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1. Introduction.

In the previous paper [2], we have derived the local energy estimates
for effectively hyperbolic operators of second order of type (1),. In this
note, we shall derive the local energy estimates for effectively hyperbolic
operators of other types. That is of types (2), and (1), with @,=x,,..
We follow [2] quite far and obtain the estimates which indicate the loss
of regularity of solutions when they transverse a certain hypersurface in
T*(R*"). The only difference in the proof is the treatment of the
quantitative condition in (2),. We use the same notations as in [2].

Let us consider the operators of following types.

& —'f;j (% —2040) s (X, &) —’ZEr (X, 8) =gy (x®, £9)q, (X, &),

W; ) .
"l with (9%,/082) (0, £0) =0, 1=p=<d, £=(0,...,0,£,),

=T (=100 (X, §) = 581 (X, ) =g, (x®, £0)1,0u(X, ),
with 317:(0, &) 7> 1, (9%g,/0x2) (0, £#+) =0,1Sp<d — 1,
i=1
£=(0,...,0,6),

(2),

where ¢;, r; is positive and homogeneous of degree 2, 0 and ¢, g, is
non-negative, vanishing at (0, £), homogeneous of degree 0, 2. Without
loss of generality, we may assume that all the above functions are defined
in I x R*x U, where U is a conic neighborhood of & I=(—T,T), and do
not depend on x if [x|>R.

We make the change of scale of the wvariables; »,=pg71&, =471,
Jo = pxe, ¥ =px, and we extend g¢; (uX, §), r. (uX, &), ¢,(ux®, &0,
& (ux®, £0t) to ¢, (X, &, 1), ri(X, &, 1), ¢(x, & 1), g(x, & p) coinciding
with the original ones in

U, & =08 lxI<], [§1§171—€1<p, [€1>p79.
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These extensions will be clarified in the next section. Then we are led
to the following operators.

(1 "Pw S ATV (0% (X, & W) — T (X, 60 —9(x & 00, (X, &, 1) +
? +#T1(X’ 5’ #) +AUT0(X’ 5’ #) 50’

»

) ‘P(,,) =8 fLY (00X, & 1) = B (X, & 10 —g(% 6 17y (X6, +
4

i=1

+uT (X, & 1) + T (X, & )&,

where T;(X, &, 1) denotes an extension of T;(uxX, &) with T;(X,§) being
positively homogeneous of degree i in § defined in /X R?X U, independent
of x if |x|>R. Obviously Y;(X)=x;,—x;,,.

From [1], there exist real numbers {¢}?_; such that

(1. 1) S (0, H<1, Se=1,

i=1 i=1
in both cases (2), and (1),. Especially, in the case (1); we take ¢;=0,
1<j<p—1, ¢,=1. Using these numbers, we put

3
(1.2) Y (X) =x,— 2eix:.
i=1
Here we note that
-1
(1.3) Y(X) =pZ]a,~Y,-(X), with some constants a;.
i=0

Using Y(X) in (1.3), we define J(X, &, ), J.(X,§ 0, af (X, &, p)
and |||u||[24s,, following the same formulas in [2]. We denote by P, (X, &)
the subprincipal symbol of P, Since ¢,(0,£®) =0, grad ¢,(0, £®) =0,
g,(0, £#+D) =0, grad g,(0, £#+D) =0, it is clear that ©P;,(0,0,0, ) does
not depend on x. Hence we denote it by P*(0,0,0, £€). Then we have

Theorem 1.1. For any LEN, we have
C(n, p, L) Se‘z"o"||P(mu|lz_2La’x0+ Se‘z"o"[l|P(ﬂ)u|[]?,_0dxo_2_ clnge‘z"o‘ﬂ||D0u|||?,,1dx0+

+c2n§e-%ﬂ|||u|||%.+1.odxo+osege-%ﬂ||D0u|n3,.1,2dxo+c30§e-2*oﬂmu|H?,H,-l,zdxo+

e e oo e | Dull sy, for n2CC, 0<pSp(n), 02

O(n, 1, L), ucCy(IX R, where C=]P(0,0,0, &) |+1, Co=Cy(g:(0, &)
in the case (1), and Cy=C,(q;(0, &), r:(0,8)) in the case (2),.

Theorem 1.2. For any sER, we have
€ (n,9) (e Pl iz 0201\ Dol idno+- 0o~ ul i, for nZCiC,

0=60,(n,s), ueCy (I X R?).

