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The theory of Finsler subspaces may be developed after the model of
Riemannian geometry. In the early years of Finsler geometry, closely following
E. Cartan, made M. Haimovici fundamental and essential contributions to the
theory. Since then, various interesting results on Finsler subspaces have been
found by O. Varga, H. Rund and others. It seems, however, to the present
author that there had to be unevitable obstructions to develope the theory of
Finsler subspaces analogously to the Riemannian theory, and, as a consequence,
almost all the existing literatures are not easy to understand and confused nota-
tions sometimes bewilder the readers. The first among those obstructions is
perhaps surviving of quantities which are derived from Cartan’s C-tensor, given
by (1.9), and cause, for instance, the non-symmetry property of the second
fundamental tensor. The second, a consequence of the first, is that the induced
connection, defined by the projection, does not generally coincide with the in-
trinsic connection, determined from the induced Finsler metric, and that the
former is beyond the usual concept of connection appearing in Finsler geometry.

The quantites, derived from the C-tensor, are rather useful for enriching
the Finslerian theory and, in fact, we have Brown’s interesting work which
was devoted to studying the behavior of those quantities. The problem of in-
duced connections is just the initial motive for the author in beginning the
theory of subspaces. Theorems 5.1 and 6.2 are satisfactory answers of the pro-
blem from an axiomatic standpoint, based on the author’s theory of Finsler
connections, and propose new important problems.

Now a Riemannian space of constant curvature, as is well known, is charac-
terized among Riemannian spaces by the property that there exists a totally
geodesic subspace at each subspace-element. M. Haimovici is the first who was
concerned with some generalizations of this property to Finsler geometry. After
thirteen years S. Kikuchi solved part of this Haimovici’s problem and finally A.
Rapcsak might show nearly perfect solutions. The second main purpose of the



108 Makoto Matsumoto

present paper is to give perfect proofs of Haimovici-Kikuchi-Rapcsak’s results
and, in particular, to conclude Theorem 9.1. As a consequence, together with
the author’s previous result, it is pointed out that a projectively flat Finsler space
of dimension more than two is to realize the projective geometry with respect
to a rectilinear coordinate system.

The terminology and notations are referred to the author’s monoraphs ([26],
[28]) and especially the quotation from the latter [28] is sometimes indicated
only by putting asterisk.

§1. The induced Finsler metric.

We consider an n-dimensional Finsler space F*=(M™", L(x, y)), a differen-
tiable n-manifold M™ equipped with fundamental function L(x, y) which is as-
sumed to be (1)p-homogeneous in y=(y?), yi=zx* ((22.6) of [26]; *Definition 12.1),
and to yield the regular fundamental tensor field g;;(x, y):(3i3,L2)/2. (Through-
out the present paper, Latin indices take values 1, -, n.) We put l;=3;L as
usual, but Cartan’s C-tensor C[jkz(ékgij)/Z is denoted by gi;r to avoid confusion.

A hypersurface M™! of the M™ may be represented parametrically by the
equations x*=x%u%), a=1, ---, n—1, where u* are Gaussian coordinates on
M™-1, (Greek indices run from 1 to n—1.) We usually assume the matrix con-
sisting of the so-called projection factors Bi=0dx?/ou® is of rank n—1. Then
B, (u)=(Bi(u)) may be regarded as n—1 linearly independent vectors tangent to
M™-1 at the point (#%) and a vector X' tangent to M"~! at the point may be
expressed uniquely in the form X'=B.X® where X* are components of the
vector with respect to the coordinate system (u®).

To introduce a Finsler structure in M™~!, the supporting element y® at a
point (u%) of M™"! is assumed to be tangential to M"!, so that we may write

1.1 yi=Bi(u)~.

Thus v* is thought of as the supporting element of M"! at the point (u%).
Denoting y¢ of (1.1) by y(u, v), the function

1.2) L(u, v):=L(x(u), y(u, v))

gives rise to a Finsler metric of M"~'. Consequently we get an (n—1)-dimen-
sional Finsler space F"!'=(M""', L(u, v)). The fundamental function L(u, v)
of this Finslerian hypersurface F"! of F" is called the induced metric on F™ 1.

In the following we employ the notations

B,’;ﬁ =85B}, , Bé,g ::Uch[,ﬁ , Bf,j"g'f“ :B;Blfg

It then follows from (1.1) that
(1.3) 0a=Bid;+Bisd:, 0a=Bid;.

The induced metric L(u, v) yields la=04L, the metric tensor g,,ﬂz(é’aéﬁy)/z
and Cartan’s C-tensor g.p,=(0,845)/2 of F™'. Paying attention to 03B{=0,
from (1.2) we get
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(1.4) lo=U:BY, g.5=8i;Bls, gapr=8issBif;.
At each point (%) of the F* ', a unit normal vector Bi(u, v) is defined by

gi{x(w), y(u, v))Bi(u)B=0,
gij(x(u), y(u, v))B*B'=1.

(1.5)

This normal vector Bi(u, v) depends clearly on the supporting element y“(u, v)
and so it should be said that we have a normal cone B*(u, v) at the point (u%).
As for the angular metric tensor h;j=g;;—/({; (1.4) and [;B'=0 yield

(1.6) hiB¥s=has, hyBiBI=0, hyB'B/=1.

Remark. Pay attention to n' and n** of Rund [10], p. 372 and [13], p. 190.
See also the remark below the equation (1.17) of Rund [17].

Thus we get the regular matrix (B, BY). Let (B7, B;) ke the inverse
matrix of (BZ, B?); we have

(L.7) BiB#=¢f, BiB;=0, B'B¢=0, B'B;=1,
and further
(1.8) BiBS+BiB;=0;.

Making use of the inverse matrix (g*#) of (gap), we get B%:g“ﬂgijB,’g, B;=
gi;B%, and quantities B,;:=Blg;;=Bfg.s and B*:=Bjg'’=B}g*? will be used
later on.

Lemma 1.1. Let X.5/u, v) be the projection Xi;uBik, of atensor Xizu(x, ¥)
into F"_l, and put XnvﬁZXijkalj;gBk, X,,ZXU;,B};BJ'B" and X':XijkBiBjBk.
Then we have

XijuBs=Xap,; Bit+X.pBs, XijwBiB*=X.sBi+X.B;,
X:;»B'B*=X,B7+XB;.
Proof. From (1.7) we have
XapBi=(Xiny B B*)B8= X, BiB*(0, —B"B;)=X; ;s B:B*— X B’ .
The similar way shows the other two equations. Q.E.D.
We now introduce important tensors from Cartan’s C-tensor g;j::
(1.9) Mas=gi;s BB, M,=g:;:BiB’B*, M=g;:B*B'B*.
From Lemma 1.1 we immediately get
Gisn Bis=gapyBi+MspB:, gije BiB*=M,3Bf+M,B;,
gieB'B*=M,B{+MB;.

(1.10)
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Next, differentiating (1.5) by v?, we get
2, BY%Bi+gi;BidsB’=0,  gi;,B'B'Bl+g:;B9;B'=0,
that is to say,
2M, 5+ B.a0sB'=0,  Ms+B;0,B'=0.
Thus, putting Mg=g*"M,s, we get
(1.11) 0sBI=—2M§Bi—M;B7 .

Proposition 1.1. (1) The v-dependence of B and B; are shown by
0sB§=2M5B;,  33By=M;B;.
(2) Putting G=det(g,;) and G=det(g,s), we have My=1{d10g(G/G)} /2.
Proof. (1) It follows from (1.10) that
0sB1=05(g""g1;B)=(—2g¥ g, +2¢7g:;4 B) B
. =—2g8Bi4+2g°7(g s, B+ Mg, B;)=2M3B; .
Similarly we have
03B;=04(g:;B))=2g:;4 B5 B+ gi(—2M§B1— M, BY)
=2(M§Bai+MsB:)—2M§Bai— MyB;=MgB; .

@) It is well-known that (3;log G)/2=g; (=g/) (*(24.1)). From (1.8) we
have
Ms=gi;sBh(g’* —g"°B}BY)=g:Bj—gp,:8",
that is,

1.12) Mz=g:Bl—gs,

which is the equation we should prove.

Finally we shall show
(1.13) 8',Mg——3,g]VI;’—|—1\/[gM,—M;’M,g:O,
which is equivalent to
(1.13) 0, My 5—05 Myt Msy(2g 85— Mg)— Mys(2g 8,— 5% M,)=0..
It follows from (1.11) that
a.r—]‘/[aﬂza.r(ghingfsBj)za'kghinggﬁ'Bj_ZggﬁMdr_MaﬂMry
which implies (1.13’) immediately.

Remark. It seems that Rund [19] especially paid attention to great im-
portance of M’s defined by (1.9), and Brown [20] studied them in detail. It is
noted that their M’s are equal to our LM’s, (0)p-homogenized tensors. (1.11)
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and facts mentioned in Proposition 1.1 were all shown by Brown [20]. As to
(1.13), see Theorem 4.1 of [20].

It is hard to understand that the second term of the right-hand side of (1.11)
does not appear in the equation (17) of Davies [8]. His reasoning for (17) seems
to come from 3,gBi=0 (in our notations), contrary to our result. Following
Varga [14] and [15], if a hypersurface M""! is to be given by an equation
D(xY, -, xM)=0, we get 0,P(x(u)=@;Bi=0 (9;=0;D), and so B;=0;(x(u))/C
where C is the length {g¥(x(u), y(u, v))@;P;}'/* of P, relative to a supporting
element v® Therefore B; certainly depends on »<.

§2. Induced Finsler connection.

We are concerned with a Finsler space (F", FI') equipped with a Finsler
connection FI'=(Ff, Ni, Cj) (cf. [26], [28]). In this section we have not to
do with any relation between the Finsler metric L(x, y) and the connection FI.
Simply speaking for the following use, the Finsler connection FI' is such that
the absolute differential Dy* of supporting element y® is given by

2.1) Dyi=dy*+Nix, y)dx?,

and the absolute differential DX*® of a Finsler vector field X(x, y) is

2.2) DXi=d X'+ X/ {[jx, y)dx*+Cji(x, y)dy*},

where we put Ij=F},+Cj,Nt. If DX'=0 along a curve (x%(t), y'(t)) of the
tangent bundle T(M™), X* is said to be parallel along the curve (x%(t)) of M™
with respect to the supporting element y({). In terms of dx* and Dy* we have
(2.27) DXi=Xidx*+ X, Dy*.

