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Introduction.

In  th is  p ap er w e w ill study  about the neighborhoods o f th e  identity
homomorphism id  in  th e  space H o m ([', M ob ) o f  homomorphisms of a
finitely generated Kleinian group F . (For definitions, see §3, (1).)

Som e elem ents o f H o m ([', M A )  can  b e  co n structed  b y  m ean s of
quasiconformal deformations or Schwarzian differential equations. Gardiner-
K ra [5 ] showed that all elements of Hom i _p (r ,  M 6 b )  sufficiently close to
id  can be so obtained i f  r is  a  b-group w ith an  in v arian t (simply con-
nected) component LI. Here, w e shall show that th is is a lso  true for any
fin ite ly  generated  Kleinian group. T h i s  i s  a  coro llary to  T heorem  1.
(See Corollary 2 to Theorem  1 in  §4 .) As applications of this corollary,
we shall give some theorems on  quasi-stability.

In  §1 the statement of Theorem 1, the m ain result, w ill be given. W e
use the techniques of Gardiner-Kra[5] to prove Theorem 1. Its proof is
somewhat long and  will be completed in  §4 . In  §2 we provide a  theorem
(Theorem 2 ) o n  cohomology, w h ich  w ill p lay an  im portan t ro le in  the
proof o f  T heorem  1. Theorem  2  can  b e  p ro v ed  b y  m ean s  o f  some
resu lts d u e  t o  Ahlfors[1 ] a n d  K ra [6 ]. §4  is  d ev o ted  to  th e  proof of
Theorem 1. A t the end  of th is section, two corollaries will be given.

In  the rest of the paper, w e are  interested in the solutions of certain
Schwarzian differential equations. I n  §5  w e  w il l  g iv e  a  property of
quasi-stable g ro u p s . I n  §6  w e w ill g ive som e necessary a n d  sufficient
conditions that a  finitely generated function group should be quasi-stable.
In  th is  section, the resu lts o f K ra [7 ] an d  Maskit[12] p la y  a n  essential
role.

F in a lly , th e  author w ishes to  express h is deepest g ratitude to Prof.
Y . Kusunoki fo r  v a lu ab le  suggestion  and  k in d  g u id a n c e . T h e  author
also  thanks to  M r. H . Ohtake for his advice.
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§ 1. Statement of Theorem 1.

L et r  be any fin ite ly  generated  (non -e lem en tary) K le in ian  group.
(In  th is paper all K lein ian  groups are assumed to be non-elementary.)
Let 4  be an invariant union of components of T. W e d o n o te  b y  A (4, r)
the complex Banach space of all bounded holomorphic automorphic forms
o f weight ( — 4) on d  for T. A ( 4 ,  r)  i s  o f fin ite dimension. m(4, r)
will denote the com plex Banach space (w ith the supremum norm) of all
Beltrami differentials for r  th a t are eq u a l to  zero on Ô - 4 .  Its closed
subspace M ( 4 ,  r )  consists of all elements ttEm(4,r) with the property
that 22

4 p 1, EA (ZI, r) , where 2 4 (z) Ic/z1 denotes the Poincaré metric on d.
The unit balls of M (4 , r)  and T )  w ill b e  d en o ted  b y  M (4 , r),
and M can o ,  r)1, respectively.

Let us now  assume th a t s=_zi/r i s  a single Riemann surface. We
remove the ellip tic fixed  points from  4  and denote the punctured open
set b y  A,. W e s e t  S0=40/F. S —S 0 co n s is ts  o f  f in ite ly  m an y  points
p „ . . . ,  p h and the n atu ra l projection S  is  b ranched  at each  lift o f
p, w ith the m ultiplicity r;  ( j  = 1 , . . . ,  k ).  F ix  p o Es o and  form the funda-
m ental group zi (so, p o) o f So w ith  the base point po. Choose simple
loops c;  from  p, around p;  ( j  =- 1, ,  k ) .  Let N b e  the normal subgroup
o f rc,(So , po)  gen erated  b y  ( c? ) ;_ 1 k •  

W e  d e n o te  the quotient group
7ri(S0, P o)/ N  by G =G (4 , F ; M .  The im age o f cE7r1(S0, P o ) under the
canonical surjection 7r1 (S0, po)----->G is  deno ted  by c N . c N  i s  a  (right)
coset modulo N.

Fix C o Ed , w ith  projection po. Let 4 O b e  the component o f do th a t
contains Co,  and set r  =stab (d o') = t1Er1 1 (4 )  =4}. I n  familiar manner,
Jo i s  a  smooth covering surface of So determ ined  by a normal subgroup
N '  o f  ri(So, Po), and th e re  is  an isomorphism U: r i ( S o ,  p 0 )/N' — > T".
Since N  i s  a  subgroup o f N ', this isomorphism U induces a (surjective)
homomorphism =a (4, r; Co: G .  Explicitly, the homomorphism
a  is defined as fo llow s. A  closed curve c from po (on  So)  lifts to  a curve
c ' on dO w ith  the initial point Co. T here is a unique element r E r' such
th at r (co) is  the end point of c'. Then, we define a (cN) =r•

Let Mob denote the 3-dimensional complex L ie  group o f all Meibius
transformations. Denote the set of all homomorphisms from G  in to  M a
by Hom(G, M a ).  Homp (G, MOb) is  the set of a l l  x EHom(G, MOb) such
that trace 2 x(cN) =4 whenever c  i s  a simple loop around a  puncture of
S . Note th at a EHom i,(G, M A ). G  is generated by finitely many elements,
say, by erN . Then one can  regard Hom (G, M a )  as a subset of

r  b y  the correspondence Hom(G, M 6 b )  x . ( x ( e i N), ,  x ( e r N ))
E  (AM ) ' ,  and m a k e  it  a  to p o lo g ica l sp ace . Th is  topology does not
depend on a particular choice o f a  system o f generators o f G.

