3. Proof of the theorem 1.

In order to see the relations of the conditions on # {M,} and those on
{M,}, the following proposition is available.
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Proposition 6. For two sequences of positive numbers {L,} and {K,}, we
assume that {L,} satisfies the logarithmic convexity and the conditions im(L,)V"

=oo and
lir'p_’ionf(.K,,/L,,) Yn=(),

Then, there exists a periodic function f(x) in % {L,}(R) which does not belong
to #{K,}(R).

Remark. The sequence {K,} need not necessarily satisfy the loga-
rithmic convexity and the condition li_g}(K,,)l/"zoo. The proof of the

above proposition was given, for example, in S. Mandelbrojt [2].

Now, we can start the proof of the theorem 1. The equivalences of
the pairs of 3) and 3’) and of 4) and 4’) are obvious. Our program to
show the rest is the following:

HN=23)22)2>1) and 3)e4d)).

1) =3). Assuming the assertion 1) and the condition lir}linf{(M,,)Z/Mz,,}‘/”
=0, we find a contradiction. We regard K,= (M2 Kyu,,= M,M,,,
(kez,) and L,=M, (n€Z,). By the proposition 6, there exists a
function f(t) in % {L,})(R) which does not belong to # {K,}(R).

Let us set g(x, ») =f(x,+y,), where x=(xy,..., x) and y=(py, ..., 2.
Then, g(x, ») belongs also to #{M,} (Rll“z). Owing to the assumption,
g(x, ) belongs also to #{M, , M,l}(Rlllez), that is, there is a positive
number R such that .

(3. 1) sup |(8/0x)"(8/3y) " “g(x, »)| (=sup |f&+(t)|)
<CR"™MM,,, (=cR""K,,..), (YnEZ,, ¢e=0 or 1).

This means that f(¢) belongs to #{K,} (R) and we are led to a contra-
diction. '

3)=>2). We show the following inequality by the induction on m from
n to 1.

(3.2) M, . <R"MM,.

i) The case of m=n is just the assertion 3). ’
ii) Assuming that (3.2) holds for m=£k (1=k=n), we consider the case
of m=k—1. By virtue of the logarithmic convexity, it holds that

(3.3) M, s/ Moy = My o/ M.

Producting M, /M, to the either side of (3.2) for m=£k and applying
(3.3), we have

2n

(3' 4) Mn+k—l§R Man—l'
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Thus, (3.2) holds for 0=m=n.
Replacing R? to R’, we see the assertion 2).
2)=>1). This is trivial. ) .
3’)=>4’). For some positive constant y and ¢>7, we have

H(t) = sup {nt—a,} = 51“1p{2nt —dy,} = sup {2nt —2a,—2ny}
=2 sup {n(¢t—7) —a,} =2H(t—7).
4)=3"). For sufficiently large n, it holds that

a,=sup {2nt —H()} Ssup{2nt —2H(t —7)}
>7

t>7 t

=2ny+2sup{n(t—y) —H({¢—p)} =2nr+2a,. Q.E.D.
>7

§4. Proof of the theorem 2. (The first half)

The equivalences of the pairs of i) and i’), and of ii) and ii") are
obvious. Then, we show first the assertion i’) from 3’) in the theorem 1
and next the equivalence of the assertions i), ii") and iii").
3'y=>1). From 3), it holds that

(4.1) a,,—2a,<cn,

for a suitable positive constant ¢. (4.1) implies
(4.2) gy < Pita;  + 24,
Summing up (4.2) on j from 1 to k, we have
(4.3) a, = 2'a + k2% e

As we may assume that {a,} is non-decreasing, the following majoration
holds good:

(4.4) a,/(mlogm) < {2*'a, + (k+1)2%}/(k2*log 2), (2*=m=2HY),

and it implies lirg_’smup a,/(mlogm) < c¢/log 2.

ii") ©iii’). As h(¢) is non-decreasing, we see that

(4.5)  H(0)+th(t) =2 H@) = H(0) +S; h(s)ds = H(0) + (¢/2)h(¢/2).
From (4.5), it follows that

(4.6) liminf{log A(s)}/t = liminf{log H(¢)}/t =z lim inf{log A () } /t.

1) >ii"). Owing to the assertion i), it holds for a positive number v
that

4.7 a, = vnlogn.



