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Introduction.

The notion of Sobolev spaces of Wiener functionals was first introduced by
D.W. Stroock [10] and I. Shigekawa [7] to formulate Malliavin’s calculus
rigorously and study it systematically. However it cannot be denied that their
Sobolev spaces sometimes appeared very complicated. It is mainly because they
should have dealt with both the derivative operator D and its dual D*, or the
Ornstein-Uhlenbeck operator L(=—D*D), not only on L? but also on all L?-
spaces over the Wiener space. But in 1982, P. A. Meyer pointed out the possi-
bility to remove those apparent complications; that is, he proved the equivalence
of the two norms defined in terms of L and D respectively. ([3], [4])

In the present paper, we first aim to develop Meyer’s results and prove
the equivalence among several Sobolev-type norms. In doing this, there are two
useful tools; the Wiener chaos decomposition of L? and the hypercontractivity
of the Ornstein-Uhlenbeck semigroup. Combining these two, we follow Shige-
kawa’s idea to prove Theorem 1.1, which offers a sufficient condition for a
linear operator to be bounded on L?.

Next we construct the Sobolev spaces of Wiener functionals and discuss their
properties. In particular, our definition allows of negative indices and such
spaces contain what we call generalized Wiener functionals. In this context, we
consider the composition of Schwartz’s distributions and Wiener functionals,
which was first studied by S. Watanabe [11]. This presents another approach
to Malliavin’s calculus.

Here, the author wishes to thank Professors S. Watanabe, I. Shigekawa and
S. Kusuoka for their valuable ideas, suggestions and encouragement.

1. Basic notions.

Let (W, H, u) be an abstract Wiener space. i.e., W is a separable Banach
space, H is a separable Hilbert space densely and continuously imbedded in W,
and g is a Gaussian measure on W with mean 0 satisfying the condition,

|0 o, wadwy=a, 15, 1 rewrcHr=H
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where (, ) and <, >y denote the pairing of W* and W, and the inner product
of H, respectively. Let E be a separable Hilbert space, with the norm | |g and
the inner product <, >z. We calla mapping f: W—E 3#(W)/ B(E)-measurable
an FE-valued Wiener functional, where B(W) and B(E) are the topological o-
fields on W and E respectively and 3#(W) is the completion of (W) with
respect to the measure p. As usual, two Wiener functionals are identified
whenever they coincide g-almost everywhere. For 1=p<oco, if f is an E-valued
Wiener functional and | f(w)|% is p-integrable on W, we say f belongs to L?(E)
=L?(W: E). The norm of f LP?(E) is defined by

1Az =({,, | ) 2utdw) ™.

L?(R") will be denoted simply by L?.
Now, we introduce a useful family of Wiener functionals called polynomial
functionals.

Definition 1.1. (i) An R!-valued Wiener functional f is said to be a
polynomial functional, if IneN, 3L, -+, [,€W* and Elf~: R™— R, polynomial in
n variables, such that

(LD f)=F, w), =, (U, w)),  weW.

The totality of such functionals is denoted by P.
(ii) An E-valued Wiener functional f is said to be an E-valued polynomial
functional, if 3meN, 3f,, -, fneP, and Je,, -, enE such that

(1.2) flw)= g fiw)ey, wew.
The totality of such functionals is denoted by P(E).

In the expression (1.1) for fP, we can always assume, by Schmidt’s ortho-
gonalization method, that the system {/;} 7, forms an orthonormal system (ONS)
with respect to the inner product of H. Similarly, in (1.2), we always assume
{e;} ™, to be an ONS of E. As W* is dense in H*=H, P(E) is a dense linear
subspace of L?(E), for every 1=p<oo,

Next we shall introduce some important operators acting on P or P(E),
such as Fréchet derivative and Ornstein-Uhlenbeck operator. They are the
analogues of gradient and Laplacian in the finite dimensional case.

Definition 1.2 (the Fréchet derivative). (i) Forf P, the Fréchet derivative
Df(w)eW* at weW is defined by,

(1.3) (Df(w), v)z%f(wﬂu) L. vew.

Since W*CH*=H, Df can be regarded as an element of P(H). We will
often deal D as an operator mapping P into P(H).
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(ii) For fe P(E) with an expression f= lefiei’ (fi P, e;€E), Dfe
P(HQRE) is defined by

(1.4) Df(w)= f:lefi(w)@)ei, wew.

Here HRYE is the tensor product of Hilbert spaces H and E; the totality of all
continuous bilinear forms on H X E with finite Hilbert-Schmidt norm which is
endowed as the norm of HQE. For heH and ecE, hQesHRE is defined
by (h@®e)[-, -1=<h, ->ule, ->g and thus it holds that

(1.5) hQe, Qe Yuer=<h, h'>ule, ¢, h'eH and ¢’€E.

By definition (ii), we can iterate the operation D; D*f=D(DYf), ---, D*f=
D(D*-'f) and D*f is an element of P(H® -+ @ HRQE), for f€P(E).
k

Definition 1.3 (the Ornstein-Uhlenbeck semigroup and operator). (i) We
define an operator T,: L*— L, t=0, by

(1.6) th(w)ESWf(e“w—!-\/l——e'z‘ wpldv),  fell.

