J. Math. Kyoto Univ. (JMKYAZ)
24-4 (1984) 577-591

Homomorphisms of finitely generated
Kleinian groups
Dedicated to Prof. Y. Kusunoki on his 60" birthday

By
Makoto MASUMOTO

(Received March 1, 1983)

Introduction.

In this paper we will study about the neighborhoods of the identity
homomorphism id in the space Hom(I', Mdb) of homomorphisms of a
finitely generated Kleinian group I'. (For definitions, see §3, (1).)

Some elements of Hom(I', Misb) can be constructed by means of
quasiconformal deformations or Schwarzian differential equations. Gardiner-
Kra[5] showed that all elements of Hom,_,(I", Mib) sufficiently close to
id can be so obtained if I" is a b-group with an invariant (simply con-
nected) component 4. Here, we shall show that this is also true for any
finitely generated Kleinian group. This is a corollary to Theorem 1.
(See Corollary 2 to Theorem 1 in §4.) As applications of this corollary,
we shall give some theorems on quasi-stability.

In §1 the statement of Theorem 1, the main result, will be given. We
use the techniques of Gardiner-Kra[5] to prove Theorem 1. Its proof is
somewhat long and will be completed in §4. In §2 we provide a theorem
(Theorem 2) on cohomology, which will play an important role in the
proof of Theorem 1. Theorem 2 can be proved by means of some
results due to Ahlfors[1] and Kra[6]. §4 is devoted to the proof of
Theorem 1. At the end of this section, two corollaries will be given.

In the rest of the paper, we are interested in the solutions of certain
Schwarzian differential equations. In §5 we will give a property of
quasi-stable groups. In §6 we will give some necessary and sufficient
conditions that a finitely generated function group should be quasi-stable.
In this section, the results of Kra[7] and Maskit[12] play an essential
role.

Finally, the author wishes to express his deepest gratitude to Prof.
Y. Kusunoki for valuable suggestion and kind guidance. The author
also thanks to Mr. H. Ohtake for his advice.
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§1. Statement of Theorem 1.

Let I' be any finitely generated (non-elementary) Kleinian group.
(In this paper all Kleinian groups are assumed to be non-elementary.)
Let 4 be an invariant union of components of I. We donote by A(4, I')
the complex Banach space of all bounded holomorphic automorphic forms
of weight (—4) on 4 for I' A4, I') is of finite dimension. M(4, I')
will denote the complex Banach space (with the supremum norm) of all
Beltrami differentials for I” that are equal to zero on C—4. Its closed
subspace M,,, (4, I') consists of all elements &M (4, I') with the property
that 2Zpa|,€A4(4, I'), where 2,(z) |dz| denotes the Poincaré metric on 4.
The unit balls of M (4, I') and M, (4, I') will be denoted by M4, I'),
and M., (4, I'),, respectively.

Let us now assume that S=4/I" is a single Riemann surface. We
remove the elliptic fixed points from 4 and denote the punctured open
set by 4, We set S,=4,/I' S—S§, consists of finitely many points
b1 ..., pr and the natural projection 4—— § is branched at each lift of
p; with the multiplicity r; (j =1,..., k). Fix p,eS, and form the funda-
mental group = (S, p,) of S, with the base point p,. Choose simple
loops ¢; from p, around p; (j =1,...,%4). Let N be the normal subgroup
of m(Sy, po) generated by {ci};.; ., We denote the quotient group
7, (Ss, po)/N by G=G(4, I'; p,). The image of cem (S, p,) under the
canonical surjection 7 (S, p)—— G is denoted by ¢N. ¢N is a (right)
coset modulo N.

Fix {,e4, with projection p,. Let 4; be the component of 4, that
contains §, and set I =stab(dy) = {yel'|7(4y) =4;}. In familiar manner,
4y is a smooth covering surface of S, determined by a normal subgroup
N of m (S, po), and there is an isomorphism &: 7 (S, po)/N'——1I".
Since N is a subgroup of N’, this isomorphism & induces a (surjective)
homomorphism =04, I';{): G—— I"". Explicitly, the homomorphism
o is defined as follows. A closed curve ¢ from p, (on §;) lifts to a curve
¢’ on 4j with the initial point . There is a unique element y&/” such
that 7({,) is the end point of ¢’. Then, we define a(¢cN)=7.

Let Mob denote the 3-dimensional complex Lie group of all Mgbius
transformations. Denote the set of all homomorphisms from G into Mab
by Hom(G, Msb). Hom, (G, Mdb) is the set of all yeHom(G, Mdb) such
that trace?y(¢N) =4 whenever ¢ is a simple loop around a puncture of
S. Note that eeHom,(G, Mdb). G is generated by finitely many elements,
say, by N, ..., ¢N. Then one can regard Hom(G, Mdb) as a subset of
(Mb)” by the correspondence Hom (G, Mib) >y «— (x(6,N), ..., x(¢,N))
€ (Méb), and make it a topological space. This topology does not
depend on a particular choice of a system of generators of G.