676 Waichiro Matsumoto
Therefore, the following inequality holds for sufficiently large ¢:
(4.8) H(t) = igg)(nt —a,) = max (nt —nlogn) = vexp{(t/v) —1} —v.
This implies
lirtrlinf{log H®}/t=v .

ii") =2i). Owing to ii’), it holds that
(4.9) log H(t) =« ¢,
for a positive constant £. Then, for sufficiently large n, we see that
(4.10) a,=sup {nt—H()} = m}ax(nt —e*y=r""nlog n—k"'n(l +logk).
This implies

lir‘gesoup a,/(nlog n) <71, Q.E.D.

§5. Proof of the theorem 4.

The equivalence of the pairs of x) and x) are obvious (x=b, c, d,
e, f, and h). Then, we show the rest under the program:

a)>c)>b)=a), ¢)2e)Sf)g)5d)5¢’) and d'eh’).

The last equivalence is shown by the similar way to the proof of the
theorem 1.

First group. a) =c).

Assuming the assertion a) and the condition:

G.h sup {lim sup (M, ./M,)V"} =0,
m=0 n—sco

we find a contradiction. (5.1) implies

5.2 sup {lim sup (M, ,./M,N,)""} =oco.
mgo n—»o00

Due to the condition (5.2), we can find a sequence of positive integers
{m(n)},~, such that

-9 ‘m(n-l-l)gm(”)’ n=m(n) (n=0) and
. lif{}_,SNuP(Mn+m<,,)/M”Nm(n))1/n =00,

Setting n(k) =k+m(k), {n(k)}i., is monotonically increasing. We take

K4y = MyN gy
(5.4) K,=max {K,4, K,¢+n} for n(k)<n<n(k+1),

and L,=M,.
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By virtue of (5.3), it follows that

(5.5) lim inf(K,/L,)"" < lim inf(MyN ny/ M) /% = 0.

Applying the proposition 6, there exists a function f(t) in Z {L.,}(R)
which does not belong to Z {K,}(R).
Set g(x, ) =f(x;+,). As g(x, y) belongs to # {M,,}(Rl %), it also belongs
to #{M,, N,,}(RIIXRIZ) by the assumption. Thus, we have

k+m

(5.6)  sup|(8/0x,) (3/0y) " g(x, »)| (=sup | f* (1)) SCR"M,N,,,

1+

for a suitable positive constants G and R.
We take m=m(k), then, it holds

(5.7 sup |f@ (1) | < CR" VK.

Applying Kolmogoroff’s theorem, the following holds good :
sup | f®(t) | £CR'K,, (n=0).
t

Thus, we are led to a contradiction.
c)=>b). As limsup(M,,,./M,)"" is non-decreasing on m, there exists a
n—»oco

positive constant R independent of m such that

(5.8) lim sup (M,,,/M)""< R.

Setting sup(M,, ./ M,)V"=R F(k, m), (5.8) means that
nzk

(5.9) limsup F(k,m)<1.

k

As lim {F(k, m)/2}k=0 owing to (5.9), we see that N, =sup {F(k, m)/2}
— o0 k20
is finite for all m. Therefore, it holds that

Myn < R*M,(F(k,m)}' < (2R)' M,N,,.

b) =a). This is trivial.
Second group. The equivalence of €, f) and g) is shown by the similar
way to the proof of the theorem 2. Then, we show here “c’) =e")” and

“g)=>d) ).

c¢)=>e). As limsup(a,yn—a,)/n is non-decreasingon m, there are a
e

positive number 7 independent of m and an integer n,=n,(m) such that

(5.10) @uem—a,) Syn (n=ny).
Summing up (5.10) from ny+1 to n—1, we have
n+m—1 ng+m
.11 Ya— X a = (n+n)(n—n,—Dy/2.

j=n ]=n0+1
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Since {a;} is increasing, it follows from (5.11) that

(5.12) m(a,—a, yn) = {n*—n—ny(no+1)} /2.

Thus, we have

(5.13) (a,/n®) — {a,,0+,,,/(n2—2n)} <7r/(2m), for n=ny(n,+1).
This implies

(5.14) lirxnl_iup a,/n* < v/ (2m).

By the arbitrarity of m, we obtain lim a,/n*=0.

n—»oo

g) >d’). By the property of A(¢), the followng relation holds for
t= (an+m _an) /m .

(5.15) n<h(t) =n+m.
Since we have the inequality :
(apym—a)/n=mt)/n= {t/h(O}m{l+ (m/n)},
it follows that
ling_)s;}lp(a,,m—a,,)/n =m lirp_’saup t/h(t) =0.

d’)=>c’).  This is trivial Q.E.D.
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