It is known that the family {7T.}.., forms a pg-symmetric contraction semi-
group on L? for every 1=<p<oco. We call it the Ornstein-Unhlenbeck semigroup.

(ii) The infinitesimal generator of the semigroup {T.}:;:, is called the
Ornstein-Uhlenbeck operator and denoted by L. L has the explicit form on P;

(L.7) L flw)=trace D*f(w)—(Df(w), w), weW, feP.

(For Ve HQH, trace V is defined by g V, hi@QhDuen, if the sum is absolutely

convergent, where {h;}%, is complete orthonormal system (CONS) of H. The
value of trace V, when it exists, is independent of the choice of {A;}3)).

It is clear that T, and L are operators mapping P into itself. But for later
use, it is convenient to consider these operators on P(E). To do this in general,
let S be a linear operator mapping P into itself. For feP(E) with an expres-

sion f= mzl fies, fi€P, e,€FE, we define Sf= 3} (Sfi)e;. This definition, as well
i= =

as (1.4), does not depend on the particular choice of the expression of f. In the
present paper, any linear operator mapping P into P will always be considered
as an operator mapping P(FE) into P(E) in this manner.

Now we introduce the Wiener-chaos decomposition (or the Wiener-It6 decom-
position) of L2 First of all, we notice that the system {71 Hn(x)}%-,"0f

Hermi A ofpi L x?
ermite polynomials is a CONS of L (R , erxp(——é—)dx), where

(="

n!

x2\ dn

H,(x)= exp(g/ s exp(—%), n=0,1,--, xR
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We construct a CONS of L?=L*W: R') using this system. Let A={a=(a,,
a,, -+); a;=0,1,2, -, a;=0 except for finitely many 7’s} and A,={ecsAd;
> a;=n}. Fix a CONS {/;}, of H such that /;eW* and set for a4, Ho(w)

= 1°—=°11 Heo (s, w), weEW.

Propositioﬁ 1.1. The system {valHy(w); acA} forms a CONS of L?
where al=a,! a,! -, if a=(a;, a, )4 and 0!=1.

The proof is standard and omitted.

Let Z, be the closed subspace of L® spanned by the family {+a! H.(w);
acsA,}. Then, due to the above proposition, L? is decomposed into the ortho-
gonal direct sum of {Z,}%-¢; L*=Z,DZ,PH ---. This orthogonal decomposition
is called the Wiener chaos decomposition or the Wiener-Ito decomposition. It is
important to notice that this decomposition is independent of a particular choice
of CONS {/;}%,; indeed, it holds that Z,={feL?; T,f=e ™f for all {>0}.
Let J, be the orthogonal projection to Z,. Then J,(P)=Z,N\PCP and J,(P)
is dense in Z,. For every feP, there exists n=0 such that feZ,pZ,-PZ.,.
And in particular, we have

3

(1.8) T,=>e ™, on Poron L%,

=0

and

(1.9) L=3(—n). on Poron Q(L)E{fe Lt gonznjnfnzz@o}.

n=0

Finally, noting the property %Hn(x)::Hn_l(x) of Hermite polynomials, we can
easily verify the following relation on P and P(E);

(1.10) DJ.=Jn-1D, nz1l and DJ,=0.

More precisely, we have for a=(a,, a,, )4,

=Hgoq if a;>0 where a(d)=(a,, -+, ai-y, a;—1, @i4y, -+*)
(1.11) {DHq, ldn
=0 if a;=0

Our aim in the remainder of this section is to prove the following theorem
which was first obtained by Meyer [4], and whose proof was simplified by
Shigekawa [8]. We will follow Shigekawa’s idea.

Theorem 1.1. Let T,: P—P be given by T,= i‘i)q)(n)]"’ where {p(n)} 5=,

is a real sequence. If there exist a function h(x) analytic on some neighborhood
of the origin and a positive constant a such that @(n)=h(n=*), then T, can
uniquely extend to a bounded linear operator on LP for each 1< p< oo,

For the proof, we require the following well-known result by Nelson [5]
(cf. also Neveu [6]).
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Proposition 1.2 (the hypercontractivity of T,). For 1<p<oo, put ¢(t)=
e (p—1)+1 (note that q(t)=p). Then we have | T, f|a®© =\ fllL?, for every f € L?.

As a consequence, we have

Lemma 1.1. For every 1<p<oo, and n=0,1, -+, there exists a positive
constant ¢p, o Such that

IJafller=cp,alfllz?,  for all feP.

Therefore J, can be considered as a bounded linear operator on LP.

Proof. 1If p=2, the assertion is clear. In the case p>2, take >0 such
that p=-e®<+1. Then by Proposition 1.2 and (1.8),

le=™ Jafler=ITJuflle?SWnf o= fllze=1fllLr .

Hence |[/oflrr=e™|f|.?, for fEP.

