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§1. Introduction.

Let A(t, z; 0,, 0,) =(a;;(t, z; 0,, 0,))1<i.jsy be a matrix whose entries
are partial differential operators with holomorphic coefficients in a neigh-
bourhood of the origin in C* (r<3). We are concerned with the
Cauchy-Kowalewski theorem for the Cauchy problem:

AL, 25 0, 3)u=f(, 2)

C. P. .
( ) 6{'u,-],=,0=¢,-_k(z) k=0, 1,...,my—1,j=1,2,..., N
where {my, m, ..., my} is a given collection of non-negative integers and
- _ 0 _a/_/ o d
we denote 2= (x, »), 8= and d=-(=(, )

The purpose of this article is to show that if the Cauchy-Kowalewski
theorem holds for the Cauchy problem (C. P.) in a neighbourhood of
the origin, then (C. P.) is equivalent to the Cauchy problem for a
(my, my, ..., my)-normal system in 9, under some assumptions. Therefore
if m>0 (:=1, 2,..., N), the Cauchy problem for general system is
equivalent to the Cauchy problem for the first order system in 0,

Concerning this subject, M. Miyake [3] treated the ordinary differential
equations. K. Kitagawa and T. Sadamatsu [2] treated the partial
differential equations under some assumptions. In case of the constant
coeflicients T. Sadamatsu [4] gave the necessary and sufficient condition
for the Cauchy-Kowalewski theorem to hold.

Our arguments are based on the treatments by K. Kitagawa and T.
Sadamatsu [2].

The author would like to thank Professor K. Kitagawa for his helpful
suggestions and stimulating discussion.

§2. Assumptions and Results.
First of all we define the formal order of A(¢, z; 0, 9,) by



594 Takashi Sadamatsu

N
max ), order aq(t, z; 0, 9,)
T i=1
where 7 is a permutation of (I, , N} and order a; (¢, 25 0, 0,) is
defined by sup {degree of a; (¢, z, T, C) as a polynomial of = and {} and

order a;(t, z, 6,, 0,) = —oo if a;(t, z; 0, 0,)=0. We assume
Assumption I The formal order of A(t, z; 0,, 0,) =m=0.

If the Assumption I holds, then by Volevic’s lemma [5, 6], there
exists a system of integers {t; s;} such that

(i) order d;]- (t, 4 at, az)étj_st
(ii) L= si=m

Let d;;(¢, 25 0,, 0,) be the homogeneous part of order ¢;—s; of a;(t, 2}
d,, 9,). We assume

Assumption II The hyperplane t =0 is non-characteristic for A(t, z; 9, 9,),
that is, det A, 0; 1, 0)x0 where A(t, 257, 8)=(d;(t, 25 7, £))igijen

Under the Assumptions I and II, we consider the Cauchy problem :

A(ta z; ata az)u:f(ta Z)

P oy o =5a() k=0, 1, my=1, j=1,2,..., N

in 2=IX 0 where my, my, ..., my are given non-negative integers satifying

my+m,+ ... +my=m (=the formal order of A(¢, z; 9,, d,)), @ is a nei-

ghbourhood of the origin in C? and t,el= {teC ; |t|<d, J,:small}.
We introduce the following definitions.

Definition 1. We say that the Cauchy-Kowalewski theorem holds for
the Cauchy problem (C. P.) at a point (¢, z,) if there exists a unique
solution u(¢, z2) e HY (U’ (t,, 2,)) of (C. P.) for any f(¢, 2) €HY (U (4, 2))
and any ¢;,()€HU(t, 20 N {t=t}), where U(ty, z,) and U'(¢, zo)
are neighbourhoods of (4, z,) in 2 and H(U(t, z,)) denotes the space
of holomorphic functions in U(f, z,). If the Cauchy-Kowalewski theorem
holds for (C. P.) at any point in £, then we say that the Cauchy-
Kowalewsk: theorem holds for (C. P.) in £2.

Definition 2. A(¢, z; 0,, 9,) is said to be (my, my, ..., my)-normal in
0, when

aij(t’ 25 at’ az) :6ijatmi+bij(t’ 25 at’ az) is J=la 23 LS ] N
where order b;(¢, 2; 8, 0,)<m; for any i, j and d;; is Kronecker’s 4.
af
Definition 3. We say that A(z; d,)u=f(z) is uniquely solvable at z,
if there exists a unique solution u(z) € HY (U (2y)) of A(z; 9, )u=f(z) for
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any f(R)eHY(U(z)). If A(z; 0 )u=f(2) is uniquely solvable at any
point in @, then we say that A(z; 0,)u=f(z) is uniquely solvable in @.

