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T h e  theory o f  Finsler subspaces m ay be developed after t h e  model of
Riemannian geometry. In the early years of Finsler geometry, closely following
E. Cartan, made M. Haimovici fundamental a n d  essential contributions to  the
theory. S ince then, various interesting results on Finsler subspaces have been
found by O. Varga, H. Rund a n d  others. I t  s e e m s , h o w e v e r , to  th e  present
author that there had to be unevitable obstructions to develope the  theory of
Finsler subspaces analogously to the  Riemannian theory, and , a s  a  consequence,
almost all the existing literatures are not easy to understand and confused nota-
tions sometimes bewilder th e  readers. T h e  first among those obstructions is
perhaps surviving of quantities which are derived from Cartan's C-tensor, given
by (1 .9 ), and  cause , fo r instance , the  non-symmetry property of the second
fundamental tensor. The second, a consequence of the first, is that the induced
connection, defined by the projection, does not generally coincide with th e  in-
trinsic connection, determined from th e  induced Finsler metric, and that the
former is beyond the  usual concept of connection appearing in  Finsler geometry.

The quantites, derived from the C-tensor, a r e  rather useful for enriching
th e  Finslerian theory a n d , in  fa c t, w e  have Brown's interesting work which
was devoted to studying the  behavior of those quantities. T h e  problem o f  in-
duced connections is  ju s t  the initial m otive fo r  th e  author in  beginning the
theory of subspaces. Theorems 5.1 and 6.2 are satisfactory answers of the pro-
blem from a n  axiomatic standpoint, based o n  th e  author's theory of Finsler
connections, and propose new important problems.

Now a  Riemannian space of constant curvature, as is well known, is charac-
terized among Riemannian spaces by th e  property that there exists a  totally
geodesic subspace at each subspace-element. M. Haimovici is  the  first who was
concerned with some generalizations of this property to Finsler geometry. After
thirteen years S . Kikuchi solved part of this Haimovici's problem and finally A.
RapcsAk might show nearly perfect solutions. The second main purpose of the
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p resen t p ape r is  to  g iv e  p e rfec t p ro o fs  of Haimovici-Kikuchi-RapcsAk's results
and, in particular, to conclude Theorem  9.1. A s  a  consequence, together w ith
th e  author's previous result, it is pointed out that a projectively flat Finsler space
of dimension m ore than tw o is to realize the projective g eo m etry  w ith  respect
to  a  rectilinear coordinate system.

T h e  terminology and notations are referred to th e  author's monoraphs ([26],
[28]) and especially th e  quotation from th e  la t t e r  [ 2 8 ]  is sometimes indicated
only by putting asterisk.

§ 1. The induced Finsler m etric.

We consider an n-dimensional Finsler space Fn=-(/1//n, L (x , y ) ) ,  a  differen-
tiable n-m anifold M r ' equipped with fundam ental function L (x , y )  which is as-
sumed to be (1)p-homogeneous in  y =(y i), ((22.6) of [26] ; *Definition 12.1),
and  to yield th e  regular fundamental tensor field g i ,(x , y )=( A ,L 2 ) / 2 .  (Through-
out th e  present paper, Latin indices take values 1, ••• , n.) W e  p u t  1,= j i L  as
usual, bu t Cartan's C-tensor C i j k = ( 9 k g i f ) 1 2  is denoted by  g o k  to  avoid confusion.

A hypersurface  o f  t h e  M n m ay be represented param etrically by the
e q u a tio n s  x i= x i(u a ) , a = 1 , •  , n  — 1 , w h e re  u "  a r e  Gaussian coordinates on
Mn- '. (Greek indices ru n  fro m  1  to  n -1 .)  W e  u su a lly  assume the matrix con-
sisting o f the  so-called projection factors /3 ',',=ax i / au "  i s  o f  r a n k  n - 1 .  T h e n
B a (u)=(B L (u)) m ay be regarded a s  n - 1  linearly independent vectors tangent to
A/in - '  a t  the  poin t (ua) and  a  vec to r X ' tangent to  11/1"— '  a t  th e  p o in t  m ay be
expressed uniquely i n  t h e  fo rm  X "=1 3 X " , w here  X " a re  components of the
vector w ith respect to  th e  coordinate system (u").

To introduce a  F insler structure  in  Mn - 1 ,  t h e  su p p o r tin g  e le m e n t y ' a t  a
point (0 )  o f M n— '  is assum ed to be tangential to Mr̀ - ' ,  so that w e m ay w rite

(1.1) y '•=B (u)y a

T h u s  y "  is  th o u g h t o f  a s  th e  supporting elem ent o f M n - i  a t  the point (u").
Denoting y  of (1.1) b y  y '(u , y), the  function

(1.2) L (u, y ):•=L (x(u), y (u, y ))

g iv e s  r ise  to  a  F insler m etric o f  M I ' .  Consequently we get a n  (n-1)-dim en-
sional Finsler sp ace  F n - 1 =(M n - 1 , L(u, y)). T h e  fundam ental function L (u, y )

o f  this Finslerian hypersurface Fn - '  o f Fn  is called th e  induced m etric on F n - 1 .
In  the  following we employ the notations

BLp :=ap/31 , BPis :=0134.p, : • • = a , B - i p • • •  .

It then follows from (1.1) that

(1.3) 6„=13.A .

T h e  induced metric L (u, y )  yields /,„=6„L , the metric tensor g„,9=-(6„6pLz)12
and Cartan's C-tensor g„,s,..=(6,g”,9)12 o f  F n— '. P ay ing  a tten tion  to
from (1.2) we get
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(1.4) , g , o r =g i i k B & .

A t each point (ua) of the a unit norm al vector B i(u, v ) is defined by

(1.5)
g o (x (u), y (u, v ))B (u)B f=0 ,

g i i (x(u), y (u, v ))B 1 B i=1 .

T h is  n o rm a l vector B i (u, v ) depends clearly on  the  supporting element y '(u, v )
and so it should be said that we have a norm al cone B i (u, v ) at the  point (u").

A s fo r the  angular metric tensor (1.4) and  /B'=0 yield

(1.6) f ruB idiv =h,p , h i ; 13;i,13-i=0 ,

R em ark . P ay attention to le  and  e i  o f Rund [10], p. 372 and [13], p. 190.
See also th e  remark below th e  equation (1.17) o f Rund [17].

T hus w e get t h e  regu lar m atrix  (B L  Bi). L e t (B7, B i ) b e  t h e  inverse
matrix o f (B ), B i ) ; w e have

(1.7) B B 1 = n ,  M B i =0  ,  B iB 7 =0  ,  B 1 B i =1 ,

and further

(1.8) M B3H-B 1 B i =55.

Making use of the inverse matrix (g 4 ) o f  ( g a p ) ,  w e  g e t  B 7=gaPg 0 B13 , B i =
g o ad , and quantities .13,„i :=B.1,g 11 =B ?g ,p  an d  13"  :=B 7g i j ="B ipg a P will be used
later on.

Lemma 1.1. L et X a pr (u, v ) be the projection X iikB iol r  o f  a tensor X iik(x, y)
in to  F n - 1 ,  an d  p u t  X ais=X iikB B k , X a =X i i kM ,BiB k a n d  X =X i i k BiBiBk.
Then w e have

X ijk l3 i2p= X ,0 1.B rk+ S B k Xijk -13V3 k = X , i9M + X ,B ;  ,

Xi i kBiB k =X „B 7+X B i .

P ro o f .  From (1.7) w e have

Xa i3B 1=(X ihiB iah,3B k )B 6=X ihk B !B k (6'; —B h. B ; )=X i i k M B k — X „B i.

The sim ilar way show s the other two equations. Q. E. D.

We now introduce important tensors from Cartan's C-tensor giik

(1.9) Af,o=g BidipBk , , M = g i i k B iB lB k .

From Lemma 1.1 we immediately get

(1.10)
g i jk & 14 3 = geO rB ri + M , 13B i giikB4Bk = A 4a,9B 12+111a B i

g i j k a i  B k =  M a B 7 + M .B . .
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Next, differentiating (1.5) by vP, we get

2g i i k B ?paid-g i i 13 B i=0,

that is to say,

2/1/„p-I-B„;ABi= , Mv P/M pal= 0.

Thus, putting 11/4=garMrp, we get

(1.11) ,8B-1,=-2.711$B4-11pBi .

Proposition 1 .1 .  ( 1 )  The v-dependence o f B 7 and 13,; are shown by

B i  M p  B i  .

( 2 )  Putting  G=det (g o )  and G=det (g 4 ) , w e have M p= Op log (G/G)} /2.

P ro o f .  (1 )  It follows from (1.10) that

l&B.B1=6p(garg i A ) = ( - 2 4 rg i j d-2g"g i i k B k,9 )M

= - 2 g , T Bri -E2gaï(gp r 3B1+Mp r B i )=2 W i .

Sim ilarly we have

B i  =&9 (g i i /31 )=2g i i k B k
i3 B i± g i i ( — 211,4 — Mp 13-1)

=2(M g3„ i +MpB i )- 2 M p ,, i —MpB t =M pB i .

(2) It is well-known that log G)I2=g 1 (= g 6 )  ( * (24.1)).
have

4 = Hi; k B i,9(gl k —gra  1303:0=g i B ip—g pr 3 gr5 ,

From (1 .8 ) we

that is,

(1.12) Mp=giBp— gp,

which is th e  equation we should prove.

Finally we shall show

(1.13) 11Pp" M r— My M. p= 0 ,

which is equivalent to

(1.13') &.1‘1,,13-5pAlar+.11/15,(24 -5 Ilp )— M a p (2 e r— M a M r)= 0  .

It follows from (1.11) that

5,11,,,p=k(ghijBrpal)=5kgniA V p k
r ad-2ggpM 5,— M 4M T ,

which implies (1.13') immediately.

Rem ark. It seem s that R u n d  [19 ] especially paid a tten tio n  to great im -
portance o f  M 's defined by (1.9), and Brow n [20 ] studied them in  detail. I t  i s
noted that their M 's a r e  equal to  our L M 's , (0)p-homogenized tensors. (1.11)
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a n d  facts mentioned in Proposition 1.1 were all shown by Brown [20 ]. As to
(1.13), see Theorem 4.1 o f [20].

It is hard to understand that the second term of the right-hand side of (1.11)
does not appear in the equation (17) of Davies [ 8 ] .

 H is reasoning for (17) seems
to come from p .B ,= 0  ( in  our notations), contrary to our result. Following
Varga [14] and [15], if  a  hypersurface Mn - ' is  to  b e  g iv en  b y  a n  equation
0(x', • «, xn )=0, we get aa (x(u))=o,BL—o (c,a t (Z), and so B i = 0 1 (x(u))1C
where C is the  length {g"(x(u), y(u, v))0,0 2 1"  o f 0 1 relative to  a  supporting
element O. Therefore B, certainly depends on va.

§ 2. Induced Finsler connection.