In the case 1<p<2, the dual operator J% is a bounded operator on L?,
because J, is bounded in L? with ¢>2. But since J*¥=/J, on P, the assertion
is obvious. q.e.d.

In order to prove Theorem 1.1, we need one more lemma.

Lemma 1.2. For 1<p<oo and neN, there exists a positive constant ¢y, o
such that

(1) NTd—=Jo— - —=Ja-DflLp=Scp ne ™| flL?, for all fELP,

(i) HRU—Jo— - —Ju-DV flLr=cpan | fllr, for all jEN and feL?,

where I denotes the identity operator and RES:(T,—— Jo)dt is the potential operator
for L.

Proof. 1If p=2, the assertion is clear. In the case p>2, take #,>0 such
that p=exp(2t,)+1. Then Proposition 1.2 implies that

IToseeI—Jo— - —Jn-)fp=|T T (I—Jo— = —Ju-0)f P
SITd—Jo— " —Jn-)f 2.
By (1.8), we have

ITI—Jo= = —Ja-df lis=o] £ o1 £

ety SIif s

Se M| flle=Ze ™| fllr?,
and hence ||T+.(/—Jo— -+ Jn-1)fllzp=e ™| fliL». Therefore we have that

ITd—=Jo— - =Ja-Df lLr=Ze "0 flle,  for t=t,.
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But if 0=t<4,,
T d—Jo— - —Ja-DflerSNUT—=Jo— = —=Jn-0)f 2P
by the contractivity of 7. Consequently,
1T I—Jo— - —Jn-Df lerSexp(nt)[IV I —Jo— =+ —Ja-aller]e [ L2

In the case 1< p<2, using the duality, the proof is the same as in Lemma
1.1. Thus (1) is proved.

As for (if), note that R(I—J,— - —Jn-1)=S:TL(1—jO— o —J.0dt. By (i),

we have

{RU—To— -+ —Jn-D} *liP
ZHS:S:Tt(’ ~Jo— - =Ja) Tl =]~ ---Jn-odzdsuw

ZHS“SWTU —Jo— = —Ja-Ddtds

Lp

(I eli S e —JaDlardids

érrcp.ne—““mdtds
0Jo
=cCp, a7t
Similarly, we can estimate |[{R(I—/J,— -+ —J»-1)}’l? and obtain (ii). q.e.d.

Now we can proceed to the proof of Theorem 1.1. First we will give the
proof in the case a=1. Take k&N such that h(x)=§)a jx7 is absolutely con-

vergent for leé%. Next we devide T, into two parts;
k- )
T,=TP+TY, where T{P= Z:go(n)jn and TP = %go(n)]n .

Then T'Y" is bounded on L? by Lemma 1.1. On the other hand, the following
equality holds.

(1.12) T@ =5 a;{RU—Jo— = —Jx-)

Indeed, for f,eZ.(n=k), since RU—J,— -+ —Je-0fn=(1/n)fa, we have
- e 1y
£ aRU=Jo= - —Ji-0V = B af(y) £

=h(2)fa=pmf .

But by Lemma 1.2 (ii), the right hand side of (1.12) is convergent in the L?-
operator norm. Thus T is bounded on L?.
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Next we will prove the case of general «>0. We may restrict ourselves
to the case 0<a<1. Put T;ES:Tslt(ds), where A, is a probability measure on
R! determined by S:e'“*’l,(ds)=e‘“"‘, i.e., A, is a one-sided stable distribution of

order @ and T, is the a-subordination of T,. Then by Lemma 1.2,

L A A e X A SN MY NCDETIELS

and similarly,

HRUI—Ji= + —Jn-dVlurScpanet, where R=[ (TimJodt.

Now the proof runs in the same way as above. q.e.d.

2. Equivalence of norms on P(E).

The operator L= io(_")j" with domain 9(L)={feL?; Zonzlljnflliz<oo}

is a non-positive definite self-adjoint operator on L2 Therefore we can define
C=—+/—L, which we call the Cauchy operator. We note that C also maps P

into itself ; C= >} (—+/n )Ja. According to our convention, C is also considered
n=0

as an operator mapping P(E) into itself.
First we shall state the following theorem which was obtained, in the case

of E=R', by Meyer [3] as an application of the Littlewood-Paley-Stein in-
equalities.

Theorem 2.1. For 1<p<co, there exist positive constants c, and ¢y such that

2.1) Cp“Cf“Lp(E)é”Df”L”(H@E)écfullcful.p(f:), for feP(E).

Note that the equality ||Cfllr2=|DfllL2mery holds on P(E).

To make notations brief, we shall introduce the following;

(i) The norm of L?(E) will be denoted simply by || ||, whatever E may be.

(ii) For two norms || || and || |" on a linear space K, we write | f|<If]’
or |fII'ZIfll, if there exists a positive constant ¢ such that ||f||=c|f||” for all
feK. If both [fI<If]" and [[fIIZIf]" hold, we write || f~|f]’, and say that
the norms | || and | | are equivalent to each other. Under these notations,
(2.1) is rewritten as [|Cf|l,~|Df] p.