Definition 4. We say that A(z; 0,) is invertible in @ if there exists
a matrix B(z; 0,) whose entries are partial differential operators with
holomorphic coefficients in @ such that A(z; 6,)B(z; 9,) =B(z; 3,)A(z; 9,)
=identity holds in @. We denote B(z; 9,) by A7(z; 9,).

Our aim is to show that

Theorem 1. Under the assumption I and II, if the Cauchy-Kowalewski
theorem holds for the Cauchy problem (C. P.) in 2, then there exists an
invertible matrix R(¢, z; 0,, 0,) such that R(t, z; 0, 0,)A(t, z; 0,, 0,) is
(my, myy ..., my)-normal in 0,.

To prove theorem 1, we need the following theorems.

Theorem 2. In order that A(z; 0,)u=f(2) is uniquely solvable in @,
it is necessary and sufficient that A(z; 0,) is invertible in @.

Theorem 3. If the formal order of A(z; 0,) is —oo, then A(z; 8, )u=
f(2) has not a solution for some f(2).

§ 3. Preliminaries.

Let {t; s;} be a fixed system of integers and

Z

Ei= Yy, 23 8, Duy=fi(t, )  i=1,2,..., N.

j=1

We set
a;(t, z; 9, 0,) =dy;(t, z; 0, 3)—I-b,~,-(t z; 0, 9,
dy(t, 25 B, a,>=t§:a®<t 23 8)a

and

bi;(t, z; 9, 0,) = Z b"‘ T AT

where order a¥(t, z; 9,) =k and order b (¢, 2; 9,)<k. Let us remark
that A(t, z; 1, 0)=@Q(, z; 8,)) = (dy(t, 2)).
We dlﬂ'erentlate E; up to (s;—1)-times

ts+l

O, = z (a5t D3 4 z: bED (8, 25 0) 07 Ny
0§l§s -1,:=1,2,..., N
(k 1)) . —_ l h o (p-1) l
where bf (t,z,az)—h2< )8(11 (¢, 25 0)+bE"V(¢, 2;0,)) and <h>

+h=k
denotes the binomial coefficient. ~ Without loss of generality we may

assume ¢; >my, s; >0 for any ¢, j
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.. ti=s; A l- s tlmb 1
JE= Y a,,(z ot +z Z bf;: R 25 0,) g
tj—-si+12 m;
s+l v mit sk,
+ X oyt D T z S b, 2y 8,) Bt
s s+l<m j=1 k=0

i

0<i<si—1,i=1,2,..., N.
We denote the system 0,E;=0;f; (I=0, 1,...,s;—1,i=1,2,..., N) by
Aty z; )U(t, 2)+B(t, z; 9, d)u(t, 2) =f(t, 2)

where U(t, ) =" (8 sy + v vy 0 Vuy, 0 gy oy OV Uy, on, 37 0p), f=
t"—l

"(Sroeees Sus OuS1seees 07 fi) = max {i; ¢ = max t,,} i = max {i; s; =

max sty A(t, 23 0,) is a X8, X (¢ —m) —square matrlx whose entrles are

partlal differential operators with holomorphic coefficients and B(¢, z;
0,, 0,) 1s composed of linear combinations of u;, dw;,..., a,m"_luj(j:l, 2,
, N) with coeflicients of differential operators in 0,.
When we put t=¢, we have

Aty 25 90Uy 2) =F(ty, 2)

where F(t,, 2) =f(ty, 2) —B(ty, 2; 9, 9,)u(ty, 2) in which we replace
0%u;(ty, 2) by the initial data ¢;,(z) k=0, I,..., m;—1,j=1,2,..., N).

For the sake of simplicity, let us say that the Cauchy problem (C. P.)
is well-posed in £ when the Cauchy-Kowalewski theorem holds for (C. P.)
in £. Then we have

Proposition 1. In order that the Cauchy problem (C. P.) is well-posed in
2 it is necessary and sufficient that A(t, z; 0,)U(t,, 2) =F(ty, 2) is uniquely
solvable in @ for any t,(|t,]<dy).

Proof. Let t, be fixed. For any F(f, 2) we take ¢;,(z)=0 and the
corresponding f(¢, z). Let u(t, z) be a unique solution of the Cauchy
problem ;

AQ, 25 0, 0)u=f(t, 2)
Fujli =0 k=0, 1,..., m;—1, j=1, 2,... "N,

then (Muy, ..., O Muy, o7 uy ey O Uy, in, 87 Uy li=, is a solution
of A(ty, z; 0, )U(ty, 2) =F(t, z). Conversely, for any f(4, 2), ¢;,(2) we
take the corresponding F(¢, z). Let U(f, 2) be a unique solution of
Aty 25 0)U(L, 2) =F(,, 2).