Before to proceed to the next section, we make some general remarks
on symbols which will be used in this note. From the definition, it is
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easily verified that J, (X, &, p)" satisfy the following estimates
1.4 | (Jo (X, &, MBI =Cor] (X, €, 1) 19KET,

for all multi-indexes ae N+, ye N¢ with C,, independent of #, 0<u=1.
Since J(X, &, p) =<{ué>7172 it is obvious that

(1.5) ((J. (X, &, Qe8I neR.

It is also clear that (af (X, &, #)) 3 belongs to J~'#§-17%, In [2], we have
uesed J, (X, &, 1), af(X,&, 1) which do not depend on x'=(xj,...,x,),
whereas in the case (1); these symbols depend only on (x, x, &)
and in the case (2),, J.(X,&p), af(X,§ p) does not depend on
x"=(%ps1, ..., x,). Thus when we apply the arguments in sections 5, 6
and 7 in [2], we must exchange the role of variables suitably.

2. Preliminaries.

We define the extensions of ¢;(uX, &), r,(¢X,8&), ¢,(ux®,E®P) and
G (px® E@+DY  Take 7,(s) €Cy (R with 0=7,(s)=1, 7,(s) =1 for |s|=1,
7,(s) =0 for [s]|=2. Set

(2.1) qii(X, &, ) ={q:(pX, &) —q.(0, E:) 1&1% 9y (2 (6 1€ = E mu(x),
qi(X) 51 /‘t) =qi,1(X9 &.’ ﬂ) +q1(07 5) |$ |2'

Obviously, it follows that

(2.2)  g:i(X, & e (EDH, 1g:(X, & 1) —¢:(0, &) |17 SCul§ 17
(Y (X)%q:(X, &, 1) BE (E)i™, for |r]=2,

where C does not depend on g In addition, taking into account that
:(0, €) |£]? depends only on &, it follows easily that

(2.3) op (7Y (X)?%q;} —op {?Y:(X) %} * € (Es) 13

Following the formula (2.1), r;(zX, &) will be extended to r; (X, §, p) =
=r.(X, & ) +7:(0,€). Then it is clear that

(2' 4) ng;.l(X, 5’ ﬂ) S5 (E‘Y) fga |f,~(X, év #) “T,-(O, é) |§C‘U,
030} {§4:(X, §, m} € (E9)L, if k+#i.

Furthermore, we see that
(2.5) op {&¥r: 1} —op {&¥ri i} *E (Es)id

Next, we extend ¢,, g,. Choose 7,(s) eCy (R?***) such that »,(s) =1,
for |s|<1 and 7,(s) =0 for |s|=2. Let 7;(s)EC7(R) be equal to s for
|s|=2 and equal to 0 for |s|=3 and set

Z(x) =(77§(x1), ceey 773(".1)), F(E, ,li) :ﬂ(723(ﬂ_l(él ['Sl_l_
—€D 5 s (T (16T =ED)).
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We define ¢ (x, &, ) =¢,(x, &, 1) +&,(x, &, 1) by

@.6)  piln = 5 et ZT (& )01, 0, 60,

e R e L

la+pl=2 O

— £)908050,(0, £P)) 7, (s (8 €] 71— £9)) 3, (x).

Since ¢, (0, £») =0, ¢,(x®, £9)>0 and (&¢,/063)(0, £») =0,
(9°¢,/9x,08,)(0, ) =0, it follows that ¢ (x, &, p)=0, LG E (Es)ii'?
where x'=(x,...,%,), §=(§,...,&). If ¢,=0, ¢(x, &, #) coincides
with ¢,(x®,&®) and hence ¢(x,§, ©) =0. As for ¢,(x,&, 1), it is clear
that it belongs to (Es)}:3 and then we see that 0207,¢ belongs to (Es)Z3'7!!
for |r|=2. From this, it follows that

(2.7) 80, ($g,) € (Es)2m, for |7|<2.

Following (2.6), we extend g,(ux®,&®*D) to g(x, &, 1) =g (x, &, p)+
+g,(x,&, 1) which is non-negative. Since g,(ux?, §¢*P) depends only
on (x®, £@+D) it is clear that 0%0Lg€ (Es)%;'"! for [r[=2, and hence

(2.8) 0207 (grys) € (Es)iy'! for [r|=2.

Proposition 2. 1.
ax;aEiSb (x, &, p) = pC; (x, g, #) axiafﬁbp(o’ é(b)) 13 |_1+éi (%, & 1E17
9,,0:.8(x, &, 1) =pE: (x, &, 11)0,.0,8,(0, E**D) |E |+ E: (x, &, 1) 1§,
where C;(x,&, 1), E.(x,§ p)E(E)YS are equal to 1 on U(2p, &) and
éi (x,§&, /"), Ei (x, ¢, lu) S (ES)?:%.