We shall deduce Theorm 2.1 from Meyer’s result in the case E=R! For
this, we need the following lemma.

Lemma 2.1 (Khintchin’s inequalities). Let (2, F, P) be a probability space,
and {ri @)}, 0ER2, be a sequence of i.i.d. random variables on 2 with P(r;=1)
=P(r;i=—1)=1/2 (Rademacher’s system of random variables). Then,

(i) For 0<p<oo, we have

(g}l Iailz)p/ZNE'(’ g}lriai\p), for all {a;}7. 2.
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Here E denotes the integration under the probability measure P.
(ii) Let G be a separable Hilbert space and 1<p<oco. Then we have

('y')

for all G-valued sequences {a;}7-, such that g la;|g<oo.

Z1aus)" ~(

2 ria;
i=1

(ili) Let 1<p<oco. Then we have
o P
Baw) ~B(

oo

o
E a;:¥iVi
i=1, j=1 iy

)

for all non-negative definite matrices (ai;), 7, j€N, such that mZ

. Iaij|2<00.

o
i=1, j=1

Proof. The proof for (i) is found in Stein [9] and its Hilbert version (ii)
is in Burkholder [1]. The assertion (iii) is easily derived from (ii). Indeed, if
(a;;) is a finite matrix, we can find a matrix (&;;) such that aijzgdikdk,.

Applying (ii) for a@;={a;;} ;=!? we obtain (iii). For an infinite matrix, an ap-
proximation by finite matrices will complete the proof. q.e.d.

Now, we will proceed to the proof of Theorem 2.1 for P(E). Let f be an

element of P(E) and have an expression f(w)= ifi(w)ei, weW, where f,€P
and {e;}, is an ONS of E. Take a Rademacher’s system {r;}3, on a proba-
bility space (2, &, P), and put X(w, w)= én‘;ri(w)fi(w), we 2, weW. Then
X(w, -)eP for all . First, Lemma 2.1 (i) implies that

m m /

E(CXC, w)n=E(| Ercfiw)| )~ & 1crmw)?) =Icfw)iz

i=1 i=1

for all weW. Integrating both hand sides with p, we get
SWE(ICXI”)dfl:E(HCXIl%)NIICfH%-

On the other hand, since the matrix ({Dfi(w), Df{w)>#) is non-negative definite,
by Lemma 2.1 (iii), we have

E(|DX(-, w)|7)=E(| iZJ}?’JJ(Dfi(w}, ij(w)>n[”)~(§l | Dfi(w)| )7
for all weW. Similarly, the integration with g leads us to

|, E(DX|B)dp=EADXID~IDAR.

But Meyer’s result for R'-valued polynomials implies that |CX(w, )| ,~|DX(w,
9|l for all w, which completes the proof. q.e.d.

Here is another useful consequence of Lemma 2.1.

Lemma 2.2. Let 1<p<co. If S: P—P is a bounded linear operator in the
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L?-norm, it is also bounded as an operator S: P(E)—P(E) in the L?(E)-norm.
Proof. Let feP(E) be expressed as f(w)= gmlfi(w)e,-, weW, where f,€P,

and {e;} ™, is an ONS of E. It is sufficient to show that

W& isrel <

To show this, take a Rademacher’s system {r;()}%,, w2, and set X(w, w)
= z 7:(@)f«(w). By Lemma 2.1 (i), we have that E(| X(-, w)]P)N( 31 faw)] )
for all w. Hence, (EIIXIIP)I“’NH\/Z‘, |fil? Notlng that SX(w, -)= z:lr,-(w)

3 2
2 | fal
i=1 P

Sfi(e), IS fil2 On the other hand,
since X(w, )P, |SX(w, )|, <X, )II,, by the hypothe51s. Consequently, it
holds that E||SX||5<FE|X||53 and the proof is complete. q.e.d.

The first assertion of the following theorem was established by Meyer [4]
in the case E=R".

Theorem 2.2. For any k€N and 1< p<oco,
(i) ID*flo<IC*fllp,  fEP(E),
(ii) ID*flp2ICk fllp,  fEPw(E),
where Pr(E)={f€P(E); (Jot - +]2)f=0}.

For the proof we show the following lemma from which it is immediately
obtained by induction.

Lemma 2.3. (i) [CD*f|,<ID*Cfl,,  feP(E).
(ii) ICD*f1,2ID*Cfllp,  fEP(E).
Proof. First we shall prove (i). Let T,: P—P be deﬁned by T,
2 k+1J1——f" Then we have T:D*C=CD*. Indeed, since C= 3 —'n o,

n._

T.D*C=T, D" —n .= T,,Z) —«/n D*J,. By applying (1.10) k-times, we

see that

TkaCZTk 2 —'\/_]n—ka— i;;)+1‘/1—_( ‘\/n )]n IzD

n +1 n=

= jZ:: —NT—F JasD*

n=k+1
=CD*.

