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Introduction.

The notion of Sobolev spaces of Wiener f unctionals was first introduced by
D. W. Stroock [10] a n d  I. Shigekaw a [7] to formulate Malliavin's calculus
rigorously and  study it systematically. However it cannot be denied that their
Sobolev spaces sometimes appeared very complicated. It is mainly because they
should have dealt with both the  derivative operator D  and its dual D *, or the
Ornstein-Uhlenbeck operator L (=— D*D), not only o n  L 2 b u t  also on a ll LP-
spaces over the Wiener space. But in 1982, P. A. Meyer pointed out the possi-
bility to remove those apparent complications ; that is, he proved the  equivalence
of the two norms defined in  terms of L  and D  respectively. ([3], [4])

In the present paper, we first aim  to develop M eyer's results a n d  prove
the  equivalence among several Sobolev-type norms. In doing this, there are two
useful tools ;  the Wiener chaos decomposition o f  L 2 and the hypercontractivity
of the Ornstein-Uhlenbeck semigroup. Combining these two, we follow Shige-
kaw a's idea to prove Theorem 1.1 , which offers a  sufficient condition for a
linear operator to be bounded on D'.

Next we construct the Sobolev spaces of Wiener f unctionals and discuss their
properties. In  particular, our definition allows o f  negative indices and such
spaces contain what we call generalized Wiener f unctionals. In this context, we
consider the com position of Schwartz's distributions and Wiener functionals,
which was first studied by S . Watanabe [1 1 ] .  This presents another approach
to Malliavin's calculus.

Here, the author wishes to thank Professors S. Watanabe, I. Shigekawa and
S. Kusuoka for their valuable ideas, suggestions and encouragement.

1. Basic notions.

Let (W, H , p) be an  abstract W iener space. e . ,  W  i s  a  separable Banach
space, H  is a  separable Hilbert space densely and continuously imbedded in W,
and p  is a  Gaussian measure on W  with mean 0 satisfying the condition,

.ç (1, w)(1', w)p(dw)=<1, l'>H  , 1, l'EW *EH*=H
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where ( , ) and < , > l l  denote the pairing of W* and W , a n d  th e  inner product
of H , respectively. Let E  be a  separable Hilbert space, with the norm I  IE and
the inner product < , >E. We call a  mapping f :  W  — *E . (W)/B(E)-measurable
a n  E-v alued W iener functional, where g3(W) a n d  g (E )  are  the topological a-
fields on W and E  respectively a n d  •D'(W ) i s  th e  completion o f  g (W ) with
respect to  th e  measure p. A s  usual, two W iener functionals are identified
whenever they coincide p-almost everywhere. For 1__p<00, if f  is an E-valued
Wiener functional and I f (w)I PE is p-integrable on W , we say f  belongs to LP(E)
= L P(W  : E ). The norm of f  E L P(E ) is defined by

11f II LP f (w)IPEp(dw)) 1 / P

LP(R 1) will be denoted simply by L.
Now, we introduce a  useful family of Wiener functionals called polynomial

functionals.

Definition 1 . 1 .  (  i  )  A n  W-valued W iener functional f  is  sa id  to  b e  a
polynomial functional, if  3n EN, 3/1 , •-• , / 7,E W* and Rn --4V , polynomial in
n  variables, such that

(1.1) f (w )=f ((11, w), , (la, w)), w E W .

The totality of such functionals is denoted by P.
(ii) A n  E-valued Wiener functional f  is said to be a n  E-valued polynomial

functional, if  3n/E /V, 3 f 1 , •••, f n , E P ,  and 3e 1 , • , e n , E E  such that

(1.2) f (w )= f ,(w)e w1/17

The totality of such functionals is denoted by P(E).

In the expression (1.1) for f  E P , we can always assume, by Schmidt's ortho-
gonalization method, that the system {/,} 1:=, forms an orthonormal system (UNS)
with respect to the  inner product of H .  Similarly, in  (1.2), we always assume
fei l to be an UNS of E .  A s W* is dense in H * =H , P(E )  is  a dense linear
subspace of L ( E ) ,  for every 1 - p<co.

Next we shall introduce some important operators ac tin g  o n  P  o r  P(E ),
such a s  Fréchet derivative and Ornstein-Uhlenbeck operator. T h e y  are the
analogues of gradient and Laplacian in  the finite dimensional case.

Definition 1.2  (the Fréchet derivative). ( i )  F o r f  E P , the  Fréchet derivative
Df(w )EW * at w E W  is defined by,

(1.3) (D f(w), v) _=_ d f (w -Ftv)
'

v  W
dt t=0

Since W *cH *=-H , D f  can be regarded a s  a n  element o f  P ( H ) .  We will
often deal D  as an operator mapping P  into P(H).
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( ii) F o r  f  P ( E )  w ith  an expression f= - 7: i  f i ei , ( f i  E  P, e i E E ), D fe

P (H O E ) is defined by

(1.4) Df(w)-= D f i (w)0 ea , w EW .

Here H O E  is the  tensor product of Hilbert spaces H  and E ; the  totality of all
continuous bilinear forms o n  H x E  with finite Hilbert-Schmidt norm which is
endowed as the norm of H O E . For h EH and e E E , h O e E H O E  is defined
by (h0e)[• , •]=<11, •>n<e, •>E and thus it holds that

(1.5) <110e, h'Oe'>n®E=<h, h'>H<e, e />E , h 'EH  and e'EE .

By definition (ii), w e can  iterate th e  operation D; D'f_D(Df), ••• , D kf . -
D(D k - i f )  and Dkf is an  element of P(H O  ••• O H O E ), for f EP(E ).