In view of this proposition and (2.2), (2.4), it follows that
(2.9) oplgg,) —oplgg) * —i Hop(UC;0.,,9,(0, ) €170 € (B4
op {gry.} —op {grsn}* —jglop(/zEjax,ﬁe,.gp(O, §00) 1§ [ry1y) € (BT

Now we define T;(X,§&, ). Let 5,(s)ECy(RY) be equal to 1 for
|s|=1 and equal to 0 for |s|=2. Set
q

Tia(X, & ) = T (X, &) =T:(0, &) 1§ ) 0 1617 =) (),

To(X, 5,#)=To.1(X, &, #)‘l‘To(Oy &) )

Ti(X, & 1) =Tin(X, & ) +Th(0, ) 16| =4 1 (1 =C)),,9,4,(0,§7)q, €17,
(in the case (1),),

T(X, & ) =T0s (X, & ) +T2(0, &) 18] — & (1= )9, 08,0, £6) [€ 17,

_

au

(in the case (2),),
where C;, E; are the same ones in proposition 2. 1. It is clear that

(2.10) Ti(X, & m e EsS, [Ti(X, & p |SCrlel,
To(X, &, 1) =T:(¢X, &) in Uy, 0.
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In the case (1), Y(X) depends only on x, %, and if we note the fact
which follows from (2.4) that

301 (&ri(X, €, )} € (BT, 05752, 1Sip—1,

one can proceed exactly in the same way as in sections 5, 6 and 7 in

[2].
Consider the case (2),. Since Y(X) does not depend on x”, one can
apply the same roasoning to following operator,

P,,=¢&— ZY (X)?%:(X, &, ) — 252 (X, &6 1) —
—-g(x,f ﬂ)’p+1(X £, #)+ﬂT1(X §, #) +#T0(X £, ©)&,.
Thus, the only term which must be considered is Z}E?r,-(O,é). In the
i=1

next section, we shall treat this term.

3. Observations on r.(0, &) D%
We start with the following egality.

3. 1) 2Im (I,(n—1/2) Dw, I,(n—1/2) (D, —10)w) =
= —0; (Dw, (Dy—if)w) =20|1,(n —1/2) D;w||*—
—2Re(0,l,(n—1/2)Dw,I,(n—1/2) Dw) +
+2Im([1,(n—=1/2), D1Dw, I,(n—1/2) (Dy—ifw) +
+2Im ([1,(n—1/2), D;]1(Dy—i)w, I,(n—1/2) Dw).

Consider the second term of the right hand side of (3.1). If we note
that

0,l,(n—1/2)D;a; + (n—1/2)1,(n—3/2) D;a; =0, for n=16,
it follows that

—2Re (0,1, (n—1/2) D;a;u,I,(n—1/2)Dazu) =
=2n—1)Re([,(n—3/2)D;a;u,I,(n—1/2)D;a;u).

On the other hand, from the expression
IL,(n—=1/2)*I,(n—3/2) =1,(n =) *(14+b) I,(n—1), with b€ pSiy,
this is estimated from below by
(3.2) @2n—1—-Cm)YW||I,(n—1)D;a;ul|?, modulo C(n, g, L)|lu||%,
Now consider the last two terms of the right hand of (3.1). Since
o([L1,(n—1/2), D;]) =i(n—1/2)¢;L(X, &, 1) J (X, &, p)"¥%,

where L(X, &, p) = {2y —Y(X)<{péDV?) —1} =2y (= Y(X){puéDV2)Y (X)) péd%,
it follows that
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I,(n—=1/2)*[1,(n—1/2),D;1=ie;(n—1/2) I,(n—1)*(L+b)I,(n—1)
be uSYy.
On the other hand, taking into account that L(X,§&, ¢) =1 on the support

of a;, for n=16, we get

I,(n—1/2)*[1,(n—1/2), D;] Dsa; =
=ie;(n—1/2)I[,(n—1)*(14+b)1,(n—1) D;a;, be nSY,

and this implies that

(3.3) |y ([L.(n—=1/2), D;]1D;a;u, I,(n—1/2) (Dy—if) a;u) |[=
<rigj(n—1/2)||I,(n =1) Dja;ul|||[,(n —1) (D, —i0) a;ul| +
+C (n) pl|I,(n —1) Djazul|?+C (n) pl|1,(n —1) (Dy—if) a;ul %,

where r;=7;(0,£). Thus, the last two terms are estimated by

(3.4)  2rg;2n—D) ||, (n—1) Diazulll|1,(n—1) (Dy—if) a;ul| +
+C(n) pl|1,(n—1) Dja;ullP+C (n) gl I, (n —1) (Dy —i6) e ul |°