By Theorem 1.1 and Lemma 2.2, T, extends boundedly on L?(E). Therefore,
ICD* fll,=IT« D*Cf|,=|IT &l o| D*Cfll, for feP(E), implying (i).
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[ -1/
Next we shall prove (ii). Let T4: P—P be defined by Tj=_ 32;“(1—% "
Then since T Tt=T+Try=I—J;— -+ —Js, we have D*Cf=TCD*f for fEP+.(E).
Now the proof proceeds as in (i). qg.e.d.

Theorem 2.3. For any 1<p, <o and k<N, we have the following relations
on P(E).

(i) 1A <N l+ICk 15
(i) 1(Jot = T o~ (Jot - +Te)fllq
(iif) IC*f < flla+1D*fllp -

Proof. (i) Let fo=Jof and f,=f—f, Then the equality C*f=C*f,
holds, and hence we have f,=V*C*f where V= 2 —n~42J.. As V is bounded
in L?(E) by Theorem 1.1 and Lemma 2.2, we see that ||f,[, <|IC*f[l,. On the
other hand, as fozg fw)p(dw), we have [|foll,=1folz=Ilfl:, and consequently,

Il f o+ 1 f ol s N f I IC* £l e
(ii) Let ¢>p>1. It is sufficient to show the following;

(ot T f oMot +Te)fllq -

To this end, take >0 such that ¢=e*(p—1)+1. If E=R'i.e., f€P, then by
Proposition 1.2, we have |(Jo+ - +J) o= T(Jo+ - +Ju)flle In general,
[(Jot - +TJ)f 122N To(Jot - +J)fllq holds, by the same argument as in Lemma
2.2. But Lemma 1.1 implies that T7(Jy+ --- + /&) is bounded on L%E), hence
we have |T.(Jo+ - +J)f e Jo+ - +J2)flle  This concludes the proof.

(iii) Put fo=(Jo+ - +Jp)f and f,=f—f, Then Theorem 2.2 (ii) implies
that |C*f,|,<|D*f,ll,. On the other hand, we have

ID*fillo=ID* fllp+ID* fol o< ID* f o+ 1C* ol »

and also,
IC*folly=1C*(Jot -+ +T) fol oI foll s~ foll <1 fllg,
hence [[C*f1l,<ID*fill,<IID*fll,+Iflls Finally we see that
IC*Flo=IC* foll o HICH Full o IUD* fllp+1 £l - g.e.d.

Now, we proceed to the main theorem of this section, which claims the
equivalence of several Sobolev norms on P(E).

Theorem 2.4. For 1<p<co and k€N, the following five norms on P(E) are
equivalent to each other. Here, we put C'=D"=I.

1Al e=IUT=C*Fllp,  1f15%= Z‘:}IIC"fllp, A1 52= 26 1D f 15,
A= 1o+ IC fllo IFNER=1f1o+ID*fl5



Sobolev spaces 41

(ii) The following two norms are also equivalent to the above norms;

@ NfleHICH f o 1=g<p.  ®) [flle+ID*fll,,  1<g<p.

(i) For 1<py -, pu<oo, the two norms |flpp.p,= 31D 5, and
3
ig IC*fllp; are equivalent.

(iv) If k is even, we have ||f|lp+l|L"’2fllp~:§I§IILiflleIIfllp,k- For an
arbitrary r€RY, || fllp,r=IUT—=CY fllp~IUI—L)"fll, holds.

Remark. In general, for T¢=§‘:0go(n)]n with ¢(n)>0 and reR', we define
(Ty) by 3 (@(n)Ja Since I—C=3(1++n)]y and I—L= 3 (1+n)]s we

can define /—C)" and (/—L)" in this manner.

Proof. (i) First we shall prove that || |V~ 5% Indeed, | [ 1|52
is clear from Theorem 2.2 (i), and the converse relation is from Theorem 2.3
(iii). Similarly we can show || [|{Vs~] §% Next we show that | [[{%~| [|$%

It is sufficient to prove that |Cif|,<I|C*f|l,, for =0, ---, k—1. As the proof
of Theorem 2.3 (i), we note that Cif=V*iC*f, where V= E—n‘”zjn and
that V' is bounded on L?(E). Consequently, it holds that [|[C*f||,<|C*f|,. For
the proof of | [lp.x~I I3 we first note that |f|,, «=< igo(Z-)IIC'ifIIpNIIfIIé‘,’k,

and secondly that | £I§=1f1,+HHH—U—OF 27+ 35 )ia—csi,.

But since (I C)™' is a contraction on L?(E), we have [(/—=C)!f|,<|I—C)*fll,,
for i=0, -+, k—1, implying that || [, s ||

(ii) ThlS is an easy consequence of Theorem 2.3.

(iii) This is a consequence of Theorem 2.2 and Theorem 2.3.

(iv) It is easy to see that |f|,+IL*2f],~ 2”[, flo~lfl% Let T
(v o ) o
—n=0( \/H-—n) Ja. Then both T and T-! are bounded on LP?(E) and T(I—L)
=(—C) holds. From this, [|f|p,-~II—L)"f|, follows. ge.d.