The Cauchy problem :

0 E; =0, fi(t, 2) i=1,2,..., N
a?u_ilt=t0=¢j.k(7<«) 0§k§m,—1 le’ 2,..., N
otu; |,-,=the corresponding elements of U(i, 2) m;=k=t;—1 1<j<N
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has a unique solution u(¢, z), since the system 8,E;=3,'f; (i=1,..., N) is
a (4, ty..., ty)-normal system and ¢=¢, is non-characteristic. ~This
solution u(¢, z) is also a solution of the Cauchy problem:

A(t, z5 0, )u=f(t, 2)
afuj|t=,0=¢j.k(z) k:(), l,..., m,-—l, le, 2,..., N.
Q.E.D.

§4. Proof of theorem 2.

In this section we prove theorem 2. Since it is clear that A(z; 9,)u
=f(z2) is uniquely solvable in @ if A(z; d,) is invertible in @, we show
that the inversibility of A(z; 9,) in @ follows from the unique solvabilty
of A(z; 0,)u=f(z). Henceforth we assume that the formal order of
A(z; 9,) is non-negative. As snown in §6, we need not this assumption.

Lemma 1. If A(z; 0, )u=f(z) is uniquely solvable in @ and the formal
order of A(z; 0,) is positwe, then det A(z; Q) =0 for any z€ 0 and L=CA

Proof. Let the formal order of A(z; d,) be m(>0). If there exists
2€ 0 and {’&C? such that det 4(2°; {°) %0, then by the suitable change
of variables, we may suppose that the formal order of A(z; 9,) is equal
to m and that x=0 is non-characteristic for A(z; 9,). According to
C, Wagschal ([6] théoréme 4.1), there exists non-negative integers n,
Ny ..., ny satisfying n,+n,+ ... +ny=m such that the Cauchy problem:

{A(z; )u=f(2)
uilo=0;4(0) k=0, 1,..., n;—1, j=1,2,..., N

has a unique solution for any f(z) and ¢;,(y). Therefore the solution
of A(z; 9,)u=f(z) is not unique. Q.E.D.

Let I(z; ) =WU(z;0), L,(z;0),..., Iy(z; ) be a left null vector of
Az; O and L,(z; 0, L(z; 0, ..., ly(z: ) be homogeneous polynomials
in § and irreducible. We put Li(z; )= ¥ L, ()¢ (=1, 2,..., N),
then the following degree relations =i

r1+tj_51:72+tj_52= “o =7‘N+t,~—SN (J=1, 2, e ey N)

hold, where we drop the terms r,+¢;—s, if [,(z; £) =0.
I(z; §) can be divided the following two cases:

1°) there exists i, such that l;o(z; )] =l,~o(z) =0 holds

2%) degree [;(z; £) >0 holds for any 7 if I; (z; &) #0.
At first we treate the case 1°),

Let
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1 0

Li(z; ) In(z; .
Ples 0= lfo(é;cc)) O __lf:g 8 <i,

0 !
and P(z; 9,)=P(z;0) |-, then P(z; 3,) is invertible as far as [ (2) %0
and the order of the (i, j)-entry in P(z; 0,)A(z; 9,) is less than t;—s;
(i=1, 2,..., N). Therefore the formal order of P(z; d,)A(z; 9,) is less
than that of A(z; 9,). If we put 4'(z; 9,)=P(z; 0,)A(z; 9,), then
A(z; 3)u=f(2) and A’(z; 0,)v=g(2) are equivalent as far as [; (z) =0.
If a solution of A’(z; 8,)v=g(z) is represented by R(z; 0,)g(z), then
R(z; 8;)P(z; 9,)f(2) is a solution of A(z; 9, )u=f(z) as far as [ (2) =0
is satisfied where R(z; 0,) is a matrix of size N whose entries are partial
differential operators.

Secondly, we treat the case 2°). There exists i, such that r; =
min {r;; li,,0(2) #Z0}. In fact if L, q(2) =0 for any i, then /i(z; 0, L(z;
0),... and Ily(z; ) have a common divisor . This contradicts that [;, I,
..., Iy are irreducible.

Let
1 0
. _ ll(rl.O) (z) r—r{O. lN(rN,O) (z) YNTTi .
Q,(Z, C)— m)—el 1 .. W N7 <20
0 1

then Q(z; &) and Q(z; d,) =0Q(z; §) |c=0, are invertible as far as lioa(z)ﬂFO
is satisfied, where d=(r;, 0) and [;,(z) is the coefficient of €= in
Li(z; 0. We define I®(z; {)=l(z; Q' (2;0), then i-th component of
[P(z; ) has a form nml > 1l,f,,,(z)C"-’ (ix1,) and the degree of I(z; ) =r..