We are now ready to state the following
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Theorem 1. Let I" be a finitely generated (non-elementary) Kleinian group
and let 4 be an invariant union of components of I'. Assume that 4/ is a
single Riemann surface. Fix {yed— {elliptic fixed points} and let p,d/I" be
its projection. Set G=G (4, I'; p,) and e=0(4, I'; ). Then Hom, (G, Mab)
is a complex manifold in a neighborhood of o. More precisely, there is a
holomorphic map f: Mibx A(d, I')xM,,, (4, I'), — Hom, (G, Mib) with
f(e, 0, 0) =0 such that f induces a biholomorphic map between a neighborhood
of (e, 0, 0) and a neighborhood of o, where ¢ denotes the unit element of
Mb.

To prove Theorem 1, we need some auxiliary resulsts. The proof of
Theorem 1, together with its corollaries, will appear in §4.

In the following, to avoid confusion, we shall denote by e the unit
element of the group Mdb, and by id the identity homomorphism.

§2. A theorem on cohomology of G(4, I' ; p,).

The purpose of this section is to prove Theorem 2, which will play
an important role in the proof of Theorem 1.

In general, let 4 be an open set of C and let gEMob. For each
function ¢ on g(4), we define a function gf,0 on 4 by gf 0(k) =
0 (g(2)8 (2)?¢(2)? (z&4), where p and ¢ are integers. g%, will be
abbreviated to gj.

First of all, we shall give an outline of the cohomology theory of
Kleinian groups due to Kra. For details, see Kra [9, Chapter V].

Denote by /I the vector space of polynomials in one complex variable
of degree at most 2. Mdb acts on the right on I via II X Méb> (v, g)
— v.g=g*tpell.

Let I" be a finitely generated Kleinian group and let 4 be an invariant
union of components of I'. Since I' acts on II, one can define the
cohomology groups. We will denote by H*(I', II) and PHY(I', II) the
(first) cohomology space and the space of 4-parabolic cohomology classes,
respectively. We also denote by Z'(I', II) and PZ4(I", II) the space of
cocycles and the space of 4-parabolic cocycles, respectively.

Let B*=pf o M., (4, I'Y— PHY(I", II) be the Bers map (cf. [9, V,
Theorem 2.4]). It is known that 8* is injective.

The space of bounded Eichler integrals (modulo /1) of order (—1)
(on 4 for I') will be denoted by E,(4, I'). There is a canonical injective
linear mapping (called the period map) a=ap ,: E, (4, I') —PHY(I'", II)
(cf. [9, V, Theorem 4. 2]).

Kra[6] proved that there is a direct decomposition

2.1 PHY(I', II) =a(E,(4, I')) +p* (M., (4, T'))
(cf. [9, V, Corollary 1 to Theorem 5. 1]).
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Next, we assume that S=4/I" is a single Riemann surface, and use the
same notation as in §l. G acts on the right on IT by II XG> (v, ¢cN) —>
veo(cN)ell. We denote by Z' (G, II) the space of cocycles, and by
HY(G, II) the cohomology space. A cocycle ¢Z'(G, II) is called
parabolic if q|.y> is a coboundary for the cyclic subgroup <¢N)» whenever
cen, (Sy, po) is a simple loop around a puncture of §. We denote by
PZY(G, II) the subspace consisting of all parabolic cocycles, and by
PH'(G, IT) the space of all parabolic cohomology classes.

There is a canonical linear map J,: Z'(I", II)—-> Z'(G, II) defined
by Jo(q) (¢cN)=q(c(cN)) (¢geZ*I', II), cNeG). J, induces a linear map
J:PHY(I', II)—— PH'(G, ). Let 4" be the component of 4 that contains
¢, and set [ =stab(4’). Since a(G)=I", J,(¢) =0 if and only if ¢(y) =0
for all yeI”.

Lemma 1. dim Jop* (M., (4, I')) =dim A4, I).

Proof. 1t suffices to prove that Jop*: M, (4, I'Y — PHY (G, II) is
injective. Suppose that Jof*(x) =0 with pesM,,, (4, I'). For z&C set

_z(z=1) ©(Q) -
h(2) =5 Sgcac—l)(c—z)dmdc’

_z(z—1 2@ x @ >
h(2) =5 SSCC(C—l)m—z)dCMC’

_z=D(( @ d—x&) >
and hy(2) om SSCC(C—I)(C—Z)JC/\(]C’

where y is the characteristic function of 4. Define cocycles g Z(I", Il),
1 qZEZx([”a H) by

g =rth—h,  q;() =r4hi—h; (=1, 2),

then [¢, €8t 4 (M,,(4, I')) and [gl€ar o (E L, 7)) (cf. [9, V,
Theorems 2.4 and 4.2]), where [¢;] denotes the cohomology class of
¢; G=1, 2). Moreover, we have [¢[r]1=[gq:1+[g.]. Now, Jop*(p)=0
implies [¢|r]1=0 and hence B} ,(ux) =[q.1=0 (see (2.1)). Therefore,
#=0 since the Bers map B} , : M, (4, I'")— PHY, (I, II) is injective.
q.e.d.