Remark. By virture of the increasing property of L?-norm in p, and the
boundedness of the operator V, it is easy to verify that

k .
£ 2o, 24~ 2 1C fll ;.

where po=p,, pr=p and pi=p;+.Vp;, i=1, -+, k—1. Thus we may always

assume that 1<p,= -+ =p,<co when we consider the norm | [,,..p,

3. Sobolev spaces of Winier functionals.

In this section, we define Sobolev spaces of Wiener functionals and discuss
the differential calculus on them. We adopt the norm || |, , to define these
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spaces, since » can be any real number.

Definition 3.1. Let D, ,(E) be the completion of P(E) by the norm | |,
reR!, 1<p<oo. D, (R') will be denoted by Dp,,.

The system of norms {|| | p,:} <p<e,rer: is compatible on P(E) in the sense
that if {f:}%,, f:€P(E), is a Cauchy sequence in || [, converging to 0 in
another norm | |, then it also converges to 0 in || [, It is because the
operators (I—C)", r€ R, are closable in each LP?(E); this is easily shown by
their symmetry on P(E) in L%*E). Since (I—C)", =0, are contraction operators
on L?(E), we have the following inclusion relation;

3.1) 1<p=g<co and Vés__)Dq.x(E)SDp,r(E),

where “S” stands for the continuous imbedding. Clearly D, (E)=L?(E) and
thus we have the following diagram; 1<p=g<co, 0=r=s<oo

D, (EYSDp (EYSDy,  E)=LYE)SD,, - (E)S Dy, -(E)
ut ut ut ut ut
Dy (EYS Dy (E) SDg o E)=LYE) SDq, (E)S Dy, -(E)

Similarly, if we set Diyp,,...p,1(E) to be the completion of P(E) by the norm
I o py We see that

Dp,VpD. k(E)SDEpO.m,ka(E)E.Dpk. k(E)

where 1<p,<c0 and 1<p,;=< -+ =p,<oo.
We remark also that an element of D, (E), r<0, is not necessarily an E-
valued Wiener functional.

Theorem 3.1. (i) For 1<p, g<oo such that %+%=1 and r€R}, we have
(Dp.r(E))*:Dq, —r(E) »

under the standard identification of (L*(E))*=L*E).
(ii) Let E, and E, be two separable Hilbert spacses and let 1< p,, ps, g< oo
1

such that pl—l_pl:? and k be a non-negative integer. Then for every f€ Dy  +(E:)
1 2

and gDy, (E), we have fQgE Dy (E:QE,) and furthermore, the following
estimate holds.

1/ Qgla s <Ifllp.2llgllns -

Proof. (i) P(E) being a dense subspace of both D, (E) and L?(E), the
identities | fl,,.=IU—C fl, and [U—=C)"flp+=fllp fFEP(E), imply that
(I—C)" and (I—C) " extend to isomorphic cperators D, (E)— LP(E) and LP(E)
— D, (E) respectively. Therefore, we define the pairing , Af, g)» of f€
D, (F) and geD,, _(E) by

(3.2) 2. (f5 &) -7-ESW<(1—C)'f(w), I=C)y"g(w)pp(dw) .
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(The above value is equal to Sw<f(w), gw)>gpu(dw) if both f and g are in P(E)).

The assertion (i) follows from the fact that L?(E)*=LYE).
(ii) Let feP(E,) and geP(E,). ltis easy to verify that D(f Q@ g)=(Df)Qg

+/®(Dg) and generally, DX @)= () (D/N@D*1g). Noting 17Dl sien,

=|flg,|glE, and using the norms in Theorem 2.4 (i),

1 @gli=1f @l +ID*/ @)l
=il hglet 3 (501104281,

<(B10771)( 2 1D%gl)= 11181 qe.d
~\i= A=} ok .e.d.
Next, we extend the operators L, C and D.

Theorem 3.2. Let 1<p<oo and reR'. Then the operators L, C and D
extend to unique bounded linear operators respectively, as follows;

(i) L: Dy (E)—> D,.,E),
(ii) C: Dy AE)—> Dy ri(E),
(iid) D: Dy (E) —> Dy, (HQE).

Proof. To show (ii), it is sufficient to show II(I C)T Il <IIUT—=C) fll, for

feP(E). But it is clear, since (/—C)'C= E \/1+n 2J1+(1/n)

L?-bounded by Theorem 1.1.
(i) follows immediately from (ii).
The assertion (iii) is equivalent to the following;

IT=CY flpIUT=C)'Dfllp,  fEP(E)

_ _ e l+vn-1
To show this, we set S= ,?‘:1 1++n

L?(E), moreover we see that

DI—C)y-1S™ 1 f=(I—-C)y'Df, feP(E).

Juo S commutes C and is bounded on

Then,
IT=CY fllo 2 IS U =C) fl=IT—=CY S flp

ZICU=C) - U=CY S fllp

=[CU=CY'S fp

~[DU—=CY1S flp

=[UI=C)y'Dfl,. g.e.d.

