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In this memoir, we consider an initial boundary value problem proposed by
M. Kimura [1] as a diffusion model of intergroup selection in population genetics.
The purpose of the present paper is to prove the existence of solutions and, under a
stronger assumption, the uniqueness of the solution.

The unknown function U =U (t, x ) is the distribution function of a random
variable x  running over the in terval [0 , 1 ]. x  is the frequency of an  allele of
"altruistic" character and t is the time variable representing the generation. The
main equation for U is a partial differential equation of parabolic type degenerated
at x =0 and x = 1. This equation is non-linear but the non-linearity is not so strong
that we can treat it as a linear one.

To prove the uniqueness of the solutions, we show the continuity of the de-
pendence of solutions on the initial values, not with respect to the strong topology
in 1,1 -space but with respect to the topology in the space of the moment sequences
of solutions. In the proof of existence, we discuss the approximative solutions
also in the latter sense of convergence. Therefore, the use of moment sequences is
essential in our reasoning. The main theorem of the present paper will be stated in
§3.

§1 . The initial boundary value problem

In this §1, let us formulate an initial boundary value problem proposed by
M. Kimura [1], which we call the problem (P).

Let N , y ,  y', s and m be given real numbers. We assume that N  be a positive
integer, s and m be positive, y and y' be non-negative. Let us give also a real-valued
continuous function c(x) on the interval [0, 1].

We shall find a function U(t, x) defined on the interval [0, + co) x (0, 1) satis-
fying, at first,

(P.1) U(t, x )  0  i n  [0, + oo) x (0, 1 ) and 1
ci 

U(t, x)dx< + oo;
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a partial differential equation of parabolic type

U (t, x )=  a'sx2 , 5  x (1 — x )
  (At, x)} — [Iv'o — x) — vx —t 1 4 N ox

(P.2) — sx(1 x)+ m(54t)—x)}U(t, x)]+ {c(x)—EW}U(t, x),

i n  (0, + cx)) x (0, 1);

with
1 1

(P.3) (t )=  50  xU(t, x)dx/ U(t, x)dx,

1 1
4 0 =  ,:) c(x)U(t, x)dx1 o U(t, x)dx;

the zero-flux boundary condition

U ( t ,  x)}, —{y'(1—x)—yx— sx(1— x)+mMt)—x)1U(t, x)( P A )  0 ax  x ( 1  x )4N

tends to zero as x  0  o r as  x / 1 ;

and the initial condition

(P.5) U(0, x)= lim U(t, x )= 4 (x )  i n  (0, 1),

where the function 0(x) is assumed to satisfy

(P.6) ct.(x) 0  i n  (0 , 1 ) and 0(x)dx =1.

We shall call the problem (P) the set of constraints (P.1), (P.2), (P.3), (P.4), (P.5)
and (P.6).

Let U be a solution of (P ) .  Integrating the both sides of (P.2) taking account
of (P.3) and (P.4), we have

d 1d t  0 U(t, x)dx =O.

The initial value being normalized as in (P.6), we have

(7 ) 0  U(t, x)dx = 1 at an y  t > O.

So, the quantities . (t )  and 40 can be expressed as

(P.3') -g(t)= S o xU (t, x )dx a n d  0(0= c(x)U(t, x)dx

abbreviating the denominators.
In the analysis of the present paper, the assumptions above on s, m, y  and o'

will be essentially used to obtain non-negative solutions U .  But the assumption that
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N  be a positive integer is of no importance. It suffices for N  to be positive. On
the other hand, the continuity assumption on c(x) makes the problem easy to solve.
The author expects that the proof of the existence theorem stated in §3 remains
true without any change if c(x) is bounded and Borel measurable.

§ 2. Background of the problem in population genetics

Following M. Kimura [1], let us explain briefly the meaning of our problem
in population genetics.

Let us consider a  hypothetical population (species) consisting of an infinite
number of competing subgroups (demes). Each of demes is assumed to have an
equal effective size N independently of time (generation) t.

Let us consider a pair of alleles A and A' at a particular gene locus, where we
refer to A' as "altruistic allele". We denote by x(0 < x <1) the frequency of A' in
a deme and consider the frequency distribution of x among the enitre collection of
demes making up the species. Let U(t, x) be the distribution function of x at time t
such that U(t, x)z1 x represents the fraction of demes whose frequency of A' is in the
interval (x, x + zlx).