We are concerned with a  Fins ler space (Fk, Fr) equipped with a  Finsler
connection F r= (F lk , N5, CA ) (c f . [26], [2 8 ] ) .  In  th is section we have not to
do with any relation between the  Finsler metric L(x, y) and the connection Fr.
Simply speaking fo r  th e  following use, the Finsler connection Fr is such that
the  absolute differential Dyi of supporting element y ' is given by

(2.1) Dyi=dy'-FM(x, y)dx),

and the absolute differential D X ' of a  Finsler vector field Xi(x, y) is

(2.2) DXt=dXi+Xlirjk(x, y)dx k - I- CA(x, Y)dY k l

w here we p u t  FA=Flk - I -C A M . I f  DX 1 = 0  along a  curve (xl(t), yi(t)) of the
tangent bundle T(Mk), X 1 is said to be parallel along th e  curve (x i(t)) o f  Mn
with respect to the  supporting element yi(t). In terms of dxk and Dyk we have

(2.2') DX"=X4dxk-I-X'lkDyk

The h - and v-covariant derivatives Xfk, X1 1 k  of X ' are defined by

(2.3) irk=a k .X H -  F j? k X 1lk =5)?X 1± rC hk

where ak=ak—Nah.
Let Fk - ' =(Mk - ', L(u, 7))) be a  Finslerian hypersurface of the F k . It is noted

that, along a  curve (ie (t )) of Fk - ', dxk and dyk of (2.2) are  written a s  dx k =
M (u)du" and dyk=BL(u)du"+M(u)dva.

Definition. The induced (Finsler) connection I FT o n  a  hypersurface
o f a  Finsler space (F., Fr) is such that the absolute differential Dv" (resp. DX")
of the supporting element va (resp. a  Finsler vector field X ") is given by D O =

(resp. DX'=137DX 1 ), where y':=BLv" (resp. Xi=g,'„X”).

Putting IFF=.(F;i r , N il, CM  and E73'1 =F;47H-Ccp' 1Aq, we have Dva=d0+MduP,
which is defined as

B7(dy i -I-Mdxj)=B?{(Bpd0H-BiOvP)+NSBAduPI ,

which implies
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(2.4) N'h=B7(B6i9+N5BA).

N ext DX '=d)CH-X P(F igr dzer+C'h„dvr) is w ritten  as

B7{dX i +X i (rjkdx k - I- CAdY k )}

=-B7[(B ipTX Pdur+N dX P)+B bX P { ri l
k /Yr'dur+Cf k(B 4dur+M dv 1 )} ,

which implies

(2.5) Pilr= {B ip+ B ia3kM +C),,B ISO}

(2.6) C1=Bc1QBiA.

If w e put

(2.7)H p  : = B i (Bio p+M B ip ) ,

this, together w ith (2.4), yields

(2.8) B6rd-N;B;:=1VM H-HrB i .

Therefore (2.5) is now  rew ritten as

(2.9) FS1=B7 IBIO-BA(Fi ikB;-'-i-Cik BkH„)} .

Consequently we may conclude

Proposition 2 .1 .  The induced connection IFT=-(P 1 , AT̀h, CS 1) on a hypersurface
Mn - '  of  the  Finsler space (F", Fr) is given by  (2.9), (2.4) and (2.6).

Similarly to (2.7), if  w e put

(2.10) Hp1:=B1{Bipr+N(FlkEi+CABk111.)}

this, together w ith (2.9), leads to

(2.11) Dip,- I- 13 jp(Fi ik M +C iik Bk HO= Fch,B1.+H p r Bi .

The Finsler vector field Hp, defined by (2.7), will be called the normal cur-
vature vector due to  its geom etrica l p roperty  (c f. (7.5)). O n the o th e r  hand,
Finsler tensor field 1//31 ,  defined by (2.10), will be called the second fundamental
h-tensor (cf. (3.5)) by  the analogy of Riemannian geometry.

The tangential component BID yi of D y i is by definition equal to D v , while
the normal component B i D y i is

B 1 D y i=B i (dyi-E-NSdxj)=B i (D6p+M B pduP.

Therefore from  (2.7) we get

(2.12) D y 1— D v B +H pduB 1.

Next, substituting from  (2.8) and (2.11), we get

N r + B g ri
i
k B;',-FCii

k B4)=C1kBigkaN N -Piir M,-1-1-1,e,.B i  ,

which implies
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B{Bip,± B i
ii(rikB;,'+CikBô r )} =B,C1kBjpk

a.A1H-H,3,

Thus, if we put

(2.13) K := B,C.AB JA

the above, together with (2.5), yields

B ipr +  B g r , i
kffli-FC;kBô r )= T13'7B1-F(H p r - K gal\MB' .

Therefore, similarly to the case of D y, we get

(2.14) DX i---.DX "B„±X '(Hûgdul9+KapDvfi)B i.

The Finsler tensor field K i3 a, defined by (2.13), w ill be called  the second
fundamental v - ten so r  (cf. (3.6)).

We shall be concerned with the torsion tensors and other important tensors
o f the induced connection I  Fr and Ffl - '. First, taking the skew-symmetric
part of (2.11) in  13 and r ,  we get

(2.15) T jika ii3kr + Clk(BlpHr — MI- p)B k,

where T ik =F ik — F4 i s  th e  (h )h -to r s io n  tensor of the original F r.  Thus the
(h)h-torsion tensor T par  F  par  — F a of 1 F r is given by

(2.16) 773,.= B7 In ,  B 1,9k
r +Cj I-1,9)Bk} ,

and we have

(2.17) H p=B i Bipk
r -Fq k (B jfi Hr — A7:H g )Bk} .

Secondly, contracting (2.11) by vi9 and subtracting (2.8) from it , we get the
deflection tensor D7=vPFch 1—AT and 1-101—H1(H0r :=0 H p ï )  as follows :

(2.18) = B7(131BH-O k Bk ,

(2.19) H„-1-17=Bi(DikM+CôkBk Hr )

where Dik is  the deflection tensor y jP ) k —NL of Fr.
Thirdly, differentiating (2.8) by vi3 and substituting from (1.11), we get

B iier -kkA TA 4= ( fi l\T —2111V-1,)M + 0  pH,— MA Hr )Bi .

Therefore, comparing this with (2.11), w e  have the (v )h v-to rsion  tensor 127,8 =
pNp - P h  and 1 &sHr —Hp, as follows :

(2.20) fh)',,9= 2 H rM  B 7 (P i k BP/3— H,C.iikBipB k )

(2.21) /9.H.T—Hiir=MpHr+Bi(P.iikB;4—HrqkBABk),

where Pj k is  the (v)hv-torsion tensor 5km-Fik ;  o f Fr.
In general a  Finsler connection Fr has five torsion tensors ([26], [28]).

The (h)h-torsion tensor T = (r ik ), (h )h v -to r s ion  tensor C=(C5k), and (v)hv-torsion
tensor ./3 1 -=(P k )  have appeared in the present section. T he (v)v-torsion tensor
S '=. (S .ii k )  is solely Sli k=Ci k - CL ; it follows from (2.6) that the (v)v-torsion  tensor
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S r of 1Fr is given by

(2.22) SS T = B I'Sj k alpk7 .

Rem ark. We have interesting three p a irs  {(2.16), (2.17)1, {(2.18), (2.19)1
a n d  {(2.20), (2.21)1 o f equations. The first equations of these pairs concern
F$, and N :

TS1=FS,—Fr13, DS=F,7p—NS, 13 S,=- 51Ng—Fp,

and the second equations present the corresponding forms of Hp,. and Hp:

H g r —Hr g  , H op — Hp ,

It should be remarked that these quantities survive in some Finsler connection
(cf. §§ 5, 6), contrary to the Riemannian case.

§ 3. Relative covariant differentiations.

We have to consider the integrability conditions of equations (1.11), (2.8),
(2.11) and so on, and then the curvature tensors of induced connection /Fr will
appear in those conditions. To do so we shall introduce th e  so-called relative
covariant differentiations.

The projection factors /31(u) are quantities which behave as components of
n-1 contravariant vectors B a =-(BL) in Fn. and also those of n covariant vectors
B 5 = ( B )  in Fn - 1 . We are concerned with such a set Y  of functions ITh(u, y)
defined along F 4 - 1 . The relative h- and y-covariant derivatives of Y are defined
as follows :

First the relative h-covariant derivative is

(3.1) Yt4, :=3,Y .i1S-1-YijSFikr—Y0FIr+YAFffr—Y iS P r

where ar ,6 r —m5, are 3-differentiation with respect to the nonlinear connection
N S  of the induced connection 'Fr, FS , are connection coefficients of I F F  and
FL, are so-called mixed connection coefficients given by

(3.2) FIT : =- FL;  Mi. CLi BlH7 ,

which appear in (2.11). Secondly the relative v-covariant derivative is

(3.3) Yj;`,i17:=kYjI±Y'Llcir—Y4C,7+Y.5,,,cg',—YygcSio7

where C r a re  connection coefficients of IFT and C r  are  mixed connection coef-
ficients given by

(3.4)C r := C B .

Rem ark. The covariant differentiations with respect to both o f connection
of an enveloping space Fn and of induced connection were first studied in Finsler
geometry by Hombu [4] and applied to various geometrical theories by Varga
[7], Davies [8] and others. See (V . 4.13) of Rund [13].
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We first apply the h-covariant differentiation to the projection factors 131:„
and obtain

(3.5) 13L1s=HasB1 ,

which is nothing but (2.11). As to the v-covariant derivative BLI /3 of BL, it is
observed from 6,9 BL---0 and (3.4) that T h e r e f o r eTherefore Lemma
1.1 and (2.13) lead to

(3.6) .

Now we consider the 5-differentiation 319 with respect to  I F T .  It follows
from (1.3) and (2.8) that

(3.7)

Let Y .1(x, y ) be a  tensor field of F .  Along Fn - '  we easily obtain

(3.8) 311/3=37.11kB,9±Y.iiIkBkHp , Kflp-=Y:H k B kp.

Applying this to the fundamental tensor g o ,  we get

(3.9) gifts=--giiikBks+giilkBkHp, kBkp •

We now consider the relative covariant derivatives of the unit normal vector
131(u, v ). (1.5) gives

giiipBLB j +g iiH 4 B i B i + Ba i B =0 , g i i i s B i Bj+213 .0 s =0 ,

which imply

(3.10) B ff3=-1-10B ai-kg;k1A (B iB il2— gii)B k

Similar way leads us to

(3.11) B i i3= — K 0 1 3 ' 1 +gik lp (B 'B il2— g i l)B k .

It is easily verified by means of Lemma 1.1 and (3.9) that (3.11) is equivalent
to (1.11).

We shall deal with the induced metric L (u, y ) of Fn - 1 . L = - 6 „ L  and (3.7)
yield L 1p =1 3 0 1 L +B 1 H 3 1 L .  Since 1 1-= L  i s  orthogonal to  the unit normal
vector B i, we get

(3.12)

Next (1.4) and (3.5) give g o l ,=g , , Ir B idis. Therefore (3.9) leads to the first
equation of the following (3.13). Similarly we obtain

(3.13) g a g l r = g t i j I k B i e l r + g i j  I kB ilpB k 1-1 ,, gap 1,=g i ;  B .* .

Proposition 3 .1 .  (1) I f  a Finsler connection FT  of the enveloping space Fn
satisf ies L 11 = 0 , the  induced connection ITT  of  any  hypersurface Fn - 1  does

(2) I f  F T  is m etrical (g1iih=g1iik =0), I F r  is also m etrical.
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§ 4. Generalization of the Gauss and Codazzi equations.