Ahlfors[1] defined two linear maps 5 and J having the following
properties :
n:a(PEW, T'))—> PH'(G, II),
(2.2) dim Imyp=dim A(4, I') (cf. [1, Lemma 6 and its corollary]),

(PE(4, I') denotes the space of meromorphic parabolic Eichler integrals
and «a is the period map.)
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0: 44, I'Y— PHY(G, IT),
(2.3) ImonJHYT, IN) cJoa(E,(4, I')) (cf. [1, Lemma 7]).

Furthermore, there is a direct decomposition

(2.4) PHYG, II) =Im p+Imé (cf. [1, Lemma 8 and its proof]).
Lemma 2. JoB*(M.,,,(4, I')) NIm 6= {0}.
Proof. 1t follows from (2.3) that

JoB* (M., (4, I')) NIm &
=Jof* (M, (4, I)) nJ(H'U', 1)) NIm d
CJof* (M., (4, I')) NJoa(E, (4, I)).

If J>p*(p)elmé with peM,,, (4, I'), then there is some FeE, (4, I')
such that JoB*(pu) =Joa(F). Let ¢, q;, q, be cocycles as in the proof of
Lemma 1. Then Jof*(z) =Joa(F) implies [¢,]+[g:]=[q!r]=a(F|,)
and so [¢,]=0 (see (2.1)). Hence, ¢=0. q.e.d.

Theorem 2. Under the same assumption as in Theorem 1, we have a direct
decomposition

PHY(G, IT) =JoB* (M.,,(4, I')) +Im 6.

Proof. From Lemma 1, Lemma 2, (2.2) and (2. 4), one can easily prove
the theorem. q.e.d.

For later use, we give the definition of 4. For each ¢=A(4, I) and
cem (S, po), set

5N @)= | (c-0%Od,

where (¢7!)’ denotes the lift of ¢! with the initial point §. Then,
v,(¢N)ell and v,eZ(G, IT). d(p) is the cohomology class determined by
Ve

§ 3. Homomorphisms.

(1) Spaces of homomorphisms.

Let I' be a Kleinian group generated by finitely many elements
Tiy-++s7» and let 4 be an invariant union of components of I'. We
denote by Hom(I', Mdb) the set of all homomorphisms from I into Mdb.
Let yeHom(I', Msb). 1If trace? x(y) =4 whenever yel’ is a parabolic
element determining a puncture of 4/I", then y is called 4-parabolic. We
denote by Hom,_,(I", Msb) the set of all d-parabolic homomorphisms.
If there is a quasiconformal automorphism w: C— C such that 1) =
woyow™ for all y&I', then yx is said to be a quasiconformal deformation of
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I', and the set of all such homomorphisms will be denoted by Hom,,
(I', Méb).

By the correspondence Hom (I, Mib) Dy «— (% (1), ..., X(1,)) € (Mdb)"
we can regard Hom (", Mob) as a subset of (Msb)" (cf. §1).

(2) Quasiconformal deformations.
Let I' be as in (1), and let £ denote the set of discontinuity of I'.
For each pesM (£, I'),, there is a unique quasiconformal automorphism

w* of C that fixes 0, 1, o and satisfies the Beltrami equation aa—z—p?;z
wt is compatible with I', that is, w#oyo(w*)*eMib for all yeI'. As is
well known, w* depends holomorphically on fu.

We define a holomorphic map @: Mgbx M (2, I'), — Hom,, (I, Mib)

by @r(g, 1) () = (gow*)oyo(gow) ™t (rel).

(3) Schwarzian derivaitves.
We assume the hypothesis of Theorem 1, and use the same notation.
Choose a disk U, about &, such that y(U,) (ye&l') are mutually
disjoint. For every oA (4, I'), we denote by W, the function element
about {, satisfying the Schwarzian differential equation
Wo, 1T W,
s, ~[ gt | =alwt ] =

[4

and the normalization condition

W,(2) =z+0(|z=5I® (z—&).

(We have assumed that {;#0,)

Let cNeG. Denote by W,f;—l)' the function element about ¢ (cN) ()
obtained from W, by the analytic continuation along the curve (™,
the lift of ¢! with the initial point . Then there is some ¥ (¢)(cN) e
Miéb such that

W00 (cN) =T (9) (¢N) o WE ™

on ¢(¢cN) Y (U,). Then, it is easy to see that ¥ (¢) eHom (G, Mib). The
next lemma follows from similar argument employed by Gardmer Kra
[5, Theorem 7.2]

Lemma 3. The mapping ¥ : A4, I') 29— ¥ (p) eHom,(G, Mib) is
holomorphic and injective.