W e are now  ready to state the following
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Theorem 1. L et r  be a  finitely generated (non-elementary) Kleinian group
and let 4  b e  an  inv ariant u n ion  o f components o f  r .  A ssum e that / 1 -' i s  a
s in g le  R iem a n n  su r fa ce . Fix  Co e4 — (elliptic f ixed points) a n d  le t A E4/1 -  be
its p r o je c t io n . S e t  G =-G (4, r; A ) and a =a (4, r; Co) . T hen  Homp  (G, Mob)
is  a  com plex  m anifold i n  a  neighborhood o f  a .  M o r e  precisely , there is a
holomorphic m ap f : M Ob x  A (4 , r)x  

M c a n (
ZI

 f 
T ), ---> Hom p  (G, M A ) w ith

f  (e , 0, 0) =a such that f  induces a  biholomorphic map between a  neighborhood
o f  (e, 0 , 0 )  a n d  a  neighborhood o f  a, w here  e  denotes t h e  u n i t  element o f

T o prove T heorem  1, w e need som e auxiliary resu lsts. The proof of
Theorem  1, together w ith its corollaries, w ill appear in  §4.

In  the fo llow ing, to avoid confusion, w e sh a ll d en o te  b y  e  the unit
element of the group Mdb, and b y  id the identity homomorphism.

§ 2 .  A  theorem on cohomology of G(4, r ;  p 0 ) .

The purpose o f th is  section is  to  p rove T heo rem  2 , w h ich  w ill play
an important ro le in the proof of Theorem 1.

I n  general, let 4  b e  an open set of C  and let gE M a .  For each
function  y9  o n  g (4 )  , w e  d e f in e  a  function gl;w  on 4  b y  4 . 6o(z) =
ya(g(z))g' (z)Pg' (z)q (zE4) w h ere  p  an d  q  a re  integers. 4, 0 w i l l  b e
abbreviated to 4.

F irst o f a ll, w e  sh a ll g iv e  an  outline o f th e  cohomology theory of
Kleinian groups due to  K ra . F o r  details, see Kra [9 , Chapter V ].

Denote by H  the vector space of polynomials in one complex variable
o f d egree  a t m o st 2 . M lib  ac ts  on the r ig h t  on H  v ia  H x M A D  (z), g)

v •g =e i v EH .
Let r  be a finitely generated Kleinian group and let 4  b e  an invariant

union of components o f  F. S in ce  F  a c ts  on  H , one can  d e fin e  the
cohomology g ro u p s. W e w ill d en o te  b y  Hi(r, H )  and P 1 1 ( F , H ) the
(first) cohomology space and the space of 4-parabolic cohomology classes,
respective ly . W e a lso  deno te by Z' ( F, H )  and PZ ( F ,  H )  the space of
cocycles and the space of 4-parabolic cocycles, respectively.

Let P* =731%4: m .o , H )  b e the Bers m a p  (c f . [9 , V,
T heorem  2 . 4 ]). It is know n that P * is injective.

Th e space o f bounded E ichler integrals (modulo H )  o f  order ( —1)
(on 4  for r)  w ill be denoted  by E ,(Z I, T ). There is a canonical injective
linear m apping (called the period map) a =-ar .  4 : E,(ZI, r) --->P111(F, 11)
(c f. [9 , V , Theorem 4. 2]).

K ra [6 ] proved that there is a direct decomposition

(2.1)P H 1 , ( F ,  H ) - = .=a (E ,(4 , r))+p*(114(4, r))
(c f. [9 , V , Corollary 1 to Theorem 5. 1]).
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Next, we assume that S =4 /T ' is  a single Riemann surface, and use the
same notation as in §1 . G acts on the right on 11 b y  // x GB (r, cN)
v • a ( c N ) e l l .  W e d en o te  b y  Z 1- (G , H )  the space o f  cocycles, and by
111(G, H )  th e  cohomology space. A  cocycle q e Z '(G , H )  is  ca lled
parabolic i f  q I < c iv > i s  a coboundary for the cyclic subgroup <cN> whenever
c e r i (S„ A) ) i s  a simple loop around a  puncture o f  S. W e denote by
PZ '(G , H )  th e  subspace consisting o f  a ll p a ra b o lic  cocycles, an d  by
PTP(G, H ) the space o f all parabolic cohomology classes.

T h ere  is  a  canon ical linear m ap  Jo : z i(r, H) - - >  Z' (G, H )  defined
by j o (q )(cN )=q (cr(cN ))  (q E z i(r, H ), c N e G ) .  J ,  induces a linear m ap
J: PH (T , H )----> PI-P-(G , H ) .  Let 4 ' be the component of 4 that contains
Co,  and set T" = stab ( 4 ') .  Since (7 (G) =I", J o (q) = 0  if and only if q(r)
for a l l  r

Lemma 1. dim J015* (M,„ (4 , I")) = dim  A(ZI,

Proof . It su ffices to  p ro ve  th at J o * : M c.„,(4, 1") ---> PIP(G , H )  is
injective. Suppose that Joie* (P) =0  w ith p e M can ( Z I ,  r) .  For Z E C set

h( z )  _   z( 
2
z—l)c ( c r t-ply )  c1( c _z ) C AdC,

h,(z) z  (
2
z  r7 1)  SS c  c (

1 (Cc
C)

 z ) c1C AdC,

and I/2(z) z ( 2
z

7r
—

i
 l )  S ci- (

(
C
c
) (1

1)
—
(
)
c

(C
.z
) )
) c/CAdC,

where x  i s  the characteristic function o f 4'. Define cocycles q EZ 1 (r , H),
q„ q 2 E Z 1(1 ',  H ) by

g (l') =r!,h—h, qi (r) =r!,h i —h; j  =  1, 2),

th e n  [q,]e131,,,,r (M c „(4' , I " ) )  a n d  [42] E a r ,,,v (E 1 (4' , T " ) )  (c f .  [9 , V,
Theorems 2. 4 and 4 . 2 ]), w h e re  [q; ]  denotes the cohomology c lass  of
q;  ( j= 1 ,  2). M oreover, w e have [qI r ,] =[q,]-1-[q 2]. Now, J./3* (p) =0
im plies [q I ]= 0 and hence (px) = [qd = 0  (see  (2. 1)). Therefore,
p =0  since the Bers m ap 4314,.4 , : P.H,(1-", H ) i s  injective.

q. e. d.