In each generation, mutation occurs from A to A ' at the rate of y' (> 0) and
from A ' to A  at the rate of v ( > 0). So, the rate of change in x by mutation
is v'(1 — x)— vx.

A' is assumed to have selective disadvantage s (>0) relative to A. So, the rate
of change in x by individual selection is — sx(1 — x).

Migration is assumed to occur in the following way : each deme contributes
emigrants to the entire gene pool of the species at the rate m ( > 0) and receives
immigrants from that pool at the same rate. S o , if  )7(0 is the average frequency of
A ' in the entire species, the rate of change in x in a given deme by migration is
m((t)— x).

Moreover, let us assume the effect of interdeme selection. We denote by c(x)
the coefficient of interdeme selection. This represents the rate at which the number
of demes belonging to the gene frequency class x changes through interdeme com-
petition. That is, during a short time interval (t, t + zit), the change of U is

AU =  l+cr.(x),At  u— U  {c(x)— -e(t)} Uzi t,1 + c(t)d t

where 4t) is the average of c(x) over the entire array of demes in the species.
Taking account all of mutation, individual selection, migration and interdeme

competition, we have the main equations (P.2) and (P.3) in §1. The zero flux
condition (P.4) says that the total mass of U in the interval (0, 1) is always equal to
1 and that the paths of the stochastic process are almost surely continuous.

The "altruistic" character of A ' means that the disadvantage in  individual
selection is recovered by the advantage in interdeme competition. Therefore, it
may be natural to assume that c(x) be an increasing function of x . M . Kimura [1]
considers the case where c(x)= cx with a positive constant c. Mainly by a numerical
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analysis of steady state solutions, Kimura finds that (the mean of x) is nearly equal
to 1 if D >0 and to 0 if D <0, where D = (c 1 m) — 4N s . And he concludes as follows:
If D > 0, the intergroup competition prevails over the individual selection and the
altruistic allele A ' predominates. If, on the contrary, D < ø , A ' becomes rare and
cannot be established in the species.

In this paper, no qualitative assumption is made for c(x) other than smoothness
assumptions.

§3 . Statement of results

Theorem. (i) If  c(x ) is real-valued continuous function defined on [0, 1 ], the
initial boundary  value problem (P) has a solution U(t, x )for any given initial value
0(x) satisfying (P.6).

(ii) If , moreover, c(x) is real analytic and if  it has Taylor expansion

c(x) = E c„ —  ÷)nw i t h  l im ic „l 'I n  < 2 ,
n = 0 ry, C 0

then the solution is unique.

Remark. It is quite natural to expect that U(t, x) may be positive in the region
(0, co) x (0, 1). If we assume that c(x) be real analytic in (0, 1), we can prove it very
easily as follows.

Since U is assumed to be non-negative, it suffices to show that U does never
vanish. Suppose, on the contrary, that U(t°, x°)=0 at some point (t°, X° ) E  (0, CC)

X  (0, 1). Note that U  is of class Cœ) in  (t, x ) and real analytic in  x  when t >0.
Let us expand U(t°, x) in Taylor series at x =x°:

U(t°, x )= (x—"c°)P
 3 U

 (t°, x ° ).p=op ! exP

We can show, by induction on n, that

3aPt+P; Ixfq ( t ° ' x°)=
0  i f  2 p + q = n  f o r  n  = 0 ,  1 ,  2 , . . .

Hence, the Taylor series is zero, so U(t°, x ) is identically zero. This is absurd
because the total mass of U is equal to 1 at any t im e . Consequently, U is positive
in the region (0, co) x (0, 1).

It is very interesting to study the behavior o f  (t) as a function of t. Assuming
here a differential equation (see (2) of §4)

(1) dt  +(v+ v' + s)5e—v' — sM 2

( i ci
= {c(x)— c(y)}xU(t, x)U(t, y)dxdy,

o  o

we can show a very rough estimate for .k(0:
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Proposition. L e t  u s  put C= Max {I c(x)— c(y)I; 0 < x , y  < 1 }. Then,
A o e (v+c +s+c)t and (1—g(t))e(v"+c ) t are inceasing functions of  t. If , in particular,
c(x) is non-decreasing, )7(t)e(v+v - Es) t is increasing.