W e are concerned with commutation formulas of relative covariant differen-
tiations, generalizations o f  th e  Ricci identities. F i r s t  w e  t r e a t  a  scalar field
Y (x, y) of the enveloping space Fn, to w hich the  Ricci identity with respect to
the  induced connection H T  applied:

Y11r
—

Y1r1fi
=  —  1arh 1 - 1 7  I aRT3r •

By means of (3.8) and (3.5) the  left-hand side is w ritten in  the  form

01(pr , {(Y u Bli-FY I k B k H is)i r }

=W( 130 {(Yiiik M +Y I J I kB k H O B ± Y  p r Bi

▪ T I kiA + 1 7 1 k I j Bi 1-1,)B k H fi+Y  I k(Mrl f ig+B k 11,50}

=(  7  I» h kli)B il3kr +( 7 1;1 k — Y I kii)(13 5pH, — M11,9)B k ±Y  I i (H,9 ,—Hr i9 )13j

+ YI a t  ( r ) {H piA±H p i r Bk} . (See *Remark 5.1.)

Then, by applying the Ricci identities of Fr, w e  have

=( — YliT)k — Y iRk)B19kr ±( — Yliqlk—Y1 iPik)(B:f3H).— B ):H p)Bk

+(11 pr— Hrp) 1± Y  1 2 :9 1 ( 1 r ) isBf r +H .

On the other hand, the right-hand side is w ritten as

— (17 1iB/1- FY I i B i H )T ,̀4, —Y

Therefore , equating th e  terms containing Y 11 , w e  ob ta in  (2.15). Equating the
terms containing Y1 1,  w e get

(4.1) 13L1q,.+BiHa P ii, =R sIk aipkr +Pii k (Bip Hr —  atl 13)Bk (fir ) {H pl3f7 H-Hp i r B i }

w here the tensor B ' 1 is a lready given by (3.10).
Secondly, from the  Ricci identity

YrP I 1— Y rifi = — r . q r  — 1 7  HP'/ir
we obtain

(4.2) BLChT=Cj k KhBi ,

(4.3) BL/3 5„4-B i H a CS,=P k aig k
r +S k aiH f i l-g—B i3 Bi I .

T he fo rm er is  c le a r  f ro m  (2.6), (2.13) and Lemma 1.1. The te rm  /31 11 of the
latter is already given by (3.11).

Thirdly the  Ricci identity

YlpI T
— Y I r l

immediately gives

(4.4) pr— Krp)B i ,
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which is only a  consequence 01 (4.2). C f .  (2.22).
Now we shall deal with a  vector field Yia , and first consider Ya,p,,—Y .

Direct calculation (cf. *(10.11)) leads to

YLIpi r —YLI r ip=Y4Kjfi r
—P3Kgfi r

—YL,6T13,— (5,3YDR,a9r,

where 10 p r is  the K-tensor of 'Fr (cf. *(10.17)), i. e.,

Kgpr =91 (pr )  {31S ' pF71 R r C R r ,

and Klp r i s  an analogous tensor to the K-tensor which is constructed from Fb
defined by (3.2):

(4.5) Kb, :=9.10 0  iarFA9H- F1',9Fkir } •

To consider this tensor K jpr ,  we refer to (3.2) and (3.7), and substitute from
(2.15) and (4.1). Then we get

91(pr) 132-F1,91 =(ônFjk— akFlh - FCliRih)B kpi-- CiaR F̀ir

+0hF,ik—akc,ih+c,OhNi(BH r —Milp)Bh .

Therefore we have

Kb 1 =1?1,9,—Cla R̀ :9, ,

Rb r :=R Ik h 14;.-1-Plk h (B1
:9HT —MH,9)8".

Consequently we get one of the relative Ricci identities:

(4.6)

This form is quite similar as in  a general Finsler connection. The tensor Rb,
may be called the m ixed h-curvature ten sor of iF r.

Secondly we compute YLIpl r —YL r 1,9 directly and get

(4.7) YLiplr—YL IT' p=PaPh r — Y SP .g pr - 1 liaCh — Y

where Pb , is defined by

(4.8) Pb1:=kFb-5 pCj ir + FbCkir —C fr,F1A+ClajrN;

sim ilar to the hv-curvature tensor Pikh (cf. *(10.16)). On account of (2.20) and
(2.21) this may be written in the form

(4.9) Pb,=.plkh/3"-FS1,,,BkHABI• ,

called the mixed hv-curvature tensor.
Finally we easily get

(4.10) YLI r 11 3 = r a S 1 , 1 3 7 - 1 /  iciS g fir — 3 7  LI 3S6,gr ,

where we put

(4.11) SA9, :=-9-t ( h )  OrCis+C.P/9C4, 1 =S ik h  Bk4
called the mixed v-curvature tensor.
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Now we apply these relative Ricci identities to B,;,. (4.6), together with (3.5)
and (3.6), yields

BIRg p r —Ha aB i T il r —Ka a Bi R13, .

On the other hand, the direct calculation and (3.10) change the left-hand side to

(IL arB1)1,3

=(H„,91, — Ha r o)B i  .1 (A r )CH. W a r B ô i  —(g i k i r Bi B k 12)B i d- g i i giki r B k li •

Thus, equating the tangential component, we have

(4.12) R .gp,.—BIRIAT B4=9,T o r )  {II, o (B "g i i ,,,Bi .

Equating the normal component, we have

(4.13) H „gh-l-K aaR5/3,——B R ;f i r B 4=91 (A {HaB i  1 2 —  H  t r } •

Next, applying (4.7) to B „ we similarly get

(4.14) FlPr— 131-= A ( W ig i i l r a l + K „(B 5'gii, p B i  H ) ,

(4.15)

=- (HaB i  1 2 — H a p ! r ) — ( K a r g i i i  Bi Bj 12— K,, r i s) •

Finally, applying (4.10) to M „ we get

(4.16) BISA9TB4=9,,f (pr) {Ka p(Y i g i i Ir Bi +K M  ,a P i

(4.17) Km3,3313 r — B S  brB 4 = 9 1 (Ar) {Ka Bi 12— Ka Al 7-} •

Rem ark. Applying the relative Ricci identities to the unit normal vector
field 131,  we shall obtain the equations which are essentially the same with those
obtained above ; they will be rather complicated in  case  where the connection
Fr is not metrical, because of (3.10) and (3.11).

The equations (4.12)--(4.17) are generalizations of the well-known Gauss and
Codazzi equations in the Riemannian theory of subspaces. Each author who was
concerned with the theory of subspaces got those equations or part of them in
rather complicated form. For instance, see (2.23) and (2.24) of R und  [17 ]. In
this paper Rund dealt with the Rund connection RE in our sense (cf. § 5). Com-
pare his (1.15) with our (2.11). Thus his (2.23) is simpler than our (4.12) ; P l

ikft
in (4.7) reduced to our Fik,,=5,E7, for RE (*(18.2')).

§ 5. Induced Cartan and Rund connections.

In almost all the existing literatures, the authors were concerned with an
enveloping space F n =(11 n , L (x , y ))  which is to be endowed with the Cartan
connection cr--(rv„, E t, g  , ik )  constructed from the fundamental function L(x, 31).
According to the theory of Finsler connections due to the present author ([261,
[281), the CE is determined from the axiomatic standpoint as follows :
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Definition. T here exists a un ique Finsler connection FF-= (F lk , N5, CJ,,)
which satisfies the following five conditions :

(C l)  gu i k 0,
(2) (h)h-torsion T lk(= Flk —  4 ) =0 ,
(3) deflection M = y h a j —ND=0,
(C4) g i ;  I k -= 0,
(C5) (v)v-torsion k(=C C4)-= O.

This connection is called the Cartan connection and denoted by cr_—(p4,1, glk).

The first three conditions give FA=F;ik, Ar.;= P ,  and  the remainder two
lead to Clk -=g1k . We shall denote by ICE the connection of a hypersurface
induced from the Cartan connection CT and indicate the quantities with respect

to  ICE by putting "c" on them. Then (1.4) and (2.6) show 4 = 4 1 . But we
usually omit "c" on N $ and Hp only , because these are common to four connec-
tions w e treat in  th e  present paper, as shown in the following. Thus ICE=

(Pp, N S , eh).
What sort of Finsler connection is the induced connection I C I '?  It is ob-

viously metrical (. g a i317 = g 4  I r -=0) from (3.13). Next (2.18) gives Le) =0. However

(2.16) does not lead to b r =0, but from (1.9) we get

(5.1) TS,-= SHr —M7Hp

Thus, according to the theory of generalized Cartan connections due to  Hashi-
guchi ([25], [28]), we have

Theorem 5 .1 .  The connection ICE of a hypersurface of a Finsler space F n ,
induced from the Cartan connection CT' of  F m ,  i s  a generalized Cartan connection
which is uniquely determined from the induced m etric L (u, v ) by  the following
five conditions:

(IC1) g a p r = 0,

(IO2) (h)h-torsion is given by  (5.1),

(I3) deflection I5S=0,
(I4) g a  pl r =0,

(I05) (v)v-torsion

We shall apply the procedure to find a  generalized Cartan connection to this
ICE (cf. *p.165). Putting

*(25.4) 249,=4%.pr 7,±t,,,9=2(MarHp— A lp1Ha),

*(25.3) leads to

P a p r= ra p r — g4 a N i- - gp raN 6a - F ga r 5M + M a r Hp — M p " ,  .
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Thus we get

.kop Ï =Tots r —  r aNg — M/3 r Ho , cFop 0( = gp aNg)=2- 00 •

'Consequently, denoting by cr=(r*,37, P4, eh r )  the  (intrinsic) Cartan connection
of F m - 1  determined from the  induced metric L(u, v), we have

(5.2)
hr=1",37+(gq9"51W-Egp',54— gl,Mg)Hod-MgrHa— Mf

APh=1"4—MV-I0 .

Remark. Varga [7 ]  already mentioned i ' * 0  in  the  remark on his (3.21).
C f. (V .4 .34) of R u n d  [1 3 ]. Our (5.2) is essentially the  same with (41) of Varga
[1 4 ], although the latter deals with Cartan's F ir (without *). The C artan con-
nection c r determined from th e  induced metric has been called the intrinsic
connection. Cf. Haimovici [6], p.583 and Davies [8 ] , pp. 2 1 , 2 2 . We remember
that to find a simple form o f th e  above difference between ICE a n d  C T  had
been an interesting problem in  the theory of Finslerian subspaces for a ling time.
Cf. Varga [14 ] and the final remark on p.214 of R u n d  [1 3 ] . It seem s to the
author that (22) of Varga [16 ] and (26) o f [18 ] are  a  little strange, even if  we
pay attention to the  footnotes ;  the asterisk should be erased in  these formulas.
O u r theory a s  mentioned above gives a  good indication of a merit of the ax-
iomatic standpoint.

From (2.4) and (2.9) we have

NS=B7(B&s+/ -11.B 1:5),
(5.3)

and (2.7) gives the normal curvature vector

(5.4) H,9=B  (149+FtjB 1,9).

The second fundamental h-tensor N. is given by (2.10):

(5.5) Icifir=Bi(Birsrd-Bipr;tB;')+MpHr.

T he equation (2.17) shows that i lp , is generally not symmetric :

(5.6) 1-c-/Ar-1rp=M§11r—M,Hp ,

which is analogous in  form to (5.1). Further (2.19) yields

(5.7) leior=H r, , 11,0=H r +M r Ho .