Hence If’(z; O,..., If,(z; §), (25 O, ..., IP(z; ) have a common
divisor 7.

On the otherhand, the degree of the (i, j)-entries of Q(z;8)A(z;0)
are t;—s; by the degree relations. If we define AP (z; 9,)=Q(z; 9,)
A(z; 9,), then the formal order of AV (z; d,) is equal to that of A(z; 0,)
and we may define A‘D(z; 0 =0(z; C)A(z; 0.

Let

where d¢®(z; £) is a row vector

afP (25 C)>
(i=1,2,..., N).

AV (z; c)=<

a(z; ©)
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Since I®(z; &) is a left null vector of AV (z; ),

1825 0)al(z; O =— ¥ 1P (z5 Dd;(z; C)——Z}l'(z 0dP(z;0)

ij* ‘0
holds where [j(z; {)=I(z; £) /9 (j*i,) are polynomials in {. Therefore
we can represent d (z; {) =nd(z; ) and (li(250), L(z;0), ..., In(2; o

d(l)(z. C)
(I, (25 O =l (z; ©)) is a left null vector of a matrix a(,z C)

“’(z o)
a®(z; 0,) +b(z; 9,)

s e

For A®(z; 0,) =| d,a(z; 9,) +b,(z; d,)], we define an extended matrix

af (z; 3)+bn(z a,)
d®(z; 3,) +bi (25 9,) 0

a(z; 9,) —1

of size (N+1): o, (z; 9,)= , then we may

ag (z; 3)+bN(z ) 0
bto(z ’ az) ay
a (z; €) 0

.

a(z O 0

define &, (z; §) =

aN)(z; 9 0
0 i

The formal order of & (z; d,) is equal to that of A®(z; 9,) and
det &, (z; §) =det AV (z; ¢) =det A(z; ) =0. Furthermore (I;(z; ), l3(z;
O,..., Iy(z0), 0) is a left null vector of .Jl(z; ¢) and the degree of
li(z; €) is less than that of [;(z:0) (ixi,).

Continuing the above procedures, we have finally an extended matrix

a,(z; d,)
ay(z; 9,)

«0.) =
.521(-6, 2) ‘Bl(z; az) kl(z; az) O

of A(z; 0,) and a left null

Bi(z: a,) 0 | ki(z; 0,)
vector ([,(z; 8,), I,(z; 8),..., Iy(z; 3), 0,..., 0) of
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&, (z; C)
0
iy (25 C)
oz = oy k(25 0) which satisfies Z,«O (z;0) =1 ()
0 ) .
ki(z; ©)

%0 for some i, where a;(z;{) and B;(z;{) are row vectors of length N.
We define

1 0
I PACTE In(z; ©) .
P(z; =% 3 s ] eee NX5 5/ (.. () 0
@3 0) lio(Z) [io(Z) <
l
0 ..
1

and Z(z; 9,)=2(z; {) |-y, then according to the case 1%, the formal
order of Z(z; 0,)/(z; 9,) is less than that of A(z; d,) and Z(z; 9d,)
is invertible in @ except certain finite analytic hypersurfaces.

Consequently we have the following proposition which plays an
essential role in our considerations.

Proposition 2. If det A(z; L) =0, then we can degrade the formal order
of A(z; d,).

Exactly speaking, there exists a matrix P(z;0,) or #(z; 0,) such that the
Sformal order of P(z; 0,)A(z; 0,) or P(z;0,) 4 (z; 0,) is less than that of
A(z; 0,), where P(z; 0,) and P(z; 0,) are invertible in O except certain
finite analytic hypersurfaces and sf/(z; 0,) is an extended matrix of A(z; 9,).

Remark 1. In particular, in case of a matrix of ordinary differential
operators, we can degrade the formal order without the change of the
size of the matrix under considerations.

Concerning the preceding proposition, we add the following property
as lemma, which we use in §6.

Lemma 2. In order that A(z; 0,)u=f(z) is uniquely solvable in O, it is
necessary and sufficient that of (z; 0,)U=F(2) is uniquely solvable in O as far
as lio(z)ﬁ\:O are satisfied.

Proof. 1t suffices to prove this lemma in case that A(z; 9,) =A®(z; 3,)
and &/(z; 0,) =o/,(z; 0,). For any F(z)='(F(2), F(2),..., Fy,, (2))
we take fi(2) =F:(2) (ixi) and f; (2) =0,F; (2) +Fy41(2). Let u(z) be
a unique solution of A% (z; 9,)u=f(z), then U(z) =(u(z), d¢(z; 8,)u(z) —
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F; (2)) is a solution of «&,(z; 3,)U=F(2).