The h- and v-covariant derivatives X%, X'|, of X* are defined by

(2.3) Xi=0, X'+ X"Fiy,  X'|,=0, X'+ X"Ci,,

where 8,=0,—N!0p.

Let F*'=(M™"!, L(u, v)) be a Finslerian hypersurface of the F». It is noted
that, along a curve (u*()) of F*!, dx* and dy* of (2.2) are written as dx*=
Bt (w)du® and dy*=Bt,(u)du*+ B (u)dve.

Definition. The induced (Finsler) connection IFI" on a hypersurface M""!
of a Finsler space (F", FI') is such that the absolute differential Dv® (resp. DX%)
of the supporting element v* (resp. a Finsler vector field X*) is given by Dve=
BtDy' (resp. DX*=B}DX"), where y*=Biv* (resp. X'=BL.X*).

Putting IFF=(F§,. Ng, C§,) and F§,=F§,+C§5N", we have Dv“:dv“-l—N‘ﬂ'duﬁ,
which is defined as
B%(dy"-l—N}dx")zB'{{(Bg,gduﬁ+B§dvﬁ)+N§B,§duﬁ} ,

which implies
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(2.4) N§=B$(Bisg+N:iB}).
Next DX¢=d X%+ X(['§,du’™+C§,dv") is written as
Bi{d X+ XL judx*+Cd y®)}
=B$[(B,XPdu'+B}d XP)+ B4 XP I} Bidu™+Ci(Bldu'+ Bidv)} ],

which implies

(2.5) I'§,=B¢{B},+ B3I }.B}+C;.Bi))} ,
(2.6) C§,=B3C}L,BY%;.

If we put
2.7 Hg:=B(Bis+NiB}),

this, together with (2.4), yields

2.8) Bi,+NiBj=N¢Bi+H,B*.
Therefore (2.5) is now rewritten as

2.9) F§,=B${Bj,+ B}(F},B}+C},B*H,)} .
Consequently we may conclude

Proposition 2.1. The induced connection IFI™ =(F§,;, N3, C§,) on a hypersurface
M™=t of the Finsler space (F™, FI') is given by (2.9), (2.4) and (2.6).

Similarly to (2.7), if we put
(2.10) Hpg, :=B{B},+B}(FjB}+C}iB*H,)} ,
this, together with (2.9), leads to
(2.11) B}g},+Bg(F;;B?-}—Cf;B”H,)=F‘5,B§.+Hﬁ,Bi .

The Finsler vector field Hg, defined by (2.7), will be called the normal cur-
vature vector due to its geometrical property (cf. (7.5)). On the other hand,
Finsler tensor field Hyg,, defined by (2.10), will be called the second fundamental
h-tensor (cf. (3.5)) by the analogy of Riemannian geometry.

The tangential component BfDy* of Dy® is by definition equal to Dvf, while
the normal component B;Dy? is

B:Dy'=B(dy'+Njdx’)=By(Bjg+N;B})duf .
Therefore from (2.7) we get
(2.12) Dy'=DvfB}+HgdufB'.
Next, substituting from (2.8) and (2.11), we get
B+ By B3+ CfiBty) =Cj BEsN}+ F5,Bi+Hg, B,

which implies
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Bi{B},+Bi(I'}iBj+C}Bt)}) = B:CL BN+ Hg, .

Thus, if we put
(2.13) Kg;:=B,C}iBYs,
the above, together with (2.5), yields

B+ By Bs+CfyBty) =15 Bi+(Hg,+KgsN}) B
Therefore, similarly to the case of Dy’, we get
(2.14) DX'=DX*Bi+X“(H,pdufP+K,;DvF)B*.

The Finsler tensor field Kg; defined by (2.13), will be called the second
fundamental v-tensor (cf. (3.6)).

We shall be concerned with the torsion tensors and other important tensors
of the induced connection IFI" and F™!. First, taking the skew-symmetric
part of (2.11) in 8 and 7, we get

(2.15) T B4 +Cj ByH,— BiH3) B*=T%,Bi+(Hs,—Hy5) B ,

where TjH=Fj—F§ is the (h)h-torsion tensor of the original FI. Thus the
(h)h-torsion tensor T g =Fg—Fy% of IFI" is given by

(2.16) T4,=B{ (T}, B +Ciu(B4H,— BiHg) B*} ,
and we have
(2.17) Hg,—H,3=B{T}B¥~+Ci,(B3H,—BiHg)B*} .

Secondly, contracting (2.11) by v# and subtracting (2.8) from it, we get the
deflection tensor Df=vPF§,—N¢ and Hy—H,(H,, :=vPHp,) as follows:

(2.18) Dy=B3(DiBi+Ci, B*Hy)
2.19) Hy—H,=By(D}Bi+Ci; B*H,),

where D} is the deflection tensor y/F%,—N} of FI.
Thirdly, differentiating (2.8) by vf and substituting from (1.11), we get
B},40,N;Bib=(3sNg —2M§H,) Bi+(3sH,— Mg H,) Bt .
Therefore, comparing this with (2.11), we have the (v)hv-torsion tensor Pfg=
0sN#—F§, and 0sH,—Hp, as follows:
(2.20) Pgs=2H, M3+ B¥(Pi, Bi%—H,C}, B} B*),
(2.21) 3,9HT—H‘@)»=M/3H)/+B1:(P}}¢B;IB—HTC;'kB{;Bk) ,
where Pi, is the (v)hv-torsion tensor 5kN}—Fij of FI.
In general a Finsler connection FI" has five torsion tensors ([26], [28]).
The (h)h-torsion tensor T =(T%,), (h)hv-torsion tensor C=(C%,), and (v)hv-torsion

tensor P'=(P},) have appeared in the present section. The (v)v-torsion tensor
S'=(S%;) is solely Si,=C%,—Cj;; it follows from (2.6) that the (v)v-torsion tensor
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Sg, of IFI" is given by
(2.22) S§,=B$S;:B;.

Remark. We have interesting three pairs {(2.16), (2.17)}, {(2.18), (2.19)}
and {(2.20), (2.21)} of equations. The first equations of these pairs concern
F§, and N§:

T3, =F3,—Ffs, D§=Fg—N§, P§=0,N5—Ffs,
and the second equations present the corresponding forms of Hy, and Hp:
Hg—Hyg, Hyy—Hp, 0,Hs—Hyp.

It should be remarked that these quantities survive in some Finsler connection
(cf. §§5, 6), contrary to the Riemannian case.

§3. Relative covariant differentiations.

We have to consider the integrability conditions of equations (1.11), (2.8),
(2.11) and so on, and then the curvature tensors of induced connection IFI will
appear in those conditions. To do so we shall introduce the so-called relative
covariant differentiations.

The projection factors Bi(u) are quantities which behave as components of
n—1 contravariant vectors B,=(B!) in F™ and also those of n covariant vectors
Bi=(B}) in F*'. We are concerned with such a set ¥ of functions Y¥j(u, v)
defined along F™-!. The relative h- and v-covariant derivatives of Y are defined
as follows:

First the relative h-covariant derivative is

(3.1) Yig, :=0,Y i3+ Y §FL,—YisFs+Y RFg—Yi§ F3,,

where 8,=d,—N?0; are d-differentiation with respect to the nonlinear connection
N§ of the induced connection /FI, F§, are connection coefficients of IFI" and
ir are so-called mixed connection coefficients given by

(3.2) Fi.:=F};B{+C};B’H,,
which appear in (2.11). Secondly the relative v-covariant derivative is
(3.3) Yigl, i =0,Y +Y CL—Yi5Ch+Y hCs— Y 35Ch,,

where C§, are connection coefficients of IFI" and Cj, are mixed connection coef-
ficients given by

(3.4) Ci,:=C}i,Bi.

Remark. The covariant differentiations with respect to both of connection
of an enveloping space F™ and of induced connection were first studied in Finsler
geometry by Hombu [4] and applied to various geometrical theories by Varga
[71, Davies [8] and others. See (V.4.13) of Rund [13].
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We first apply the h-covariant differentiation to the projection factors B
and obtain

(3.5) Bis=H.sB*,

which is nothing but (2.11). As to the v-covariant derivative Bi|z of B, it is
observed from dgBi=0 and (3.4) that Bj|,= teBiB}—Cg,Bi. Therefore Lemma
1.1 and (2.13) lead to

(3.6) Bj|,=Ks, Bt .

Now we consider the d-differentiation d; with respect to IFI. It follows
from (1.3) and (2.8) that

(3.7 05=B}0,+BH;d; .

Let Yix, y) be a tensor fleld of F*. Along F*! we easily obtain
3.8) Yip=Yi,Bs+Y%|.B*Hpg, Yilg=Y%.B%.
Applying this to the fundamental tensor g;; we get

3.9) giyp=8iseBh+gi;1+B*Hg,  gijls=gi;1:+B%.

We now consider the relative covariant derivatives of the unit normal vector
Bi(u, v). (1.5) gives

gijpBiB/+gijHapB' B+ Ba;Bip=0,  gi;sB'B'+2B;B{3=0,
which imply
(3.10) Big=—H,sB*+g,.p(B'B’/2—g"))B*
Similar way leads us to
(3.11) Bi|g=—K,sB*+ g | p(B'B//2—g")B* .

It is easily verified by means of Lemma 1.1 and (3.9) that (3.11) is equivalent
to (1.11).

We shall deal with the induced metric L(u, v) of F*'. L,,=d,L and (3.7)
yield L,g=Bd;L+B'Hsd,L. Since [;=0;L is orthogonal to the unit normal
vector B?, we get

(3.12) Ls=BjL,.

Next (1.4) and (3.5) give gapy=gi;;B%s. Therefore (3.9) leads to the first
equation of the following (3.13). Similarly we obtain

(313) gaﬁw:gijlkBij;r‘l'gijlszjﬁBkH » ga,8|r:gij|kBiy]gr-
Proposition 3.1. (1) If a Finsler connection FI of the enveloping space F™

satisfies L;=0, the induced connection IFI" of any hypersurface F™ ' does L,z=0.
(2) If FI' is metrical (gije=g:;1:=0), IFI" is also metrical.
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§4. Generalization of the Gauss and Codazzi equations.