Ahlfors[1] defined tw o linear m aps and 5  h av in g  th e  following
properties

: a(PE (4, H),
(2.2) dim Im 77= dim A (4, I")  (c f. [1, Lemma 6 and its  corollary]),

(PE (4 , I ')  denotes the space o f meromorphic parabolic Eichler integrals
and a is  the period map.)
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3 : A (4, F) - -> PH 1 (G, 11),
(2.3)I m  ô n j (H' ( r , c joa  ( E , ( 4 ,  F ) )  (c f . [1 , Lemma 7]).

Furthermore, there is a  d irec t decomposition

(2. 4) PIP (G , 11) =Im  +Im  3 (c f. [1 , Lemma 8  and  its proof]).

Lemma 2. J o *  (M c a „ (4 , F)) n Im  3 = {O}.

Pro o f . It follows from  (2 . 3 )  that

J°P * ( M ( 4 , r ) )  n im  a
=J.43* (m . (4, r)) f 1J (11 .1 (r ,  11)) fl lm  a
cJ.13 *  (M (4 , F)) n joa (E 0 (4, F)).

I f  J ' 13* ( p) E lm  ô  w ith  p E M ( 4 ,  F ) ,  th en  there  is  som e F EE,(4, F)
such that joig* (p) =Jo a ( F ) .  L et q, q l , q 2 b e  cocycles a s  in  th e  proof of
Lem m a 1. T h en  J o p  (te) =J ()a ( F )  im p lie s  [q1]+[q 2]=[q  Ir e] = a (F I 4 ,)
and  so  [qd = 0  (see  ( 2 .  1 ) ) .  Hence, p =O. q. e. d.

Theorem 2. Under the same assumption as  in  Theorem 1, we have a direct
decomposition

PH' (G, H) =Jo p* F)) +Im  3.

Pro o f . From Lemma 1, Lemma 2, (2. 2) and  (2. 4), one can easily prove
the theorem, q. e. d.

For la ter use, w e g ive the definition of 3. For each  ço EA ( 4 ,  F )  and
c Er,(S„ po, set

( cN) (z) (z --C) 2ço (C) c/C,

w here (c- ' ) '  denotes t h e  l i f t  o f  6-1 w i t h  th e  in it ia l p o in t  Co . Then,
v,(cN) E H  and  v,,EZ 1 (G, H ). 3 (ço) is  the cohomology class determined by
vs°.

§ 3. Homomorphisms.

( 1 )  Spaces of homomorphisms.
L e t  F  b e  a  K le in ia n  group  generated  by fin ite ly  m any e lem ents

I i , . . . ,  T r , and let 4  b e  an  in varian t un io n  o f components o f  T. W e
denote by H om  (F, M ob) the set of a ll homomorphisms from F  in to  M5b.
L et x E H o m  (F , M A ) .  I f  trace' x( r ) = 4  whenever 7 E T  i s  a  parabolic
element determining a  puncture of 4 /F , then  x  is  ca lled  4-parabolic. We
denote by Horn,_ p  (F ,  M A )  th e  se t o f  a ll 4 -p a rab o lic  homomorphisms.
If there is a  quasiconform al autom orphism  w  such  that x(r) =
w or ow - i  fo r a ll r  E F ,  then  x  is  sa id  to  b e  a  quasiconformal deformation of
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F, and  the set o f all such hom om orphism s w ill be denoted by H om „
(r, Mob).

By the correspondence Hom (r, MOb) 3  X •—• (X (7.1), . . • , x(r,.)) E  (MA )'
w e can  regard H om  (r, M g )  as a subset o f (M OO' (cf. §1).

(2) Quasiconformal deformations.
Let r  be as in  ( 1 ), and let S2 denote the set of discontinuity o f T.

For each p E M (Q , r)„ th ere  is  a unique quasiconformal automorphism
. aw a wwu o f e  th a t fixes 0 , 1 , co and satisfies the Beltrami equation

w" i s  compatible w ith  r,  th a t is, wuor. (wP) - 1 EM 6b fo r  a l l  r E r .  As is
well known, wu depends holomorphically on it.

We define a holomorphic map Or  : Mob x M (Q, Hom„ (r, Mob)
by r ( g , (r)=  (g ow l or (gowP) (T E E).

(3) Schwatzian derivaitves.
W e assume the hypothesis o f Theorem  1, and use the same notation.
Choose a  d is k  U ,  about Co s u c h  th a t  1 (U0) ( r  E r )  are  mutually

disjoint. F o r  every ÇoEA(4, r), w e denote by W „ the function element
about Co satisfy ing  the Schwarzian differential equation

sw, — [  

 W "
W :  —  2

1 [  1 2 —  çc,

and the normalization condition

W , (z) =z 0 ( iz (z Co).

(W e have assumed that C o c o . )
Let c N E G . D enote by K riY  the function element a b o u t (cN) - I( o)

obtained from P17,, by the analytic  continuation a long  the curve
the lift of w ith the initial point Co. T h en  th ere  is  so m e  (ço) (c E
Mob such that

W9.6 (cN) =T (ço) (cN)

on a (cN) - 1 ( U 0 ) .  Then, it is easy to  see that E Hom (G , M ob). The
next lem m a fo llow s from  sim ilar argument em ployed by Gardiner-Kra
[5 , Theorem 7. 2]

Lem m a 3. T he mapping P: A  (4, r)B go 1- 4  (go) E Homp (G , M ob) is
holomorphic and injective.

Proof . Since solutions of linear differential equations depend holomor-
phically on parameters, go ¶(go) is clearly holom orphic.