Conversely for any f(z) we take Fi(z)=fi(2) (ixi) and Fy,;(2)+
0,F; (2) =f; (2) and let U(2) =(Uy(2),..., Uy41(2)) be a unique solution
of o (z; 0)U=F(z), then u(z)=*(U,(2),..., Uy(2)) is a solution of
AP (25 )u=f(2). Q. E.D.

Remark 2. Let o (z; 9,)U(2) =F(z) have a solution of the form
R'(z; 0,)F(2) for any F(z) where R'(z; 0,) is a matrix of order (N+1),

whose entries are partial differential operators. If we take F(z) ='(f1(2),
‘0

ceey 6,...,fN(Z), f,-o(z)), then «,(z; 0)U=F(z) has a solution of
the form R'(z; 0,)F(z) =R"(z; d,)f(2) and u(z)=<{)"’ 8>U(z)=

({)N 0 )R”(z; 3.)f(2) =R(z; 8,)f(2) is a solution of A®(z; d)u=f(2)

where Iy is an identity matrix of order N and R(z; 0,) is a matrix of
order N whose entries are partial differential operators.

Proof of Theorem 2. As shown in §6, the formal order of P(z; 9,)
A(z; 0,) or #(z; 0,)f(z; 9,) is never —oo. We apply Lemma 1 and
Proposition 2 repeatedly until that the formal order becomes 0.

Let «/,(z; 0,) be of the formal order 0, then according to K. Kitagawa
and T. Sadamatsu ([2], proposition 1) we have

4,(2) %k
&y (25 0,)~ AZ(Z)°.
0 A,(2)
where 4,(2),..., 4,(z) are square matrces whose entries are functions
and we denote A~B when a matrix B is obtained from a matrix by the
exchange of rows and columns of 4. Hence det &/,(z;{) is independent
of ¢.

If A(z; 0, )u=f(z2) is uniquely solvable in @, it must be det /,(z;{)
x0. In fact, by lemma 2, o/,(z; 0,)U=F(z) must have a unique solution
for any F(z). It is clear that o/,(z; 0,)U=F(2) has not a solution for
some F(z) provided that det o7,(z;{) =0. Incidentally, if det o/,(z; {) =0,
then using the fact mentioned above, &/,(z; 9,) is invertible in @ except
certain finite analytic hypersurfaces and U(z) =o/5!(z; 0,) F(2) is a unique
solution of W/ (z; ) )U=F(z2).

Taking account of Remark 2, there exists a matrix R(z; 9,) of order
N such that u(2)=R(z; 9,)f(2) is a solution of A(z; d,)u=f(z). The
coefficients of partial differential operators in the entries of R(z; d,) are
holomorphic in @. In fact, the construction of R(z; d,) shows that the
cofficients are meromorphic in @. On the otherhand by the assumption,
A(z; 0,)u=f(z) has a unique solution u(2) € HY (U’ (%)) for any f(z) &
HY(U(z)) at every 2, in @. Therefore the coefficients are holomorphic

b
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in 0.

Since u(z) =R(z; 9,)f(z) is a solution of A(z; 9,)u=f(2), it is easy to
show that R(z; 0,)A(z; 0,)=A(z; 0,)R(z; d,) =Iy holds in O, namely,
A(z; 0,) is invertible in @.

§5. Proof of Tgeorem 1.

In this section we prove theorem 1. If the Cauchy problem (C. P.)
is well-posed in £, then it follows from Proposition 1 that A(¢, z; 9,)U
=F(t, 2) is uniquely solvable in @ for any ¢{,&/ and from Theorem 2,
there exists an invertible matrix R(¢, z; 8)) such that U(t, 2) =R (¢,
z; 0,)F(t, 2) is a unique solution of A(&, z; 0,)U=F(t, 2).

The coefficients of the entries in R(f, z; 0,) are holomorphic in £, in
the same manner as those of R(z; 0,) in the preceding section. Here
let us remark that we take the left null vector [(z; {) in §4 that of
A(ty, z; §) restricted at ¢=t,.

Now then we had in §3

A(t, 25 3)U, ) +B(, z; 0, 3)u(t, 2) =f(t, 2)

where the entries of B(f, z; d,, 0,) were the linear combinations of
uj, Oty ..., 8" (j=1,..., N) with the coefficients of differential operators
in 0.. For any t&I we apply R(t, z; d,) on the above system of equa-
tions, we obtain

U(t, ) +R(t, z; 3,)B(t, z; 0, d)u(t, z2) =R(t, z; 3,)f(t, 2).