We are concerned with commutation formulas of relative covariant differen-
tiations, generalizations of the Ricci identities. First we treat a scalar field
Y(x, y) of the enveloping space F”, to which the Ricci identity with respect to
the induced connection IFI" applied:

Yigr=Yips=—YuTh—Y [«R%,.
By means of (3.8) and (3.5) the left-hand side is written in the form
s {(Y;BE+Y | B*Hp),,}
=Wap (Y e Bf+Y 51« BEH) By +Y ;Hg, B
+(V | p;Bi+Y || ;B’H,)B*Hp+Y | (B Hg+ B*Hp,,)}
=i =Y )BE+( 1o =Y | w1, XBEH, — B{Hg) B*+Y \j(Hg,— Hy5) B
+Y [Ny (HgBYy+Hg,B* . (See *Remark 5.1.)
Then, by applying the Ricci identities of FI, we have
=(=YuT§—Y |:R}e) B, +(—=Y ,Ci—Y | :Pj:)(B4H,— B{Hz) B*
+(Hoy—Hyp)Y i B*+Y | M (g {Hg Biy+Hpy, BY} .
On the other hand, the right-hand side is written as
—(YuBi+Y|;B'H)T§—Y | ;:BiRj,.

Therefore, equating the terms containing Y;, we obtain (2.15). Equating the
terms containing Y'|;, we get

4.1) BiR%+B'H,T3=R%Bis+Piu(B4H,— BiHs)B*— U s, {Hs Bly+Hp, B} |

where the tensor B}, is already given by (3.10).
Secondly, from the Ricci identity

Yigl, =YY= —Y..C5,—Y| «Pj;
we obtain

4.2)  BiCj=Ci,Bk—KsBt,
4.3)  BiP§+B'H,C§=PiBi+SiyBiHsHi— By Bi|,—(Hs|,—H,s) Bt .

The former is clear from (2.6), (2.13) and Lemma 1.1. The term Bt|, of the
latter is already given by (3.11).
Thirdly the Ricci identity

Yigh=Ylls==Y1aS3;

immediately gives

4.4) BiSt, =S5, B¥y— (K, —K,5)B*,
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which is only a consequence of (4.2). Cf. (2.22).
Now we shall deal with a vector field Y%, and first consider Y} g, —Y iiyia.
Direct calculation (cf. *(10.11)) leads to

Y};.,snr—YJ;m,s=Y{;K},9T—Y.§K3ﬂ7—Yé.aT,%’r—(éaY,’;)Rgr ,
where Kﬁﬂ, is the K-tensor of IFI (cf. *(10.17)), i.e.,
K2, =W pp 16, F2s+FisF5 =Ris,—ClRj;,

and Kjs, is an analogous tensor to the K-tensor which is constructed from Fjs
defined by (3.2):

(4.5) Kjsy =W oy, {6, Fjs+FlsFis} .

To consider this tensor Kf,, we refer to (3.2) and (3.7), and substitute from
(2.15) and (4.1). Then we get

QI(ﬁT) {6eriﬁ} =(5h jik—aijin+CjilR,l,h)B%';—CjiaRgr
+OnFhi—0:Clut+ChORN B H,— BiHg)B* .
Therefore we have
Kjiﬁr:Rfiﬁr—Cjiang ,
Rjsy =R jin B4+ Piin(ByH,— ByH) B" .

4.5")

Consequently we get one of the relative Ricci identities:
(46) Yilﬁlr_ylilrlﬁ=Y?1Rjiﬂr_Y§Rgﬂr_Y;lﬁTgr'—Yci&|6R%7-

This form is quite similar as in a general Finsler connection. The tensor Rjs,
may be called the mixed h-curvature tensor of IFI.
Secondly we compute Yig|,—Y |, directly and get

@7 Yigl,=Yilnp=YiPls,—YiPig—Y LsCh—Y (|sPf;,
where Pjs, is defined by
“9) Pl :=0,Fjs—35Ci+ FisCi—ChFis+ Clid,N§

similar to the hv-curvature tensor P}, (cf. *(10.16)). On account of (2.20) and
(2.21) this may be written in the form

(4.9) Pjtﬂr:Pjtkthg’;+SjikthHﬁB’; y

called the mixed hv-curvature tensor.
Finally we easily get

(4.10) Yilgl,=Yilsl ﬁ:Y£Sjiﬂr—y§Sgﬂr_Y£|55%r )
where we put
(10 Sy :=Wean 0:Cs +CloCi} =Sfun B},

called the mixed v-curvature tensor.
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Now we apply these relative Ricci identities to Bl. (4.6), together with (3.5)
and (3.6), yields

BL@;,—B;W.,;=B{,R}ﬁ,—BéRg,g,—H,,gB"Tg,—KaaBiR‘fg,.
On the other hand, the direct calculation and (3.10) change the left-hand side to
(HaﬁBi)lr_(HarBi)!ﬁ
=(Haﬂtr_Har|ﬁ)Bi—QI(ﬁr) [Haﬂ {HdrBai_(gjkerjBk/Z)Bi‘l'gjigjkerk}] .
Thus, equating the tangential component, we have ‘
(4.12) REs—BiR 5, Bi=N gy {Hap(B¥g:;, B+ HI)} .
Equating the normal component, we have
(413) HaBTgr'*“]\,adR%r_BiRjiﬂng::QI(ﬁr) {HaﬁgijeriBj/z—Haﬁlr} .

Next, applying (4.7) to B}, we similarly get
(4.14) Plg,—BiPjs,Bi=H,p(B%g:;|, B+ K)— K. (B g3 B'+Hp)

(4.15) H.5Cy+ KasP§,— BiPjs, B}
:(Haﬁgij[rBiBj/z—Haﬁ[r)_(KargijlﬁBiBj/z—Karl,/3)-

Finally, applying (4.10) to B}, we get
(4.16) Sasy— BiSa Bi=Ucap (Kap(B% gi;1;B/+ KD},

4.17) K58%,—B;S}sBi=W sy {Kapgij| ;B B /12— Kapl,} .

Remark. Applying the relative Ricci identities to the unit normal vector
field B?, we shall obtain the equations which are essentially the same with those
obtained above; they will be rather complicated in case where the connection
FI" is not metrical, because of (3.10) and (3.11).

The equations (4.12)~(4.17) are generalizations of the well-known Gauss and
Codazzi equations in the Riemannian theory of subspaces. Each author who was
concerned with the theory of subspaces got those equations or part of them in
rather complicated form. For instance, see (2.23) and (2.24) of Rund [17]. In
this paper Rund dealt with the Rund connection RI" in our sense (cf. §5). Com-

pare his (1.15) with our (2.11). Thus his (2.23) is simpler than our (4.12); Pj»
in (4.7) reduced to our Fj’}e;l=5;,F*;,i for RI" (*(18.2")).

§5. Induced Cartan and Rund connections.

In almost all the existing literatures, the authors were concerned with an
enveloping space F"=(M™, L(x, y)) which is to be endowed with the Cartan
connection CI'=(I'*%}, I'%%, gf) constructed from the fundamental function L(x, ).
According to the theory of Finsler connections due to the present author ([26],
[28]), the CI' is determined from the axiomatic standpoint as follows:
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Definition. There exists a unique Finsler connection FI'=(F}, Ni, C})

which satisfies the following five conditions:

(C1) gijllzzo.-
(C2) (h)h-torsion T j(=F}—FE)=0,
(C3) deflection DY=y"Fi,—N$=0,
(C4) g ijl »=0,
(C5) (w)v-torsion St (=Cj—Ci)=0.

This connection is called the Cartan connection and denoted by CI'=(I"*%E, I'%%, g 4.
The first three conditions give Fj=I"%f, Ni=I"%i, and the remainder two

lead to C4=g}. We shall denote by ICI" the connection of a hypersurface F™-?
induced from the Cartan connection CI” and indicate the quantities with respect

to ICI" by putting “c” on them. Then (1.4) and (2.6) show C§,=g5. But we
usually omit “c” on N§ and Hpg only, because these are common to four connec-
tions we treat in the present paper, as shown in the following. Thus ICI'=

(Fgy, N§, g5

What sort of Finsler connection is the induced connection ICI'? It is ob-
viously metrical (g431,=gqs!,=0) from (3.13). Next (2.18) gives Dc‘;=0. However
(2.16) does not lead to T'§,=0, but from (1.9) we get

C

(5.1) Tg=MsH,—MgHg.
Thus, according to the theory of generalized Cartan connections due to Hashi-

guchi ([25], [28]), we have

Theorem 5.1. The connection ICI" of a hypersurface of a Finsler space F©,
induced from the Cartan connection CI" of F™, is a generalized Cartan connection

which is uniquely determined from the induced metric L (u, v) by the following
five conditions :

(IC)  gapiy=0,
(IC2) (hYh-torsion T3, is given by (5.1),

(IC3) deflection D=0,
(ICY)  gapl,=0,

(IC5) ()v-torsion §§,=0.

We shall apply the procedure to find a generalized Cartan connection to this
ICI” (cf. *p.165). Putting

*(25.4) 2Aasr=Tasy—T pra+Trap=2MuyHs— Mg, H.),
*(25.3) leads to

[
Fag;=Tapy—8apsNi—gproNo~+ GarsNo+ Moy Hg— Mg, H, .
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Thus we get
[ [
F0ﬁ7:r0ﬂr_gﬂrﬁNg_MﬁrH0: Foﬁo(:gﬁaNg):roﬂo-

Consequently, denoting by CI'=(I"%3, I't3, g5, the (intrinsic) Cartan connection
of F* ! determined from the induced metric L(u, v), we have

Fgy =T+ (g5 M3+ gfsM— g b M) Hy+ My, HO — Mg Hp
Ng=I"t§—M3H,.

(5.2)

Remark. Varga [7] already mentioned 7c“§,¢0 in the remark on his (3.21).
Cf. (vV.4.34) of Rund [13]. Our (5.2) is essentially the same with (41) of Varga
[14], although the latter deals with Cartan’s I'g; (without *). The Cartan con-
nection CI” determined from the induced metric has been called the intrinsic
connection. Cf. Haimovici [6], p.583 and Davies [8], pp.21, 22. We remember
that to find a simple form of the above difference between ICI" and CI” had
been an interesting problem in the theory of Finslerian subspaces for a ling time.
Cf. Varga [14] and the final remark on p.214 of Rund [13]. It seems to the
author that (22) of Varga [16] and (26) of [18] are a little strange, even if we
pay attention to the footnotes; the asterisk should be erased in these formulas.

QOur theory as mentioned above gives a good indication of a merit of the ax-
iomatic standpoint.