Proof. Since solutions of linear differential equations depend holomor-
phically on parameters, ¢ — ¥ (¢) is clearly holomorphic.

Next, let 4° be the component of 4 that contains £, and set ["=
stab(4”). Let h:U—— 4 be a holomorphic universal covering map,
where U denotes the upper half plane, and set
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F={geMib|g(U)=U, and hog=p(g)oh for some p(g) =I"}.

F is a finitely generated Fuchsian group of the first kind with U/F=S,
and is isomorphic to G. p: F——I" defines a surjective homomorphism.
(F is called the Fuchsian model of I via A.)

Fix z,eh™(§,) and denote by Wq, the one-valued meromorphic func-
tion on U obtained from the function element W,oh near z. W, induces
an element y, of Hom(F, Mdb). Since SheA(U, F) by Kra[7, Theorem
2], SW,=h3¢+Sh also belongs to A(U, F), and hence y,&Hom,(F, Mib)
(see, for example, [7, Lemma 1]).

Set r=0(U, F; z,) (see §1) and note that ¢ =por. If g=7(cN) (¢cNe&
G), then p(g) =d(¢cN) and in a neighborhood of g7'(z,)

ch(g) oI’f/¢=W¢og= W¢°h°g= W(pop(g) 0/’l=W¢00'(()N) oh
=T (p) (cNYoWE Y oh =T (¢) (cN) o W,

Hence, x,(g) =¥ (¢) (¢N). In particular, ¥ (¢) €Hom,(G, Mib). Moreover,
if T(p) =¥ (¢p,), then SI/f/',,,l:‘S'I/f/qu by Kra[8] and we see that ¢;=¢,.
g.e. d.

Note that W, defines a one-valued meromorphic function on 4" if
and only if ¥ (¢) induces an element of Hom, _,(I", M¢b), where 4" and
I are as in the proof of Lemma 3.

We conclude this section by proving the following lemma.

Lemma 4. Let 4 be a component of a Kleinian group I' and set I''=
stab(4'). Let yeHom(I', Mib). Suppose that there is a function f on 4
such that foy=yx(y)of on 4 for all yelI”. Then there is a function F on
4= Urr(A') such that F|,=f and Foy=x(y)oF on 4 for all y&I.

VS3

Proof. We set F(z)=y(r)ofor'(2) when zeyd) with yel'. If
nd)=pn) (n, rnel’) and z=1) €n(4), then, since yy'nel”,

X(12) of oy (2) = 1(12) of orz o1 (€)
=x(r2) ox(rztor) of ()
=x(r) ofori*(2).

Thus F is well defined. Clearly, F|, =f. Also, for every z€4 and rerl’,
assuming that zey,(4'), we have

Foyr(2) =x(roy) ofo (ror) (1 (2))
=x(P ex(r) oforit(2)
=x(r)oF(2).

The lemma is proved. q.e. d.

Remark. In the above lemma, if f is meromorphic, then so is F.
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§4. Proof of Theorem 1.

Now, we will give the proof of Theorem 1. We shall use the same
notation as in §3, (3).

Let F be the Fuchsian model of I” via a holomorphic universal
covering map h:U —— 4', where U denotes the upper half plane (see
the proof of Lemma 3). If peM,,, (4, I'),, then v=h* peM,, (U, F).
Gardiner-Kra [5, §11] defined a homeomorphism R,(z): AU, F)—
A(w’(U), w’oFo(w*)™) such that for each fixed g€A(U, F), R,(w) (p)
depends holomorphically on g Using this R,, we define a homeomorphism
R(p): A4, I')—— A(w*(d), w’olo(w*)™") by R(p) = ((h*)}) " oRy(p) oh3,
where h*=w*oho (w”) | »q. For each fixed oA (4, I'), R(p) (¢) depends
holomorphically on p.

Let ctNeG. For 9pA(4, I') and peM.,, (4, I, let W}{J,:)(;,) denote
the function element about w“c(¢cN)"1({,) obtained from the function
element Wy, , normalized at w*({,), by the analytic continuation along
the curve w*((¢™)’) (see §3, (3)). For any g Mqdb, there is some f(g, ¢, 1)
(¢N) e Méb such that

8o Wi powos (cNY =£(g, ¢, 1) (cN) ogo W,y leyot0*

on ¢(¢cN)""(Up). Thus we have defined a holomorphic map f: Mdobx
A4, 'YX M,,, (4, I ,—> Hom, (G, Msb) such that f(e, 0, 0)=0. We fix
generators ¢,N, ..., ¢,N of G and set 7;=0(¢;N) (j=1,...,7). One can
consider that the image of f is contained in (Mdb)".