N ext, let 4 '  b e  the component of 4  th a t co n ta in s C o an d  se t r=
stab (4 '). Let h :  U  zr b e  a  holomorphic universal covering map,
where U  denotes the upper half plane, and set
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F= fgEM lib  g(U ) =U , and hog= p(g) oh for some p(g) ET").

F  i s  a  finitely generated Fuchsian group of the first k in d  w ith  U/F=S,
and is isomorphic to G . p : F r  defines a surjective homomorphism.
(F  is  ca lled  the Fuchsian model o f F ' via h.)

Fix z o Eit - '(Co)  and d en o te  b y  '1/1'7„ the one-valued meromorphic func-
tion on U  obtained from the function element W ,,oh near z 0. T47, induces
an element z, of Hom  (F, M o b ) .  Since Sh E A (U, F )  b y  Kra [7 , Theorem
2 ], SW,,=h:so-I-Sh also belongs to A (U , F), and hence x,EHorn i,(F , Mob)
(see, for exam ple, [7 , Lem m a 1]).

S e t  =- (U , F; z o ) (see  § 1 ) and note that a = pot-. I f  g=r (cN ) (cN  E
G ), then p(g) =a (cN ) and in a neighborhood of r i ( z 3 )

4(g) off1v =  9 0g=W „oho g = W  p(g) oh = W  (c N )  oh
(cN) oW(9c, 1)' oh = f(ço) (cN) of/r7

Hence, z9 (g) =T .  (go) (c N ).  In particular, T M  H o m p (G, M o b ) . Moreover,
i f  T. (400 = g r ( S ° 2 ) ,  th en  S li-70,I =SW,,2 b y  K ra [8 ]  and we see that wi=ç 9 2.

q. e. d.

Note th a t  W  defines a  one-valued m erom orphic function o n  d '  if
and only i f  T. (0  induces an element of Hom j p (F ',  M ob), where d ' and
F' are as in the proof o f Lemma 3.

W e conclude this section by proving the following lemma.

L e m m a  4 . L et d ' be a  component o f  a  Kleinian group F  and set r =
stab (4'). L et xE H om (F , M o b ) . Suppose that there  is  a function f  on 4 '
such that fo r —x (r)o f  on d ' f o r  a l l  r EF' . T hen  there  is  a f unction F  on
d= u  T (4 ') such that F  4 , =  f and For =x( r)oF on d f o r all  r EF

T e r

Proof. W e  set F ( z )  x(r)ofor - 1 (z) w h e n  z e r ( S )  w i t h  r E r .  I f
r(4') —12( 4 ) (ri, 12E 1 ') and z = r i ( )  E ri( s ) ,  then , since ri . lor, Er',

X(7.2) 4 . 6 1 (z)=x(r2)..fo1i i e11(C)
=x(12)0x (Won) of()
=x(ri)cforT'(z).

Thus F is w ell defined . C learly , F I A , -= f .  Also, for every z 4  and T e r ,
assum ing that zEr i (d ') , w e  have

For (z) = X (ron) of. (Ton ) 1 (r(z)
= x (r) ox (TO oforT1 (z)
=x (r).F(z ).

The lemma is proved, q. e. d.

R em ark . In  the above lemma, if f  is meromorphic, then so is F.
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§ 4. Proof of Theorem 1.

Now, w e  w ill g iv e  th e  proof o f T h eo rem  1 . W e  sh a ll u se  th e  same
notation  as in  §3 , (3).

L e t  F  b e  th e  F uch sian  m odel o f  r  v ia  a  h o lo m o rp h ic  universal
covering m ap h: U , w here U  denotes th e  up p er h a lf p lan e  (see
the proof of L em m a 3 ). I f  pEm,-(4, r),., th en  v =le i,ittE M ,,n (U , F)1.
G ard in er-K ra  [5 , §11 ] defined a hom eom orphism  R o (p ) :A (U ,
A (wv(U), wv0F0(wv) - 1 ) such that fo r each fixedA ( U ,  F ) ,  R o (p) (ço)
depends holomorphically on p .  Using this R 0,  we define a homeomorphism
R (p) : A (4 , n - - .  A (w #(4), w P.F .(w 9 - 1 )  b y  R (p) = ((hP) ) - loR o (p) oh,
where hP=u)P.12. (e) - 1 1. u ) . For each fixed ço EA (4, F), R (p) (ço) depends
holomorphically on  p.

Let c N E C .  F o r ÇoEA (4, n a n d  t e E M .( J ,  r)1, let 1/17 kJ,4  denote
th e  function elem ent a b o u t za".a(cN) - 1 (C0) obtained from  th e  function
element W R ( , ) ( , ) ,  normalized at wP(C o) ,  b y  th e  an a ly tic  continuation along
the curve z.vP( (c - 1 ) ')  (s e e  § 3 , (3 )) . For any g  M a, there is some f  (g, co, p )
( c N )  M a such that

goW R ( , ) ( ) 0wPou (cN) =f (g, ço , p) (cN ) ago W ( r- 1 ) 'R(1.0 (S0)

o n  al cN) - 1 - (L/0). T h u s  w e  h av e  defined a holom orphic m ap f : M a x
A (4 , n x m n Horn,(G, M a)  such that f  (e , 0 , 0 ) -=o - . We fix
generators ci N, , c r N  of G  and set  1 1 = (O r ) ( j . . . , r) . O ne can
consider that the im age of f  is contained in  (MOO' .

Before showing that f  h as th e  desired property, w e m ust define one
more cohomology sp ace . Let Ad : g 1— > Ad (g )  be the adjoint representa-
tion  o f th e  L ie  group  M a .  W e se t sim ply Ad(g) (X) = X g fo r gE M a
an d  x E g ,  where g i s  th e  L ie  algebra o f mob. g can be identified w ith
the tangent space T JA M ) to  Mob a t  e. G  acts on  q  v ia  9X G D  (X , cN)

X°(cu) E g .