To consider (2.20) a n d  (2 .21), we remember that t h e  (v)hv-torsion tensor
P 1 =(Pk ) o f  Cr is equal to 6 1 0  (cf. *(17.22)). Putting

(5.8) Q .p r= gok ioB ialr, Qap -=',gokioB iai sB k , Qa=guk loac',B iB k ,
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(2.20) and (2.21) are respectively written

(5.9) hp=HTM'A + Q  ,

(5.10) /31-4-14,-.=-QP, •
From (5.10) and (5.7) we easily get

(5.11) &el-10=2Np+ M pHo .

Consequently we have

Proposition 5 .1 .  The normal curvature 110 =- Hpv 19 vanishes if and only if the
normal curvature vector Hp itself  vanishes (cf . § 7).

T heorem  5.2. The induced connection ICE o f F 7 1 - ' coincides with the intrinsic
Cartan connection CI' o f  F n - '  if and only i f  (1) M 4=0 or (2) Hp=0.

Pro o f . It is obvious from Theorem 5.1 that Icy  coincides with C r  if and

only if 4 = 0  :  M H r M H p 0 .  I f  H p#0, w e  have quantities h" satisfying
V = V 1 1 7. From h a Hr = h r Ha w e get a  quantity h satisfying h a = hH a ,  and so
Mar=  h i l d i r . Then Ma 0 = 0 leads to h110= 0 .  Since Ho = 0 implies Ha = 0  from
Proposition 5.1, we get h= 0, and so Ma r =0.

R em ark . Theorem 5.2 as well as Proposition 5.1 were shown by Varga [14].

Next (3.5), (3.6), (3.10) and (3.11) for ICE are written as

(5.12) BL1 p= M a i9B' ,

(5.13) 131 ip= — 11,,pB`" , p= — Ma A B "  .

Thus the second fundamental v-tensor with respect to C r  is nothing but the M-
tensor Ma p and these derivation equations a re  quite analogous to those of a
Riemannian hypersurface.

We shall treat the Gauss and Codazzi equations in  case o f c r .  First the
equation (4.1), decomposed into tangential and normal components, is written

(5.14) kor=Rip,Bialr+91(pr)lHp(1-c1a1—Qa1)}

(5.15) H abr=R,,,kBiB'pkr+91(pofQ  pH r
—  H 45171 •

Thus it is observed that the Q-tensors play an important role. N ex t (4.3) solely
gives (5.9) and (5.10).

Secondly (4.12) and (4.13) are written as

(5.16) IC? a pr 3= Rii r aB i2p± (Icia r il fia - 11.311,60

(5.17) Madepr= Ni Cl. Air—I-1.11p)
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where it should be remarked that R„,3 7 # R i j khB k4  ; from (4.5') we have

(5.18) R tip r=  R ilk h B 114+ P tjk h (B k,sHr — p ) B h  .

It will be observed that (5.14) and (5.15) are consequences of (5.16) and (5.17)
respectively by contracting by va(cf. *Theorem 13.3).

Thirdly (4.14) and (4.15) respectively yield

(5.19)A p r —  Ma51110.

(5.20) j r =  Ma 51311r+ PijgrBcixB i  '4 1 4 1  M a T i  )  .

Here we also have to remark

(5.21) P i.or= P iikhB k4+ S iiknB kH A M .

Finally (4.16) and (4.17) respectively give

(5.22) a pr6 = Si jkli. B iajP 3 + 0 1 ,, r 1V1 p3 —  M a5M

(5.23) Sokh,BLBiBri—(Mar 5—  Maa ) 0.

The former is a  consequence of Lemma 1.1 and the fact that

(5.24) .§1,1,3=g:„6gN-vggN,

similar to the v-curvature tensor S J J k  o f  CI'. The latter is also a consequence of

(5.25) M apIr=ghiil kB hM a r M  A+ M fi2 Ma— g '7;

which is easily shown from (1.8) by (5.12) and (5.13).
Now we shall be concerned with th e  enveloping space Fn=(M n, L (x , y))

which is to be endowed with the R und connection RE=.(rIL, /15, 0). The first
two connection coefficients of the  R I ' are  same with those o f th e  C a rta n  con-
nection C T , while the  third is equal to z e ro . Thus it may be said that RE is
derived from CI' by the  C-process (*Definition 14.2: N )—>/.1\15=N5,
Clk—>'Clk = 0).

If we denote by IRE the connection o f  a  hypersurface F n - 1  induced from
the  R I' and indicate the  quantities with respect to IRE by putting "r" on them,

(2.4) and (5.3) show X.I.S=XT',4, and (2.9) gives

(5.26) 1)1= LB13',0 ,

so that (5.3) leads to

(5.27) Pgr -= prj , —  11PhH, ,

A s to Iri p  and i i p r ,  (2.7) and (5.4) show 11,8 4 1 , 3,  and (2.10) gives

(5.28) 17 :47= B i(N r+ P ;ik B y,),

so that (5.5) shows
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(5.29) 11,9,=-1-1,3,— Al pHr .

O n the other hand, paying attention to  Cik -=0 o f  RE, (2.16), (2.18) and (2.6)

respectively give i'S r = 0 , b = 0  and  4 = 0 .  Further, from  g i n k= 0  and g . ,1 k =

2 g„ k f o r  RE, (3.13) yields

(5.30) g”Fi7=2M apflr, g„ ,5 1, = 2g a p, .

These observations enable u s  to conclude

Theorem 5 .3 .  The connection IRE of a h y p e r su r fa c e  of a  F in s le r  space Fn,
induced from the R und connection RE—(E1lb  115, 0) of F n ,  is uniquely determined
from  the induced metric L (u, y) by  the following four conditions:

(IR1) gra ,9,,=2M a p l i 1, (IR 2) (h)h-torsion

(IR3) deflection h =0, (IR4)

In  fac t, we apply th e  method by which *Theorem 17.2 is  p ro v e d :  (IR1) is
written

a1gap-2g„ A — Pa,r-1 ,„1= 2m a p if 1 ,

from  w hich w e have

r.p g a g pr517-6ct + g ra3 17 .3p —  a  pr .= Ma pH,.± p r H a — - ,

1' pr— g p r aM
— Po p =  pr Ho , TOPO— Pop o

= 0
 .

Therefore w e get NS=71,9 - 0671 — m gro= k ,,4 b y  (5.2) and

(5.31) T1367=1-7Ç1 + (O M -  gp;311.1 g—  M ff)H  11/ — MaH1 p .

T his and  (5.2) lead to  (5.27).

A s to  the second fundamental h-tensor  Hp 1, (2.17) shows

(5.32) 11Pr= 1"IrP

which is also derived from  (5.6) and  (5.29). N ext (2.19) shows

(5.33) Hro -= ==.

Finally (2.20) and  (2.21) lead to

(5.34) his=21-4Mh+W, fi+ H, ,

(5.35) 5,9H, ,„

The form er is also obvious from (5.9) and  (5.27), an d  th e  la tte r  is  so le ly  a
consequence o f  (5.10) and  (5.29).
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Proposition 5.2. The induced connection IRE of F 11. - '  coincides with the in-
trinsic Rund connection RE o f F 3 - '  if and only i f  (1) M a i s-=- 0 or (2) H A =-0.

This is clear from  Theorem  5.3, in particular, the first condition.

R em ark . It seem s that Rund treated the RE only whenever he considered
the  induced connection, contrary to the case of Kikuchi, RapcsAk and Varga who
were concerned with CE a lo n e . In fact, (V .3.10) of h is book [1 3 ] a s  w e ll as
(1.15) o f  [17] coincide with our (5.26). Cf. (5.2) of Brown [ 2 0 ] .  (She denotes
our TN by r  k . )  H er (5.8) is nothing but our (5.31). Cf. (V. 9.25) o f [13].

It m ay be a  m erit of the  RE th a t  / l a p is sym m etric, w hile /l a p  i s  n o t  so.

In Rund [17] if„,3 is denoted by :( p (cf. (1.17) of [1 7 ]) . Compare our (5.28) with
(3.4) of Brown [20].

§  6 .  Induced Berwald and Hashigu chi connections.

In th is section w e first consider a  Finsler space Fn=(M n, L (x , y )) which is
to be endow ed w ith the  Berwald connection BE—(G k ,  G , 0). According to the
general theory of Finsler connections due to  the  present author [28], the BE is
derived from the Rund connection RE by the P'-process (*Definition 15.2:
'Fik=Flk+PL, A rj-->'N5=Ni, Cjk— >'Clk=C1k). T hus Giik=5 ; rô l  and G5=rt.

On the other hand, w e have an axiomatic viewpoint of BE shown by Okada
([33], [30]) and analogous to the case of CE:

D efin ition . T here  ex ists a  un ique  Finsler connection w hich satisfies the
following five conditions :

(B 1 ) L i i =0, (B2) (h)h-torsion Tj'1, =0,
(B 3 ) deflection D;=0, (B4) (v)hv-torsion
(B5) (h)hv-torsion Cj k

This connection is called the  Berwald connection and denoted by BE.

In the following we denote by ( ; ) and ( . ) the  h- and  v-covariant differen-
tia tio n s  w ith  respect t o  B E  respec tive ly . T hus ( .) is only and (B5) shows
g j .k=2gi j k. Further (B1) shows L ; ,= 0 and it is w ell-know n [2 8 ] th a t  gii;k=
—2gi,k 10(gi j kio =P1 l k of CE).

N ow  w e deal w ith the  connection iB r  of a hypersurface F n - ', induced from
the  Berwald connection BE of F 4 , and indicate th e  quan titie s w ith  respect to
'B r  by putting "h " on th e m . T h e n  (3.12), (2.16), (2.18) and (2.6) show L ; a =0,

T7s 1 =0 , M---0 and C,gr = 0 respectively. H ow ever (2.20) gives

(6.1)

because B E has the  characteristic property (B4).
The above axiomatic definition of B E  has been generalized to Finsler con-
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nection o f  Berwald ty p e  w ith  su rv iv in g  (h)h-torsion te n so r  T jk  [30]. (Cf.
Theorem 5 .1 .)  But m atters are  different for I  B r.  Therefore w e need another
generalization of Berwald connection as follows, which will be studied by Aikou
and Hashiguchi [24] in  detail:

Theorem 6 .1 .  There exists a  unique Finsler connection w hich satisf ies the
following five conditions:

(P 1 ) L i 1=0,
(P 3 ) deflection M=0,
(P 5 ) (h)hv-torsion q k =0,

(P 2 ) (h)h-torsion Tj k =0,
(P 4 ) (v)hv-torsion 13

.1,  is given,

if and only if Pj; k satisfies

(1 ) P j 0 =0, (2) y"(5kQlo — W ik )=0,

where we put Qihr=- Pk i — Ilh.

W e shall call this connection a  generalized Berwald P'-connection. T h e r e -
fore the above observations of the I B r enable us to assert

Theorem 6 .2 .  The connection mr of a l2ypersur face F 1 - 1  o f a  Finsler space
Fm, induced from the Berwald connection B r o f  r n ,  i s  a  generalized Berwald
P 1-connection such that the (v)hv-torsion tensor is given by (6.1).