Before showing that f has the desired property, we must define one
more cohomology space. Let Ad:g+——> Ad(g) be the adjoint representa-
tion of the Lie group Méb. We set simply Ad(g) (X)=X¢ for ge Mab
and X&¢, where ¢ is the Lie algebra of Msb. ¢ can be identified with
the tangent space T,(Mob) to Msb at e. G acts on ¢ via §XG> (X, ¢N)
—— XM =g, Hence we can define, as in § 2, the cohomology space
HY(G, ¢) and the parabolic cohomology space PH'(G, §). There is a
canonical isomorphism I:Z(G, §)—> Z}(G, II) such that I(PZ (G, $))
=PZNG, II) (cf. [5, §6]).

Now, identifying the tangent spaces to A(4, I') and M, (4, I'), at 0
with A(4, I') and M., (4, I') respectively, we will examine the linear
mapping d(Ly;1, ,-10f) (6, 0, 0) :¢x A(4, N x M, (4, ')—> ¢, where
¢, denotes the left translation of the Lie group (Mab)".

For fixed oA (4, I'), the map p,:G —> ¢,

o (cN)'of (e, to, 0)(cN) —e
t 9

p,(cN) =lim
t—0

defines a cocycle. Using the isomorphism I and setting y=a(cN), we
have, for zey1(U,),
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I(pg;) (CN) (Z)
:1_ T® (T(Z) C) _ z _ 2 d
7 Lok - | c-orod
=g, @ OROE 5 0w

—-1

1y ot — L
- 78% (0O = ~ L,V (2).

Thus, the cohomology class of I(p,) is —%B(go). Similarly, for fixed
#EMCHH(A) r)a the map q#:G — 9,

0, (cN) = lim 2 eM T'ef (e, tO () eN) —e

t->0

also defines a cocycle. The cohomology class of I(q,) is JoB*(y). By
the correspondence Z!(G, ¢) 3z «—(z(¢;N), ..., 2(c,N)) €%, we may regard
ZY(G, 9) as a subspace of ¢". Then, recalling Theorem 2, we see that

“4.1) M=Imd(L,. _,-yof) (e, 0, 0)=PZ\(G, 9.

Let {w,} .., be the set of the defining words of G. One can define a
holomorphic map F,: (Mdb)" —> Msb by F,(g,...,8) =wWa(gs+es &)
for each a€A4. Then we have

LA'—/\ KCI‘ d(F OL(T

as 4

Ty)) (e’°°°, e):ZI(Gy g).

Also, let w, be a word in the generators that corresponds to a loop
around a puncture of § (f&B), and define a holomorphic map Fj:
(Mob)— C by Fy(g,...,8) =trace’ wy(g,...,&). Then, setting L=
ﬂ/E\BKer d(FgoLq,. . .r5) (es...,8), we see that

(4.2) L=L,nLy=PZG, ).

It follows from (4.1) and (4.2) that L=AM.
Clearly, we have

(Fa oLq.. . 7)) (Lop.... —1)°f)=Fa0f=const.=e
and (FBOL(Tl 7r)) o (L(T_ —1) Of) Fﬂof: 4.

Consequently, by Weil’s lemma [16, Lemma 1], there exists a neigh-
borhood E of (e, 0, 0) in Mébx A4, ') x M_,,(4, I'), and a neighborhood
E of (e,...,¢) in (Msb)" such that

L(r{' ..... wh of 1 E—

(N (FooLg,.., )@} N AN Fpo L, DI NE
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is a biholomorphic homeomorphism. Since L,
bijection of (Mdib)",

7, is a holomorphic

SiE—(NFP@)n N Fi@®) nE

is also a biholomorphic homemorphism, where E'=L T)(E,)' Note
that {N\F; ()} N {N\ F;'(4)} =Hom, (G, Méb) and that E’ is a neighbor-
a4 BeB
hood of 6= (7y,...,7,) in (Mdb)".
This completes the proof of Theorem 1.
The followings are corollaries to Theorem 1.

Corollary 1. Let 4" be a component of a finitely generated (non—elementary)
Kleinian group I' and set I =stab(d4’). Let F be the Fuchsian model of I
via a holomorphic universal covering map h:U —— 4, where U is the upper
half plane. Let p: F —— I denote the canonical surjection, that is, hog=
p(g)oh for all g&F. Then, Hom,(F, Méb) is a complex manifold of
dimension 2 dim A(U, F)+3 in a neighborhood of p.

Proof. There is a bijective homomorphism t:G —— F such that por
=0, where G and ¢ are as in Theorem 1. 7 induces a homeomorphism
t* :Hom,(F, Mob)——> Hom,(G, Msb), t*(y) =yxor. Since t*(p) =0, the
corollary follows at once from Theorem 1. g. e. d.