Definition 1 .3  (the Ornstein-Uhlenbeck semigroup and operator). ( i )  We
define an operator T : L ' ,  t . 0 ,  by

(1.6) T tf (w )--- wf(e-tw+A /1— e-2tv),u(dv), f E L i .

It is known that the  family IT tl t , 0 forms a  p-sym m etric contraction semi-
group on L P  fo r  every < 0 0 . We call it the  Ornstein-Unhlenbeck semigroup.

( ii) T h e  infinitesimal generator o f  th e  semigroup {T } 0 is  c a lle d  the
Ornstein-Uhlenbeck operator and denoted by L .  L  has the  explicit form on P ;

(1.7) L  f(w)=trace D2 f(w)—(Df(w), w), w EW, f EP.

(For V EH O H , trace V  is defined by E <V , h i ® hi >H 0 E , if the sum is absolutelyi=0
convergent, where { h,} 7.'=, is complete orthonormal system (CONS) of H .  The
value of trace V, when it exists, is independent of the choice o f  {ha} T=1).

It is clear that T t a n d  L  are operators mapping P  into itself. But for later
use, it is convenient to consider these operators on P ( E ) .  To do this in general,
le t S be a  linear operator mapping P  into itself. For f E P (E ) with an expres-

sion f =  f i EP, e,EE, we define Sf -. 1 (S f i )e i . This definition, as welli=1
as (1.4), does not depend on the particular choice of the expression of f. In the
present paper, any linear operator mapping P  into P  will always be considered
as an operator mapping P (E ) into P (E ) in  this manner.

Now we introduce the Wiener-chaos decomposition (or the Wiener-It6 decom-
position) o f  L 2. First o f  a l l ,  w e  notice that th e  system I-Vn! 1-1(x)17,= 0

- of

1 x
2

Hermite polynomials is a CONS of L 2 ( R1,
 - V 2 7

e x p ( - -
2

)d x ), where

„ ( - 1 ) n x 2   x2H (x )—  n !  
e x p (

d x n

)  d n  e x p ( - -
2

)
'  

n=0, 1, , x  _ 1 ? 1 .2 



=Ham if  a 1 > 0  where a( i) =( a ,,  • • •  ,  a i_ , ,  a1 - 1 , ai+i, •-•){
<D11,,,

if  a 1 = 0
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We construct a CONS of L 2 =L 2 (W  : I r)  u s in g  th is  sy s tem . L e t  Am { a=(a„
a,, ••.); a 1=0, 1, 2, ••• , a i = 0  except f o r  fin ite ly m any i's} a n d  A n =-  f aE A ;
E a = n } . F ix  a CONS of H  such that / i  W *  and set for aEA , Ha(w )

Ha ((li, w)), w EW .1

Proposition 1.1. The system a! Ha(w); A I f o rm s a  CONS o f  L 2 ,
where a! =a i ! a,!••• , i f  a=(a i ,  a , ,  •••) E A  and 0!=1.

The proof is standard and omitted.
Let Z „ be the closed subspace o f L 2 sp anned  by the fam ily  {-Va 1-1.(w);

a E A „ } . Then, due to the above proposition, L,2 is decomposed into the ortho-
gonal direct sum o f  {Z.} 7t=o ; L 2 -=2.0ED Zi e ••• . This orthogonal decomposition
is called the  Wiener chaos decomposition o r  t h e  W iener-ItO decomposition. It is
important to notice that this decomposition is independent of a  particular choice
of CONS {/,} 7=1; indeed , it ho lds that Z n = {f E L 2 ;  T t f = e - n t f  for a ll t>0}.
Let J 7, be the orthogonal projection to Z n . Then J„(P)=Z n n P C P  and Ji,(P)
is  dense in Z n . For every f  E P ,  there exists n 0 such that f  Z o e  Z i '
And in particular, w e have

(1.8) T t= E e - ntJ,„ on P  or on L ',
n=0

and

(1.9) L =  ( — n ) J n o n  P  or on ZI(L)_if E L 2 ; E n2 llinf1112 <col.
n=0 n=o

d  Finally, noting the  property dx  11,,(x )=H n _,(x ) of Hermite polynomials, we can

easily verify the following relation on P  and P(E );

(1.10) D J n J n iD ,  n 1  a n d  DJ0 =0 .

More precisely, we have for a=(a i , a,, •••)EA ,

Our aim in  the  remainder of this section is to prove the  following theorem
which was first obtained by M eyer [ 4 ] ,  a n d  whose proof was simplified by
S h ig ek aw a  [8 ]. We will follow Shigekawa's idea.

Theorem 1.1. Let 7' 9 :  P---). P  be giv en by  T,--= s o ( n ) J n ,  where {so(n)} ,

is a real sequence. I f  there exist a function h (x )  analy tic on some neighborhood
o f th e  origin and a positive constant a  such  that ço(n)=h(n - a) , then 7 ' 9  can
uniquely extend to a bounded linear operator on L P  fo r  each 1<p<co.

For the proof, we require the following well-known result by Nelson [5]
(cf. also Neveu [6]).
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Proposition 1 .2  (the  hypercontractivity o f  T e). Fo r 1<p<00, put q (t )=
,e2 t(p -1 )+1  (note that q (t)>_p ). Then we have liTtfIlLg ( t) -.511fIlLP, for every f E  L P .

A s a consequence, we have

Lemma 1 . 1 .  For ev ery  1 < p < co , an d  n=0, 1, ••• , there ex ists a  positive
constant cp,„ such that

11.InfIlLP5cp,n1IfilLP, f o r a l l  f E P .

Therefore Jn can be considered as a bounded linear operator on L .