The first N components of this system of equations can be represented by
m. N .
3, ’ui-l— Zlbij(t’ R at, 3z)uj=g,~(t, Z) (Z=l, 2, ceey N)
=

where order b;(¢, z; 0, 9,)<m; for any i, j and g, g,..., gy are the
P

first N co;nponents of R(t, z; 3,)f(¢, 2).
Let R(t, 25 9,) = (7;(f, 25 9,)) 151,55 we define r;;(¢, 25 9, 9,) by

s . N
kZ:l f;k(t, 3 az)ﬁ(ta Z) =Z:1 rii(t, 5 an az)‘fj(ta Z.) (12132a L N)
= J=

and R(t, 23 0, 9,) = (r;;(t, 25 9;, 8.))1s1jen, then R(4, 25 0, 9,) is inver-
tible in £ (K. Kitagawa and T. Sadamatsu [2], proposition 4) and R(¢,
z; 0, 0)A(t, z; 0,, 0,) is (my, m,y ..., my)-normal in 0,

8§6. The format order -co.

In this section we treat a matrix A(z; d,) whose formal order is —oo.
Before the proof of Theorem 3, we show the remainder of the proof
of Theorem 2, namely, the formal order of P(z; 0,)A(z; d,) or
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P(z; 0,) 4 (2; 0,) never becomes —oo provided that the unique solvability
of A(z; d)u=f(z).
At first we prepare two lemmas.

Lemma 3 (G. Hufford [1], Thoerem 4).
If the formal order of A(z; 0,) is —oo, then we have

0 Az(ﬁ? d,)

where A,(z; 8,) and A,(z; 0,) are N,X (Ny+7r) — and (N,+r) X Ny-matrices
respectively and N,+ N,+r= the size of a matrix A(z; 3,) (r=1, N}, N,=0).

At a9~

Lemma 4.
Let A(z; 9,) be a (N+1) X N—matrix of the form (2<z ;N)) whose

entries are partial differential operators. If the formal order of A(z; 0,)=m=0
and det A(z; C) =0, then there exists 2° at which A(z; 8,)v=g(z) has not a
solution for some g(z).

Proof. The solution v(z) ='(1,(2), v,(2), ..., vy(2)) of A(z; 3)v=g(2)
satisfies 5 ¢; (25 0,)v;=g,(2) and A(z; 0)v="(g(2),..., gv(R)) where
8(2) ="(g(2), &(2),..., gv(2)). Let g(2)='(g(2), 0,..., 0) and »(z) be
a solution of A(z; 9,)v=0. If the formal order of A(z; 9,)=m=0 and
det A(z°; £°) %0, then by the suitable change of variables we may suppose
that the formal order of A(z; d,)=m and det 4(0, 0; I, 0)%0. According
to K. Kitagawa and T. Sadamatsu ([2], Théoréme 3), there exists non-
negative integers ny, n,, ..., ny satisfying n,+n,+... +ny=m, so that v(2)
is a solution of the Cauchy problem:

N
{ 3 v+ 3 by (x, y; 0,y 0,)0;=0 i=1,2,..., N
1=1
azvi|x=0:¢j.k(y) k:(), 15-"a nj-l5j:1, 2;-'-a N
where order b;;<n; for any i, j and vice versa. Therefore it suffices to
)

prove thi; lemma when A(z; 9,) is a first order system in d,. Let v(z)
be a solution

0,0; + 5 cij(x, 3 0,)v;=0
l Foutn 23 )0 i=1,2,..., m

Ui(O, )’) :¢i ()’)

then 0%0;(0, y) (k=1, 2,..., i=1, 2,..., m) are uniquely determined by

{&; 0}
On the otherhand, let E be the left hand side of the first equation of
A(z; 8,)v=g(z) and we differentiate £ up to m-times with respect to x:

FE= 3 c®(x, p; 3)v;=Pg(x, ») k=0, 1,...,m
i=1
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If A(z; 3,)v="'(g,(2), 0,..., 0) has a solution,

m

Zlc,(-")(x, )’; ay)vi|x=0=azg0(07 }’) k=0s 13'--9 m

i=

must hold. We substitude 9%v;(0, ») by the functions which are determined
above, then we have the system of ordinary differential equations:

Ly D)0 =800, k=0, L., m  (D,=f

Since we can take 8%d%g,(0, »*) (k=0, 1,..., m, [=0, 1,...) arbitrary,
taking A(z; 9,) = (h;(», D,))1<ujsm and repeating the above reasoning,
the above relations are not compatible. Q. E.D.

From now on we treat the case that the formal order of A(z; 0,) =
m=0 and that there exists P(z; 0,) or £ (z; 0,) so that the formal order
of P(z; 0,)A(z; 9,) or #(z; 0,)4(z; 3,) becomes —oo, where o (z; 0,)
is an extended matrix of A(z; 0,) appeared in §4.