Corollary 2. Let I' be a (non-elementary) Kleinian group generated by
finitely many elements vy, ..., 7,. Let 4 be an invariant union of components
of I'. Assume that 4/I" is a single Riemann surface. Fix {,ed— {elliptic
Sixed points} and denote by Wy, the function element near w*(C,) that
satisfies SWyiuyw=R (1) () and is normalized at w+(C,). Then there are
neighborhoods V of (e, 0, 0) in MobXx A(4d, I'Y x M., (4, I'), and W of id=
(5 0ees 7)) in (M3b) such that the following properties are valid :

For each yeHomy,_,(I', Mdb) N W, there is a unique (g, ¢, p)EV such
that Wy determines a one-valued meromorphic function on w*(4) and that

(4.3) goWr@owor(2) =x(r) ogo W @ ow* (2)
Sor all yel' and z&4.

Proof. We shall use the same notation as in the proof of Theorem 1,
except for 7,...,7,. ¢ induces a continuous map o*:Hom, ,(I', Mib)
—— Hom, (G, Mib), a*(y) =yoo. There is a neighborhood W of (7,...,
7,) in (Mab)" such that Hom,_,(I", Mdb) N W C (¢*)*(Hom,(G, Mdb) N E").
Take V=E'. If yeHom,_,(I', Mdb) N W, then there is a unique element
(g, ¢, p) eV such that Wy, determines a meromorphic function on
wt(4) and that (4.3) is true for all y&l” and z€4'. By Lemma 4,
Wrewe can be extended to w“(4d—4") so that (4.3) is also true for all
rel and zed. g.e. d.
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Remark. A homomorphism yeHom(I', Méb) is said to be allowable
if trace?y(y) =trace’s whenever 7 is elliptic or parabolic (cf. Bers[3] or
[4]). From Corollary 2, one easily sees that if yeHom,_,(I", Msb) NV,
then trace? y(y) =trace’y whenever y is an elliptic element with one of its
fixed points in 4, or a parabolic element corresponding to a puncture of

4/I' (cf. [3, Lemma 3]).

§5. Quasi-stability.

Let I" be a Kleinian group generated by finitely many elements 7,
«ees7» and let 4 be an invariant union of components of I'. We assume
that 4/I" is a single Riemann surface. We fix {,=4— {elliptic fixed points}
to define the normalized function element Wg,, near w*(&). S(4, I
(or §,.(4, I')) will denote the set of all pairs (¢, p) €44, I') XM,
(4, I'), such that Wy, defines a one-valued meromorphic function on
w*(4) and that Wpyy,ow* induces an element of Hom,_,(I', Mib)
(or Hom, (I, M¢b)). This induced homomorphism is denoted by T(p,
m)=Tr, (¢, ). Note that S(4, I') (or S,.(4, I')) does not depend
on &,

Recall the definition of the map @ (see §3, (2)). I is called quasi-
stable if, for each neighborhood E of 0 in M(2, I'),, one can find a
neighborhood E’ of id= (..., 7,) in (Méb)" such that

Hom, (I', Msb) NE' c®p(Msbx E).

Theorem 3. Let I' be a finitely generated (non-elementary) Kleinian group
and let 4 be an invariant union of components of I'. Assume that 4/I" is a
single Riemann surface. If I' is quasi-stable, then there is a neighborhood B
of (0, 0) in A(4, I'YxM,,,(4, T, such that for each (¢, p) €S,.(4, I') N B,
Wrw iS5 univalent on w*(4) and has a quasiconformal extension to C —wH(4)
which is compatible with w#olo(w*)~\.  Furthermore, this extension can be
chosen so that its complex dilatation belongs to M., (w*(2), wtol'o(w*)™),
where 2 donotes the set of discontinuity of I.

Proof. Let V and W be as in Corollary 2 to Theorem 1. We fix a
system {y,...,7,} of generators of I'.

Let (g, peMibxM,, (2, I'),, We set #f'=p on 4 and ¢ =0 on
C—4. Define pLeM,.,, (w’(2), w'olo(w*)™Y), so that w*=w*"ow*, Ex-
plicitly, ¢"=((w*)*, )7'¢ on w*(2—4) and ¢"=0 on w*(4UA), where
A=€—Q. Since w* is meromorphic and univalent on w# (4), Sw* e
Aw” (4), w¥ol'o(w*#)™) and its norm is bounded by some constant not
depending on g (cf. Beardon-Gehring [2, Theorem 1]). Setting ¢=
R(p)*(Sw*"), we define g Mib so that gow* =goWpg., on w(4).
We have obtained a map j: (g, )r——>(g, ¢, ). To see that j is con-
tinuous at (e, 0), suppose that (g, p)——(e, 0) (n ——> o) and set
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(& ) = (& @u ). {¢,} is a bounded sequence in A(4, I). If {go,,k}
is a subsequence converging to ¢, then Wg,, ,, ,——W, uniformly near
o M )

f,e4. But, since gowi— ¢ uniformly near {, ¢ must be 0. Thus ¢,
—— 0 and hence §——e¢. This means that j is continuous at (e, 0),
and so we can find a neighborhood N, X N, of (e, 0) in Mobx M, (2, I'),
such that j(N,XN,) cCV.