P ro o f . We can replace the factor x in the integral of the right hand side also
by x —1. So, the absolute value of this integral is less than Max C(1— ,)}.
In addition, i 2 <M2<ï. W e  have therefore

(2) s.t2— (v+v '+s+C )+v , <  d t  < (v
,

 +C)(1-5e)— v.

Let us neglect the terms sg2 + y' on the left hand side and — vi on the right hand side.
Then, we have the first assertions of lemma. Next, we assume that c(x) be non-
decreasing. In the integral of the right hand side of (1), we replace the factor x by
(x — y)I2. Then we see that the integral is non-negative. So, we can neglect the
terms sV — Ci + y' on the left hand side of (2 ). Thus, the last assertion of lemma is
also correct.

Suppose now that v and z/ be positive. Let us denote by a  the root in the
interval (0, 1) of the equation sa2 —(v+ v' + s + C)a + v' = O . Put also  d = (v' + C)/
(v+ v'+ C ) (so 0 <a< d < 1). Moreover, let us define an interval I  as follows:
/= [(0), a)  if 0 < g(0)_< a, I = (a , a) if a < . ( 0 ) <  and / = (a, 540)] if ã <50)<1.
Then we have

Corollary. I f  v > 0 and v' >0, )7(0 lies in the interval I def ined above at any
t>0.

P ro o f . The left hand side of (2) is positive if 0< )7 <a and zero if î  = a, while
the right hand side is negative if a <5e < 1 and zero if 5i. = d .  So the assertion follows
from (2).

Therefore, if U(x) is a steady state solution of (P) (that is, a solution inedpendent
of 0, the mean value î  of x is in the interval (a, a).

§ 4. An alternative formulation of the problem

Let U(dx) be a Stieltjes measure on [0 ,1]. Since the polynomials are dense in
the Banach space of all continuous functions on [0, 1], U(dx) is characterized by
its moment sequence {M,J,T=0  which is by definition

M k =  o xkU(dx) for k = 0, 1, 2 .....

If U(dx) is a probability measure, this sequence satisfies the following conditions

(a) M0=1; (b )  Ê  ( - 1 )P  n  M  k+  p > 0  for all k, n=0, 1, 2,...
p=0

Conversely, any sequence {Mk } 0  satisfying (a) and (b) is the moment sequence of
a probability Stieltjes measure (see Chap. III of D. Widder [2] for this context).
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Therefore, to obtain a solution U(t, x) of our problem (P), it suffices to determine
its moment sequence. Let U(t, x) be a solution of (P). Writing U(t, dx) instead
of U(t, x)dx, let us put

(1) W O =  o xkU(t, dx) for t > 0  a n d  k = 0, 1, 2,...

Multiplying xk to the both sides of (P.2) and integrating over (0, 1), we have the
following system of differential equations, where the vanishing of all the boundary
terms appearing by integration by parts is assumed here and will be proved by the
next lemma.

d  
d t  

M
k

(t)±1C(V -1-e-ES-Ern-1- 
k

4N -
—1

)M ,,(t)=

= ksMk +  JO+ k (v'+ mMi(t)+ 
14—N1
) M _

+ {c(x)—c(y)}xkU(t, dx)U(t, dy), i f  t>0.
Jo Jo

And the initial condition for {WO} is given

(3) Mk(0)=
1:)

xkc/o(x)dx for k = 0, 1, 2,...

Lemma . (i) I f  U(t, x) is a solution of  the problem (P), its moment sequence
{M k(t)} 0  satisfies (a), (b), (2 )  and (3) above.
(ii) Conversely, le t {U(t, dx); t>0} be a f am ily  of  Stieltjes measures on [0, 1]
whose moment sequences satisfy (a), (b), (2) and (3). Then, at any  t>0, U(t, dx)
has a density U(t, x) which is a solution of (P).

Pro o f . Let U be a solution of (P). Let us show that

(4) x(1— x)U(t, x)—>0 as x \ 0  o r  a s  x / 1 ,  i f  t>0.

d  The boundary condition (P.4) implies that d x  {x(1 — x )U}  is integrable, so that
x(1— x)U has finite limits as x \ 0  or as x / 1 .  If one of these limits were not zero,
U is no more integrable near that end point. Hence, (4) is true and the calculus to
obtain (2) is justified. Thus, (i) is proved.