Case 19)
Let
1 0

W23 0) 0 ... s d)

Pesw=1T @ = e <

0 S
and P(z; 0,)A(z; 9,) be of formal order —oo, then the (i, 7(i,))-entry
of P(z; d,)A(z; 0,) must be 0, where 7l and I, is the set of permuta-

N
tions of {1, 2,..., N} satisfying >, order a;,,(z; 0,)=m. In fact, if
i=1

(i, m(1y))-entry is not 0, the formal order of P(z; 0,)A(z; 0,) is non-
negative because of the i-th row of P(z; 9,)A(z; d,) to be that of A(z; 0,)
(ix1). This contradicts that the formal order of P(z; 9,)A(z; 0,) is
—oo. Hence we have by Lemma 3,

A(z;9,) B(z; d,) )

P(z; 0)A(z; 3z)~< 0 A (z; 3)

s w{acss w0 ] ) dces w-(7 7 0)
where Ay(z; 0,) =| 4,(z5 6) 1 ), A (z; 0)= . Ai(z; 8,
an, A,(z; 9,)

and 4,(z; 0,) are the square matrices of the size N, and N, respectively
and N,+N,+1=N (r=1). Here we may suppose that the (i, m (%))~
entry of A(z; 0,) is transformed to the (N;+1, N;+1)-entry by the
exchange of rows and columns, where 7, is a fixed permutation in 7.

Further we remark that the (i, n,(i))-entries (i3i,) of A(z; d,) are
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transformed to those of A4,(z; d,) or A4,(z; 9,) and consequently the
formal order of A4;(z; 9,) is non-negative if A:(z; 8,) is not empty
(=1, 2). Since it is clear that A(z; 9,)u=f(z) has not a solution if
A, (z; 0) is empty, henceforth we assume that A,(z; 9,) is not empty.
Let us remark that the formal order of A4,(z; 9,)<m and the size of
A4,(z; 0,) is less than that of A(z; 9,).

Furthermore we have det 4,(z; £)=0. In fact, if det 4,(z; $) =0,
then by lemma 4, there exists z° at which A4,(z; 3,)v=g(z) has not a
solution for some g(z). This contradicts the solvability of 4(z; 9,)u=f(2).
If det 4,(z; £) =0, we can degrade the formal order of A,(z; d,) by
means of Proposition 2.

case 29)

For A(z; 0,) whose formal order is m, we construct an extended
matrix of A(z; 9,) :

A'(z;9,) * ki(z50) 0
(25 9,)=< > (K(z; 0,)= .. )
B(z;0,) K(z;0,) 0 ki(z; 9,)

and
1 0
Plzsoy=|0& 0 oL W& g Lo <,
[io(Z) [;O(Z)
1
0 .
1
and let #(z; 0,)/(z; 0,) be of formal order — oo,
According to lemma 3, we have
&1(z5 0,) %k
P(z; 0,)l (23 0,)~
O &iz(l? az) y
& ka4 by «-- bN2+q
where &,(z; 9,) = : o2(25 0,)=| o, %k
*k K An+p /s sk K, ,
kil . 0 kjl . 0
K, = .. i , and K,= .. , here {il,...,ip}ﬂ{il,...,]'q}
0 i 0 qu

=¢, {ipeee, YU b, jd =11, 2,...,1} and & (z; 8,) are the square
matrices of the size N;(N,+N,+1=N= the size of 4(z; 3,)).

Similar to case 1°), we may assume that the (i), m,(i))-entry of
& (z; 0,) is transformed to the (N,+p+1, N;+p+1)-entry and that the
formal order of &;(z; 0,) is non-negative (i=1, 2). Let us remark that the
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CAER
0 K

(2300
0 Ky (z; O

/[
the formal order of\ v, *
K,

Continuing the above arguments, we finally reach to the three cases
whether A(z; 08,)v=g(2) has a solution or not:
(i) the formal order of A(z; d,) is 0

(ii) A(z; 0,)=a(z; 0,) is a scalar differential operator

formal order of(
that of A(z; 0d,).
Further det(

)gm and that the size of &/,(z; 9,) is less than

)EO and in this case we can degrade

) by means of Proposition 2.

a b S
. K, 0
(iii) A(z; 9,) is of the form * .
0 kl’ ,
¢(z; 9)

where A(z; d,) = ( ) and a(z; d,) %0.

A(z39,)
It is obvious that A(z; 8,)v=g(z) has not a solution in each case.
Consequeently we can conclude that P(z;0,)A(z;4d,) or P (z;0,)/(z; 0,)
is not of formal order —co.

At the same time we have

Proposition 3. Let A(z; 0,) be a N X N-matrix whose entries are partial
differential operators with holomorphic coefficients in O, then A(z; 0 )u=f(2)
has not a solution for some f(z), where N’ >N.