Now the quasi-stability of I' implies that there is a neighborhood W’
ofid=(yy, ..., 7,) € (Msb)" such that Hom, (I', Mib) N\ W' C@r(N,X Ny N W
(cf. Sakan [15, Lemma 2]). There is a neighborhood V' of (e, 0, 0) in
Misbx A4, I')xM,,, (4, I'), so that V'cV and all homomorphisms of I'
induced by some (g, ¢, #) €V’ belong to Hom, ,(I', Msb)nW'. Let B
be the image of V' under the natural projection Mdbx A(4, I') x M.,, (4,
I'y—— A4, " XM, (4, ). Bisa neighborhood of (0,0)cA, I') X
Mcan(A, F)l'

If (¢, p) €S,.(4, I') N B, then there are some ycHom,_,(I", Mib) N W',
gEMob and (h, v) N, X N, such that (g, ¢, p) €V’ and that

goWriyowor=x(r) ogoWry@ow* (on {’)
and how?or =y () chow” (on C)

for all y&I'. On the other hand, (%, ¢, V') =j(h, v)EV and
E°WR<uf)<¢)°wDI°7‘:X(T) °5°WR<»')(¢)°wD’ (on 4)

for all yel’, where Wy =htohow’s(w”)™! on w*” (4). Therefore, by
uniqueness, Wy, =A "ohow’s (w”) ™" on w*(4). q.e. d.

Remark. Bers conjectured in [4] that all finitely generated Kleinian
groups should be quasi-stable. Krugkal’ [10] answered to this conjecture
in the affirmative. Unfortunately, however, it would seem hard to me to
follow his argument.

§6. Criteria for quasi-stability of finitely generated function groups.

Theorem 4. Let I' be a finitely generated (non-elementary) Kleinian group
with an invariant component 4. Set T=Tr, with fixed Coed— {elliptic fixed
pointsy. Then the following four conditions are equivalent to each other:

(1) I is quasi-stable.

(ii) There is a neighborhood B of (0, 0) in A(4, I') xM,,, (4, I'), such
that Wy mow*(4) # € for each (g, 1) €S,.(4, ') N B.

(iii) There is a neighborhood B of (0, 0) in A(4, I') xM,,, (4, I'), such
that T (¢, p) (I') acts discontinuously on Wyyymow*(4d) for each (¢, p) e
S,.4d, I'YNB.

(iv) There is a neighborhood B of (0, 0) in A4, I') X M.,,, (4, I'), such
that for each (@, p) €S,.(4, I'YNB, Wgiy s univalent on w*(4d) and has
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a quasiconformal extension to C —w*(d) which is compatible with w*ol o (w*) L

Proof. Let F be the Fuchsian model of I' via a holomorphic uni-
versal covering map h:U —— 4, where U denotes the upper half plane.
For peM, I'),, we set h,=w*oho(w,)™}, I',=wtolo(w*)™, 4,=w*(4)
and F,=w,oFo(w,) !, where v=h* ¢ and w, is the unique quasiconformal
automorphism of U, with the complex dilatation v, that fixes 0, 1, oo.
h,:U~——4, is a holomorphic universal covering map and F, is the
Fuchsian model of I', via h,, We denote by p and p, the canonical
surjective homomorphisms FF —— I' and F,— I',, respectively.

(i)=(ii) : This is a direct consequence of Theorem 3.

(ii) & (ii) : Since S(Wreypoh,) = (h)F (R(w) (9))+Sh,eAU, F,) for
every (¢, ) €S54, I'), it follows from Kra [7, Theorem 1] that (ii) and
(iii) are equivalent to each other.

(1i)=>(@v) : If I' is quasi-Fuchsian, then the result is clear since I’
is quasi-stable.

Suppose that I' is not quasi-Fuchsian. Let (o, p) €S,.(4, I') N B.
For convenience, we set W =W, . There are some yc=Hom,(I', Mdib)
and a quasiconformal automorphism w of C such that

Wor=x(p)oW  and  wor=yx(y)ow

for all yeI',. It follows from the assumption and [7, Theorem 1] that
W4, and w(4,) are invariant components of y(I',) =wol ,cw™". Thus,
by Maskit [11, Theorem 2], W(4,) =w(4,) because x(I',) is not quasi-
Fuchisan.