From (2.4) and (2.9) we have
Ng=B¥(Bis+I75iB%),
(5.3) . S
Fgy=B3(Bj,+BiIiBY)+M§H,
and (2.7) gives the normal curvature vector
(5.4) Hg=B(Big+I:B%).
The second fundamental h-tensor Ifl,g, is given by (2.10):

(.5) Hgy=By(Bjy+ Bl 4iBY)+M,H, .

¢ .
The equation (2.17) shows that Hp, is generally not symmetric:

c

(56) Hﬂr—Hng:MpHr—MrHﬂ N

which is analogous in form to (5.1). Further (2.19) yields

C

6.7 Hy=H,, Ho=H+MH,.

To consider (2.20) and (2.21), we remember that the (v)hv-torsion tensor
1=(P%,) of CI'is equal to gis, (cf. *(17.22)). Putting

(5.8) Qaﬁrzgijklofoj,gr , Qaﬁ=gijk|ofojﬁBk ’ Qa:gijkloBszBk ,
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(2.20) and (2.21) are respectively written

(5.9) Prs=H M§+Qss ,
. (4

(5.10) 0sH;—Hpy=Qp; .

From (5.10) and (5.7) we easily get

(5.11) 0gH,=2Hs+MgH, .

Consequently we have

Proposition 5.1. The normal curvature Hy=Hgv? vanishes if and only if the
normal curvature vector Hy itself vanishes (cf. §7).

Theorem 5.2. The induced connection ICI" of F™ ' coincides with the intrinsic
Cartan connection CI" of F™' if and only if (1) M,p=0 or (2) Hg=0.
Proof. 1t is obvious from Theorem 5.1 that ICI" coincides with CI” if and

only if ’]c“§,=0: MgH,—MpHg=0. If Hg+0, we have quantities ~2* satisfying
My=h*H,. From h.H,=h,H, we get a quantity h satisfying h,=hH,, and so
Myy=hH.H, Then M,,=0 leads to hH,=0. Since H,=0 implies H,=0 from
Proposition 5.1, we get h=0, and so M,,=0.

Remark. Theorem 5.2 as well as Proposition 5.1 were shown by Varga [14].
Next (3.5), (3.6), (3.10) and (3.11) for ICI" are written as
(.12) Biip=H.sB',  Bilg=MasB",

(5.13) Big=—H.3B*, B|g=—M,5B%.

Thus the second fundamental v-tensor with respect to CI” is nothing but the M-
tensor M, and these derivation equations are quite analogous to those of a
Riemannian hypersurface.

We shall treat the Gauss and Codazzi equations in case of CI. First the
equation (4.1), decomposed into tangential and normal components, is written

¢ » c
(5.14) Raﬂr:Rijkaxjﬁr'F?»I(ﬂr) {Hﬁ(Har_Qar)} ;

(5.15) H.T§,=Ri;s BB+ s Qs Hy—H 1) .

Thus it is observed that the Q-tensors play an important role. Next (4.3) solely
gives (6.9) and (5.10).
Secondly (4.12) and (4.13) are written as

4

) c ¢ c ¢
(5.16) Raprs=RijsBP+HayHps—HasHg,) ,

.17) HasT 3+ Mas RS, =R, BiBI —(Hapiy—Hapig) »
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where it should be remarked that R;;s,# RijenBEs; from (4.5') we have
(5.18) Rijpr=RijunBYy+Pijun(ByH,— BiHg) B .

It will be observed that (5.14) and (5.15) are consequences of (5.16) and (5.17)
respectively by contracting by v4(cf. *Theorem 13.3).
Thirdly (4.14) and (4.15) respectively yield

(5.19) Pogro=Pi3ys B+ (Hay Mas— MooHg,) .
(5.20) Hesgh=MusPlit Piysy BB —(Hag | ,— Moy -
Here we also have to remark
(5.21) Pijﬁ)':PijkhBI;?’;_I-SijkthHﬂB),’l .
Finally (4.16) and (4.17) respectively give

[

(522) Saﬂr(;:SijkhBijﬁ%-l-(fWarﬂfpaﬂf\faaMﬂr) ’
(5.23) SijenBiBI B} —(May|s— Masl )=0.

The former is a consequence of Lemma 1.1 and the fact that

4
(5.24) Sti=gaigh—girgh,
similar to the v-curvature tensor Sj;; of CI. The latter is also a consequence of
(525) Maﬁ | 7=ghij| thBy;r'{‘AlarMﬁ+MﬁrA1a—ggﬂM5r ’

which is easily shown from (1.8) by (5.12) and (5.13).

Now we shall be concerned with the enveloping space F"=(M", L(x, y))
which is to be endowed with the Rund connection RI'=(I'*%}, I't, 0). The first
two connection coefficients of the RI are same with those of the Cartan con-
nection CI', while the third is equal to zero. Thus it may be said that RI is
derived from CI” by the C-process (*Definition 14.2: Fj—'Fj,=F}, Ni—'Ni=Nj,
Ci—'Ch=0).

If we denote by IRI the connection of a hypersurface F* ' induced from
the RI" and indicate the quantities with respect to JRI" by putting “#” on them,

(2.4) and (5.3) show N5=N3, and (2.9) gives
(5.26) Fg,=B3(Bj,+I"B),
so that (5.3) leads to
(5.27) Fg=Fg—M;3H,,
As to Hy and Hyg,, (2.7) and (5.4) show Hs=H;, and (2.10) gives
(5.28) Hy,=By(Bj,+T*iBY)

so that (5.5) shows
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(5.29) Hpy=Hg,—MsH, .
On the other hand, paying attention to Cf=0 of RI (2.16), (2.18) and (2.6)

respectively give f"g,=0, 15§=0 and Cr'gr———O. Further, from g;;,=0 and g;;|.=
2gijx for RI, (3.13) yields

(5.30) Gapy=2MusH,,  Zapl;=28a3;-

These observations enable us to conclude

Theorem 5.3. The connection IRI" of a hypersurface of a Finsler space F",
induced from the Rund connection RI'=(I'%L, 't 0) of F™, is uniquely determined
from the induced metric L(u, v) by the following four conditions:

(IR) gT’«ﬂ'TZZMaﬁH, (IR2)  (h)h-torsion f‘grzo,
(IR3) deflection 1575:0, (IR4) égrzo'

In fact, we apply the method by which *Theorem 17.2 is proved: (IR1) is
written

3rga,g—ZgRﬁgN‘;—Fap,—Fﬁa,,=2Ma,9 P

from which we have

Fapr—gapsNi—garaN+ g1asNs — Fugy=MasHy+ Mgy Ho— MyaHp
Tosr—8aralNi—Fopy=Mp;Hy,  Toge—Foga=0.
Therefore we get 1{}§=)‘3ﬁ—g§5720—M§Ho=1<7§ by (5.2) and
630 Fg=I%5+(g5sMi+gfsMj—ghM)Hy+ M, H*— M3H,— My Hj .
This and (5.2) lead to (5.27).

As to the second fundamental /-tensor Izlﬁ,, (2.17) shows

(5.32) Hg=H,s,
which is also derived from (5.6) and (5.29). Next (2.19) shows
(5.33) Hyo=Hyy=1, .
Finally (2.20) and (2.21) lead to
(5.34) Pgs=2H,M;+Q8,=P3s+H, M,
(5.35) 8pH,—Hpy=MsH,+Qp, .

The former is also obvious from (5.9) and (5.27), and the latter is solely a
consequence of (5.10) and (5.29).
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Proposition 5.2. The induced connection IRI of F™ ' coincides with the in-
trinsic Rund connection RI" of F™' if and only if (1) M,s=0 or (2) Hz=0.

This is clear from Theorem 5.3, in particular, the first condition.

Remark. It seems that Rund treated the RI only whenever he considered
the induced connection, contrary to the case of Kikuchi, Rapcsidk and Varga who
were concerned with CI" alone. In fact, (V.3.10) of his book [13] as well as
(L.15) of [17] coincide with our (5.26). Cf. (5.2) of Brown [20]. (She denotes
our I'¥; by I'};.) Her (5.8) is nothing but our (5.31). Cf. (V.9.25) of [13].

r c
It may be a merit of the RI" that H,s is symmetric, while H.s is not so.

In Rund [17] Itla,g is denoted by Q.4 (cf. (1.17) of [17]). Compare our (5.28) with
(3.4) of Brown [20].

§6. Induced Berwald and Hashiguchi connections.

In this section we first consider a Finsler space F*=(M", L(x, y)) which is
to be endowed with the Berwald connection BI'=(G%,, G%, 0). According to the
general theory of Finsler connections due to the present author [28], the BI is
derived from the Rund connection RI” by the P'-process (*Definition 15.2: F},—
'Fi,=F}+Pi;, Nim>'Ni=Ni CH,—'Ci,=C},). Thus G}ik———éjl”s‘,i and Gi=I%.

On the other hand, we have an axiomatic viewpoint of BI" shown by Okada
([33], [30]) and analogous to the case of CI:

Definition. There exists a unique Finsler connection which satisfies the
following five conditions:

(B1) L,;=0, (B2) (h)h-torsion T%,=0,
(B3) deflection D=0, (B4) (v)hv-torsion Pi,=0,
(B5) (hhv-torsion C},=0.

This connection is called the Berwald connection and denoted by BI.

In the following we denote by (;) and (.) the h- and v-covariant differen-
tiations with respect to BI' respectively. Thus (.) is only 9 and (B5) shows
Zijx=2g4;,. Further (Bl) shows L;;=0 and it is well-known [28] that gi;.=
—28iim10(gjk10=Pijn of CI').

Now we deal with the connection IBI" of a hypersurface F™~?, induced from
the Berwald connection BI" of F™, and indicate the quantities with respect to
IBI" by putting “b” on them. Then (3.12), (2.16), (2.18) and (2.6) show L;,=0,

fIb‘gr=O, Dbg=0 and Cb‘j,f,:O respectively. However (2.20) gives
b
6.1) P§,=2Hg My,

because BI has the characteristic property (B4).
The above axiomatic definition of BI" has been generalized to Finsler con-
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nection of Berwald type with surviving (h)h-torsion tensor Ti, [30]. (Cf.
Theorem 5.1.) But matters are different for IBI. Therefore we need another
generalization of Berwald connection as follows, which will be studied by Aikou
and Hashiguchi [24] in detail:

Theorem 6.1. There exists a unique Finsler connection which satisfies the
following five conditions :

(P1) L;=0, (P2) (h)h-torsion Ti,=0,
(P3) deflection Di=0, (P4) (W)hv-torsion P%, is given,
(P5) (RWhv-torsion Ci,=0,

if and only if P3%, satisfies
(1) P=0, @) y™3xQ};—9,Q4)=0,
where we put Q% ;=Pf;—P.