It should be noticed that this PS 1=2H  pV  satisfies th e  above Aikou-Hashi-

guchi conditions (1) and (2). In fact, /53 '13'0 = 0 is obvious and

91(Pr) [v 0,(H3 .11/4 A A/1')}1=91 (pr , Or (11,10 — (H r M — H,9 1W)}

=(,111$ V +111,11111— M p AP)Ho

which is really equal to zero from  (1.13).

Theorem 6 .3 .  The induced connection IBr of Fn - 1  coincides with the intrinsic
Berwald connection Br o f Fn - 1  if and only i f  (1) M a p=0  or (2) H„=0.

This is obvious from Theorem 6.2, in  particular (6.1).

b b
W e shall find the connection coefficients of /Br=(Fh, N$, 0 ) o w in g  to  the

procedure  to  p rove  T heorem  6.1. D en o te  b y  Br=(Gii r, Gil, 0 )  th e  intrinsic
Berwald connection determ ined from  th e  induced metric L (u , y ) . T hen it is
well-known [28] that

2Ga (=2g„ fi G13 )=.0k ap(L 2 12)—a„(L 2 12).

Since the condition (P1): L,„=0 is w ritten  a s  aa L =y 1A 1 L ,  w e have

2G 0,=V Pa,(V1N5) — v A r
a  .
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Next, paying attention to the  definition 11,-=5,k(h—Prap, we get

2G a = gc,TXTro+11, - Evr (vPh is— k) •

Therefore conditions (P2, 3) and Pga=o yield 2Ga----.Abig. Then

2 G/1=5,3k=/Sd - vr(4 i3H- P 7)=2(Abr d-M`glo),

G‘h1 =j 1(1■IS MSH0)= 15+11/4 -4 7(M7s110) •
Consequently we get

(6.2) Agar = G ,.-2M --k(M B̀" Ho),

NS= G Ho .

This N73 coincides with NS from (5.2) and P = G .  P i r is rewritten as

(6.3) x = G̀,47-2(M r, H p+ M,g11,)—(jr M li M 5M T)Ho .

Therefore (1.13) asserts that the  second of Aikou-Hashiguchi conditions shows

the  symmetry property o f  73j..
Now (2.4) and (2.9) give

(6.4) N;g: = BVB6,3 + G .V3p , B 7(B br+ k Bip P .

Therefore the well-known relation G5k =n1+Pl i  (*(18.4)), (5.26) and (5.27) lead to

(6.5) 1 1 7 = K r - PQ;8' "7— .71/4 Hr + Q  .

Next (2.7) gives 1-1„=fia a n d  (2.10) does

(6.6) 1-/Fr=B,(B13T+G;kai4).

Thus (5.28) and (5.29) give

(6.7) IbiAr=1/Pr+QAr=kgr—MPHr+QT.
(2.17), (2.19) and (2.21) show

(6.8) 1-b-L3,=-14[3, k o r =H r , pH, —  A r = 11/1 H .

Finally (3.13) shows

(6.9) g a i9;7= 2 ( /1a ,811r—  ri3 7 ) g ag •r= 2 g e t/3 7  •

We shall be concerned with the Gauss and Codazzi equations with respect
to B r .  First (4.1) yields

b(6.10) l  a  137=  R ijk B idilr+9L ,97) {11,63(14? ar — 2Q .0}
(6.11) RiikB1BiA=91(p1) {14;74-14Qr} •
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I t  is  e a s ily  v e r if ie d  th a t  th e se  are  essentially the sam e w ith (5.14) and (5.15)
respectively . N ext (4.12) and (4.13) give

(6.12) hor5=-HziraBi4+(ra) ilb-larA s - 2 Q 3+ 211/AHM

(6.13)

w here w e put
Hijr3 = 11 iik h g l+ G ijk h (W r'Hs —  R iH r )Bh .

Finally (4.14) and (4.15) yield

(6.14) Papa
=

 GijkhB ic0 + 2 HarM133

(6.15) Gijkh131 B1,kphr=  0 / 4 —  /la  13.7

As it was m entioned above, B r is derived from  R I by  the P-process and
R I is done from  CT by the C-process. On the other hand, it was known ([26],
[28]) tha t c r  yields a  connection by the P '-process, called th e  Hashiguchi con-
nection HT =(Gk , G, e i k), and B r is derived from  HT by the C-process. Then,
inducing those connections on a hypersurface, the process to derive iR r  (resp.
'B r)  from ICI  (resp. IRE) m ay be called the IC-process (resp. 1 P 1-process). I t
has been already observed in the last and present sections that

(6.16) /C-process Pir=k3ar— W I r,

I l igr 4 I MpH1 ,
r

(6.17) /P-process IBT:Fpar=FAar+Qfir,

k gr= 11. Pr+Qgr •

T h e n  th e connection l u r  o f Fn -1 ,  induced from HI, is derived from  ICI' by
JP -p rocess. T hus, pu tting  "h "  on the quantities w ith respect to  1Hr, w e have

(6.18) 1.,9"r = 4 +  Q  Sr gr="1"Pt+Q Pr -

Further w e have I'vs—kh, lip=k3 and

(6.19)

ni(6.20) Ior=H r, 5 1- 1p , -1% ,=0 .

Applying a  recent result show n by Aikou-Hashiguchi [24], w e have

Theorem 6 .4 .  The connection IHr of a hypersurface F n - 1  o f a Finsler spa ce
F n ,  induced from the Hashiguchi connection H I  o f  F n , is uniquely  determined
f rom  the induced metric L(u, v) by the following five conditions:

(IH 1) L ,„=0 (IH2) (h)h-torsion 1"b=Mh11,-411113,
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(IH3) deflection 1.6;4=0, (IH4) (v)hv-torsion h r -=HpM?,

(IRS) (h)hv-torsion 6 r =gS r .

In fact, (3.12), (2.16), (2.18) and (2.6) give (IH1, 2, 3, 5) respectively, and (2.20)

leads to (IH4) which differs a  little from  1'8, g iv e n  b y  (6.1), w h ile  (IH2) coin-
cides w ith (5.1).

Proposition 6.1. The induced connection 'H P o f Fn - '  coincides with the in-
trinsic Hashiguchi connection HT o f Fn - '  if and only i f  (1) M = 0  or (2) 1-L9 =0.

Remark. Berwald [3] defined the second fundam ental tensor a s  ,f2„/3 =
■MpH0/2. S e e  (2.2) a n d  (2.8) of [3], (5.16) o f Varga [7], (90) of Davies [8],
(V . 6.15) of Rund [13] and (3.2) of Brown [20 ]. By means of (5.11) a n d  (6.20)
we easily get

4(6.21) DaA=11ap+HaMp+(kM,9+MaMis)H,12.

T h is  is nothing but Brown's result (3.8) o f [20], where Brown's N and Ma  a re
equal to our Hoo/L 2 a n d  LM a  respectively.

§ 7. Hyperplanes.

Following Kikuchi [9] and RapcsAk [12], we shall define three kinds of hy-
perplanes in  a  Finsler space Fn=. (Mn, L(x, y)).

It is w ell-know n that a  geodesic curve o f  Fn, a n  extremal c u rv e  of the

length integral sq l  L(x(t), .t(t))dt, is given by the differential equations

(7.1) dxlds)=0 ,

w here  G1 =eiG i  and

(7.2) 2Gi =yk i ak F—a1F, F=L'/2.

Connection coefficients of the Cartan connection cr_=(r11, F t ,  g), )  and the
Berwald connection B.r=(G 1

.;,„ G .
1
; , 0) of Fn are such that 2G1 =PN=G6 0=Gt.

W e construct t h e  corresponding quantities Ga o f  a  hypersurface Fn - ' =
L(u, y)). Putting F=1, 2 12, (1.3) leads to

vA5a al3 F----=-A a (a; FBip-I-j i FB s )

=- A ia i FBL-1-MiFB6 0B.1,-4iFBLo
which implies

2G,=AaapF—aaF=2GiBLH-giiBLB4.
T hus (2.8) gives

(7.3) 2G"—Ng - - (2Gi —N6)B7

T h is  equation holds for any nonlinear connection Ni;  an d  the induced N $ given
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by (2.4).
On the other hand, a path with respect to a  Finsl e r  connection Fr---(Flk,

AT,»  ok), defined as *Definition 39.2, is given by

(7.4) d 2  Id s 2 -1-n x ,  d x  I ds)=- 0

Therefore (7.3) shows

Proposition 7 .1 .  I f  each geodesic curve in  a Fins le r space F n =(M n , L(x, y))
endowed with a Fins le r connection Fr is a path , then each geodesic curve o f  a
hypersurface Fa - '  with respect to the induced metric L (u,v ) is a path with respect
to the induced connection 'FE

It is remarked that four typical Fins le r  connections, treated in  §§ 5  and 6,
have the common nonlinear connection and satisfy the assumption of Proposi-
tion 7.1.

Now the equation (7.4) of a path may be written as D (d x ild s ) Id s=0  from
(2.1), and (2.12) may be

(7.5) d2x ilds2±N 6(x , dx lds)

= .-{d 2 ualds 2 +N (u , du lds)} .13+H o(u , du lds)B i.

The quantity H o (u , d u ld s )  along the curve ua=ua(s) is called the normal cur-
vature at u a .  Paying attention to the fact that 1 1 (u , v )  is (1)p-homogeneous,
the quantity

(7.6) N (u, v )=H 0(u, v)I L 2 (u, v)

should be called th e  norm al curvature of F n - 1  a t  (u, v ) and H  is  the normal
curvature vector.

In general (2.19) gives

(7.7) Iloo— Ho=B (D - PC1kB k  Ho),

and especially we easily get

(7.8) 100=1100 = 110 0 = 1100= 110

R em ark . As to the equation (7.3), see (28) of Varga [14]. It seems that
B erw a ld  [3 ] first payed attention to the normal curvature. Cf. p .22 of Davies
[8 ], (V .7 .18 ) and (V .7.26) of Rund [13] and Theorem 3.4 of Brown [20].

It follows from (7.5) that if a  path of F 7i  is on the hypersurface F 4 - 1 , it  is
a  path of Fn - '  with vanishing normal curvature.

Definition 1. If each path of a hypersurface F n - ' with respect to  the in-
duced connection IFT is a  path of the enveloping space Fn  with respect to the
FI', then Fn - 1  is called a  hyperplane of  the f irst kind.
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Proposition 7 .2 .  A  hypersurface Fn - 1  i s  a  hyperplane of the 1st kind, if and
only  if the normal curvature vector H a (u, v ) vanishes identically.

This a  consequence of (7.5) and Proposition 5.1.

Corollary 7 .1 .  As to CT , R I; B F and HT , the induced connections on a  hy-
perplane of the 1st kind coincide with the respective intrinsic connections.

Definition 1'. If  each geodesic curve of a  hypersurface F n - 1  w ith  respect
to  th e  induced metric L (u, v ) is a  geodesic curve of the enveloping space Fn,
then Fn - '  is called totally geodesic.

Theorem 7.1. A  hypersurface F n - 1  is totally  geodesic, if and  only  i f  with
respect to  the connections CF, R I ',  B r and H I' the normal curvature vector Ha

vanishes or the second fundam ental h-tensors satisfy  (1 ) Q a  p, (2)

—Q a ,s, (3) Ibi a p=0, (4) li a A=0 respectively.

