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1 .  In this paper we treat an aspect of Pick-Nevanlinna interpolation theory [13-17]
which finds its setting in the theory of convex sets. Specifically, we consider the class
I  of analytic functions f  on d, the open unit disk in  C , which satisfy the following
conditions: (i) Ref > 0, (ii) f(0 )= 1 , (iii) f (z k ) --wk , k=1,..., n, where the z, are
given distinct points of d {0} and the  Wk  are given points of {Re z> 0}, k =1,..., n,
n a nonnegative in teger. In other words, we are concerned with a  harmlessly nor-
malized version of the finite Pick-Nevanlinna interpolation problem where the value
1 is assigned to 0. [For the sake of simplicity of exposition we confine our attention
to 0  order interpolation. To be sure, the results obtained will be seen to extend
read ily .] W e suppose that the  class I contains m ore th an  one m em ber. The
class I is a compact convex subset of the space of analytic functions on A. We seek
to characterize the extreme points of  I, i.e. the members of I no t admitting a  re-
presentation of the form (1-  1 + tf2 , where f i  and f2  are distinct members of l and
0< t< 1. It is to be noted that the extreme points associated with a non-normalized
finite Pick-Nevalinna problem correspond directly to those associated with a simply
related normalized problem as we see with the aid of the map f 1- A f +  iB , A >0,
B e R, a a conformal automorphism of A. T h e  map in question is a bijection of the
space of analytic functions on d  with positive real part onto itself.

We have the following theorem.

Theorem 1. The ex trem e points of  I  are precisely  the members of  I hav ing
constant valence on {Re z > 0}, the value y of the valence satisfy ing 1 - E n _ v l - F 2n.

The proof of the theorem (82) will be based on the Poisson-Stieltjes representation
for analytic functions on  d  with non-negative real part [10, 18] and an elementary
fact from Pick-Nevanlinna interpolation theory.

In §3 the extreme points of I  will be given a simple representation based on a
Nevanlinna representation for the members of I. A s a consequence, the extreme
points of I  will be given a  parametric representation the domain of which is the
frontier o f  a  convex body in Cn+ 1 specified in  the  manner of the Carathéodory
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theory of coefficient bodies [2, 3]. Each frontier po in t o f the convex body in
question will be seen to be an  extreme po in t o f the  body . Using this latter re-
presentation for the extreme points of I  we shall conclude that there is a  class of
simple extremal problems for I the solutions of which are precisely the extreme points
of I.

The corresponding extreme point problems in  the  setting of the unit ball of
In d )  y ie ld  a large class of functions that are far less tractable to consider than the
class of extreme functions in I.

It is appropriate to cite instances of convexity considerations related to the
present pape r. T he  pioneer work of Carathéodory [2, 3] on coefficient problems
for analytic functions with positive real part is, as far as I am aware, the first bringing
together of the M inkowski theory o f  convex sets and complex function theory.
Extreme points are present in  the fundamental work o f R. S. Martin [12] on the
representation of positive harmonic functions as normalized minimal positive har-
monic functions. My paper [7] showed the existence of minimal positive harmonic
functions on Riemann surfaces using elementary standard normal family results
without the intervention of the Krein-Milman theorem and gave applications to
qualitative aspects of Pick-Nevanlinna interpolation on Riemann surfaces with finite
topological characteristics and nonpointlike boundary components. Such Riemann
surfaces will be termed f inite Riemann surfaces henceforth. In [8] the Carathéodory
theory cited above was extended to the setting of finite Riemann surfaces for inter-
polation problems subsuming those of Pick-Nevanlinna type. Forelli [5] has studied
the extreme points of the family of analytic functions with positive real part on a
given finite Riemann surface S normalized to take the value 1 at a given point of S.
In  my paper [9] the results of Forelli were supplemented by precise characterizing
results for the case where the genus of S  is positive. The problem in question is,
of course, the one of this paper with n =0 , .4 replaced by S and 0 by the point of
normalization.

The results of Pick-Nevanlinna interpolation theory which will be wanted will
be given in the course of the exposition. An elementary approach to Pick-Nevanlinna
interpolation theory has been given by Marshall [11].

2 .  Proof of Theorem 1. It will be based upon a simple standard result of Pick-
Nevanlinna interpolation theory, to be given as Lemma 2, and the Poisson-Stieltjes
representation for analytic functions on LI having nonnegative real part.

Lemma 2 .  Let n be a positive in te g e r. Let (z,)7 be an injection into A  and let
(wk)? satisfy  k = 1 , . . . ,  n .  I f  there ex ists an  analy tic f unction F on A  of
m odulus at m ost one satisfy ing F(z k )=w k , k =1 ,..., n  then  there  ex ists  a f inite
Blaschke product b of degree s a t i s f y i n g  the interpolation condition: b(z ,)=w k ,
k =1,..., n.

There exists exactly one such F if  and only  if there exists a finite Blaschke pro-
duct b of degree — 1 satisfying: b(z k )=w k , k =1,..., n.