To prove (ii), let us verify the following identity for any function f(t, x ) of class
C1 in t on [0, co) and of class C 2  in x on [0, 1] :

d t  0
f(t, x )U (t, d x )= ,aft  4 N  O x 2

d X(i — X ) a 2f  f v , x )  v x

— SX(1— X ) ± M (i- (t) x ) }   :f
x IC ( X ) —  4 0 }  flU (t, d x ).

By (2) and a simple computation, (5) is verified for polynomials f  in t and x, so it is
true for any f  with regularity as above. Hence, U(t, dx) is a solution of (P.2) in the

(2)

(5)
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sense of distribution. U(t, dx) has a density U(t, x) (satisfying (P.4) and (4) above)
with the following smoothness in the region (0, oo) x (0, 1): for any 6(0 <6 <1),
U is Holder continuous of exponent (1 +)/2 in  t, 8UI0x is Hiilder continuous of
exponent 6/2 in t and of exponent .5 in x .  To see this, we use the fundamental solution
of the equation V,= Vy y (k(t) is of class Ci and E(t) is continuous. So, by a change
of variables (t, x)—qt, y(x)) and U(t, x)=a(t, y)V(t, y), (P.2) is locally reduced to
an equation of type V,= Vy y + b(t, y)V, where b is a continuous function). (5) implies
(P.4) and (4), (P.5) is nothing but (3) and (P.1) holds because of (b ). ( ii) is proved.

To determine {M k (0}T= 0 , the system (a)—(b)—(2)—(3) is not closed in itself because
(3) contains U(t, dx) on the right hand side. But, if we assume the Taylor expansion

(6) c (x )=  E  ynx" with tim ly„1"^<1,
n=0 n

this integral can also be expressed by means of {Mk(t)} :

{c(x)—c(y)IxkU(t, dx)U(t, dy)=

(7)
= Y {Mk+ (t) —  M k(0114 n(t)}n=o

In this case, our initial boundary value problem (P) is explicitly reformulated as a
problem to find a family of moment sequences {{Mk(t)} 0 ; t> 0} satisfying (a)—
(b)—(2)—(3) above. The author was inspired by a formula in M . Kimura [1]
analogous to (5) above.

§ 5 .  Uniqueness of the solution

To prove the uniqueness of the solution of (P), it suffices to show the uniqueness
of the moment sequence of the solution. However, under the hypothesis in (ii) of
the theorem, the following sequence {Lk(t)} 0  is more convenient to treat than the
moment sequence itself:

(1)
1 1Lk(t) =
o  

(x  — —
2  

)  U(t, x)dx f o r  k=0, 1, 2,...

For each k, M k is a linear combination of L0 ,..., Lk and vice versa. So, our task
is to show the uniqueness of {Lk(t)}.

Let U and (7 be two solutions of (P), where the initial values of U and Ci may be
different but they are assumed to satisfy (P.6). Let {Lk (t )}  and {Lk(t)} be the
sequences defined by (1) for U and (7 respectively. Let us consider the following
quantity to estimate (7— U:

(2) E(t)= R k rat) — LAO} 2  =  E(t; U  —U),

where p2 < R <4 w ith  p =lim lc I  (<  2) .
n-.0D
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The series is absolutely convergent because ILk (t)1 <2 - k and 14 ( 0  < 2 "  by definition.
The following lemma shows that any solution depends continuously on the

initial value. If we apply it to U and U with the same initial value, we have at once
E(t). 0  s o  th a t  Cf(t, U ( t ,  x ) .  Therefore, th e  uniqueness of the  so lu tion  is
established.

L em m a. U nder the assumption in (ii) of the theorem, we have

(3) E(t)<E(0)eBr f or a l l  t> 0,

where B  is a  real constant independent of  U and  CI (depending only  on N, v, v',
s, m, c(x) and R).