Pro o f . If  p=2, the assertion is  c le a r . In  th e  c a se  p> 2, ta k e  t>0  such
th a t  p=e 2 t+ 1 .  T hen  by  Proposition 1.2 and (1.8),

Ile- 7 ". nf nf IJnfJJL27-11f11 L2I f  11 LP .

Hence 11./nf IlLP, for f EP.
In the case 1<p<2, th e  dual opera tor P ,̀ i s  a  bounded operator on L P ,

because Jn  is  b o u n d e d  in  L q  w ith  q > 2 . But since J =  J ,  on P , the assertion
is obvious. q. e. d.

In order to prove Theorem  1.1, w e need one more lemma.

Lemma 1 . 2 .  For 1<p<00 and n E N , there ex ists a  positive constant cp ,„
such that

(i) IIT  t(I  — J0 —  •••  — Jn -i) fI lL P cp , e ' l l f 1 I L P ,  f o r all f E L ,
(ii) II {R (I —Jo— •••  — Jn -1 )} ./ f I lL P 5 c p , „ n -

:5- n
P

Ilf 11LP, f o r a l l  j E N  and  f E LP,

where I denotes the identity operator and R=-.).
t — . 1 0 ) d t  i s  the potential operator0

f o r L.

P roo f. If  p=2, the assertion is  c le a r . In  th e  c a se  p> 2, ta k e  t0 >0 such
th a t  p=exp(2t 0 )± 1 .  T hen  Proposition 1.2 implies that

II + 0 (I —J0 — • •• toT t(I — J0 —  •••  — ,In -i) fI lL P

5 1 1 T ,(I— J0 —  •••  — J . - i ) f I lL 2  •

B y (1.8), w e have

IIT t(II ••• 4 2 = 4 e- 2 1 1̀1J;f111.2i=.
–

5e - ntV E 1112

and hence IITt 0 + a — J0—  •••Jn -O f IILP. Therefore w e have that

IIT —Jo— • • • f IILP n " -  t°' IIIf IILP, f o r  tto •
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But if CI-__t<t o ,

• —J-1)f M LP II( I ••• f  IIL P

by  the contractivity of T .  Consequently,

••• (nto)Clv ••• IILP1e-"Ilf IILP

In the case 1<p<2, using the duality , the proof is th e  same as in  Lemma
1.1. T hus ( i ) is proved.

As for (ii), note th a t  R(1— .10— • — .1.-1)= ,QT t( I— Jo —  • BY

w e have

{R(I — .10—  • — .In-1)} z 1IL P

ÇoT Y ' t0 7' (I ••• ••• J )dtdsn _i 

ÇOro T  " ' (1.n - 1 )
d t d s

Lp

t+,( I • • •  — Jn - i )IlL n d td s
Jo Jo

I_ J o  J0

=c p , 72 2 .

Similarly, we can estimate II ••• — J.-1)PIILP and obtain (ii). q. e. d.

Now we can proceed to the  proof of Theorem  1.1. F irs t w e  w ill g iv e  the
0 0

proof in the case a = 1 .  T a k e  k e N  su ch  th a t h(x )= E a p c i  is absolutely con-
i=0

vergent fo r  I x I —
1

. N ext w e devide T ,  into two parts ;k
k- 1

T , w h e r e  7 7  = ç o (n )J n  a n d  T  = g o ( n ) J.  •n=0 n= k

Then is bounded on  L P  by  L em m a 1.1. O n the o ther hand , the following
equality holds.

(1.12) T = a J  {R(I —J.— • — h - 1 ) }

Indeed, for f I n,E Z n ( n _ k ) ,  since • —. k -Of 7.=(1172)f p, w e have

E  a  {R(I • • •  — .1 k -1 ) }  f  n = 'E° aJ( 1 ) j
J=0 J=0 n

-= 11 ( 71
1 ) f  n =S 0 (1 2 ) f  n

But by Lemma 1.2 (ii), the  right hand side of (1.12) i s  convergen t in  the  L P -
operator n o rm . Thus TV ) is bounded on LP.

L P
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Next we will prove the case of general a > 0 .  We may restrict ourselves

to the case 0<a <1. Put T82,(ds), where 2, is a  probability measure on0
determined by .ç e - us2,(ds)=e - ua ', I. e., 2, is a  one-sided stable distribution of0

order a  and t ,  is the a-subordination of T , .  Then by Lemma 1.2,

t ,(I—J, — ••• ••• — .171-1)IILP21(ds) - cp,ne - n a t  .0
and similarly,

••• w here P , ‘- (1-",—.I0)dt.
Jo

Now the proof runs in  the  same way as above. q. e. d.

2 .  Equivalence o f norms on P(E ).
00

The operator L = E ( — n).f. with domain g ( L ) = E  L 2 ;  E  n 'llJn f Ili2 < coln=0 n=0
is a non-positive definite self-adjoint operator on V .  Therefore we can define
C=--- A /— L , which we call the  Cauchy operator. We note that C  also maps P

into itself ; E  ( — /
) J .)J.. According to our convention, C  is also consideredn=0

as an  operator mapping P (E ) into itself.
First we shall state the  following theorem which was obtained, in the case

o f  E=.1V, by M eyer [3 ] as an  app lica tion  o f the  Littlewood-Paley-Stein in-
equalities.

Theorem 2.1. For 1<p<co, there exist positive constants c p  and c; such that

(2.1) C plICfILLP (E)-11D f (110E)- 411CPILP (E),f o r  f  E P(E ).