Pro o f . Since each path with respect to those connections is a geodesic curve,
it is sufficient for the proof to show that these conditions are equivalent to H a 0 .
From (5.10) it follows that Ha = 0 implies the  above (1). Conversely (1) and (5.7)
lead to Ha = 0 .  Similar way will be applied to other cases.

Rem ark. "Hyperplane of the 1st kind" is the  name given by Rapcsak [12].
Kikuchi [9 ] named it a  totally extremal hypersuface, following Haimovici [6],
p.570. I t  is  sh o w n  fro m  (2.12) and indicated by Kikuchi [9 ] that, on such a
hypersurface, Dva=0 implies D y '= 0 .  Cf. Theorem 6.2 of Brown [20].

It is noted that D a p appeared in Theorem 6.3 o f [20 ], is equal to our Iri a p
and "affinely connected" means g h „, k = 0  (cf. *Theorem 25.2). Strictly speaking,

"affinely connected" is too strong condition. That is, h a p = 0 on  a  totally geodesic
hypersurf ace o f  a  Landsberg space (Jor—.1..710=0; *Theorem 25.3), because
implies Qa ,9=0  from (5.8).

Secondly we are concerned with an h-path w ith  respect to  a  Finsler con-
nection Fr=(Flk ,  N ,  C.1k), which is defined a s  *Definition 39.1 and given by

dy1/ds-1-1\7;(x, y)dxj/ds=-0,
(7.9)

d'x 1 ld s 2 +F i k (x , y )(dx ilds)(dx k ld s )=- 0.

Therefore an  h-path is a  curve (x i(s), y i(s)) o f th e  ta n g e n t bundle T(11/1n ), or
regarded as a  curve x i (s) of Mn with a  vector field y '( s ) .  It is uniquely deter-
mined by giving initial values x 1 (0), (dx ilds), and

 y ( 0 ) .
 I n  terms of the concept

of parallelism, y ( s )  is parallel along the  curve x i (s) with respect to the nonlinear
connection AT): a n d  d x i / d s  is parallel along the  curve with respect to the  field
of supporting element yi(s).
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R em ark. A n h-path was first defined and called a  quasigeodesic curve by
Varga [ 3 5 ] .  Cf. RapcsAk [12].

Two equations of (7.9) are written as D y ilds=0  and D(dx ilds)Ids -=- 0 from
(2.1) and (2.2). Observing (2.12) and (2.14), we get

Dy ilds=(Dv alds)B L +H a (u, v)(dua/ds)B i  ,

(7.10) D(dx ilds)Ids={ D(dualds)Ids} B L -F{ Ha(u, v )(dualds)(dui9 Ids)

+K a (u, v)(dua I ds)(DO Ids)} B 1 =0.

It then follows that if  an  h-path of F ' is on a  hypersurface Fn - ' ,  it is also an
h-path of F n - 1  a n d  11,,(u, v )du"Ids=0, H a g (u, v)(dua I ds)(dw 9 I ds)=0.

Definition 2. If each h-path o f  a  hypersurface F n - 1  w ith  respect to  the
induced connection 1 F r is an  h-path of the enveloping space F 4  with respect to
a  connection Fr, then F n - 1  is called a  hyperplane of the second kind.

Proposition 7 .3 .  A  hypersurface F" - 1  is  a hyperplane of the 2nd kind if and
only if the normal curvature vector H, and the symmetric part (11„p+Hp a )12 of
the second fundamental h-tensor vanish identically.

This is obvious from (7.10). Then Theorem 7.1 leads to

Theorem 7 .2 .  (1) With respect to BE and HT, the concepts of hyperplane of
the 1st and 2nd kinds coincide with each other. (2) With respect to CI' and RE,
a hypersurface is a hyperplane of the 2nd kind i f  and only if  H„=0 and Q4 -=0,

C

and then we have 114=1 a p=0.

R em ark . "Hyperplane of the 2nd kind" is the  name given by Rapcsak [12].
Kikuchi [9 ] named it a  weakly geodesic hy persurface. It is shown from  (2.12)
and (2.14) and indicated by Kikuchi that, on such a hypersurface, DX "-=0 implies
DX'=-0(X 1 =- BLX ") on the supposition Dva=0.

Thirdly we shall deal with the  displacement of the  unit norm al vector Bi
,ofjan F n - '. It is easily shown that

(7.11) DB i= M A O  Bil a Dva

Definition 3. A hypersurface F n - '  of Fri=(M ", L (x , y )), endowed with a
Finsler connection FT, is called a  hyperplane of the third kind, if the unit normal
vector B i of F n - 1  with respect to the  metric L (x , y ) is parallel along each curve
(ie(s), v"(s)) on F n - 1 .

Remark. It is noted that the field of supporting element v"(s) of the curve
in Definition 3  is to be tangential to F n - 1 .

The naming "hyperplane of the 3rd kind" is due to RapcsAk [12]. Kikuchi
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[ 9 ]  said it to be totally geodesic, following Haimovici [ 6 ] ,
 p .594 , and indicated

th a t, on such a  hypersurface, D X "= 0 implies D.X1 = 0 (X i , M,X").

From  (7.11), together w ith (3.10) and (3.11), it follow s that a  necessary and
sufficient condition for an Fn - '  to  be a  hyperplane of the 3rd kind is to satisfy

—Ha  pBa i  g ik  p ( B i  13j12—g i i)B k =-0 ,

— K a  pB ' ' I p(B i  Bi 12— ei)Bk .

Equating the  tangential and normal components of these left-hand side to  zero,
we respectively get

(7.12) H ap+ gik ip1303k= 0, g ik ip B iB k = 0 ,

(7.13) K a ii+ gik  pB 4 B k =0 , g i k IpB jB k = 0 .

Proposition 7 .4 .  A  h y p e r s u r fa c e  F n - 1  i s  a h y p e r p la n e  of the  3 r d  k ind, i f
and only i f  (7.12) and (7.13) are satisfied.

W e consider these conditions for each of four typical connections. As to the

Cartan connection CE, these  equations easily  reduce to  H ap= 0, K ap (=Map)=0
respectively. I n  th is  case  w e  have Ha = 0 from  (5.7) and Q a p= 0  from (5.10).

Conversely 1-1,= 0 and Q a p = 0  imply I ci a p=0.
Secondly, as to  the  Rund connection Br, we have g ,k ip= 2 g,k hB h i l p ,  g i klp=

2 g , k h M  from  (3.9) and K a p = 0 , so  tha t (7.12) and (7.13) are of the form

Iri a p+ 2M a H p = 0  ,  M ilp = 0  ,  M 1 = 0 ,  M p = 0 .

Therefore w e get kap=o, and so 1-1„= 0 from  (5.33) and Q a p = 0  from  (5.35).
Thirdly, a s  t o  t h e  Berwald connection B r, w e  have gik I p= -2P , k h N +

2 g , k h 1P- 1-1 p , g i klp= 2g,khr3 7,4 and IC0=0, so  tha t (7.12) and (7.13) reduce to

11 p-2Q a  p + 2M „H  p= 0  , Q p— M H p= 0 , M a p = 0 ,  M p = 0 .

The first equation and (6.8) give 1/„=-0 and 11,0=0.
Finally, as to  t h e  Hashiguchi connection H I', w e  have  g , k i p = -2 P , k ,, N ,

g ,k i  p.=.0 and K a p= M a p ,  so  tha t (7.12) and (7.13) become

k ds - 2Qap - -- . 0 , Q p = 0 ,

The first equation and (6.18) give Ha =0 and j-/-, 0 =0.
Consequently we have

Theorem 7.3. A  h y p e r su r fa c e  F n - i  is  a  h y p e r p la n e  o f th e  3 r d  kind w ith
respect to the connections CE, R I', HI" and BE respectively, if and only i f

(1) C r: 1 1 ,0 =Q Ha=0,
(2) R I ':  Ma  p=Q  ,9=0, Ha = Ma=0,
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(3) H I ':  Ma p=Qas=0, Ha=C1,,=0,
(4) B I': M a Qap=0, 11.=M a=Qa=0.

In  every case the second fundamental h-tensors vanish.

As a conclusion of the present section we compare the concepts of hyperplane
with respect to CT, RI', Hr and B I' with each other :

(1) The concepts of hyperplane of the 1st kind a re  identical with respect
to these four connections, and characterized by H„=0.

(2) With respect to c r  and RE, the concepts of hyperplane of the 2nd kind
are identical, and characterized by Ha = 0  and Qa g -=0.

(3) With respect to B r and HI', the concepts of hyperplane of the 2nd kind
coincide with that of the 1st kind.

(4) With respect to CE, a  hypersurface is a  hyperplane of the 3rd kind, if
and only if  M a p=Q a p =0  and H a =0.

(5 )  The condition for a hypersurface to be a  hyperplane o f th e  3 rd  kind
with respect to other three connections is obtained by adding to that with re-
spect to CI' the conditions Ma = 0  or Qa = 0  or M a =Q a = 0  a s  indicated by the
diagram

Ma =0
c r > R F

Q .=0 1Q„-=.0
HE > B E

§  8 . Some examples.

We first deal with C-reducible Finsler spaces [281 which a re  characterized
by the following special form of the C-tensor :

(8.1) g 1jk = ( h i j g k± h jk g i + h k1g i) / (n + 1 ) ,

where is  the angular metric tensor and Thus, for a C-
reducible space F n ,  (1.4), (1.6) and (1.12) give

(8 2)
gapr=(hapgr-FI2137ga-FhragA )In,

.  
M ap=(giB i)hagl(n+1), M = g / n .

Therefore any hypersurface F n -1  o f a  C-reducible space F r ' is also  C-reducible.
Next (5.1) and (8.2) imply the existence of ta  such that the (h)h-torsion tensor

of the induced Cartan connection ICE is written

(8.3) 1=hpt r — h7tp.

Similarly (6.1) is of the form

(8.4) '1 = 2 t  h '. .
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Proposition 8 .1 .  Any hypersurface o f  a C-reducible Finsle r space is also C-
reducible and we have (8.2). The induced Cartan and B erw ald connections satisfy
(8.3) and (8.4) respectively.

Rem ark. In viewpoint of Theorem 5.1, it w ill be an  interesting problem to
consider generalized Cartan connections w ith the  (h)h-torsion tensor of the form
(8.3). For a Wagner connection ([25], [28]), 3S take place instead of li'44 in  (8.3).
N ext it w ill be also an  in teresting  problem  to  study  generalized  Berwald P '-
connections with .13 '  of the form  (8.4).

On C-reducible spaces w e know  the conclusive theorem (cf. *p. 2 2 7 ) : The
metric of any  C-reducible space is Randers or Kropina. T h a t is , putting a(x , y)
— V a ( x ) y i y i  and I3(x , y )=b,(x )y i ,  w e have

Randers metric : L (x , y )-=a(x , y )± 13(x , y ),
Kropina metric : L (x , y )=a 2 (x , y )/ ,8(x , y ).

W e are here concerned with a  special Randers metric with a gradient b,(x )=3,b ,

for a  scalar function b(x ), and consider a  hypersurface Fn - 4 (c )  w hich is given
b y  a n  equation b (x )=c  (constant). F ro m  parametrical equations x i=x i(u )  of
F '( c )  w e ge t ac,b(x(u))=0=biB ia ,  so that b ( x )  are regarded as covariant com-
ponents of a normal vector field of F ' ( c ) .  T herefore , along th e  Fn - l(c )  we
have

(8.5) biB'„=0, bi y i=0 .