From the assumption (l.1), there exists 0<(6<{1 such that
51l =6<1,
i=1
then we see from (3.2) and (3.4) that
—ﬁ‘,q)— (Diezu, (D, —io)a;u)>20%r,.||1 (n—1/2) Dyazull*+
+(2n—1)(1—-6—C(n)p) Zr I|/I,(n—1) Dja;ull*—
—(2n—-1) (6+C () wIII, (n—l)(Do*lﬁ)a ul[%
After having done the same arguments for @} (Diaju,(D,—i0)a;u), it

follows that

Proposition 3. 1.
— ¥ 0% (r, Diacku, (Dy—if) atu) =205 Yoy (1L, (n—1/2) Djacul [ +
j=1 j=1

+J: (—n—1/2) Djazul|} +(2n—1)(1 =6 —C(n)y) Z}éri {11, (n —1) D;atu|?+
+IJ: (—n=1) Djatul|?} —(2n—1) (6+C () D ||ull}, .1, modulo C(n, p, L) lu|®y

We proceed to the next step. Consider [«,, D;]. Here, obviously

o ([az, D;1) = —ign' /2y ® (—=n'/?Y (X) pé ) pé 2= —igil (X, €, 1),
and we remark that [(X,§, p)EJ 18"V for any NER, Then it is
clear that one can express

(3.5) I(n—1/2)*I,(n—1/2)[ea;, D;1=en'l,(n—1)*(l,+b) 1, (n—1) =
=en2,(n—1)* (L+b) ] (—n—1), b;EpSYs,
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where

L(X, & ) =3 (=n2Y (X) eIV eV (X, &, 1),
L(X, & 1) =x® (—n'2Y (X) péV?) (Kpép] - (X, & ) J+ (X, &, 1))" X
X SV (X, &, ).

From proposition 6.1 in [2], we know that
(3.6) |I;(X, & 1) |=C, with C independent of n,
then this fact and (3.5) show that (since a}+a;=1),

@.7) 127 ([a7, Di1Dju, (Dy—if) azu) |Sn'(C+C(n) p) (|1, (n = 1) Djazull*+
+IlJ+ (=n=1D) Djaul?} +n'*(C+C (n) ) |11, (n — 1) (Do —i0) ar7ull’.

On the other hand, one can write
[a;y D?] =2[a;’ Dj]Dj+512'r’
where 7(X, &, p) =ny® (—n2Y (X) eV pué>e -S4~V for any NER.
Therefore we get
IL(n—1/2*I,(n—1/r=nl,(n—1)*(,+b)I,(n—2) =
=nl,(n—1)*(,+b,) ], (—n—2),

where [;(X, &, ) belongs to J°§°° and satisfies the estimate (3.6). Thus
the same procedure gives that

(3.8)  19; (ru, (Dy—if)azu) |Sn*(C+C(n) ) 11, (n —1) (Dy—i0) azul P+
+n32(C+C (n) ) || [WlI2 -

Summing up, from (3.7) and (3.8), it follows that

|D; ([a;, D¥]u, (D, —i0)ayu) |<n'2(c;+C(n) w||I,(n —1) (Dy—if) a,ull*+
+n2(c;+C(n) ) (|1, (n—1) Djazul P+||J . (—n—1) Da;ul P} +
+0%2(c;+C(n) )| |ul|3.2
modulo C(n, g, L) |u|?;.

Since the estimate for @; (---) is obtained similarly, we have
Proposition 3. 2.
2195 ([, Du, (Dy—if)aw) |=n'*(c;+C (n) ) [|ullp,, 1+ 0" (14 C (n) p) X

X A{[l,(n —1) D;a;ulP+ 1]« (—n —1) D;actull} +n%2 (e, + C () )| lu] |22,
modulo C(n, p, L) |u|%;.

Combining propositions 3.1 and 3.2, we obtain finally

Proposition 3. 3.

-2 .i_:l@f (agr;D, (Dy—i0)atu) = — (2n—1) (6+cn>+C (n) ) ||l |3, .1 —
—n¥2(c,4C (n) )| ul |2, 5
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for n=ny(c)), 0 pu=py(n), modulo C(n, p, L) |ul?;.

Now we complete the proof of theorem 1.1 in case (2),, In the
inequality of proposition 7.5 in [2], we take d, 6,°>0 sufficiently small so
that 6+408,+6<1. Then one can absorb the right hand side of the
inequailty in proposition 3. 3, and this fact proves theorem 1. 1. Here
we recall that 6 depends on {r;(0,£)}, and accordingly, C, (in theorem
1. 1) may depend also on {r: (0, &)}.
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