Note that the  equality IICf 1.2(E) =11Df z.2(H0E) holds on P(E).
To make notations brief, we shall introduce the  following ;
( i ) The norm o f L P(E ) will be denoted simply by 11, whatever E may be.
( ii) For two norms II II and II II' on  a  line a r space K , we write Ilf11,11f

or Ilf11'>11f II, if  there exists a positive constant c such that Ilf II II' for all
f  E K . If both MfII Ilf IV and Ilf I IIf II' hold, we write and say that
the norms II II and II II' are equivalent to each other. U nder these notations,
(2.1) is rewritten a s  IlCf Ilp̂ -'11Df

We shall deduce Theorm 2.1 from Meyer's result in the case  E = R '. F o r
this, we need the  following lemma.

Lemma 2.1 (Khintchin's inequalities). L et (Q , g , P) be  a  probability space,
and { r i (w)} ,, coES2, be a sequence o f  i.i.d . random variables on Q w ith P(r i =1)
, P(r i = —1)=1/2 (Rademacher's system of  random variables). T h e n ,

( i)  Fo r 0 <p  <0 0 , we have
\PI2

i = 1
I ail') - - E ( E r i ad ), f o r all fai l70_,EP.i=i
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Here E  denotes the integration under the probability measure P.
(ii) Let G  be a separable Hilbert space and 1<p < 0 0 . Then we have

p/2

E  (at 16) E r i a ii=i
P)

fo r all G-valued sequences {a i } 7°_, such that E  I a i l5<00.

(iii) Let 1 <p <c o .  Then we have

E (  T T
P)

fo r  all non-negative definite matrices (a i i ), i, jE 1 7 , such that E  I aiir <co.i=1,;=1

Pro o f . The proof for ( i ) is found in Stein [ 9 ]  and its  Hilbert version (ii)
is in  Burkholder [ 1 ] .  The assertion (iii) is easily derived from (ii). Indeed, if
(ci i 1 )  i s  a  finite m atrix, we can find a  matrix (a i i )  such that a i i = E d i k i i k j .

Applying (ii) for d i  =1 E  / 2 ,  we obtain (iii). F or an  infinite matrix, a n  ap-
proximation by finite matrices will complete the proof. q. e. d.

Now, we will proceed to the proof of Theorem 2.1 for P ( E ) .  Let f  be an

element of P (E )  and have an expression  f (w )= f(w)e, w  ŒW  , where f ,E P

a n d  fei lr_ i  is  an UNS of E .  Take a  Rademacher's system {n} 7=1 o n  a  proba-

bility space (Q , g , P ) ,  a n d  p u t X (w, w ) =  r i (w)f,(w), or OE S2, w E  W . T hen

X (œ, • ) P  for all w .  First, Lemma 2.1 ( i ) implies that

E(ICX (•, w)IP)=E( r i Cf i (w) 1Cfi(w)12)P12= 1Cf(w)lk

for all w E W. Integrating both hand sides with p , we get

E(ICX1P)dp=E(IICXIIP - 11Cflif, •

On the other hand, since the matrix (<Dfi(w), Df,(w)>H) is non-negative definite,
by Lemma 2.1 (iii), we have

E(1D X (, w )  )=E (  E  r ir i <Dfi(w), D fi (w )> I f  I P)-s-'( E I Dfi(;
i i ) p / 2

for all w mW. S im ila r ly , the  integration with p  leads us to

E(I DXI 7ji )dp= E(11DXIIP - 11Dfilf, •

But Meyer's result for R 1-valued polynomials implies that II CX(w, • )(pHIDX(w,
• )11, for all w , which completes the proof. q. e. d.

Here is another useful consequence of Lemma 2.1.

Lemma 2 .2 .  Let 1 <p <0 0 . I f  S : P -  P  is a bounded linear operator in the
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LP-norm, it is also bounded as an operator S: P(E)— >P(E) in the LP(E)-norm.

P ro o f . Let f  G P(E) be expressed as f (w )= f 1 (w)e,,, wGW , where f i GP,

and {e,}111 i s  an UNS of E .  It is sufficient to show that

To show th is, take a  Rademacher's system fri (w)M i , weQ, an d  se t X(a), w)
In 7Th

=  r i (w)f i (w ). By Lemma 2.1 ( i ), we have that E(1X(•,
in m

for a ll w .  Hence, (EI1X13)'"' 1.f.112 •  N oting that SX(w, •)= E r o )i (c

S f i (•), s im ila r ly  w e  h av e  (E11SX " 231111,) , -- . On the other hand,

since X(0), •) GP, 11S X(w, •)112):-.11X(w, •)16 b y  the hypothesis.
holds that E11SX117 ..E11X11f, and the proof is complete.

Consequently, it
q. e. d.

The first assertion of the following theorem was established by Meyer [4]
in the case E=.1=1'.

Theorem 2.2 . For an y  k e N  and 1<p<.,
(i) f G P(E ) ,

(ii) f  Ilp , f E P k + i(E )

where Pk+i(E)== If eP(E); (Jo+ • •• k ) f =0} .

For the proof we show the following lemma from which
obtained by induction.

it is immediately

Lemma 2 .3 .  (  ) 11CD kf  G P ( E )  .

(ii) 11CDV-11p11,0kCflIp• f  E P k + i(E ).

P ro o f . F irs t w e  sh a ll p ro v e  (i). Let T ,,: P— >P b e  d e f in e d  b y  T,,

    

= E j n .  Then we have T k DkC=CDk. Indeed, since C= E 7 T j n ,
n=k+1f l rz=1

T kD k C = T  k D k E -.Vrt J n =T k E D k Jn . B y app lying (1.10) k-times, we
n=1 n=1

see that
00

T k DkC=T k  E  — V n Jn _k D k =  E
n=k+1 n=k+1

=  E  --V n— k  J r,-,,Dk
n= k+1

=C D '.