In general the induced metric L (u, v ) from  the Randers metric is given by

L (u , v )=. a i ,(x(u))BW,gvavP d-b i (x (u))B v ' .

Therefore the induced metric of the Fn - l(c) becomes

(8.6) L(u, aap(u)vavfi, a„p(u)=a i j (x (u))B q .

This is Riemannian (cf. [23]).
N ext it is  know n [28] th a t for a Randers m etric  w e have

*(30.17) gii=aa'ilL — a(ai"y jd-ai4y 1)bh1L 2

--F(ab 2 +19)Y 'Y -11L 3

w here 1.)'=  ib ib r  T h e n ,  along the  F 4 - '(c), (8.5) leads to b2 =  "b i b,. Thus we
get

(8.7) b i(x (u ))= b 2 B 1)2= a i i bi b

Now the  C-reducibility of the Randers metric comes from the equation

*(30.18) 2 L g i j k =  (i)k) {11 0
(b k — Pa kh Y h /a 2 )}

which implies g i =(n+1)(bi— I3a1 i y ila 2 )1 2 L . In particular, along the  F '( c )  we
have g i =.(n +1)b i /2a, and so  g 1 B i=(n+1)V b 2 12. S ince  L  is R iem annian, w e
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have g „ = 0 .  Therefore (8.2) yields

(8.8) Map=1/b2 h„,312a, M a =0

It is noted that M c,= 0  implies the symmetry property of k a p from (5.6).
Next, from bi l3 =0  we get bi ,,9 /31+b,M, 0 = 0 .  Referring to the CT', this is

written

=biuB iai.a-K — bhgt)M ,B iHp+A  I- cI a f i =0 .

Since bh g13V 3 1 =- 0 7 M a =0  from (8.7) and (8.8), we have

(8.9) -V 2Iciap+biliB 43=0.

It is noted that bi u  is symmetric. Further we have

(8.10) ±bil5BLY1=0, A/b2 1/0-Fbilg i yi= 0

To consider the condition H0 = 0 for the Fu - i(c) to be a  hyperplane of the
1st kind, we deal with This b,,, is the covariant derivative with respect
to CI' of F n ,  and so bi r j  m ay depend on y '. On the other hand, if we denote
by bi , the covariant derivative with respect to the Riemannian connection (71k)
constructed from a i ,(x ) , then b,, does not depend on y i . We shall consider the
difference bt l i — b,,, in the following. The so-called difference tensor
- r i , k  has been found in  a previous paper [ 2 7 ] .  By means of (III) and (2.6') of
[27 ], along the Fn - l(c) we have

M j= a H h i ja 4 k  +(Ho/ 1,9ii)y k

which implies bilY b=aHhi j e k bk. It is easily seen that

2a 2In i =aE 0 0 715+(2aE j o —E 0 0 b1 )y 1 ,

where i'zi ;  is  the angular metric tensor of the Riemannian a i i (x). Then we get

4a 3 LikhDL= - 2E00(72ikFrPrijk)±(2aEio — E0obiVaiik

where is the normalized supporting element of the Riemannian a i i (x). Thus,

paying attention to along the Fn - l(c), we finally get

(8.11) 4a2bk1A =— (2aE fi o —E a 0 b2 )11 +2a(E o bi+E i o bi )- 2 E 0 o bi bi  ,

which implies

(8.12) bkMa=E00b,12a, bk 1:A0 =0 .

Consequently (8.10) may be written as

(8.10') ,N/r;,2 Ila +b i , 5 BLy 1 =0, -s/b2110-Fbi;
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T h u s  the condition I -10 = 0  is  e q u iv a le n t  to  bi L i y i y j= 0 ,  w h e re  bi L i  d o e s  n o t
depend o n  yi. S ince  y i  is to  satisfy  (8.5), the condition is  w ritten  as bi , i y iy j
=(b i yi)(c i y i)  for some ci (x ), so  tha t w e have

(8.13) 261; i =b i ci +b i c i .

T hen  w e have J B L y i=0 from  (8.5), and so  Ha = 0 (cf. Proposition 5.1).
N ow  w e have E 0 0 = 0 and Ep 0 =b 2 c0/2, so  th a t (8.9) reduces to

(8.9)' Vb2 p+(b 2 c0 14a)h a p=0 .

Further the condition /14=0 for Fn - l(c) is  c0 =c 1 (x)y 1 = 0 ,  so  th a t w e  have
a  function e(x ) satisfying c (x )=e(x )b 1 (x ):

(8.14) bi; ;
-=eb i bi  •

Finally (8.8) and Theorem 7.3 show  t h a t  t h is  Fn - l(c )  does not becom e a
hyperplane of the 3rd kind.

Summarizing up all the above, we have

Theorem 8 .1 .  Let F n  be a Randers Finsler space with a gradient bi (x )=a i b(x)
and let Fn - l(c )  be the hypersurface o f F n  which is given by b(x )=c (constant).
Suppose the Riemannian metric a o (x )dx idx j be positive-definite and bi  be nonzero
field. Then the induced metric on Fn - l(c) is  a Riemannian metric, given by (8.6),

and we have (8.7) and (8.8). In particular 1 1 4  is symmetric.
The condition for Fn - '(c) to be a hyperplane of the 1st kind is (8.13) and (8.9')

is satisf ied. N ex t the condition for Fn - l(c ) to  b e  a  hy perplane of the 2nd kind
is  (8.14). Fn - '(c) does not become a hyperplane of the 3rd  kind.

Rem ark. The condition (8.14) m ay be  a lso  show n by  Qa p=0 and Proposi-
tion 4  o f [ 2 7 ] .  In fact, w e then  have Q 4 =(p 1 .81 )g cr p  a n d  (8.13) im plies p i Bi
-=Vb 2 c0 /4a.

§ 9. Haimovici-Kikuchi-Rapcsik's theorems.

We consider hypersurfaces w ith  respect to  the  C artan  connection C r .  For
a  hyperplane of the 1st kind (H =O ), (5.15), (6.15) and Theorem 7.1 give

(9.1) ,

(9.2) G;khB,13.7akilir=0.

For a hyperplane of the 2nd kind, we additionally have Q pr =0  from Theorem
7.2, that is

(9.3) kB' BjAkr=0 .

For a hyperplane of the 3rd k ind , w e  fu rthe r have Mp1 = 0  from Theorem
7.3, th a t is,
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(9.4) gt,kBt/314=0

Now in  1957 Rapcsak [12], following Haimovici [6] and Kikuchi [9], showed
the following remarkable theorems :

( I ) There exists a hyperplane of the 1st kind at each hypersurface element
of a  Finsler space Fn (n >2 ), if  a n d  only if  F n  is  projectively f lat and of  scalar
curt ature.

(II) The similar circumstances hold for a  hyperplane o f  th e  2nd kind, if
and only if  F n  is  projectively f lat, of  scalar curvature and Landsberg.

(III) T h e  similar circumstances hold for a  hyperplane of the 3rd kind, if
and only if  F n  is  a  Riemannian space of constant curvature.

R em ark . "A t each hypersurface element" means "at each point and in each
direction".

Haimovici [6] first announced that such an  F n  a s  in  (I) is necessarily to be
of scalar curvature and the condition for an F n  as in (III) is to be a Riemannian
space of constant curvature. Kikuchi [9] showed the proofs of Haimovici's results.

Rapcsak's proofs of these theorems were based on an interesting lemma. It
seems, however, to the  author that the long proof of this lemma, simplified by
Varga's help, is quite hard to understand and its application may be false. Moreover
his proofs of the sufficiency hardly have geometrical meaning. We shall show
some lemmas 1 ) in  th e  following and give a  new proof.

Lemma 9 .1 .  S uppose a tensor 7 ) . . . k  o f  (1, r)-ty pe  be  (1 )  indicatory , i.e.,
71. k =71... k = ••• (2) symmetric in  subscripts j, ••• , k , and (3) f o r each
hy persurface elem ent (13L, .131 ) w e hav e B i T .ii ...5 B 4 :1 = 0 .  Then we have an in-
dicatory and symmetric tensor o f  (0, r-1)-ty pe satisfying

(4) TL....i r =h L t ,. . . ; , ± •-•

where h5=65—l 1 li .

Pro o f . It will be sufficient for the proof to deal w ith T li j k  o f  (1, 3)-type.
Let E (x , y )  be the  se t o f all the  orthonormal frames {4„) }  at a point (x , y) of
F 7'  such that ef) =/ i (=y V L (x , y)), and consider the  scalar components of T 11:75:

abcd = T lijkea)12.eg)el)e kd) •

Conditions (2) and (1) respectively show the symmetry property o f  7 '  abcd in  b,
c , d , and T1bcd=Ta1ed=0. (3) further shows

(3') Tabea=0, a, b , c , d=2 , ••• , n ; a*b , c , d .

If we fix an `é(x, y)=-140 1 E ( x ,  y ), any J(x , y )= E E (x , y) is written ë , ) =-

tba e i, where t1=1, tct= t = 0 ,  (tg)G 0(n —1) f o r  a, b=2, ••• , n. We consider 1-
parameter subgroup o f  E (x , y )  w ith a  parameter t  where t-=0 corresponds to

1 ) A cco rd in g  to  P ro fe sso r L . TamAssy's recen t communication to  the au thor, P rofessor A.
RapcsAk sa y s  th a t  the correct fo rm  of h is lem m a is  ju st ou r L em m a 9.4.
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'é(x, y). I f  w e put o g = (d tv d t),, w e  have 01=-07=- Cn -=- 0, M = — O  f o r  a, b
as above . W e then  have relations

Tabcd#- Tp q rstV gbtt sd=0, a, b , c , d = 2 , • • •  , n ; a # b , c , d

between the components T a b c d  (resp. T pg „ )  Of T h  w ith  respect to  j ( x ,  Y)(resp.
`é(x, y)). Differentiating the relations by t  and evaluating at t= 0 , we get

(5) Tpb c dO lf,+T a g e d0gb + T  abrd 0 H —T abcsOfi
= 0  ,

where summation convention is  made in p, q, r, s.

(i) b ,  c ,  d #  :  O w ing to (3'), the surviving term s of (5) are

(T bbcd0 + T c b c d 0  L,-HT c lb cd 0 g )+ T  c la cd O g ta b a c I O ' c '  T abca0q

bbcd — T  a a cd )W 2 ± (T  c cb d — T  a a b d )O ca + (T  d d b c — T aabc)Oeci — 0 •

Arbitrariness of (0 )  leads to

(5- 1) T aacd = T bbcd• a, b , c , d =2 , ,  n ; a, b , c , d #  .

(ii) b # c = - d :  Similarly (5) reduces to

( T bbbecOa+T c TcbccOa)+aaccOg'+2T .bacOcc'

--(Tbricc— Taacc)O ba±(Tcceb-2Taaeb)Oca,=0,

which immediately implies

(5 -2 ) T aacc =
7 bbcc• c c e b = 2 T  a a c b ,  a, b , c = 2 ,  • • •  ,  n ;  a, b , c#- .

(iii) b = c = d :  Similarly (5) reduces to

T bbbbOba+3T ceabb 0 b b b b —  3T a abb) 0 i91,

which shows

(5 -3 ) Tbbbb=3Taabb, a, b=2, ••• , n ; a # b .