We shall call this connection a generalized Berwald P*-connection. There-
fore the above observations of the IBI" enable us to assert

Theorem 6.2. The connection IBI" of a hypersurface F™* of a Finsler space
F™, induced from the Berwald connection BI' of F™, is a generalized Berwald
Pl-connection such that the (v)hv-torsion tensor is given by (6.1).

It should be noticed that this ﬁgr:2HﬁM? satisfies the above Aikou-Hashi-
guchi conditions (1) and (2). In fact, Igg(,:O is obvious and
W 5 [0 10, (Hs Mg — H s M5O} 1= 5y {0, (H, M) — (H, M — Hs M)}
=(3,M§—0 5 Mg+ M, Mg— Mz M{)H, ,

which is really equal to zero from (1.13).

Theorem 6.3. The induced connection IBI" of F™ ! coincides with the intrinsic
Berwald connection BI” of F™* if and only if (1) M,s=0 or (2) H,=0.

This is obvious from Theorem 6.2, in particular (6.1).
b b
We shall find the connection coefficients of IBI'=(Fgs N§, 0) owing to the
procedure to prove Theorem 6.1. Denote by BI'=(G§, Gj, 0) the intrinsic

Berwald connection determined from the induced metric L(u, v). Then it is
well-known [28] that

26 o(=2845GP)=03,05(L*/2)—0(L*/2).
Since the condition (P1): L.,=0 is written as 6a1_4=v,51€/5/L, we have

. b b
2G o =vP0,(v,N})—v,N%, .
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Next, paying attention to the definition Igg,=8',1€7§—;7‘,‘jg, we get
b
26 o= gur N5+ Pla-tv, 0P F15—RT) .
Therefore conditions (P2, 3) and Iggazo yield ZG":}\%;. Then
« b b b b b
2G5=05N5=Ng+v'(Pfs+Fg)=2N3+M3H,),
. b b b .
G§,=0,Ng+MgH)=F+P§,+0,(M§H,).
Consequently we get
b .
€2 Fg=G§,—2MsHg—0,(M3H,),
Ng=Gg—MzH,.
This N§ coincides with J</§ from (5.2) and I'§5=G3. 1?‘5", is rewritten as
b .
6.3) Fg=Gg—2(MyHg+M§H,)—(0, M§+M§M)H, .
Therefore (1.13) asserts that the second of Aikou-Hashiguchi conditions shows

b
the symmetry property of Fg.
Now (2.4) and (2.9) give

; ; b
6.4) Ng=B%(Big+GiB}),  Fg=Bi(Bp+GiL B .
Therefore the well-known relation G},=I"%{+Pi; (*(18.4)), (5.26) and (5.27) lead to
b T [
(6.5) Fg=Fg+Q§=Fg—MH,+Q5; .

Next (2.7) gives H,—=H, and (2.10) does
b
(6.6) Hg,=B(Bj,+GiBE).
Thus (5.28) and (5.29) give
b T c
6.7) Hgy=Hp;+Qp=Hgy— MpgH,+Qp; .
2.17), (2.19) and (2.21) show
b b b . b
(68) Hﬂ7=Hng, HorzHry aﬁHT—ngr':MﬁHT.
Finally (3.13) shows

(6.9) gaﬁ;r=2<~MaﬁHr—'Qaﬁr) ’ gcrﬂ-r=2gaﬂr'

We shall be concerned with the Gauss and Codazzi equations with respect
to BI. First (4.1) yields

b b
(610) RaﬂrzRijkaxjgr+w(ﬁr) {Hﬁ(Har_zQar)} s
(6.11) RijkBiB]g;’:w(ﬂT) {Hgiy+HpQ:} .
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It is easily verified that these are essentially the same with (5.14) and (5.15)
respectively. Next (4.12) and (4.13) give

b

) b b
(6.12) Rapro=Hij;sBs+B o) {Hay(Hps—2Q gs+2MgHp)}

b b
(6.13) HijprBEBI= gy {Ha g+ Hap(Q,— MH,)} ,

where we put
Hijni:HijknB%l‘f'Gijlzn(B?Ha—‘BgHr)Bh .

Finally (4.14) and (4.15) yield

b

) b
(6.14) Pogrs=Gijen BihTs+2H . Mpgs

b b
(6.15) Gijen B'B¥y=HagM;—H,p.; .

As it was mentioned above, BI  is derived from RI by the P-process and
RI' is done from CI” by the C-process. On the other hand, it was known ([26],
[28]) that CI yields a connection by the P-process, called the Hashiguchi con-
nection HI'=(G}!,, G, gi:), and BI is derived from HI by the C-process. Then,
inducing those connections on a hypersurface, the process to derive IRI" (resp.
IBI') from ICI (resp. IRI") may be called the IC-process (resp. IP'-process). It
has been already observed in the last and present sections that

(6.16) IC-process ICT'— IRT: Fg=Fg—M;H,,
Hgr=Hp;—MgH,,
6.17) IP'-process IRI'— IBI': Fgy=Fg+Q3,,

b T
Hgr=Hp;+Qp; .

Then the connection IHI' of F"?, induced from HI, is derived from ICI” by
IP-process. Thus, putting “A” on the quantities with respect to IHI, we have

h C h [4
(6.18) Fg=Fg+Q%, Hg,=Hpg;+Qp; -

h ¢ h c
Further we have N§=N§, Hy=Hpg and

(6.19) Fy— Hyp=MsH,— M,Hp .
(6.20) Hy=H,,  9sH,—Hg=0.

Applying a recent result shown by Aikou-Hashiguchi [24], we have

Theorem 6.4. The connection THI" of a hypersurface F™ ' of a Finsler space
F", induced from the Hashiguchi connection HI' of F™, is uniquely determined
Sfrom the induced metric L(u, v) by the following five conditions:

(IHI) L.,=0 (IH2) (Wh-torsion T§y=MsH,— Mg Hj,
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h
(IH3)  deflection D§=0, (IH4) (v)hv-torsion [h)grszM;",
(IH5) (h)hv-torsion é‘,!r:ggr.

In fact, (3.12), (2.16), (2.18) and (2.6) give (IH1, 2, 3, 5) respectively, and (2.20)
leads to (IH4) which differs a little from Iggr given by (6.1), while (IH2) coin-
cides with (5.1).

Proposition 6.1. The induced connection IHI" of F™ ' coincides with the in-
trinsic Hashiguchi connection HI of F™ ' if and only if (1) M, 5=0 or (2) Hg=0.

o Remark. Berwald [3] defined the second fundamental tensor as Q,5=
0.05H,/2. See (2.2) and (2.8) of [3], (5.16) of Varga [7], (90) of Davies [8],
(v.6.15) of Rund [13] and (3.2) of Brown [20]. By means of (5.11) and (6.20)
we easily get

6.21) Qus=Hap-+HaMa-+@aMa-+ M, Mg H, /2.

This is nothing but Brown’s result (3.8) of [20], where Brown’s N and M, are
equal to our Hy/L? and LM, respectively.

§ 7. Hyperplanes.

Following Kikuchi [9] and Rapcsak [12], we shall define three kinds of hy-
perplanes in a Finsler space F*=(M", L(x, y)).
It is well-known that a geodesic curve of F™, an extremal curve of the

length integral s=SilL(x(t), %(t))dt, is given by the differential equations
0

(7.1) d*x'/ds*+2G¥(x, dx/ds)=0,

where G*=g¥G; and

(7.2) 2G,=y*3,0,F—8,F, F=L/2.

Connection coefficients of the Cartan connection CI'=(I"%}, I'ti, gix) and the
Berwald connection BI'=(G%, G4, 0) of F™ are such that 2G=I"§{=G{=Gi.

We construct the corresponding quantities G* of a hypersurface F" !'=
(M™', L(u, v)). Putting F=L?%/2, (1.3) leads to

080,05 F =vP0,(3,FB}+0:FBis)
=9%0,0,FB|+0,0:FBkBi+3:FBj, ,
which implies
26 o =0#0,05F—8.F=2G,Bi+g:;Bi,Bj .
Thus (2.8) gives
(7.3) 2G*—N3=(2G—NiB3.

This equation holds for any nonlinear connection N} and the induced N§ given
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by (2.4).
On the other hand, a path with respect to a Finsler connection FI'=(F},,
Ni, Ci,), defined as *Definition 39.2, is given by

(7.4) d?xt/ds*+Ni(x, dx/ds)=0.
Therefore (7.3) shows

Proposition 7.1. If each geodesic curve in a Finsler space F*=(M", L(x, y)}
endowed with a Finsler connection FI' is a path, then each geodesic curve of a
hypersurface F™ ' with respect to the induced metric L(u,v) is a path with respect
to the induced connection IFT.

It is remarked that four typical Finsler connections, treated in §§5 and 6,
have the common nonlinear connection and satisfy the assumption of Proposi-
tion 7.1.

Now the equation (7.4) of a path may be written as D(dx?/ds)/ds=0 from
(2.1), and (2.12) may be

(7.5) d*xt/ds*+Ni(x, dx/ds)
={d*u*/ds*+N§(u, du/ds)} Bi+H,(u, du/ds)B*.

The quantity Hy(u, du/ds) along the curve u®=u%(s) is called the normal cur-
vature at u® Paying attention to the fact that H,(u, v) is (1)p-homogeneous,
the quantity

(7.6) N(u, v)=Hy(u, v)/L¥u, v)

should be called the normal curvature of F* ! at (u, v) and H, is the normal
curvature vector.
In general (2.19) gives

(7-7) Hoo_Ho:Bi(D3+CngkHo) ,
and especially we easily get

c T b h
(7.8) Hyy=Hy=Hy=Hy=H,

Remark. As to the equation (7.3), see (28) of Varga [14]. It seems that

Berwald [3] first payed attention to the normal curvature. Cf. p.22 of Davies
[81, (V.7.18) and (V.7.26) of Rund [13] and Theorem 3.4 of Brown [20].

It follows from (7.5) that if a path of F™ is on the hypersurface F*°!, it is
a path of F™ ' with vanishing normal curvature.

Definition 1. If each path of a hypersurface F"-! with respect to the in-
duced connection IFI" is a path of the enveloping space F™ with respect to the
FI, then F™! is called a hyperplane of the first kind.
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Proposition 7.2. A hypersurface F™ ' is a hyperplane of the 1st kind, if and
only if the normal curvature vector H,(u, v) vanishes identically.