1-11 (G ,  q )  a n d  th e  parabolic cohomology space PH' (G , g ) .  T h ere  is  a
canonical isomorphism / : Z 1 (G, 9) Z '  ( G ,  H )  su ch  th a t I (PZ 1 (G , g ) )
=P Z 1 (G , H )  (c f . [5 , § 6 ]) .

Now, identifying the tangen t spaces to  A O , n  an d  M c a „(4, r), at 0
w ith  A (4 , r )  and n  respective ly , w e w ill exam ine the linear
mapping d(L ( r T 1.... r i) of) (e, 0, 0) : 9 x  A (4, n x  M „„(4, 9 r,  where
L ( g ,.... g r ) denotes the left translation of the L ie group  (MA ) ' .

For fixed ço EA (d , n ,  the map A,: G g,

a (cN) - lof (e, tço, 0) (cN) —ep,,(cN ) — lim

H ence w e can  define , as in  §  2 , th e  co h o m o lo gy  space

defines a  c o c y c le . U sing th e  isom orphism  / a n d  se ttin g  r=o - ( c N ) , we
have, fo r z  E r'(u0 ),



Kleinian groups 585

(p,) (eN) (z)

1 r(z)  r (z) ) (z2L  ( , r , ( z ) ( C — Sc
z
 ( c _1), --C) 2so (C) (IC

l cz , --C) 2so (C) c1C —  1  Sz( z — C )  2W (C) dC
L. 7 • (Co 2  co, (c -i ) ,

, II
2 co ,

7.
(c-l).

 ( z  _C) 2go (c)dc k C iv •2 "

T hus, th e  cohomology c lass o f  U p,) i s  - -
1 

(O .  S im ila r ly , fo r fixed
2

pEM ,„„ (4 , I " ) ,  th e  m ap qp : G q,

9 ,, , ( e N ) _  H i l l   a (6. N ) - 1 of (e, 0 ,  tp ) ( c N )  —e
t-0

also defines a  cocycle. T h e  cohomology class of I ( q )  is  J0/3* C O .  By
the correspondence Z i(G , q)B  z Z(crAT)) q r , we may regard

(G, g) a s  a  subspace of qr. Then, recalling Theorem  2, we see that

(4. 1) M-= Im d(L ( r  ........... 7; 1) 0f) (e, 0, 0) = PZ 1 (G , q).

L e t  ftil a l a E A be the set o f the defining words of G .  O ne can define a
holomorphic map : (M ob)" ---> M A  b y  Fa (gi , . . .  ,  gr) wa(gi, • • • , gr)
for each  a  E A . T h en  w e have

L A I T h  Ker d (Fa oL (T i ......... T r) ) (e,....... , e) = Z 1 (G , g) •
CCE A

A lso , le t  ws  b e  a  w ord  in  t h e  generato rs th at corresponds to  a  loop
around a  puncture o f  S B ) ,  a n d  define a  holomorphic m ap  F s :
(Mob) r - - - - > C  b y  F,„ (g1, , gr ) = trace' "v s (g1, , g,.). T h e n ,  setting L B =

Ker d (F $ 0 L 0.1 ......... r d )  (e, , e ) , we see thatREB

(4.2)L =  L A n LB= PZ 1 (G , q).

It follows from (4. 1) a n d  (4. 2) that L =M .
C learly, w e have

(F a 0L ( r i ........... i r ) ) o (L .... r,74)0f) =Fa of=const.= e

and (F40L(ri ..... Tr) ) 0 (4 r _1..... 7.1 ) 0f) Fe f  = 4.

Consequently, by W eil's lem m a [16, Lem m a 1], there ex ists a  neigh-
borhood E  of (e, 0, 0 ) in  MObx A (4, x  M c a n (Z I, r) , a n d  a  neighborhood

o f (e, e )  in  (M 6b)r such that

L  -1 -1 of • E(Ti Tr '
(Fao L (7 .1 ....... rd ) - 1 (0 1  n..... (F cri .........

„ X . '. (4 ) n E'
ctE A ReB
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i s  a  biholomorphic homeomorphism . S in c e  L c ri ......... 7)  i s  a  holomorphic
bijection of (Mob)r,

f  E F ,71 (e)1 n tn  F il (4) } n
a E A SEB

is  a lso  a  biholomorphic homemorphism, where E' = L ( r i .... (A '). Note
th a t fr■ (e )] n F  (4)} = Hom p (G, Meib) and th at E ' is  a neighbor-
hood of a = (ri , , T r )  in  (Mob)".

This completes the proof of Theorem 1.
The followings are corollaries to Theorem 1.

Corollary 1. Let 2  be a  component o f a  finitely generated (non-elementary)
Kleinian group r  a n d  s e t  I" = stab (4'). L et F  be th e  Fuchsian model o f  r
v ia a  holomorphic universal covering map h : U 4', w here U  is  t h e  upper
half  plane. L e t  p : F denote t h e  canonical su r jection , th at i s ,  hog=
p(g) o h  f o r a l l  gEF. T h en , Homp (F , M e ib ) i s  a  complex m a n ifo ld  o f
dim ension 2  dim  A (U, F ) + 3  in  a  neighborhood o f p .

Pro o f . T here is a bijective homomorphism r  :  G --->  F  su ch  th a t por
= a ,  where G and a  are as in  T h eo rem  1 . r in duces a  homeomorphism
r* H om p (F , Mob) ,  Homp(G, M ob ), r* (x) = xor.
corollary follows at once from Theorem 1. q. e. d.