P ro o f . We can differentiate E(t) term by term with respect to  t, because, as
we shall see below, IdLk /dt1 < A'k2 2- k with some constant A ' independent o f  k
(the same is true for dr,k /dt). We are going to show that

(4) d  E(t)<BE(t).dt

Quite similarly as (2) of §4, we can write down the differential equations for
{Lk } and for {Lk } :

sL
k 

+k (v -Fv '+rn+  r 4dt 4N kS + 1 +  k   +m L i)L k -i2 4

k(k —1)  ,

" ` - 2 "
c÷p ( L

"  
+72 _ L k L n )

16N 

Let us put Dk= rk— L k .  Then, they satisfy

d k —1sDk +k (v +v '+m +  4 N   )1) k —ksDk + i +k (   ' 2 +  m r i )  Dk-1dt
v —v

4
( 5 )

± k(k —1)  D
k - 2

±kML k _i D i d- i  C  n (Dk+„ —  LkD n —  L n Dk).
16N n=1

On the other hand, take an  r  such that p <r<V R . Then, by hypothesis on c(x),
we have

lcI<A rn for n = 0, 1, 2,...

with some constant A  independent of n.
Let us multiply 2RkDk to the both sides of (5) and sum up them with respect to k.
For the first sum involving {c, },  w e u se  21Dk D1 +

„I <R - n/2 Di + R /̂2 D i.,„ to
have

E  RklDk c„D k + „I —A (R k D i+R k +nD „)<A IE
kn1 2 k=i

For the second sum, we have
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(RE  RklDk L k c„D„I A E IDkl E r n iD n i
k ,n=1 k=1 n=1

< A i k
ct i (-T 4

R ) '
 nt 1 ( ; ) 1 112 E  A 2 E.

The third sum containing {c„} is estimated as

CO

E  Rkpilc„Ln i A 3 E.
k,n=1

For the sum of kD1 L1 _ 1 D1 , we have

kRkiLk _i Dk D i l __21D1 1:±1 (R k /2 1Dk 1)(k (-11 ) k / 2 )

2 ID1 I IE p2 (
p
.1s)

p  
1/2 <A4E,

19=1 4

where A1 , A2, A3 and A4 are constants depending only on  r, A  and R .  To treat
other sums, we estimate the cross terms 2IDkDi l k) by 4Di + (1/4)D3. We have
finally

d  E< (Co+ kCi  +k 2 C2 )RkDi,,t k=1

where C2 = (R2 — 16)/(64N)<O, Co a n d  C1 a r e  independent o f k and t. When k
varies, Co + kC i  + k2 C2  has an upper bound B, with which (4) h o ld s . The lemma is
proved.

R e m a rk . On the Banach space L'(0, 1) of all absolutely integrable functions
on (0, 1), introduce a scalar product

1 k
(f, g)R = RkLk (f)L k (g ),  w h e re  Lk( f ) =  c ) (x— f(x)dx.

Let H R  be the completion of L1 (0, 1) with respect to  the  norm  11 f V(f, f)R•
Let H  b e  the vector space of all measurable functions c(x) such that

o

c(x)f (x)dx constant If IIR for a n y  fe L1 (0, 1).

A function c(x) belongs to Hi?'  if  and  only if

c(x)= E c(x—  i

2
) nw i t h  E /2 7 '114,12 < co•n=0 n=0

(the  proof om itted). W e have proved that, i f  c(x) e H'„ the  solution depends
continuously on the initial value in the topology of H R , where 0 < r <R  <4.

§ 6. Construction of a solution

The idea is the following. W e make the time variable discrete with mesh h in
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the equation (P.2) and delay the time in some of te rm s . This modification will be
done in such a way that the total masses of approximative solutions be always equal
to  1. So, the parabolic equation (P.2) is reduced to a  series o f linear ordinary
differential equations. We have a family of functions which are piecewise linear in
t. And we appeal to Ascoli-Arzelà theorem to obtain a  sub-family converging to a
solution.

Let us define at first a sequence of functions {u„(x)},,, depending on a positive
parameter h such that

(1) (C+2Nsv' +2Nsnz)h< 1, w h e re  C= Max {1c(x)— c(y)j; 0<x, y <1} .

Put uo (x)= 0 (x ) .  Assume, by induction, that u (x ) has already been defined. Let
us denote

c l c l
(2) f l = xu„(x)dx and c , = c (x )u„(x )dx.