Moreover, Woh,: U — W(4,) is a universal covering map (cf. [7,
Theorem 1]). Let F, be the Fuchsian model of x(I",) via Woh, Clearly,
F,C F, since for every geF,, Woh,og=Wop,(g)oh,= (x°p,(g))oWoh, On
the other hand,

Area(U/F‘,‘) =Area(w(4,)/x(I",)) =Area(4,/I',)) =Area(U/F,),

where Area(S) denotes the Poincaré area of a Riemann surface S, so we
must have F,=F,.

To show that W is univalent, assume that W () =W ({,) =w, We
connect §, with {, by a curve ¢ in 4, and denote by ¢ its lift to U via
h, with the initial point 2, and the end point z,, Then ¢ is a lift of
W(c), a closed curve beginning at w, to U via Woh, and hence there
is some ge F,=F, with g(z) =z, such that Woh,g=Woh, on U, Since
Woh,=Woh,eg=Wop,(g)oh,= (xop,) (&) oWoh,, it follows that yop,(g) =e
and p,(g) =e. Hence we have

Co=h,(25) =h,0g(z) =p,(8)oh,(z) =h,(2) =C,.

Thus, W is univalent.
We have shown that w oW :4,—— 4, is quasiconformal and that
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wloWoyr=row oW for all y&I',. Therefore it follows from Maskit [12]
that the function u, u(z) =w oW (z) (z€4,) and u(z) =z (z€ (:'—A#), is
a quasiconformal automorphism of C. wou is a quasiconformal extension
of W and is clearly compatible with I',.

(iv)=>(i): Let {4}%, be a complete list of non-conjugate components
of I' with 4,=4 (k may be 0) and let I',=stab(4;) be generated by
Tiyewes 7o (1=0,..., k). Note that I';=1I". Since .LkJo {ri}19) is a system of

generators of I', we may consider that

Hom (I, Méb) c (Mob)"® x ... X (Mdb)"® = (Mab)".

For i=0,..., k, let p;: (M6b)Y —— (Mob)"® denote the natural projection
and let 2; be the set of discontinuity of I, For 0<t<l, we set

Nt(t) = {ﬂEMcan(Qia Fi)ll “#”oo<t} (i:09 o0y k)
and N ()=M.,,, (4, I, NN ().

Next, let V=V, xV,XV,; and W be as in Corollary 2 to Theorem 1.
We may assume that V,xV,CB and V,CN'(t). Moreover, we can
assume that W is so small that for i=1,..., &,

pl(W) ﬂHoch(Fi, Mb'b) C@pi(leN;(t)),

since each I'; (i#0) is quasi-Fuchsian and hence quasi-stable.
If yeHom, (I, Mdb) N W, then there is some (g, ¢, ) €V such that

goWriy@ow*or =1 (1) ogo Wy o

for all yeI'. Set w=goWpg,y@mow". The assumption implies that w has
a quasiconformal extension which is compatible with I'.  We denote it
by the same letter w.

Since x]p‘.ep;(W)nHoch(F,-, Msb) C@r (Vi x N:(8)) for i=1,...,k,
there is a quasiconformal automorphism f; of C with the complex dilata-
tion g, €N;(8) such that y(y) =fioyofi! for all y&l';, Because wlof;or
=rowlof; for all yel';, we have w(4,) =f;(4;) (cf. [12, Corollary 2]).
Set u(z) =w(z) (z€4) and u(z) =x(p)ofior™(2) (z€y(4), yel’). Then
u is well defined (cf. the proof of Lemma 4). Furthermore, we have
wlou(2) =2, and wlouoy=yowtou for all y&rl’, for,

u(r(d) =x@) ofi(d) =1 (1) cw (4:) =w (7 (4;))
and uoy (2) =x(yory) of oy (2) =worow=tou(z) (z€1,(4)).

Thus, it follows from [12] that u can extend to a quasiconformal auto-
morphism of Cif we set u=w on C—2, The complex dilatation of u
is in N,(#) and woyou l=woyow™'=x(y) (r&I’). Hence, we have ye&
@r(Mob X No(2)). Thus Hom, (I', Mdb) N W Pr(Misbx Ny(t)) and so I’
is quasi-stable. q.e. d.



Kleinian groups 591

Remark 1. The part (iv)=>(i) of the above proof is due to Sakan
[14].

Remark 2. Let I' be as in Theorem 4. If I' is quasiconformally
stable, then by Nakada [13, Theorem 3] and Sakan [15, Theorem 1] I"
is also quasi-stable. (For terminology used here, see, for example, [15]).
In this case, one can choose a neighborhood B of (0, 0) in A(4, I') X
M., (4, I'); such that if (p, p) S, I')NB and T(¢p, p) is parabolic,
then Wp, ¢, is univalent and can extend to a quasiconformal automor-
phism of €. The proof is similar to that of Theorem 3.
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