Now we will discuss the dual operator D* of D, which is the analogue of
“—div” in the finite dimensional case. Let 1<p<oo and r&R' Since D maps
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D, _..(E) into D, _,(HQ E) where %-\-%:1, D* maps D, ,(HQE)into D, ._(E),
and by definition, we have

ool Sy D)o -r=p.r-1(D*f, &g -rs1r, for [fED, (HRYE) and gEDg, -r(E).

Theorem 3.3. (i) D*isa bounded linear operator: Dy (HRE)—>D, _(E).
(ii) D*D=-—L.
(iii) If f=P(H) has the form

@33) fa= 3 fwl,  fieP,  LeW*,
then
3.4 D*f(w)=—trace Df(w)+wf(w), ww .

(iv) If feP(HQE) has the form f(w)=i§ml}fi(w)®ei, where f,eP(H)
having the form (3.3) and e;€E, then we have D*f(w)=_§ (D*f (w))e; where
D*f (w) is given by (3.4).

Proof. (i) follows directly from Theorem 3.1 (i) and Theorem 3.2 (iii).
As for (ii), it sufficies to note that for f, g&P,

[, ran—Lgypdw)={ <Dftw), Dgwiupw)=| r(w)-D*Dgtw)pdw).
Then (iii) and (iv) are clear from (ii) and (1.7). g.e.d.

Definition 3.2. Let D,.(E)=N{D, (E); 1<p<oco, reR'}
and D_.(E)=U{D, (E); 1<p<oo, reR'} .

If E=R!, we denote them symply by D.. and D_. respectively.

D..(E) is a complete countably normed space and hence D_.(E) is its dual
space by Theorem 3.1 (i). D, is an algebra by Theorem 3.1 (ii).

As we have seen in Theorem 3.2, D extends to a continuous linear operator
mapping D, (E) into D, .-.(HQE), forall 1<p<oco and rR?, and since such
extentions are consistent, i.e., the diagram

D, (E) S D,.(E)
D D
Dy - (HRE)SDy,1(HRE)

is commutative for any 1<p=<g<oco and *<s, D is actually well-defined on the
whole D_.(E) taking value in D_(H®E). Therefore it can be said that when
we restrict the domain to D, (E), D maps it continuously into D, . :(HQE).
In particular, it maps D.«(E) continuously into D,.(H®E). Similarly, the map-
pings L, C: D_(E)>D_o(E) and D*: D_(HQE)—»D_.(E) are well-defined and
the restricted ones L, C: D, (E)— D.,.(E) and D*: D, (HQE)— D..(E) are
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continuous.

4. The composition of Schwartz’s distributions and Wiener functionals.

As we mentioned before, our Sobolev space D, (E) with »<0 is no longer
a space of Wiener functionals. It might be said to be a space of generalized
Wiener functionals. Indeed, Watanabe [11] introduced the notion of the composi-
tion of Schwartz’s distributions and non-degenerate smooth Wiener functionals,
and as its application, discussed the smoothness of the laws of such functionals.
Let us follow Watanabe’s method in our framework.

Let S=S(R%), d= N, be the Schwartz space of all rapidly decreasing C*-
functions on R%, and S'=S’(R%) be its dual space, i.e., the Schwartz space of
all tempered distributions on R%. We endow S with the countable norms;

4.1 leli=I0+1x1*=A) ¢lle, @S, keZ,

where | x| is the length of the vector xeR¢, A is the Laplcian on R? and | ||
is the maximum norm. By ., we denote the completion of S by the norm | | ;.
Then we have the following inclusion relation;

4.2) S'=UgD DT_,DT,DT,=C(RHDT, DT, D - kazg’*:‘s
kEZ e

Now let f=(f1, =, fa)ED+x(R?) and peS. It is clear that the composite
function ¢(f)€D4.. Thus, f being fixed, we define the following mapping ;
4.3) Os: S29p—> o(f)€Dyo.
Finally we put o;;(w)=<{Df(w), Dfjw)>y, weW. With these definitions, we
are able to state the main theorem of the section obtained by Watanabe [11].

Theorem 4.1. If (a;;) is a strictly positive definite matrix for a.a.w (p) and,
setting (ri)=(04;)7", 2’i,~€1<{'\< L? holds for i, j=1, -, d, then the mapping @,

p o0

will extend to a unique continuous linear mapping as
(4.4) @f: g_k——)Dp,_gk,

for all ke N and 1<p<co. Consequently, it will be well-defined as a mapping
S'—D_..

Definition 4.1. Given TS’, @4(T), which is defined by Theorem 4.1, will
be denoted by T'(f) and called the composite of T and f.