JO JO

Let u ,  1(x) be the absolutely integrable solution of the boundary value problem

(3) Un+1
d2 X (1 — X)d

h  dx 2 1 4 N  u
n +  1  +h[{v, (1—  x)—  vx —  sx(1 —  x)dx

+ m( n — x)}14„±  j=  {1 + h(c(x)— c„)}u n , i n  (0, 1),

(4) dx 4N n+1} —{v'(1—x)—vx—sx(1—x)+m(„—x)}u n ± i
d   f  x(1— x) 

tends to zero as x \ 0  o r  a s  x/1.

Suppose, by induction, that

(5) u„(x)> 0 and 0 u„(x)dx =1.

Let us apply to get un + , the lemma in the next §7 with f= {1+ h(c(x)—c„)}u„, p=
4N(v'+m„), q=4N(v+m— nz„), r=2Ns and )=h1(4N), where 0<  ,,< 1  because
of (5 ) . f is non-negative if (5) holds and if Ch < 1, and the total mass off is equal to
1. Therefore, we have one and only one solution u„.4. 1 which is positive and of total
mass 1, if 2Ns(v '+m )h<1. So, (5) holds also for un + 1 . In this way, we can continue
to define u'ns by induction on n if we assume (1).

Let {ri k (n)},T=0  be the moment sequence of u„(x)dx:

(6) mk (n )=  
o

xku(x)dx f o r  k =0, 1, 2,...

Multiplying x" to  the both sides of (3) and integrating over (0, 1), we have the
recurrence formula

{mk(n + 1) -  -  mk(n)} + k + v' + s + m +  k
4  N

i ) man +1) =

(7 ) = ksmk +  1 (n +1)+ k(v' + mm i (n )+  ic
4 N

1  )mk _1(n + 1) +

+ 1
1
0 {c(x)— c(y)}xkun(x)un(y)dxdy.
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Since 0 < mk(n)< 1 for all k and n, we have

k
(8 ) mk(n +1) -  mk(n)I A kh  w ith  Ak = C + k (v + v' + s + + 1  )

4N

uniformly in h, where the relation mk <m k _ 1 is used.
Next, let us define a function U(t, x , h) (piecewise linear in t) as follows

(9) U(t, x, h) =  ( jh- - n) u „(x) + (n + 1 - —t
h )un+i(x ) if nh<t_<(n+l)h.

Then U(nh, x, h)=u„(x) for all n, U(t, x , h) is positive if (t, x)e (0, co) x (0, 1) and
the total mass of U(t, x, h) is always equal to 1. Let {M k (t, h)} 0 be its moment
sequence. Then we have

(10) M k(t, h)= ( -h
t
-  - n)m k(n)+ (n +1 -  h

t )m k(n + 1) i f  nh_t _<.(n +1)h.

Moreover, (8) implies

(11) h) - Mk1e, 015 AkIt - if a n d  t' > O.

Therefore, for each k, {Mk(t, h)} is a family of uniformly bounded and equi-con-
tinuous functions of t  depending on h as h is sm all. B y the theorem of Ascoli-
Arzelk we can find a sequence {h; } (independent of k) tending to zero as j -3 cc such
that M k (t, hi )  tends (uniformly on each finite interval of t) to some continuous
function M k (t) for all k. Since {M k(t, hi )} 1T.,0  is the moment sequence of probability
Stieltjes measures on [0, 1], the conditions (a) and (b) in §4 are satisfied. As j--4
(a) and (b) are also true for {M k (t)}. Therefore, at any t, {M k(t)}  is the moment
sequence of some probability Stieltjes measure U(t, dx):

(12) W O =  xk U(t, dx) f o r  k =0, 1, 2,...

Note that, for any k,

c l1
0 c(x)xkU(t, x, h ; )dx c(x)xk U (t, dx ) a s  j  - ->  cc,

Jo

because c(x) is assumed to be continuous on [0, 1] so that c(x) can be approximated
uniformly by a sequence of polynomials. Putting h= h ;  in (7) and taking the limit
as j-+ co, we see that {M,(t)} o  satisfies the system of differential.equations (2) in
§4 . Due to the lemma in §4, U(t, dx) can be written as U(t, x)dx and U(t, x) is a
solution of the problem (P ) . The assertion (i) of the theorem is proved.

Remark. Let us explain why we assume the continuity of c (x ) on [0, 1].
Assume, on the contrary, that c(x) be merely bounded and Lebesgue measurable.
Even in this case, we can choose a sequence {h; } (independent of k) such that the
integrals on the left hand side of (13) converge to some finite number as j-> co.
However, the Stieltjes integral on the right hand side of (13) may not be defined.
This limit process may go well if c(x) is bounded and Borel measurable.