Corollary 2. L e t  r  be  a  (non-elementary) Kleinian group generated by
finitely many elements f l , . . . ,  r ,. Let 4  b e  a n  invariant u n io n  o f  components
o f  F. A s s u m e  that 4/r is  a  sin gle R iem ann  su rfa ce.  F i x  0 E4—  (elliptic
f ixed p o in ts}  a n d  denote by  W R ( , ) ( , ) t h e  function elem ent near le (CO that
satisfies SW  R (,)()=  R (P ) (0  a n d  is  norm aliz ed  at wi (C0 ). Then there are
neighborhoods V o f  (e, 0 , 0 )  in  M a x A (d , r)x M c a n ( 4 ,  r), and  W o f  id =

• • . r,) i n  ( Mob)r such that the following properties a re  valid :
F or each xEHorn,_ p (r  , Mob) n w, there is a  u n iq u e  ( g ,  ça, p) EV  such

that W R ( , ) ( , ) determines a  one-valued meromorphic function o n  wA (4) an d  that

(4. 3) g° WR(# ) c'tv"°7 (z) = X (r).g. wR(,)(,)-wP(z)

f o r  all r E r  and z E i.

Pro o f . W e shall use the same notation as in the proof of Theorem 1,
except for r„ , r r  a  induces a  continuous m ap a* : Hom,_ p (r ,  Mob)

Homp (G, M ob), a* (x) = p a .  T here is a  neighborhood W o f (r„ ,
Ir) in  (Mob)" such that Hom 4 _,, (r, Mob) n wc (e)-i(Homp(G, Mob) nE').
T ake V = E' I f  x EHom,_ p (F , Mob) n W , then there is a unique element
(g, ço, p )  E V  su ch  th a t W , (, ) ( )  d eterm in es a  meromorphic function on
rv# ( 4 ')  and th a t  (4 . 3 )  is  tru e  for a l l  T E E ' and z Ed'. B y  L e m m a  4 ,
WR ( , ) ( , ) can  be ex tended  to  tepa (4 — S) so that (4.3)  i s  a l s o  t r u e  fo r  all
r E r and z 4. q .  e .  d.

Since r* (p) = a ,  the
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R em ark . A hom om orphism  zeH om (F, M ob) is said to be allowable
if trace 2 x(r) = trace) ,  w henever r  is  e ll ip t ic  o r  parabo lic  (cf. Bers [3] or
[ 4 ] ) .  From  Corollary 2, one easily  sees that if xEHom,_ p (F , Mob) n V,
then trace 2 x(r )  -=trace 2 1 whenever r  i s  an  elliptic elem ent w ith one of its
fixed points in 4 , o r  a  parabolic element corresponding to a  puncture of
4/r (c f . [3 , Lem m a 3]).

§ 5. Quasi - stability.

L et r  b e  a  K le in ian  group  generated  by fin ite ly m any elem ents ri,
, r„ and let 4  b e  an  invarian t un ion  of components o f F .  We assume

that zi/r is  a single R iem ann surface. We fix C 0 E4—  (elliptic fixed points}
to define th e  normalized function element W R ( ) „,) n e a r  w ( 0). S ( 4 ,  r)
(o r 4 (4 ,  r ) )  w ill deno te  th e  se t o f  a l l  p a irs  (w , p) F A (ZI, r)  X  Al„„
(4, r), such that W R ( , ) ( , ) defines a  one-valued meromorphic function on
w i i ( 4 )  a n d  th a t  W R ( p ) ( ) ow P  induces a n  elem ent o f  H o m ( F ,  Mob)
(o r H o m „(r, M o b ) ) .  This induced hom om orphism  is denoted by T(io,
p ) =T 1 ,c 0 (w , p). N ote th a t  s (4 ,  r )  (o r  4 (4 ,  r ) )  does not depend
on Co.

R ecall the definition of the m ap Or  ( s e e  § 3 ,  ( 2 ) ) .  r  is called quasi-
stable if , fo r  each neighborhood E  o f  0  in  M (Q , 1') 1 , o n e  can  f in d  a
neighborhood E ' of id = ( r i , . . . ,  r )  i n  (M OW  such that

Hom„ (F , Mob) n E ' c  (M O b x  E ).

T heorem  3 . L et T  be a f initely  generated (non-elem entary) Kleinian group
and let 4  b e  an inv ariant union of  components o f  F .  Assume th at 4 / T  is  a
single R iem ann surface. If  r  i s  quasi-stable, then  there  is  a  neighborhood B
o f  (0 , 0 ) in  A (4 , r)x  M „(z I, r ) ,  such that f o r each (w, p) ES „(4 , r) n B,
W R ( p ) ( 9 )  is univalent on wo (4) and has a quasiconformal extension to — zè  (4 )
w hich  is  compatible w ith  wPor 0 (wi') - 1 . Furtherm ore, this extension can be
chosen so that its com plex  dilatation belongs to M (w P (Q ), tor  0(w1) - 1 ),
where D donotes the set of  discontinuity of  T .

P ro o f .  L et V  an d  W  b e  a s  in  C o ro lla ry  2  to  T h eo rem  1 . W e fix  a
system ( r i , . . . ,  r ,.} of generators of T .

L e t  ( g ,  p )  Mob x  M ca „(Q , r),. W e s e t  p ' = p  on 4  a n d  p' = 0 on
— 4 . Define p" (W u ' (Q ) ,  Ze# ' or. (w") -1 ) 1 so  th a t w it=  wit" ow"'. E x -

p licitly, p"=- ( ( w w ) ! , , i ) - l p  o n  wx"(S2 —4) an d  p" = 0  o n  Lot" (4U A ), where
A =C — Q. Since wo" is meromorphic a n d  u n iv a le n t o n  wiz (4) , Sw""
A (wi" (4) , wt‘' 0 I '  (wor) - 1 )  an d  its norm  is bounded by som e constant not
depending o n  p  (cf. B eardon-G ehring [2 , T h eo rem  1 ]). S e ttin g  w  =
R ( g ) - 1 (S z& "), we define  g E M o b  s o  th a t gow ""= g0 W R ( „, ) ( )  o n  w "' (J).
W e have obtained a  m ap  j :  (g, p) H—  (g, ço, p ') . To see that j  is con-
t in u o u s  a t  (e, 0 ) ,  suppose th a t  (g„, p ) - - ( e ,  0 )  (n 0 0 )  and  set
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( g n ,  p n )  =  ( g n ,  son, p 'n ). {son } is  a bounded sequence in  A (L  I"). If {S0
9 ,}

is  a subsequence converging to ço, then W i“,, )--->W , uniform ly near
n k n k

Co E 4 .  But, since g n ow4—> e  uniformly near C o, ç5, must be 0 . T hus w „
0  and hence L - ->  e. This m eans that j  is  con tinuous at (e, 0),

and so we can find a neighborhood N 1 x N 2 o f  (e, 0 )  in  M a x n
such that j ( N i  x N 2 ) c V .