Proof.
a(z; 3, a; (25 9,)
Let A(z; d,) = A(z; 9,) = and A/(z; 9,) =
ay/ (23 9.)/, a‘N(‘Z; 9.)
a;

1
«++| where a;(z; 0,) are row vectors of length N and 1=4,<3,<<... <
a;,

inEN.

If A(z; 0,)u=f(z) has a solution, ff(z; 0,)v=g(z) has also a solution
where g(2) =(f,(2), ..., fi,(2)). Let the formal order of 4’(z; 9, is
non-negative, then by Lemma 4 there exists 2 @ at which A(z; d,)o=
g(2) has not a solution for some g(z). If the formal order of A'(z; d,)
is —oo, then applying Lemma 3 repeatedly until that the formal order
of A,(z; 3,)=0, A,(z; 8)v=g(2) has not a solution, where A,(z; 0,) =
(C(z; d.)

Aoz )
case it is clear that A(z; 8,)v=g(z) has not a solution. Q. E.D.

) The exceptional case is that A,(z; 9,) is empty, and in this
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Using Lemma 3 and Proposition 3, it is easy to prove Theorem 3.

§ 7. Examples.

Lastly we give two examples. We call the type of Cauchy data of
(C. P.) in the preceding sections the (my, m, ..., my)-type.

Example 1.

A=(28§+(8,+1)6,+y26§+1 04 (y0,—1)0,—x(x—p) 32+1 )
0,+0, 0,+x0,—1
The formal order of 4 is 3 and the hyperplane ¢=0 is non-characteristic
for A. The 4 types of the Cauchy data are possible.
The (3, 0)-type.
Let {t, t,; 51, 55} be {4, 4; 2; 3}, then

0 —x(x—p)o2+1 90, —1 1 0
0 x0,—1 1 0 0
A=]|2 0 —x(x—y)oi+1 yd,—1 1
0 0 x0,—1 1 0
1 0 0 x0,—1 1

is invertible and the Cauchy problem of (3, 0)-type is well-posed. We
have an invertible

R:<a(x,y; ) —a(x,y; Db(x, y; 3)—1)

1 —b(x’.y;a)
(R-1_< —b(x, 95 8) b(x, 55 dalx, y; 9)+1 ))
B -1 a(x y; )

where a(x, y; 0)=0,+x0,—1 and b(x, y; 9)=9,— (x—»)d, and
RA:’8,3+{(2x—y—l)3,+3y}6§+... 0
( o+ {(x—y—10,+0,+1}0,+ ... 1
The (2, 1)-type.
Let {t), t,; 51, 55} be {3, 3; 1, 2}, then

) is (3, 0)-normal in 4,

2 ya,—1 1

A=< 0 1 0 ) is invertible and the Cauchy problem of (2, 1)-
1 x0,—1 1

type is well-posed. We have an invertible

_ 1 _al+(x—.y)ax -1 1 at—(x_y)ax
r=( ! ) w=(y )

and

G+ {x—y—-Do:+3,+1}5+... 1 )is (2,1)-normal in @
s [

RA:( al+ax at_i-xaar_l/
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The (1, 2)-type.

o+1 1 2
A= 1 0 0 | is invertible and the Cauchy problem of (1, 2)-

o, 1 1
type is well-posed. We have
[0 1 L [20,—20,+d,+1 —1
R‘( —1  28,—28,+8,+1 ) (R ‘( 1 0 )) and
9,40 0,+x0,—1 .
RA — t x t x l
( — (P 40,0, 4+0,—1 B+ {(2x—p—2)3,+3,} 8, +... ) i (1,

2)-normal in 4,

The (0, 3)-type.

Let {t,, t,; 51, 5;} be {4, 4; 3, 2}, then A is not innvertible. In fact,
the formal order or A(z; d,) is 2 and det A(z; {) =(*+2)&2—E&p=0.
Hence the Cauchy problem of (0, 3)-type is not well-posed.

Example 2.
2 89,-1
=g %)

.. . 02 —(9,0,—1)
-1 ¥y X7y

A is invertible (4 —( (8.9, +1) 32

blem of (0, 0)-type for 4 is well-posed.

Let w=0,u+0,, then A'(u, v) ='(f, g) is equivalent to

0 -1 0, u f
.MU=<1 0 6,><v>=<g>
0, 9, —1 w 0 /.

The formal order of & is 2 and (, —&, 1) is a left null vector of .

)), namely, the Cauchy pro-

1 0 0 0 —1 o,
Taking Z=| 0 1 0 |, we have P=o"=| 1 0 o, and
0, —od, 1 0 0 -1

&' is invertible. Further we have

u=0f—(0,0,—1)g and v=—(0,0,+1)f+0%.
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