The proof of the theorem is essentially due to Malliavin’s formula of in-
tegration by parts.
Lemma 4.1. Let f satisfy the hypotheses of Theorem 4.1. Then, for any
P 0 \a1 0 \2«a : o .
g€Dy, 1<g<o keN, and 0 :(a—x,) <6—xd> , a1+ Fag=|al="Fk, there

exists an [*(g)e L, 1=r<q, such that
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5 [ etigndn)={ e(mur@updn)

for any peClRY)={peC*; 0%¢ is bounded and continuous, 0=|B|=k}.
thermore, we have

(4.6) sup{i*(@)ll-; g€ Dq, &, lgllg, x =1} <40

Proof. (i) First, we prove the lemma when k=1 and 0°=0=0/0x;.

the chain-rule, we obtain

D), Dfpu= T @'p(fass.
Then,
2'p(1)= B D@, D Pty

Hence we see that
d
i —
| ,etng ap=3

1

SW<D<¢(f>>, Dfpurisg dpe

J

&

J

1SW<D(¢(f)), 758 Dfpudp

d
= %[, DG DI,
J=1JW
Compairing with (4.5), we can write down [*(g)=[!(g) explicitly as

.7 li(g)= f:l D*(ri;g Df) .

Fur-

By

Then let us examine if the right hand side belongs to L". To this end, we

need two more formulas.

4.8) D*(f1Df*)=—<Df*, Df*pu+f'Lf?, [, [€D
d

(49) DTij:_m§=lTimrjnDamn

The former is quite easy and the latter is found in lkeda-Watanabe [2].
applying these formulas, we have

g)=— 3 KDug), Dfpn+risg Lf)

d
=—j_21 {KgD1:j Dfpu+<yri;Dg, Dfpu+riig Lfs}

d

d
=—3{= 3 grinrnDonn DfYut7iXDg, Dfdn

Jj=1

+rog Lfs -

Now,

Since, <Doma, ij>H=<D2fm; Dfn®ij>u®H+<D2fm Dfm®ij>H®H: the follow-

ing estimate is valid;
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<D0 mn, Dfp>u| SUD*fnlneu| Dfulu+ 1D 2l neu | Dfnl )| Df ;1 u

Therefore,

(4.10) ll"(g)lé ﬁ: gl 7iml ]Tjnl(]szm|H®H|Dfn|H+|D2fn|H®H|Dfm|H)

j,m,n=1

d
1Dfslat Z (7l |Dg|u|Dfjlu+1r:llgl 1 Lf;1)

By the hypotheses, |7i;|, |Df;la and |D*fn,|nen belong to KQ L? and |g],
p 00

|Dg|y belong to L9 consequently we see that [{(g)e L™ and (4.6) is clear.
Next, we will show for the general k=N. Let us think the case when
k=2 and 0*=0%’, for example. According to (4.5), we have [*(g)=0l(l*(g)) in
this case. Then, when we estimate |/%(g)| as (4.10), the estimation of | g|, |Dglu
and |D%g|nen will be important. But if gD, ,, all these are elements of L%
Hence the assertion is valid. Iterating the same procedure, we can verify the
lemma for all k= N. q.e.d.

Now that Lemma 4.1 is proved, the proof of Theorem 4.1 is an easy con-
sequence of it.

Proof of Theorem 4.1. Let ¢>1 such that (1/p)+(1/q)=1. The preceding
lemma implies that for any k€N, g€ D, ., there exists an /,(g)e L' such that

@1 [, (+1x =m0t g du=( olrine)dn,
for all peC}¥R?), and
(4.12) K=sup{ix()llz1; §€EDg.2p, 1gllg,x =1} <00

Then, we have

[, ethg du|=|], a+1x =04 A+ 1x1"—0) el g dp

=|{, A+ 1xP=2 e Hing)dp

SNA+1x1*—=A) *@llwllle(@llL: -
Hence, by Theorem 3.1 (i), we conclude that
lo( o, -2 =Kllol-x,

which completes the proof. q.e.d.

Finally, as an application of Theorem 4.1, we shall prove the following
theorem, which was first proved by Malliavin.

Theorem 4.2. If f satisfies the hypotheses of Theorem 4.1, its distribution
law, i.e., the induced measure psf on R?, has a C>-density with respect to the
Lebesgue measure.
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Proof. Let 0, be the Dirac d-function having the mass at xR¢ The
following facts are well-known;

(i) 0,€9_, if and only if d/2<m,

(ii) the mapping R¢>x—d,€9_,, is continuous if d/2<m,

(iii) the mapping R%>x—0,€9_,,_, is 2k-times continuously differentiable
if d/2<m. (keN)
Consequently, by Theorem 4.1, the mapping R?=>x—0d,(f)E D, _spn-sr is proved
to be 2k-times continuously differentiable, and further, the mapping R¢> x—

p-2m-2£0z(f), @qom+2: ER' is also 2k-times continuously differentiable, where
(1/p)+1/g9)=1 and g€ Dy 2m+ae-
On the other hand, we can easily verify that

(4.13) (=5, -2m-24002(f), Do, 2mear ,

where 1 is the constant equal to 1, is the density of p«f with respect to the
Lebesgue measure on R?. Since % is an arbitrary positive integer, we conclude
that p(x)eC>(R?). g.e.d.

Remark. After I have finished the whole manuscript, I came to know the
paper [12] by M. Krée and P. Krée in which they obtained the results related
to our Theorem 3.2 and Theorem 3.3.
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