Consequently (5) enables us to introduce quantities Tb c(=T cb ), b , c=2 , ,  n
such that

(6) T a abe=T T a aab - 2 T ab, T a a a a = 3 T a a

a, b , c = 2 , • • •  n ; a # b ,  c .

Now, denoting by 2 ' the summation from 2  t o  n  and pay ing  attention to
surviving components, we have

T E  { T aabce a)he a ) eb) jec) k + T  a b a ce  a )h em ie  a) jec) k + T  a b ca e  a )n e w ie d  je a ) hi
a*b,c

+ E i T bbbceb)hem iem iec, k +T bbcbe b)heb)iec) jab) k bcbbeb)liec)ieb)jeb)k}
bOc

+ E 'CT bbbbeb)1teb)ieb)jeb)k} •

O w ing to (6), dividing the f ir s t  {—} into tw o parts (b = c )  and (b # c ) ,  and paying
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attention to E ieb) e } j = h  j ,  we have

T h i j k = T b b Eflihi—emhemil emiek) k+  f h h j —
emheb);} em ieto k

{ilhk — elohemk}

+ E Tbe[ fh h i— ew h ew i — e o n e o i l  eb)jec)k
b C

fh h j— ew h eb ) j— ec)h eo jle o ie c )k

ihhk — ewheb)k — ec)Itec)k} eb)tiec)ji

+ E 2 T b e e b )h ie b )1 e b )je c )k + e w ie c )je b )k + e c )i
e b)j e b)k}

b*c

-1- E3Tb5ewhewieb)Jewk

E T k e ih m e b )je c )k + h h je b )ie c )k ± h h k e b )ie c )j}  •
b,c

Thus, if  we p u t t k =  E Tbcew i e o k , this is indicatory a n d  symmetric, a n d  then
b,c

we obtain the conclusion T h i ik = h h i t h ± h h i t ik + h h k t i i .

It is clear that th e  assumption (2) o f  Lemma 9.1 becomes nonsense for T if

o f (1, 1)-type. Consequently we immediately get

Lemma 9.2. I f  r i  is indicatory  and T ;;B 1 B 4 = 0  f o r each ( B i ,  B 1 ) ,  then we
have a scalar 'D satisfy ing T5=- I'M .

Next, we shall deal with which is symmetric in  i ,  j ,  • • •  ,  k  instead of
the  assumption (2) o f Lemma 9.1:

Lemma 9 .3 . (1) I f  a  tensor T i j k  is indicatory , sym m etric and T i j k B i B A

=0 f o r each (B i ,  B i ) ,  we have T i i k -=0.
(2) I f  a  tensor T h i j k  is indicatory, symmetric and T 7  jk B

h B 4 r = 0  for each
(B i ,  B 1 ) ,  we have a scalar i  such  that T h i ih = th h ih ik + h h ih k i± h h k h i i ) .

Pro o f . (1) From Lemma 9.1 w e first get T i j k = h i j t k ± h i k t .  Owing to
symmetry, from (1.6) we have

0 = (h i i t k - l-h i k t i )B L B i R = h , A B J ,

which implies tB i= 0 .  Thus t i  satisfies t / i = i ' i B i= 0  for each B i  orthogonal
to and so we have t= 0 .

(2) Similarly we have

0 = T h iik M B i B iA -= ( h n i t h ± h h j t ik + h h k t i j ) M B i B ill',

= h a i t i k B iM ± h a r t i B i B ,

and contraction by gag gives t i k B iB Ç -= -0 . Applying Lemma 9.2 to we get
t i k = P h i k .  Thus th e  proof has been completed.
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Lemma 9 .4 .  Suppose a tensor of  (1, r)-tyPe be (1) indicatory with resp ect
to j, • ••  , k , (2) symmetric in  j, • - •  , k , and (3) f o r  each hy persurface element (B i,
B i )  w e hav e B i r ; ...k ai:1 ••=0. Then we have an  indicatory and symmetric tensor

j...k o f  (0, r -1 )-ty p e  such that

(4') •••

Pro o f . We indicatorize T j..k  with respect to the index i  (*Definition 31.3):

This satisfies three assumptions of Lemma 9.1, hence we can apply Lemma
9.1 to ' T5.. k . Q. E. D.

Now we return to the  considerations o f  three theorems mentioned at the
beginning of the present section . T he equation (9.1), contracting by v,s, gives

(9.1')

It is well-known (*§ 17) that Riok is indicatory, and application of Lemma 9.2 to
Riok shows that R iok  is proportional to h i k . Therefore *Theorem 26.1 shows
R i o k = -K L 'h i k  ;  F n is  of scalar curvature K.

Next we shall consider (9.2). Since th e  hv-curvature tensor G k,, of the
Berwald connection B E is indicatory and symmetric in the subscripts (*§18, [301),
Lemma 9.4 immediately gives

(9.5) G k h = l i  k  h / L  h 1 4 5  k  h h ik d i k  h  d i k

where dk h  is indicatory and symmetric. (9.5) leads to Gik(=G!ik1)=(214 - 1)dik,
and so we have

(9.5') Gkh=/2G3kh/L+(h'iGkh±/21Gihd-hkGih)/(n+1).

Differentiating this by y ' ,  we get

Gjk f l.i=l 1 G3kh•ilL-i-G3kh(111 - 1i / /1 , 2

+Sukh) {— (h i/ i± h ii/ i )Gkh/L - W jG kt,/} A n+1),

where ( Contraction with respect to i= l  yields

G.°jkh — L 2G ik •h l(n + 1 ) + L ( 1.fikh - F lk G h i+ lh G ik )1 (n + 1 ) ,

because o f n > 2 . Therefore (9.5') may be rewritten as

(9.5") G.i,kh=.(y1G.,k.h+3;Gkh-F-51,Gh,-FaLG,h)/(n+1),

which just shows vanishing of the Douglas tensor D jk h  of F n [29].
On the other hand, Z. Szab6 ([34], [29 ]) showed that Fn(n)'2) is of scalar

curvature if and only if  its W eyl tensor W k  vanishes identically. Therefore
F n is  projectively flat [29 ] (and necessarily of scalar curvature).

Next it is well-known that Pi,k (=gok lo) of a' and  g o k  a r e  indicatory and
symmetric in  i ,  j ,  k . Therefore (9.3) and (9.4), applying Lemma 9.3 (1), imme-
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diately enable us to recognize that the condition for F n  in (II) and (III) is necessary.
Now we are in a position to show the sufficiency of the conditions for F "

in  ( I ). Suppose that Fn(n >2) be projectively flat. Then we have a rectilinear
coordinate system (x 1) [3 1 ] such that Ci(x, y ) appearing in  (7.1) is written as

(9.6) Gi(x, y)=— P(x, y)y' ,

where P (x , y ) is a  (1) p-homogeneous function defined o n  th e  domain of the
(xi). Then we have

(9.7) G5=-13;yi— P ,

where P=& P  and  Pi , -=.5k P i . Thus (5.4) (111=GD and (6.6) lead to

(9.8) Hi3=BiB6p,

We consider an arbitrary hyperplane P n - '  in this coordinates which is given
by a  linear equation 0(x)=b i x 1 -f-b=0 with constant b's. Differentiating this by
parameters ua and 0 ,  we have bi BL=0 and bi B p = 0 ;  the form er shows that
bi  a re  proportional to B i  a n d  then the latter implies B i M,A=0. Therefore ( 9.8)
shows that H „  a n d  1%, o f th e  Pn - ' vanish. Consequently each hyperplane
P n - 1  is  a  hyperplane of the  1st kind by means of Theorem 7.1 and consequently
we get

Theorem 9.1 . (RapcsAk) T here ex ists a  hyperplane of  the  1st k ind  (w ith
respect to CI) a t  e ac h  hypersurface element o f  a Finsler space F "(n >2 ), i f  and
only i f  F "  is projectively flat. T h e  hyperplanes are represented by a  linear equa-
tion in  a rectilinear coordinate system.

Remark. A s mentioned above, this F n is necessarily of scalar curvature by
Szab6's theorem, and CT may be changed for B r or HT o r RT.

Varga [15] shows that such an  F n  a s  in  Theorem 9.1 should be of constant
curvature, but we can hardly understand Varga's discussions and especially his
differential equations (29).

Next, if  a  Finsler space Fn(n > 2) is projectively flat and Landsberg (Pk  =O),
then F n adm its th e  above hyperplane Pn - 1  an d  further Q.,5=Pi,kB 1 B = 0 ,  so

that Pn - '  is of the 2nd kind by means o f  Theorem 7.2. ( 6 . 7 )  gives Ic1a p=0.
Consequently.

Theorem 9.2 . (RapcsAk) T here ex ists a  hyperplane o f  th e  2nd kind (with
respect to CT) at each hypersurface element of  a  Finsler space F "(n>2 ), i f  and
only i f  F "  is projectively f lat and Landsberg.

From this necessary condition we recall Numata's theorem ([32 ], *Theorem
30.6) : If  F "(n > 2 ) is of nonzero scalar curvature K  and Landsberg, then F n is
a  Riemannian space of constant curvature K .  Therefore we have
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C orollary  9 .1. A  Filmier space Fn(n> 2) of Theorem 9.2 is of scalar curvature
K .  I f  K # 0 , F n  i s  a Riemannian space of constant curvature K.

Finally (III), proved first by Kikuchi [9 ] , is stated a s  follows :

Theorem 9.3. (Kikuchi) I f  a  Finsler space Fn(n>2) adm its a hyperplane of
the 3rd kind at each hypersurface element o f Fn , then F n  i s  a Riemannian space
of constant curv ature. The converse is also true.

R em ark. See § 6 o f  [31] about rectilinear coordinate systems in Riemannian
spaces of constant curvature.

Finslerian projective geom etry. Theorem 9.1, together with t h e  author's
previous paper [3 1 ], reminds us o f this word ! In  fact, the concept of Finsler
space w ith rectilinear ex trem als, originally suggested by H ilbert, had caused
various interesting theories already before Finsler's thesis in  1918. A  Finsler
space is said to be with rectilinear extremals, if  there exists a  covering by co-
ordinate systems (x i) in  which each extremal (geodesic) curve is represented by
a  system o f  n - 1  linear equations in  x i, and  such a  coordinate system is called
rectilinear b y  t h e  present author [31]. Now a  Finsler space with rectilinear
extremals is really projectively  f lat (projective to  a  locally Minkowski space),
and  the  rectilinear coordinate systems obey projective transformations [31].

Then it is natural to recall th e  dual geometrical figures : What is a figure
represented by a  linear equation in  a  rectilinear coordinate system? Theorem 9.1
answers this question : It is a  hyperplane o f th e  first kind, just t h e  same cir-
cumstances a s  in  a  p ro je c t iv e  space ! It will be obvious that th e  similar facts
hold for subspaces o f arbitrary dim ensions in a projectively f la t  Finsler space.
Further it is easy to observe that Theorem 9.1 concerns a  nonlinear connection
(N ;(x , y )) alone ;  if  we a re  concerned with a  Finsler metric, Theorem 9 .1  is to
assert the  ex istence  of totally geodesic hypersurf aces instead o f hyperplanes of
th e  first kind.
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