This a consequence of (7.5) and Proposition 5.1.

Corollary 7.1. As to CI, RI, BI' and HI, the induced connections on a hy-
perplane of the 1st kind coincide with the respective intrinsic connections.

Definition 1’. If each geodesic curve of a hypersurface F"-! with respect
to the induced metric L(u, v) is a geodesic curve of the enveloping space F7,
then F™! is called totally geodesic.

Theorem 7.1. A hypersurface F™ ! is totally geodesic, if and only if with
respect to the commections CI, RI', BI' and HI the normal curvature vector H,

vanishes or the second fundamental h-tensors satisfy (1) Ic{aﬁ;:—Qaﬁ, 2 ITI,,,9=
—Qap Q) Ib{aﬁzo, ) ]h{ap=0 respectively.

Proof. Since each path with respect to those connections is a geodesic curve,
it is sufficient for the proof to show that these conditions are equivalent to H,=0.
From (5.10) it follows that H,=0 implies the above (1). Conversely (1) and (5.7)
lead to H,=0. Similar way will be applied to other cases.

Remark. “Hyperplane of the 1st kind” is the name given by Rapcsak [12].
Kikuchi [9] named it a totally extremal hypersuface, following Haimovici [6],
p.570. It is shown from (2.12) and indicated by Kikuchi [9] that, on such a
hypersurface, Dv*=0 implies Dy’=0. Cf. Theorem 6.2 of Brown [20].

It is noted that 2,4, appeared in Theorem 6.3 of [20], is equal to our Irl,,p
and “affinely connected” means g;; =0 (cf. *Theorem 25.2). Strictly speaking,

“affinely connected” is too strong condition. That is, f[aﬂ:O on a totally geodesic
hypersurface of a Landsberg space (gnijio=0; *Theorem 25.3), because gnijio=0
implies Q.p=0 from (5.8).

Secondly we are concerned with an h-path with respect to a Finsler con-
nection FI'=(F},, Ni, C%,), which is defined as *Definition 39.1 and given by

dy*/ds+Ni(x, y)dx?/ds=0,
d*x*/ds*+Fiy(x, y)dxt/ds)(dx*/ds)=0.

(7.9)

Therefore an h-path is a curve (x%(s), yi(s)) of the tangent bundle T(M™), or
regarded as a curve x%(s) of M™ with a vector field yi(s). It is uniquely deter-
mined by giving initial values x*(0), (dx?/ds), and y%(0). In terms of the concept
of parallelism, y(s) is parallel along the curve x%(s) with respect to the nonlinear
connection N?! and dx'/ds is parallel along the curve with respect to the field
of supporting element yi(s).
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Remark. An h-path was first defined and called a quasigeodesic curve by
Varga [35]. Cf. Rapcsak [12].

Two equations of (7.9) are written as Dy*/ds=0 and D(dx‘/ds)/ds=0 from
(2.1) and (2.2). Observing (2.12) and (2.14), we get

Dyt/ds=(Dv*/ds)Bt+H.(u, v)(du®/ds)B?,
{7.10) D(dxt/ds)/ds={D(du®/ds)/ds} Bi+ {Has(u, v(du*/ds)dub/ds)
+ Kap(u, v)(du®/ds)Dvf/ds)} B'=0.

It then follows that if an h-path of F™ is on a hypersurface F*~?, it is also an
h-path of F»-! and H(u, v)du®/ds=0, Hus(u, v)(du®/ds)(du?/ds)=0.

Definition 2. If each h-path of a hypersurface F"~! with respect to the
induced connection IFI" is an h-path of the enveloping space F™ with respect to
a connection FI, then F* ! is called a hyperplane of the second kind.

Proposition 7.3. A hypersurface F™* is a hyperplane of the 2nd kind if and
only if the normal curvature vector H, and the symmetric part (Hapg+Hga)/2 of
the second fundamental h-tensor vanish identically.

This is obvious from (7.10). Then Theorem 7.1 leads to

Theorem 7.2. (1) With respect to BI' and HI, the concepts of hyperplane of
the 1st and 2nd kinds coincide with each other. (2) With respect to CI" and RI,
a hypersurface is a hyperplane of the 2nd kind if and only if H,=0 and Q.5=0,

r

(4
and then we have Hag=Has=0.

Remark. “Hyperplane of the 2nd kind” is the name given by Rapcsak [12].
Kikuchi [9] named it a weakly geodesic hypersurface. It is shown from (2.12)
and (2.14) and indicated by Kikuchi that, on such a hypersurface, DX*=0 implies
DX'=0(X‘=B.X*) on the supposition Dv*=0.

Thirdly we shall deal with the displacement of the unit normal vector B®
offan F™ ! It is easily shown that

(7.11) DB‘=Bi,du*+ B| ,Dv=.

Definition 3. A hypersurface F*! of F*=(M", L(x, y)), endowed with a
Finsler connection FI, is called a hyperplane of the third kind, if the unit normal
vector Bt of F™-! with respect to the metric L(x, y) is parallel along each curve
(u®(s), ve(s)) on F™1,

Remark. It is noted that the field of supporting element v*(s) of the curve
in Definition 3 is to be tangential to F"!,
The naming “hyperplane of the 3rd kind” is due to Rapcsak [12]. Kikuchi
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[9] said it to be totally geodesic, following Haimovici [6], p.594, and indicated
that, on such a hypersurface, DX*=0 implies DX'=0 (X'=BiX%).

From (7.11), together with (3.10) and (3.11), it follows that a necessary and
sufficient condition for an F™-! to be a hyperplane of the 3rd kind is to satisfy
— a‘BBai—l‘gjk|Ig(BiBj/2—gij)Bk=0,
— KB +g;.1 p(B*B7/2—g¥)B*=0.

Equating the tangential and normal components of these left-hand side to zero,
we respectively get

(7.12) Hap+gnpBiB*=0, ginpBB¥=0,
(7.13) Kag+giul gB{B*=0, gl gB’B*=0.

Proposition 7.4. A hypersurface F" ' is a hyperplane of the 3rd kind, if
and only if (7.12) and (7.13) are satisfied.

We consider these conditions for each of four typical connections. As to the

Cartan connection CI, these equations easily reduce to IL‘{aﬁZO, Kap (=Myg)=0
respectively. In this case we have H,=0 from (5.7) and Q.p=0 from (5.10).

Conversely H,=0 and Q=0 imply ,5=0.
Secondly, as to the Rund connection RI, we have g;.i5=2g,:nB"Hp, gjilp=
2g:n B} from (3.9) and K,p=0, so that (7.12) and (7.13) are of the form

Hop+2MHp=0, MHg=0, M,5=0, Ms=0.

Therefore we get ﬁaﬁ=0, and so H,=0 from (5.33) and Q.z=0 from (5.35).
Thirdly, as to the Berwald connection BI, we have g;;s=—2P;:Bj+
2g;unB"Hg, g1l p=2g;1 B} and K,g=0, so that (7.12) and (7.13) reduce to

Hop—2Qus+2M Hs=0, Qp—MHz=0, M.p=0, Ms=0.

The first equation and (6.8) give H,=0 and 12’(,,,9=0.
Finally, as to the Hashiguchi connection HI, we have g;.ip=—2P;.1B},
girlp=0 and K,p=M,s, so that (7.12) and (7.13) become

Hop—2Qus=0, Qp=0, M,5=0.

The first equation and (6.18) give H,=0 and ]’ila,gzo.
Consequently we have

Theorem 7.3. A hypersurface F™ ' is a hyperplane of the 3rd kind with
respect to the connections CI, RI', HI" and BI respectively, if and only if

(1) CI': Map=Qu5=0, H,=0,
@ RI: Mug=Qu5=0, H,=M,=0,
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(3) HF: Maﬁ:'Qaﬁ:()y Ha:Qa:()’
(4) BF: Maﬂ:QaﬁZO; HazMa:'Qa':O-

In every case the second fundamental h-tensors vanish.

As a conclusion of the present section we compare the concepts of hyperplane
with respect to CI, R, HI" and BI with each other:

(1) The concepts of hyperplane of the 1st kind are identical with respect
to these four connections, and characterized by H,=0.

(2) With respect to CI" and RI, the concepts of hyperplane of the 2nd kind
are identical, and characterized by H,=0 and Q.z=0.

(3) With respect to BI" and HI, the concepts of hyperplane of the 2nd kind
coincide with that of the 1st kind.

(4) With respect to CI, a hypersurface is a hyperplane of the 3rd kind, if
and only if M,s=0Q.s=0 and H,=0.

(5) The condition for a hypersurface to be a hyperplane of the 3rd kind
with respect to other three connections is obtained by adding to that with re-
spect to CI" the conditions M,=0 or Q,=0 or M,=Q,=0 as indicated by the
diagram

M,=0
C[——— RI’
Qu=0 | @.=0

HI'— BI’
M,=0

§8. Some examples.

We first deal with C-reducible Finsler spaces [28] which are characterized
by the following special form of the C-tensor:

8.1) gijk:(hijgk+hjkgi+hkigj)/(n+l);

where h;;=g;;—I;l; is the angular metric tensor and g;=g%; Thus, for a C-
reducible space F™, (1.4), (1.6) and (1.12) give

) gaﬁr:(haﬁgr+hﬁrga+hragﬁ)/n ,
’ Mas=(giBYhas/(n+1),  Ma=ga/n.

Therefore any hypersurface F*! of a C-reducible space F" is also C-reducible.
Next (5.1) and (8.2) imply the existence of ¢, such that the (h)h-torsion tensor

’f‘g, of the induced Cartan connection ICI" is written
(8.3) Tg,=h§t,—hsts .
Similarly (6.1) is of the form

b
8.4) Pg=2tghy .
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Proposition 8.1. Any hypersurface of a C-reducible Finsler space is also C-
reducible and we have (8.2). The induced Cartan and Berwald connections satisfy
(8.3) and (8.4) respectively.

Remark. In viewpoint of Theorem 5.1, it will be an interesting problem to
consider generalized Cartan connections with the (h)h-torsion tensor of the form
(8.3). For a Wagner connection ([25], [28]), 63 take place instead of hg in (8.3).
Next it will be also an interesting problem to study generalized Berwald P!-
connections with P! of the form (8.4).