Now the quasi-stability o f r  im plies that there is a  neighborhood W'
of id = cri, • • • , T r) E (m6b) ,  such that Hom„ (r, Mob) n -frr  (A ri x  N2) n W
(cf. S akan  [15 , L em m a 2 ]). T h ere  is  a neighborhood V ' o f (e, 0 , 0 )  in
Mob x A (4 , r) x M ,„„(4, r) , so  th a t V' c  V  and all homomorphisms of
induced by som e ( g ,  ço, p) E  V ' belong to Hom j _p ( r ,  MOb) n W ' .  Let B
be the image of V' under the natural projection M g X  A (4 , r) x m„„(4,
r), ,  A (4, r) x m„„0, n 1. B  is a neighborhood of ( 0 ,0 )  E A (4 , r) X

Mc a n (4, ni•
I f  (ço, p )  ES „ ( 4 ,  r) nB, then there are some xEHom j _p  ( r, M ilb) n Pir

gE M a  and (h , v) EN i x N , such  that (g, ça, p) E V ' and that

goW R ( 0 ( 9 ) 0W 'or= Z (r ) ogo 1.47, ( , )  ( ) o w l '  (on 4)
and hoteor=x (r) ohowD (on  e ')

for all T E P . O n  th e  other hand, (h.,  0, =j (h, y ) E V  and

fib WR(Do co° wu' 0 7" = x (r) oho WR(v)(0)°Ee (on 4)

for a ll r  E r , w h e re  WR (2 ,0 ( ) =Ii - lohoze. (ze') - 1  o n  ze  ( 4 ) .  Therefore, by
uniqueness, W R ( t ) ( ) =fi - lohowv. (wv) - 1  on  wA (4). q. e. d.

Remark. Bers conjectured in  [ 4 ]  that all fin itely generated K lein ian
groups should be quasi-stable. K rugkal' [10] answered to this conjecture
in the affirmative. Unfortunately, however, it would seem hard to me to
follow his argument.

§  6 . Criteria for quasi - stability of finitely generated function groups.

Theorem 4. L et r  be a f initely  generated (non-elementary) Kleinian group
w ith an  invariant component 4 .  S et T  r . c °  w ith  f ix ed  C0 E4—  {elliptic fixed
points} . T hen the follow ing four cond ition s a re equivalent to each other:

( i ) r  is  quasi-stable.
(ii) T here is a  neighborhood B  o f  (0 , 0 )  in  A (4 , r) X n , such

th at W R(A)()'w f  ̀(4 ) t b  f o r e ac h  (9), p)ES q ,(4 , r) n B.
(iii) T here is a  neighborhood B  o f  (0 , 0 ) in  A (4, r) x mcan(4, n 1 such

th at  T (So, (r)  acts discontinuously  o n  W R ( , ) ( ) ow g (4) f o r e ac h  (40, t i)  E
S„(ZI, n B.

(iv) T here is a  neighborhood B  o f  (0 , 0 ) in  A (4, r) x such
that f o r  e ac h  (q), p) ES „( 4 ,  r) n B, W R(p)(9) is univ alent o n  w"(z1) and  has
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a quasiconformal extension to — wP(4) which is compatible with wPoro(wP) - 1 .

Pro o f . L e t F  b e  the Fuchsian model o f  F  v ia  a  holomorphic uni-
versal covering m ap h :U 4 , w h ere  U  denotes the upper half plane.
For p E M ( 4 , r )„  w e  set hp =wPoh. (w„) - 1 , (w )  1, ziu=w P (4 )
and F1,=w v 0Fo (wv ) - 1 , where v =h! L i p  and w„ is the unique quasiconformal
automorphism o f  U , w ith  the com plex dilatation v, th a t  fixes 0 , 1 , co.
h„:U ----> 4 ,  i s  a  holomorphic un iversal covering m ap  and F „ i s  the
Fuchsian model o f  r m v ia  h,. W e d en o te  b y  p  and p „ the canonical
surjective homomorphisms F r  and F„ „, respectively.

( i ) :  This is  a direct consequence o f Theorem 3.
(ii) <=> (iii) : Since S(W , ( „) ( 0 0h,) (h„) (R (p )(ço ))+ S h ,E A (U , F ,)  for

every (ça, p) ES (4, r), it follows from Kra [7 , T h eo rem  1 ] th at ( ii) and
( i i i )  are equivalent to each other.

(iii) ( iv )  :  I f , r  is quasi-Fuchsian , then  the re su lt is  c lea r s in ce  r
is  quasi-stable.

Suppose th a t  r  is not quasi-Fuchsian. L e t  (yo, p) S 0 (4 , r) n B.
For convenience, we set W= W, ( , ) ( ) .  There are some x EH om „(r„, Mob)
and a quasiconformal automorphism w o f G‘' such that

W or=x(r)oW andw o r=x ( r) ow

for a ll rE r„ . I t  fo llo w s  fro m  the assumption and [7 ,  Theorem  1] that
W(4 1, )  and w (4 „) are invariant components o f x (r„ ) =wor„ow - '. Thus,
by M ask it [11 , T heo rem  2 ], vv(zio = w (4 1,) b e c a u se  x ( r , )  is not quasi-
Fuchisan.