By Theorem 1.1 and Lemma 2.2, T ,, extends boundedly on L ( E ) .  Therefore,

"

w)1P)--< f  i (w ) I 2

i=1 1=1

) p / 2

ti=1P   i=1

1=1

11CDk .flIp=11TkD k Cfllp-5-11TkIlplIp k Ulp for f G P(E ), implying ( i).
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Next we shall prove (ii). Let T ;: P -4 - )  be defined by r k = n=k+1 n
Then since 7'

 krk
=-

Ti,T  k=1.• • •  — J k , we have D k C f= 7 C D k f  for f EP k + i (E).
Now the proof proceeds as in  ( i). q. e. d.

Theorem 2 . 3 .  For any  1<p, q <co and k EN, we have the following relations
on P(E).

( i )I f  lIp lif Ili+ IICkf 16 •

(ii) (J0+ • • • +-Jk ).f p HI (Jo+ • • • +J)fMq•

(iii)

Proof. ( i )(  i  )  L et f o =J o f  and f i = f — f 0. T h e n  th e  equality C k f= -C k . f i

holds, and hence we have f i =V k Ck f where V = E —n - 1 1 2 J „ . As V is bounded
n=1

in  LP(E) by Theorem 1.1 and Lemma 2 .2 , we see that On the

other hand, as [ 9 =1* f(w)p(dw), we have I f0  p = ifo tE lif  M1, and consequently,

Il f II It f ill p+ II f ollI f  II i+ IICk f
( ii) Let q > p > 1 .  It is sufficient to show the following;

II(Jo+ ••• •-• +./k)filq

To this end, take t > 0  such that q = e " ( p - 1 ) + 1 .  If E = R ' i .e ., f EP, then by
Proposition 1 .2 , w e  have 11(./0+ ••• +Jk).flIp lITt(./0+ ••• +- f ) f h. In general,
11(./0+ ••• -+J0).flIp? ..,11T t( J o i - ••• -+ J a l l q holds, by the same argument as in Lemma
2 . 2 .  But Lemma 1 .1  implies that T i - (J o+  ••• + Jk ) is bounded on L (E ), hence
we have IITt(./0+ ••• -+ J a l l q? ..,11(.10+ ••• + f ) f h .  This concludes the proof.

(iii) Put fo = (Jo+  ••• + f ) f  and f i = f — f , .  Then Theorem 2 .2  ( ii)  implies
that IIC k fillp.,11D k fillp. On the other hand, we have

IlDk f p IIDVlIp+11D k f ollp ,11Dk flIp+Ilck f ollp
and also,

IICkfollp= IICk(jo+ +jk)follplIfollpHlfoll,Ilf 110

hence MCkj1llp-"5_, W 0 f1 l lp .-1 1 D 0 f l Ip + I l fh . F inally we see that

IIC k flip_<11C k fd p + IIC k fillp.11D k f  Ilp+ i f II • q. e. d.

Now, we proceed to the main theorem o f th is section, which claims the
equivalence of several Sobolev norms on P(E).

Theorem 2 .4 .  For 1<p <00 and k E N , the following five norms on P(E) are
equivalent to each other. Here, we put 0-=D°=I.

If lin.k II(I—C) 0 f IWk= iiC f Il,i f  M l i D 0  f 119,

Ilf II Ilf II p+ IICkf tip, Ilf Il II p+ IlD 0 f li p
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(ii) The following two norms are also equivalent to the above norms;

(a) 11f11,±11Ckfllp, (b) 11f11,±11Dkfllp, 1<q<P

(iii) F o r  1 <p o , • • •  , p k <c o , th e  tw o norm s WV Il i), and

are equivalent.i=0
( iv )  I f  k  is  ev en , w e  have 11 f 11 p + II k  12 f k • For ani=o

arbitrary  rE I V ,  IIif 11H,r=II(I -C )' f II - f  lip holds.

Rem ark. In general, for T yo,(n)L , with ço(n)>0 and r ER1, we define

(T Ç ) ' b y  io (ç o (n ))7 1/ .. S in c e  /—C=n  i 0 (1-1—s/n )L , a n d  I— L = i o (l+n)J„, we

can define (I — C)r and (I — L)r  in  this manner.

P ro o f . ( i )  First we shall prove that 11 111,3,)k̂d1 111)4.)k. I n d e e d ,  II 111)3,)k-Z:11 4421,
is clear from Theorem 2.2 ( i ), and the converse relation is from Theorem 2.3
(iii). Similarly we can show II 111)4.)k"'11 111)2.)k. Next we show that 11 1118-11
It is sufficient to prove that 11CiflIplICkfIlp, fo r  1=0, ••• , k -1. A s  t h e  proof

of Theorem 2.3 ( i ), we note that C z f = V 'C k f ,  where V= E — n - " 2 ,[7,  and
f l  =i

that V  is bounded on L P (E ) . Consequently, it holds that liCif11 11Ck f IIp. For

the proof of 11 112).k—'11 1I1],)k, we first note that if lip ,k

a n d  secondly that Ilf1Vh= if Ilp+11{/-(/-C)} k )11U- C)if
But since (I — C) - '  is a contraction on  L ( E ) ,  we have IV — CY f 11 p -c )k  f  lip,
for 1=0, ••• , k -1, implying that ii ,k lI 11V,)k.

(ii) This is an  easy consequence of Theorem 2.3.
(iii) This is a  consequence of Theorem 2.2 and Theorem 2.3.

kb
(iv) It is easy to see that II f  II p+11 Lk  12 f  p f 11 p If  11101,)0. L e t Tz=0ox; (1±- n  v= n

   J  Then both T  and T - - '  are bounded on L P(E) and T(1 — 1,)" 2

n4 =1 A-V1 - k n /
-=(I — C) "  holds. From this, 11 f Ilp , r̂ -11(I - L) T " f  lip follows, q. e. d.