On C-reducible spaces we know the conclusive theorem (cf. *p. 227): The
metric of any C-reducible space is Randers or Kropina. That is, putting a(x, y)
=+/a;;(x)y*y’ and B(x, y)=bi(x)y!, we have

Randers metric: L(x, y)=a(x, y)+p(x, »),
Kropina metric: L(x, y)=a%x, y)/B(x, ).

We are here concerned with a special Randers metric with a gradient b,(x)=0;b
for a scalar function b(x), and consider a hypersurface F" %(¢) which is given
by an equation b(x)=c (constant). From parametrical equations x*=x%u) of
Fr-(c) we get 0,b(x(u))=0=b;B}, so that b;(x) are regarded as covariant com-
ponents of a normal vector field of F™~!(c). Therefore, along the F"(c) we
have

(8.5) biB::,,ZO, biy‘=0.

In general the induced metric L(u, v) from the Randers metric is given by

L(u, v)=vV a;;(x(u)) Bsv*vf +by(x(u))Biv® .
Therefore the induced metric of the F™ !(¢) becomes
(8.6) L(u, V)=V aapup?,  aapu)=a;{x(u)Bf.

This is Riemannian (cf. [23]).
Next it is known [28] that for a Randers metric we have

*(30.17) g=aa¥/L—ala’y'+a’*y*)b,/L*
+(ab®+B)yiy’/L?,

where b®=a®h;b,, Then, along the F™ (c), (8.5) leads to b*=g%"b;b;, Thus we
get

8.7 bi(x(u))=~b*B;, b*=a*bb; .
Now the C-reducibility of the Randers metric comes from the equation
*(30.18) 2Lgijx=Sujm (hijbs—Barny™/a®},

which implies g;=(n+1)(b;—Ba;;y’/a*)/2L. In particular, along the F*"(c) we
have g;=(n+1)b;/2a, and so g:Bi=(n+1)v/b?/2. Since L is Riemannian, we
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have g.,=0. Therefore (8.2) yields
(8.8) Ma,g=«/b~2—haﬂ/2a, M,=0.

It is noted that M,=0 implies the symmetry property of i{aﬂ from (5.6).
Next, from b;Bi=0 we get b;3Bi-+b;Bfz=0. Referring to the CI this is
written

(bu;Bh~+bi| ;B Hg) Bi+biHos B'
by B (—br g BB Hy /5 i 0.
Since bnglBiB'=+/b*M,=0 from (8.7) and (8.8), we have
8.9) N Hog+bu;BY5=0.
It is noted that b;; is symmetric. Further we have
(8.10) VOEHy+bi;Bly'=0,  ~/b*Hy+biy;yiyi=0.

To consider the condition H,=0 for the F™"!(¢) to be a hyperplane of the
1st kind, we deal with b;,;v%y’. This b;; is the covariant derivative with respect
to CI" of F*, and so b;;; may depend on y®. On the other hand, if we denote
by bs; ; the covariant derivative with respect to the Riemannian connection (rf)
constructed from a;;(x), then b;; ; does not depend on y®. We shall consider the
difference b;;—by; ; in the following. The so-called difference tensor Di,=I"*%,
—7%, has been found in a previous paper [27]. By means of (IIl) and (2.6") of
[27], along the F™ (¢) we have

Diy=aHy;a™* +(Hi;/a—Hpi)y*
which implies b,D}=aHn;;a®*b,. It is easily seen that
20*Di;=aEohi+QaE j— Eqby)y',
where Zi,- is the angular metric tensor of the Riemannian a;;(x). Then we get
40 LyinDli=—2Ew(hirly+hisli)+CaE—Eoob )iy .
where ?i is the normalized supporting element of the Riemannian a;;(x). Thus,

paying attention to Zi,-:hij along the F™ !(¢), we finally get
(8.11) 4a°b, Dt j=—2aE go—Eob®) hij+2a(E jobi+ E 14b;)—2E 44bsb; ,
which implies
(8.12) br D4 =Ebi/2a, bxD§=0.
Consequently (8.10) may be written as

(8.107 Vb* Ho+ bi; ;BLy'=0, Vb Hy+by; ;39/=0.
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Thus the condition H,=0 is equivalent to b;; ;¥*y’=0, where b;;; does not
depend on y® Since y* is to satisfy (8.5), the condition is written as by; ;y*y’
=(b;y%)(c;y?) for some c,(x), so that we have

(813) 217,'; j=biCj+bjCi .
Then we have b;; ;B.y’=0 from (8.5), and so H,=0 (cf. Proposition 5.1).
Now we have E,=0 and E,=b’c,/2, so that (8.9) reduces to

(8.9) VO Hog+(b2co/4a)has=0..

Further the condition IcJa,g=0 for F™Y(¢) is co=ci(x)y*=0, so that we have
a function e(x) satisfying c;(x)=e(x)bi(x):

(814) b,;; jzebibj .

Finally (8.8) and Theorem 7.3 show that this F™!(¢) does not become a
hyperplane of the 3rd kind.
Summarizing up all the above, we have

Theorem 8.1. Let F™ be a Randers Finsler space with a gradient bi(x)=0a;b(x)
and let F™'c) be the hypersurface of F™ which is given by b(x)=c (constant).
Suppose the Riemannian metric a;;(x)dxidx’ be positive-definite and b; be nonzero
field. Then the induced metric on F"(c¢) is a Riemannian meiric, given by (8.6),

and we have (8.7) and (8.8). In particular ]c{ap s symmetric.

The condition for F"(c) to be a hyperplane of the lst kind is (8.13) and (8.9")
is satisfied. Next the condition for F" ) to be a hyperplane of the 2nd kind
is (8.14). F™Y(c) does not become a hyperplane of the 3rd kind.

Remark. The condition (8.14) may be also shown by Q.p=0 and Proposi-
tion 4 of [27]. In fact, we then have Qu.p=(p;:B%)g.s and (8.13) implies p,B*
=+/bco/4a.

89. Haimovici-Kikuchi-Rapcsak’s theorems.

We consider hypersurfaces with respect to the Cartan connection CI. For
a hyperplane of the st kind (H,=0), (5.15), (6.15) and Theorem 7.1 give

(91) RijkBiB‘fgkr——‘O,
(9.2) G;khBiB{,kﬁhr:O.

For a hyperplane of the 2nd kind, we additionally have Qz,=0 from Theorem
7.2, that is

(9.3) PijkBiB‘l’ékT:O.

For a hyperplane of the 3rd kind, we further have Mpg,=0 from Theorem
7.3, that is,
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(9.4) gijkBiB{g’;r:O.

Now in 1957 Rapcsék [12], following Haimovici [6] and Kikuchi [9], showed
the following remarkable theorems :

(I) There exists a hyperplane of the 1st kind at each hypersurface element
of a Finsler space F*(n>2), if and only if F™ is projectively flat and of scalar
curvature.

(II) The similar circumstances hold for a hyperplane of the 2nd kind, if
and only if F™ is projectively flat, of scalar curvature and Landsberg.

(III) The similar circumstances hold for a hyperplane of the 3rd kind, if
and only if F™ is a Riemannian space of constant curvature.

Remark. “At each hypersurface element” means “at each point and in each
direction”.

Haimovici [6] first announced that such an F™ as in (I) is necessarily to be
of scalar curvature and the condition for an F™ as in (IlI) is to be a Riemannian
space of constant curvature. Kikuchi [9] showed the proofs of Haimovici’s results.

Rapcsék’s proofs of these theorems were based on an interesting lemma. It
seems, however, to the author that the long proof of this lemma, simplified by
Varga’s help, is quite hard to understand and its application may be false. Moreover
his proofs of the sufficiency hardly have geometrical meaning. We shall show
some lemmas® in the following and give a new proof.

Lemma 9.1. Suppose a tensor Ti.. of (1, r)-type be (1) indicatory, i.e.,
TS =T§.,= - =TL,=0, (2) symmetric in subscripts j, ---, k, and (3) for each
hypersurface element (Bi, B') we have B;T:.,By%=0. Then we have an in-
dicatory and symmetric tensor T,...,, of (0, r—1)-type satisfying

(4) Tfil"'jr:h;:l’j‘j?“fr_l_ +h§r7°-‘j1'“jr—1 ’
where hi=0i—1%;.

Proof. 1t will be sufficient for the proof to deal with T, of (1, 3)-type.

Let E(x, y) be the set of all the orthonormal frames {e},} at a point (x, y) of
F™ such that el,=!(=y*/L(x, y)), and consider the scalar components of T%,:

T asea=THreayneded ek, .

Conditions (2) and (1) respectively show the symmetry property of Tapeq in b,
¢, d, and Tipca=Ta1ca=0. (3) further shows

(3" Tabca=0, a, b, ¢, d=2 -, n; a®b, c, d.

If we fix an é(x, y)={ei,} €E(x, y), any &(x, y)=1{&i,} € E(x, y) is written &;,=
tbe}, where ti=1, t%=t}=0, (#)e0(n—1) for a, b=2, ---, n. We consider 1-
parameter subgroup of E(x, y) with a parameter { where {=0 corresponds to

1 According to Professor L. TamAssy’s recent communication to the author, Professor A.
Rapcsak says that the correct form of his lemma is just our Lemma 9.4.
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é(x, y). If we put Of=(dt§/dt),, we have 0}=0%=0}=0, Of=—0% for a, b
as above. We then have relations

Tabcdszqrstgtqbtztfi:()y a, b, c, d:2, e, N a?&b, c, d y

between the components Tgpcq(resp. Tpqers) Of TF;, with respect to &(x, y) (resp.
é(x, y)). Differentiating the relations by ¢ and evaluating at =0, we get

(5) prchg+Tachqu+Tabrdoz'*'TabcsOfi:O ,

where summation convention is made in p, g, 7, s.
(i) b, ¢, d#+: Owing to (3'), the surviving terms of (5) are

(To0ca0%+Tc0ca0a+Ta0eaOD+T aaca O +T apaa Of +T avea 0%
=(Twsca—Taaca) O+ (Teeva—Taasa) O+ (T agoe—T aanc)0=0.
Arbitrariness of (09%) leads to
(5-1) Taaca=Tssca, a, b, c,d=2, -, n; a, b, c, d+.
(ii) b#c¢=d: Similarly (5) reduces to
(T0cc06+Tc0ec0)+ T 0accO8 42T 000 OF
=(Tovce—T aace) 0% +(T ccco—2T aacr)05=0,
which immediately implies
(5-2) Taaee=Trsccr Toccv=2Tqacs, @, b, c=2,--,n; a,b, c*.
(ili) b=c=d: Similarly (5) reduces to
Ty00006 43T 00008 =(T 0000 —3T aa0s) 05 =0,
which shows
(5-3) Tos0s=3T qase, a, b=2, -+, n; a+b.