M oreover, W A ,: U  --->  W (4 1,) i s  a  un iversa l covering  m ap  (c f .  [7,
T h eo rem  1 ]). Let Pp  b e  the Fuchsian model o f x ( r , )  via  Woh„. Clearly,
Fm c  P, since for every g E F  W o h 1,og=W op 1,(g)oh 1 =(x op

1
,(g))0W oh 1,. On

the other hand,

Area (U/ P„) = Area (w (4p ) h ( r o ) =  Area (41,/1 1,) = Area (U /F,),

where Area(S) denotes the Poincaré area  of a Riemann surface S , so we
must have F  Pp .

T o  show th a t  W  is  univalent, assume that W (C 1) =147(c2) =wo. We
connect C i  w ith  C , b y  a  curve c  in  ZI„ and denote by e  its  lift to  U  via
h ,  w ith  the initial point z1 and the end point z2. T h en  e  i s  a  lift  o f
W (c), a  closed curve beginning at w o,  to  U  v ia  W oh„, and hence there
is some gE P„=F„ with g(z1) =z 2 su c h  th a t Woh,og=Woh, on U .  Since
W oh,=W oh p og=W op„(g)oh„, (xop,) (g)0Woh 1,, it fo llow s that  o p p (g) =e
and p ,(g )  =e . H ence we have

C2 = hp (Z 2) = - k o g (z ) , p,(g)oh,(z i ) =11„(z 1 ) =C i •
T hus, W  is univalent.

W e have sh o w n  th a t w- '0W : 4  — +  4„ is quasiconform al and that
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w - loWor=row - '0 W  for all r E r„. T herefore it fo llow s from  M askit [12]
that the function u, u(z ) -=z ir'ol 4 (z ) (z  E 4 )  and u (z )  = z  ( z E  —zip), is
a  quasiconformal automorphism of C . w o u  is  a quasiconformal extension
o f W  and is  c learly  compatible with

(iv) (  i  )  :  L et P,) be a complete list of non-conjugate components
o f r  w ith  4 0 = 4  (k  m a y  b e  0 )  and  let F, = stab (4 ,) be generated by

(i =0, , k ) .  Note that P 0 =1. S in c e  
i
U {rn :;__=1 is a system of
=0

generators o f F , we may consider that

Horn (r, Mob) c(M 6b)' (°) x x (1146b)' ( ' ) = (Mob) N.

For i =0, . ,  k , let p, : (m5b)" — (M o b )"° ) denote the natu ra l projection
and let Q, be the set of discontinuity of P ,. F o r  0 < t< 1 , w e  set

N ,(t)= r i)11111-111-<t} (i =0, , k)
and N ' (t) = M .( 4 ,  r) l nNo (t).

Next, le t V =17
1 x 17

2 x  V, and W  be as in  C orollary 2 to  Theorem  1.
W e  m a y  assume th a t  V 2 x 1/3 c B  an d  V3 cN ' (t). M oreover, w e can
assume that W  is so  sm all that for i =1, . . . , k,

p (W ) n Hom„ (r „ ma) co r x N ,(t)) ,

since each I ' ( i # 0 )  is quasi-Fuchsian and hence quasi-stable.
IfH o m „ ( r ,  M a ) n vv, then  there is som e (g , 9), te) E V  such that

go W iu m w ow iror =x  wo g ° (9) ow ,

for a l l  y E r .  Set iv =g0147, (, ) ( 9 ) 0ze. The assum ption im plies that w  has
a  quasiconformal extension w h ich  is compatible w ith  P. W e  d e n o te  it
b y  the same letter w.

S in c e  X 1r,EA (w) nHom„(r„ MA) c  f , (V ,x  N ,( t ) )  fo r  i =1, , k,
there is a  quasiconformal automorphism f ,  of C  w ith  the complex dilata-
tion  tt i EN i ( t )  such  that x (r ) =f ,oro f - '  for a ll  r  E r ,. B e c a u s e  w - lof, or
=row - lo f , for a l l  r E r„  w e have w (4 1) = f , ( 4 , )  (c f. [1 2 , C orollary 2]).
Set u (z ) = w (z ) (z E 4 ) and u(z) =X (r)o f o r l ( z )  (ZEr( 4 1), T E P ).  T h e n
u  is  w e ll d efin ed  (c f. th e  proof o f  L em m a 4 ). F u rth erm o re , w e  have
uy- lou(Q,,) =Q0 an d  u rlo u o r=ro w - l o u  fo r all T E P ,  for,

u (r (4)) = x (r) of(4) = x(r) ow (4 ) =w(r(A))
and uor(z) —x(rori)oforT'(z) = w or ow- 'ou (z) Er: (4 ,))

T hus, it fo llow s from  [12] that u  can  extend  to  a  quasiconformal auto-
morphism of C i f  w e  set u -=w on C— Q 0 . T h e  complex dilatation of u
is  in  N o ( t )  and  uorou - 1 , worow_i_x

( r )  ( T E P ) .  H e n c e ,  w e  have x E
Or (Mtib x N o ( t ) ) .  T h u s H o m „(r, MA) n w co r (mob x N o ( t ) )  and so
is  quasi-stable. q. e. d.
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Remark 1. T h e  p a rt (iv) ) of the above proof is due to  Sakan
[14].

R e m a rk  2 . L e t r  b e  a s  in  T h e o re m  4 . I f  r  is quasiconformally
stable, then  by N akada [13 , T heorem  3] an d  S akan  [15 , T heorem  1] r
is  a lso  quasi-stable. (For term inology used here, see, fo r example, [15] ).
In  th is case, one can choose a  neighborhood B  o f  ( 0 ,  0 )  in  A (4 , r) X

114,,,„(4, r), such  that if (97, p) ES (4 , r) n B  an d  T (go, p )  is parabolic,
then W , ( , ) ( )  i s  un ivalent and can  extend to  a quasiconform al autom or-
phism of C .  T he proof is sim ilar to that of Theorem 3.
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