Rem ark. By virture of the increasing property of LP-norm in  p ,  and the
boundedness of the operator V, it is easy to verify that

if

where p = p , , y k = p k a n d  y =p i ,,v p i , i = 1 ,  • • •  ,  k -1. Thus we may always
assume that 1 <p k _ • • •  . ./ii < 0 0  when we consider the  norm 11

3. Sobolev spaces of Winier functionals.

In this section, we define Sobolev spaces of W iener functionals and discuss
the differential calculus on them. We adopt th e  norm ii 1p,,- to define these
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spaces, since r  can be any real number.

Definition 3 .1 . Let D p,,-(E) be the completion of P (E ) by the norm II Ilp.,
rGRi, 1<p<00. D ( R 1)  will be denoted by D p ,r .

The system of norms III II p,r ,I 1 _p r E R 1  is compatible on P (E ) in  th e  sense
that if { f } ,  f i e P (E ), is a Cauchy sequence in 1  lp ,r  converging to 0  in
another norm II Ilq,s, then it also converges to 0 in  II II p r .  It is because the
operators (I C)', r R 1, a r e  closable in  each L ( E ) ;  this is easily shown by
their symmetry on P(E ) in  L 2(E ) .  Since (I C)', r. 0, are contraction operators
on L (E ) ,  we have the following inclusion relation ;

(3.1) 1<i) c o  a n d  r --> Di 9, r(E)

where " = "  stands for the continuous imbedding. Clearly D , 0 (E )= L (E )  and
thus we have the following diagram ; 1<p_q<oo, 0 _ r_ s< o o

D ,  s(E).E,D p,r(E)ZD p, o (E)= LP(E),Dp,-,(E)ZDp,-.,(E)
UT UT UT UT UT

0(E)= L ( E )
-  8 (E)

Similarly, if  we se t DEpo,..., po (E ) to be th e  completion o f  P (E ) by the norm
ii 4 0 ,..., 2, ,  we see that

Dp i vpo , k D E N , -•• P k l ( E )  D k(E)

where 1<p o < 0 0  and 1<p h • • •
We remark also that an  element of D p, r (E), r< 0 , is not necessarily an  E-

valued Wiener functional.

Theorem 3 .1 . ( i )  For 1<p, q<co such that 1 + 1  =1 and 7- 1?1, we have
P

(D po -(E ) ) *  D  - (E ) ,

under the standard identification of (L 2(E ))*=L 2(E).
( i i )  L et E, and E , be two separable Hilbert spacses and let 1<p i , Pz, q<00

such that —
1

+ -
1

= —

1  

and k be a non-negative integer. Then for every f G D p , , k ( E i )
P I  Pi

and gEDp,,k(E), we have f O g e D q ,k (E ,O E 2 ) and furtherm ore, the  following
estimate holds.

ifg111. kiif iip, kit ii p2, k  •

P ro o f . ( i )  P ( E )  being a dense subspace of both D o (E ) and L ( E ) ,  the
identities II /9, r=  li(I - C)rf lip a n d  II ( i — C) - r f  p. r=  if  lip, f E P ( E ) ,  imply that
(I C)" and ( I C)' extend to isomorphic cperators D p ,r (E )-- LP (E ) and LP(E)

D p, r (E ) respectively. Therefore, we define th e  pairing p ,r (f, , of f
D p ,r (E ) and gE D q ,, (E )  by

(3.2) <(i —C)T f (w), (I —C) - rg(w)>E p(dw) .
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(The above value is equal to çsv<f(w), g(w)> E p(dw ) if both f  and g are in P(E)).

The assertion ( i ) follows from the fact that LP(E)*= D(E).
( i i )  Let f  P ( E  1) and gE P(E 2). It is easy to verify that D (f  g )=(D  f )0  g

+ f  (D g )  and generally, D  (  f  g ) =  ( k  )(DJ f )0  (D  k  g ) . Noting I f ® g  I
2=0

= I f  E i!g 1 E 2 , and using the norms in Theorem 2.4 ( i ),

11f0gM-H1f0g1+11Dk(fOg)11,

.11frplIg11,-P .A(.7
1!)111), flIplIpk --)glIq

II D f 11p) ( II D g II ==- If II kll g II el q. e. d.

Next, we extend the operators L , C and D.

Theorem 3.2. Let 1<p <co and r ER 1. Then the operators L , C  and D
extend to unique bounded linear operators respectively, as follows ;

( i) L  : D 9 (E) ---> D„,_ 2 (E) ,

(ii) C : D (E )  - -> D p , r _i (E) ,

(iii) D: D ,,(E) — > D  „ r _i (H  E )  .

Proo f. To show (ii), it is sufficient to show 11(i— C)r - 1 Cfrp;-5,11(1" f ilp for

f  E P ( E ) .  B u t i t  i s  clear, since (I —C)--i-C= I 1-1-(11/n)L'n=o-V1H-n n=1

LP-bounded by Theorem 1.1.
( i)  follows immediately from (ii).
The assertion (iii) is equivalent to the following ;

II(I— C)r  f M2,?-11(I — C)r-  D f  P(E)

1-1—Vn —1To show this, w e set S..-= E  , J . .  s  commutes C  a n d  is bounded on
n = i 1 - 1- ,1/ n

L (E ) , moreover we see that

D(I—C
Then,

11(1 — C) r  f II pZIIS r - 1 (1. — C) r f —C)r ST - 1  f  p

ZI1C(I—C) - 1 .(1- —c)r5r - 1  f II p
=Mc(' —c) - i s r - l f  II p

— c r i s r - V IIP
= 11(I — C ) T - 1 1 )  f p • q. e. d.

)r- 1 Sr f  =CI—CY - 1 13f, f  E P(E) .