Consequently (5) enables us to introduce quantities Ty(=Tcp), b, c=2, -, 1
such that

(6) Taabc:Tbu Taaas=2T as, TaaaaZSTaay
a, b, c=2, -, n; a#b, c.

Now, denoting by X the summation from 2 to n and paying attention to
surviving components, we have

Thijk: b {Taabcea.)hea)ieb)jec)k+Tabacea.)heb)ieu)jec)k+Tabcaea)heb)iec)jea)k}
a#b, ¢
-+ 02 {T vosclornenilo j€cy s 1T vocn20: 1 Coy 1€y 100y 1T 5co0€0) 1€y 1€0) 7€) k)
#C

+ ; {T voosenr neoyiC0) i@y 1} -

Owing to (6), dividing the first {---} into two parts (b=c) and (b#¢), and paying
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attention to X {esin;} =gi;—enien;=hi;, we have
b
Tnijkzg«’rbb[{hht_eb)heb)i} eb)jeb)k+{hhj—eb)heb)j} Cp)iloyk

+{hnr—ennes ¥} eb)ieb)j]

4+ 3 To[{hni—enneni—eonloil enjeor
b#c

+{hnj—ennren;—eontot enitor
+{hnr—ennesnr—ecno ) b1 1]

+ 22T scenyn {eb)ieb)jec) rteni€e s e tecriln) jCn et
bre

+Zb)3Tbbem 7€) i€ jCb) k

=T {hhieb)jec) k+hhjeb)iec) rthn keb)iec)j} .
b, ¢

Thus, if we put T‘jk=2Tbceb) jeor, this is indicatory and symmetric, and then
b, ¢
we obtain the conclusion T,”-jk=hhi’f‘jk—l-hh,-'fik-l-hhk'fu-

It is clear that the assumption (2) of Lemma 9.1 becomes nonsense for T}
of (1, 1)-type. Consequently we immediately get

Lemma 9.2. If T3 is indicatory and TiB;B{=0 for each (B}, BY), then we
have a scalar T satisfying Ti=Th.

Next, we shall deal with T';;., which is symmetric in 7, j, -, k instead of
the assumption (2) of Lemma 9.1:

Lemma 9.3. (1) If a tensor T, is indicatory, symmetric and T.;, B*Bifs
=0 for each (B}, BY), we have T;;,=0.

() If a tensor Thije is indicatory, symmetric and TyizeB"B¥§;=0 for each
(B, BY), we have a scalar T' such that Tyijp=T(hnihjathushrithnihi).

Proof. (1) From Lemma 9.1 we first get T“k:hij'la‘k—l—hik’f"j. Owing to
symmetry, from (1.6) we have
0=C(hs;T w4 hiwT)BLB By=hsT;B7,

which implies T,;B/=0. Thus T'; satisfies T,//=T;B/=0 for each B’ orthogonal
to /4, and so we have ’f‘j=0.
(2) Similarly we have

0=T ;s BLB:BYy=(hniTju+hn;Tin+huiTiy) BE BBy
=hapTix B'Bi+ho,Ti;B B},

and contraction by g%f gives ’f‘ikBiB;*=0. Applying Lemma 9.2 to Ty, we get
Tix=This. Thus the proof has been completed.
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Lemma 9.4. Suppose a tensor Ti., of (1, r)-type be (1) indicatory with respect
to7j, -+, k, (2) symmetric in j, -+, k, and (3) for each hypersurface element (BE,
BY) we have B;T%.,Bi:%5=0. Then we have an indicatory and symmetric tensor
'Io“j...k of (0, r—1)-type such that

@) Tis, =0T /LHhiT s A o 05 Ths -
Proof. We indicatorize T%., with respect to the index 7/ (*Definition 31.3):
/T;k:T;k_lngk/L .

This 'T%.., satisfies three assumptions of Lemma 9.1, hence we can apply Lemma
9.1 to 'T%. 4. Q.E.D.

Now we return to the considerations of three theorems mentioned at the
beginning of the present section. The equation (9.1), contracting by v?, gives

9.1 R B'BE=0.

It is well-known (*§17) that R, is indicatory, and application of Lemma 9.2 to
R;i,» shows that R;,, is proportional to h;,. Therefore *Theorem 26.1 shows
Riov=KL?h;,; F™ is of scalar curvature K.

Next we shall consider (9.2). Since the hv-curvature tensor Gi,, of the
Berwald connection BI is indicatory and symmetric in the subscripts (*§ 18, [30]),
Lemma 9.4 immediately gives

9.5) en=0Gn/ L RIC an+hiG i+ hiCe
where Gy, is indicatory and symmetric. (9.5) leads to ij(:G§ki)=(;z+1)G°j,,,
and so we have
9.5") Gian=U'GYpn/L+(hiGia+hiGn+hiG;x)/(n+1).
Differentiating this by y!, we get
Giena=0'GYun-1t/ L+Gpn(hi—1)/ L?
F& Grmy {—(hil;4+hi;lDG en/ L+ hiG pni} [(n+1),
where (.)=0d. Contraction with respect to i=[ yields
Gien=LGjrn/(n+1)+ LU;Grnt1:Gr+inGjn)/(n+1),
because of n>2. Therefore (9.5’) may be rewritten as
9.5”) Gixn=(3'Cje-n+0iG en+0iGn;+04G1u)/(n+1),

which just shows vanishing of the Douglas tensor Di,, of F™ [29].

On the other hand, Z. Szab6 ([34], [29]) showed that F*(n>2) is of scalar
curvature if and only if its Weyl tensor Wi, vanishes identically. Therefore
F™ is projectively flat [29] (and necessarily of scalar curvature).

Next it is well-known that P;;.(=gijr0) 0f CI" and gy, are indicatory and
symmetric in 7, 7, k. Therefore (9.3) and (9.4), applying Lemma 9.3 (1), imme-
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diately enable us to recognize that the condition for F* in (II) and (III) is necessary.
Now we are in a position to show the sufficiency of the conditions for F=»

in (I). Suppose that F*(n>2) be projectively flat. Then we have a rectilinear

coordinate system (x?%) [31] such that G¥(x, y) appearing in (7.1) is written as

(9.6) Gi(x, y)=—P(x, 3)y*,

where P(x, y) is a (1) p-homogeneous function defined on the domain of the
(xY). Then we have

0.7 Gi=—P;y'=P3j,  Glx=—P;0i—Pi0j—y'Ps ,

where P,=d,P and P;;=3,P;. Thus (5.4) (I'i=G?%) and (6.6) lead to
; b .

(9.8) Hs=B;Bis,  Hg=DB:Bj,.

We consider an arbitrary hyperplane P”"! in this coordinates which is given
by a linear equation @(x)=b;x*+b=0 with constant b’s. Differentiating this by
parameters % and uf, we have b;Bi=0 and b;B%;=0; the former shows that
b; are proportional to lgi and then the latter implies B;B%z=0. Therefore (9.8)
shows that H, and H,s of the P"! vanish. Consequently each hyperplane
Pr-1 is a hyperplane of the 1st kind by means of Theorem 7.1 and consequently
we get

Theorem 9.1. (Rapcsak) There exists a hyperplane of the 1st kind (with
respect to CI') at each hypersurface element of a Finsler space F™(n>2), if and
only if F™ is projectively flat. The hyperplanes are represented by a linear equa-
tion in a rectilinear coordinate system.

Remark. As mentioned above, this F™ is necessarily of scalar curvature by
Szab¢d’s theorem, and CI” may be changed for BI" or HI or RI

Varga [15] shows that such an F™ as in Theorem 9.1 should be of constant
curvature, but we can hardly understand Varga’s discussions and especially his
differential equations (29).

Next, if a Finsler space F"(n>>2) is projectively flat and Landsberg (P;;,=0),
then F* admits the above hyperplane P*' and further Q.s=P;;,B*Bi%=0, so

that P*-! is of the 2nd kind by means of Theorem 7.2. (6.7) gives }c{aﬁza
Consequently.

Theorem 9.2. (Rapcsik) There exists a hyperplane of the 2nd kind (with
respect to CI') at each hypersurface element of a Finsler space F™(n>2), if and
only if F™ is projectively flat and Landsberg.

From this necessary condition we recall Numata’s theorem ([32], *Theorem
30.6): If F"(n>2) is of nonzero scalar curvature K and Landsberg, then F™ is
a Riemannian space of constant curvature K. Therefore we have
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Corollary 9.1. A Finsler space F*(n>2) of Theorem 9.2 is of scalar curvature
K. If K#0, F" is a Riemannian space of constant curvature K.

Finally (IIl), proved first by Kikuchi [9], is stated as follows:

Theorem 9.3. (Kikuchi) If a Finsler space F™(n>2) admits a hyperplane of
the 3rd kind at each hypersurface element of F™, then F™ is a Riemannian space
of constant curvature. The converse is also true.

Remark. See §6 of [31] about rectilinear coordinate systems in Riemannian
spaces of constant curvature.

Finslerian projective geometry. Theorem 9.1, together with the author’s
previous paper [31], reminds us of this word! In fact, the concept of Finsler
space with rectilinear extremals, originally suggested by Hilbert, had caused
various interesting theories already before Finsler’s thesis in 1918. A Finsler
space is said to be with rectilinear extremals, if there exists a covering by co-
ordinate systems (x?) in which each extremal (geodesic) curve is represented by
a system of n—1 linear equations in x?, and such a coordinate system is called
rectilinear by the present author [31]. Now a Finsler space with rectilinear
extremals is really projectively flat (projective to a locally Minkowski space),
and the rectilinear coordinate systems obey projective transformations [31].

Then it is natural to recall the dual geometrical figures: What is a figure
represented by a linear equation in a rectilinear coordinate system? Theorem 9.1
answers this question: It is a hyperplane of the first kind, just the same cir-
cumstances as in a projective space! It will be obvious that the similar facts
hold for subspaces of arbitrary dimensions in a projectively flat Finsler space.
Further it is easy to observe that Theorem 9.1 concerns a nonlinear connection
(Ni(x, y)) alone; if we are concerned with a Finsler metric, Theorem 9.1 is to
assert the existence of totally geodesic hypersurfaces instead of hyperplanes of
the first Kind.
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