(13)
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§7. Lemma on ordinary differential equation

Let p, q , r and 2 be given positive constants. Let us consider the solutions of
the following ordinary differential equation (see (3)-(4) of §6)

du B u=f in  (0 , 1 )dx
(1)

w i th  B u=  d {x(1— x)u} — {p(1— x)— qx —2rx(1 —  x)}u,dx

satisfying the boundary condition

(2) B u (x )  tends to zero as x \ 0  o r  a s  x / 1 .

Given a f  belonging to L 1(0, 1), we shall find a solution u also belonging to L 1(0, 1),
where L 1(0, 1) is the Banach space of all absolutely integrable functions on (0, 1).

Lem m a. There exists a positive num ber 10 (not sm aller than 1/(pr)) hav ing
the following property: if  0<1</1 0 and  if f e Ll(0, 1), the problem  (1)- (2) has one
and only  one solution u in the space L 1(0, 1) satisfy ing m oreover the conditions
(3), (4) and (5) below:

(3) 101 lu(x)Icix < f  (x )Idx  and u(x)dx = f (x)dx ;

(4) x(1— x)u(x) tends to zero as x \ 0  o r as  x /1 ;

(5) if f is non-negative and not identically  zero, u is everywhere positive
in (0, 1).

Pro o f . We introduce an auxiliary function

WOO = x l— p (i_ x )1.—qe rx

and put û— Wu (note that B{W - 1 e- rx} = 0 ) .  If u  is a solution of (1) with f =0 , û
satisfies the equation

d da q x   d û  x +P) dx  —  1— x  dx  + F(x )6dx  

(6) where F(x) —

(112)+ prx  p r  + r zx  =  E f n xn,1 — x n=0

or equivalently, if we put =1 — x,

d   dû  + G I  o i l
cg cg

(6') where G( ) =  
 ( 1 0 )— p r

+q r+r 2 = gn n•
1— n=0

(6) or (6') has two power series solutions
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(7) o(x) = an x "  a n d  0 1 (x) = b„(1 — x)n
n= 0 n= 0

where

a 0 = 1 ,  (n+1)(n+p)a n + 1 = (kq _k)ak , n = 0 ,  1, 2,...

b0  = 1, (n  + 1)(n+  q )b , 1 =  kto  (kg + g n _k)bk ,

00 (x ) and 01 (x ) are absolutely convergent if Ix I < 1  or if 11 —xi < 1 respectively
Note that F(x) and G( ) are power series with positive coefficients if 0 < .1.<1/(pr).
So, there exists a constant /10  (not smaller than 1/(pr)) such that all of {an } and {bn }
are positive if 0 <A<A0 . Hence, if 0 <A<A0 , 0 0 (x) is positive and strictly increasing,
while 0 1(x ) is positive and strictly decreasing in (0 , 1 ) . Therefore, 0 0  and 0 1 are
linearly independent and we have

(8) x(1 — x) (.0 1
 d

cf: — d
cf , c

1 )— A W(x)e - rx ,

where A is a positive constant.
If we put ui (x)= 0 i (x)/W(x) (j= 0 , 1 ), they are linearly independent solutions

of (1) with f = 0 .  It is not difficult to see that

(9) Bu0(0+)=Bu1(1—)=0,

0<Bu 0 (1—)< + c o  a n d  0>Bu 1(0+)> — oo.

Thus, u0  (resp. u 1) satisfies the boundary condition at x=0  (resp. x =1) but does not
so at the other end point. This implies the uniqueness of the solution of (1)—(2).

Now, we define the Green function K(x, y) and the Green operator K as follows

(10) K(x, y)= ( A A W ( Y ) ) - 1  erYuo (Min (x, Oui(Max(x, Y))

(K f)(x )=  K (x , y )f (y )d y .

K f makes sense if fe L 1(0, 1). K f satisfies (1) and (2). The assertion (5) holds
because K(x, y)> O. And, if f >0 , integrating the both sides of (1), we have the
second equality of (3). This and I K.f I K V ' imply (3) for general f e L 1(0, 1). The
proof of (4) is quite similar as that of (4) in § 4 .  The lemma is established.
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