Now we will discuss the  dual operator D* of D, w hich  is the analogue of
"—div" in  the  finite dimensional ca se . L e t 1<p<00 and r e l l ' .  S in c e  D maps
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D,,,+1(E) into D ,,,(H O E ) where —
1

+ -
1

=1, D* maps D p ,r (HOE) into D ,,,,(E ) ,
P

and by definition, we have

P , r ( f ,  D e q ,  - r
=

 p, r - i (D * f ,  g ) q ,  - r + 1 ,  fo r  f  E D ,,,(H O E )  a n d  gE D q , , , ( E ) .

Theorem 3 .3 .  (  i  )  D* is a bounded linear operator : Dp, r (HO E)—>Dp, r _i (E).
(ii) D*D= — L.
(iii) I f  fE P (H ) has the form

(3.3) f  (w )= f ( w ) l , f P, l j EW * ,

then

(3.4) D* f(tv)=— trace Df(w)d- w .(f(w), w) w . .

(iv) I f  f  EP (H O E )  h as  the f o rm  f ( t v ) =  f (w )® e , w here f  i EP(H )

hav ing the f o rm  (3.3) and ei E E , then we have D* f(w) ,  t(D *  f  i (w))e i  where

D*f i (w ) is given by  (3.4).

P ro o f .  ( i )  follows directly from Theorem 3.1 ( i ) and Theorem 3.2 (iii).
As for (ii), it sufficies to note that for f ,  g E P ,

w

f(w)(—  Lg(w))p(dw)=-

w

<Df(w), Dg(tv)>H p(w )= f (w )•D*Dg(w )p(dw ).

Then (iii) and (iv) are clear from (ii) and (1.7). q. e. d.

Definition 3 .2 .  Let D ,(E).=-(1{ D ,,,(E); 1<p<00, r  / ? 1}

and D-0,(E)-=U {D p ,r (E ); 1<p<00, rE R 1} .

If E =R 1,  we denote them symply by D ,  and D-0, respectively.

D + (E ) is a  complete countably normed space and hence D _ (E )  is its dual
space by Theorem 3.1 ( i ). D ,  is an algebra by Theorem 3.1 (ii).

As we have seen in Theorem 3.2, D  extends to a continuous linear operator
mapping D ,,,(E) into D p ,r _i (H O E ), for all 1<p <co and rE IV , and since such
extentions are consistent, i. e., the diagram

D,, s (E) D p,r(E)
I D 1, D

D,, 3 _1(HO E)

is  commutative for any 1<p .q<co and r s, D  is actually well-defined on the
whole D _ (E )  taking value in D— (H(DE). Therefore it can be said that when
we restrict the domain to Dp, r (E), D  maps it continuously into D p ,r _i (HOE).
In particular, it maps D ,( E )  continuously into D + (H O E ). Similarly, the map-
pings L , C : D (E )— D (E )  and D * :  D — (HO E)— D — (E) are well-defined and
th e  restricted ones L, C : D ,(E )— * D ,(E ) and D * :  D ,(H O E )— > D ,(E ) are
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continuous.

4 .  The composition of Schwartz's distributions and Wiener functionals.

As we mentioned before, our Sobolev space .1 ),,,(E ) with r <0 is no longer
a  space of Wiener functionals. It might be said to be a  space of generalized
Wiener fu n c t i o n a ls .  Indeed, Watanabe [111 introduced the notion of the composi-
tion o f Schwartz's distributions and non-degenerate smooth Wiener functionals,
and as its application, discussed the smoothness of the laws of such functionals.
Let us follow Watanabe's method in our framework.

Let S-=S(Rd), d e /V, be the Schwartz space o f all rapidly decreasing C . - -
functions on Rd, and S ' = S ( R d )  be its dual space, i. e., the Schwartz space of
all tempered distributions on R d .  We endow S with the countable norms ;

(4.1) çoE S ,  k E Z ,

where I x I is  the length of the vector x  eR d , A is the Laplcian on R '  and  II
is thethe maximum norm. By Elk, we denote the completion of S by the norm II II k •

Then we have the following inclusion relation ;

(4.2) s'= U 9 -
k D ••• g • _ 2 = - _.1 = 0 =C00(Rd )Dg 1= 2 D ••• D n  k

k E Z k E Z

Now let f = .(f 1, ••• , f a)ED + ..(R d )  and go es. It is clear that the composite
function ç o ( f ) E D , . .  Thus, f  being fixed, we define the following mapping ;

(4.3) O f: S p ç o - -> ça ( f )E D ,..

Finally we put o-
i i (w )=--<Dfi (w ), D f i (w)> H ,  w E W .  With these definitions, we

are able to state the main theorem of the section obtained by Watanabe [11].

Theorem 4.1. I f  (c )  is a strictly  positive definite matrix for a .a .w  (p )  and,
setting ( r i i )= (0 ) -1 ,n iE  

1 < p
n L P  h o ld s  f o r  i, j=1, ••• , d, then the mapping O f

will ex tend to a unique continuous linear mapping as

(4.4) f  :  9  - Dp, - 2 k

fo r all kEN  and 1<p<co . Consequently , it w ill be well-defined as a mapping
D

Definition 4.1. Given TE S ', 0 1 (T ), which is defined by Theorem 4.1, will
be denoted by T ( f )  and called the composite of T  and f .

The proof of the theorem is essentially due to Malliavin's formula of in-
tegration by parts.

Lemma 4.1. L e t f  satisf y  the hypotheses o f  Theorem 4.1. Then, fo r any

(g e D , , k ,1<a<00 kG1V , and a-,  a  y i (   a r, a l+ • there
ax, axa

exists an la ( g )E L r , l_ r < q ,  such that
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(4.5) ,Çwa'ço(f)(w)g(w)p(dw)=. (f)(w)la(g)(w)p(dw)

f o r  any yo a c g ( R . ) , aisço is bounded a n d  continuous, O I 8 lF u r -

thermore, we have

(4.6) supg  D q , k, <-Foo .

P r o o f .  ( i )  First, we prove the lemma when k=1 and a-=a2, _=3iax1. By
the chain-rule, we obtain

<D(ço(f)), Dfi>n= (5i ço(f))0-ii .

Then,

aigo(f)=A <D ((f)), D fj> fir ij.

Hence we see that

.çw ai ga(f)g dp=- ii< D (ç o ( f ) ) ,  D f , ) H g dp

= <D(so(f)),T3g DL>acidtew

= i1
D fd p .

J = w

Compairing with (4.5), we can write down /a(g)=P(g) explicitly as

(4.7) iiD*(7-„g D f,).

Then let us examine if the right hand side belongs to Lr. To this end, we
need two more formulas.

(4.8) D*(f1Df2)=— <DP, Df 2 >H d-f 1 L f 2 , f 1 , f 2 E D _.

(4.9) m, n=1

The former is quite easy and the latter is found in Ikeda-Watanabe [ 2 ] .  Now,
applying these formulas, we have

P (g )=- - I<D(r„g), Df ) >H ±r,,g L f,}

—  {< g p , D fj>H +<rijpg, D fj> H - F g Lfj}
:7=1

— grimrjn<DCfmn, Dfj>H+rij<Dg, Dfj>H
j=1 m, n=1

+T o g Lf,)-.

Since, <Dam., Dfi>n•-=<D 2fm, DfnOpfi>noli - f- <D2f,,, DfmODL>non, the follow-
ing estimate is valid ;
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1 <Do Df.,› --(ID Y  .1  10511 D f nia -I- I D2 fni HOHI D ()nil 11)1 D I f   H

Therefore,

(4.10) I 11 (g)15. Igl I rlm  I Inn I (  DV -7n Hell l p f n  I H +  D 2f n  I 110111 13fm 111)
J, 7m, n=1

• I D L I 1 1 + (Iri,11DgIHIDLIH+Iri,11g11 1J,I)

LP and I
i<p <o o

By the hypotheses, 'nil , I H  and I DY 7.11/01/ belong to g l,

IDgI H  belong to Lg, consequently we see that 11( g )  L '  an d  (4.6) is clear.
N ext, w e w ill sh o w  fo r  th e  general k E/V. Let us think the case when

k=2 and aa=aiai, for example. According to (4 .5), we have la(g)=P(li(g)) in
this case. Then, when we estimate I la(g)1 as (4.10), the estimation of I gl, IDgI H

and JD 2g H o H  w ill be im portant. B ut if gED,, 2,  all these are elements of Lq.
Hence the assertion is v a lid . Iterating the same procedure, we can verify the
lemma for a ll k E/V. q .  e .  d .

Now that Lemma 4.1 is proved, the proof of Theorem 4 .1  i s  a n  easy con-
sequence of it.

Proof  o f Theorem 4 .1 .  L et q>1 such that (1/p)+(1/q)=1. T he preceding
lemma implies that for any k E N , gE D ,, 2 k ,  there exists an  l k (g )G L ' such that

(4.11) {(I+ x1 2 —A) k ça(f)} g clia=, .çw yo(f)1k(g)dp,

for all ÇoEC2,k(R a ), and

(4.12) K-sup {11/k (g) L i ; g E D ,,„, .

Then, we have

1Ç ç ° ( f ) g
-= x  — A) k {(1+ x 1 2 —A) - k çc(f)} g

= Ç (1±IxI2— A rkÇa(f)lk(g)dp
JW

.--_11(1-±  I x1 2 — )-  k çoI1-111 k(g)II LI.

Hence, by Theorem 3.1 ( i ), we conclude that

which completes the proof. q. e. d.

Finally, as an application of Theorem 4 .1 , we shall prove th e  following
theorem, which was first proved by Malliavin.

Theorem 4 .2 .  I f  f  satisf ies the hypotheses o f  Theorem 4 .1 , i t s  distribution
law, i . e . ,  the induced m easure p * f  on Rd, has a C- -density w ith respect to  the
Lebesgue measure.
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P r o o f .  Let 5x  b e  the Dirac 3-function hav ing  the m ass a t  x  E R d . The
following facts are well-known ;

( i ) a z E g ,  if and only if  d/2<m,
(ii) the mapping R d B x ô E 1 r _ n ,  is continuous if  d/2<m,
(iii) the mapping R d D X ,— > C 3 x E g , , , k  is 2k-times continuously differentiable

if d/2< m . (k  EN )
Consequently, by Theorem 4.1, the mapping R d  x ,--c3 s ( f ) E  D p , _ 2 7 a - 2 k  is proved
to be 2k-tim es continuously differentiable, and fu rther, the mapping Rd
p,-2.-2k(5x(f), g) q ,2.+2k  ER 1 is also 2k-tim es continuously differentiable, w here
(1/p)-1-(1/q)=1 and gED ,,2ra+2k •

On the other hand, w e can easily verify that

(4.13) P (X )= --2 ),-2m -21 (ôs (f),1 )q ,2m +2k

w here 1 is  the constant equal to 1, is  the density  o f p * f  w ith  respect to  the
Lebesgue measure on R d .  Since k  is an arbitrary positive integer, we conclude
th a t p ( x ) E C - (R d). q. e. d.

Remark. A fter I have finished the whole manuscript, I came to  k n o w  the
paper [12] by  M. Krée and P . Krée in w hich they obtained the results related
to our Theorem  3.2 and Theorem 3.3.
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