Proof  o f  Lemma 2. U se  w ill be  made of the standard Schur-Nevanlinna
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algorithm [13 , 14 , 19]. Given a n .4, let La denote the Möbius transformation
zi—*(a —  z)I(1— dz). We note that L a is an involution.

First assertion. We proceed by induction on n. For n = 1 the assertion is
immediate. Indeed, if lw 11= 1 , the constant value w1 serves, while if Iwi l <1, the
function L t oLz i  serves. Suppose that the first assertion holds for a given n  and
that F is a function of the stated type where n is replaced by n  + 1 . If max I wk l = 1,
the assertion is immediate. If maxim,' <1, we consider g =(L „,, i .F) IL ,, i (Schur-
Nevanlinna algorithm) and note that g is an analytic function on A taking values of
modulus 1 and satisfying g(z k )=4 „ . .,(w k )14 ( z k ) ,  k =1 ,. . . ,  n .  The inductive
hypothesis permits us to replace g  by G, a finite Blaschke product of degree n
satisfying G(z k )=g(z k ), n .  The function b =4 „,  i o(GL, n + i )  i s  a  finite
Blaschke product of degree n +1 satisfying b(z k )=w k , k =1,..., n +1.

Second assertion. Suppose that there is exactly one such F .  We proceed by
induction on n. If n =1 , then  w 1 1 = 1 .  Otherwise there would not be a unique
such F .  Consequently a  Blaschke product of degree 0  satisfies the interpolation
condition. Passing from n to n +1 , we see that we may put aside the trivial case
where max iwkl= 1 and that in the remaining case there is a unique analytic function
g on d taking values of modulus at most one and satisfying g(z k ) ---L „,, i (wk )IL z „+ i (z k ),
k =1 ,. . . ,  n .  Indeed, L ,, , L.F I L „,  is such a g  and for each such g  we have F=
L w n .,.(gL z n .,). There is exactly one such g .  By the inductive hypothesis g  is a
finite Blaschke product of degree n - 1 .  Consequently, F  is  a  finite Blaschke
product of positive degree

The converse part of the second assertion is immediate for n =  1. To pass
inductively from n to n + 1 we put aside the trivial case where max Iwk l =1 and note
that it suffices to apply the induction hypothesis to L „o b lL z „,  and L ,,o F I L z . , i

where F satisfies the stated conditions.

For the application of Lemma 2 to the proof of Theorem 1, to which we now
turn, we shall employ a fixed mediating Möbius transformation, it: zi—*(z —1)/(z + 1),
which maps {Re z> 0} bijectively onto A. The notation "it" is to be understood in
this sense for the remainder of the paper.

Let f  be an extreme point of!. We introduce its Poisson-Stieltjes respesentation
2 n  e i0  z(2.1) f ( z )= dy(0),

e ie _ z

where y  is  nondecreasing on R  and satisfies the following conditions : y(0) = 0;
y(0 + 2n) = y(0) + 1, y(0) = [y(0 + )+ y(0 — )]/2, 0 e R. Let (0k ) '  be a  partitioning
of [a, a + 2n] where m  1+ 2n and y is continuous at the 19k. We show that y  is
constant on one of the segments [0 k , 19k+ J . To that end we introduce the functions

1+

(2.2) gk:
eu z

. yd  ( 0 ) ,  I z i  <1 ,  k =0 , . . . ,  m.
Oke

Let g =- I a k gk , where the Œk are real but ndt all 0 such that g(z)= 0 for z = 0, z,,.
For t  small and real f +  tg e I. Since f  is extreme, we infer from 2 f =(f +tg )+
(f— tg) that g  is identically O. Let / E {0,..., in} be such that a,0 O. S in c e  g  is
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identically 0, we see that Re g, vanishes continuously on the open arc {el°, 0,<0
<Oi- Using the continuity hypothesis on the Ok we infer that Re g, = 0 and
thereupon that y  is  constant on the segment [0,, Cl, + 1 ]. Let y  be continuous at
13 e R .  W e conclude that there are at m ost 1+2n points in the open interval
(fl, 13+ 2n) in all the neighborhoods of which y is not constant. Of course, there is
at least one such point. We are led to the conclusion that f  is a map of constant
valence v of 4 onto {Re z > 0} where 1 v  1  +  2n .

To show that 1+  n is a lower bound on the valence of an extreme f  we apply
Lemma 2 and conclude with aid of p specified above that if there existed an extreme
f of d e g r e e  n, the set / would reduce to a singleton contrary to hypothesis.

To complete the proof of Theorem 1 it remains to show that if f e / is a map of
constant valence v of A onto {Re z>  0} where 1 + n 1  +  2 n ,  then f  is an extreme
point of I. Suppose that f =(1— t)g + th where 0< t <1 and g, h e I. On considering
Re g and Re h we see that g and h are each maps of constant finite valence of A onto
{Re z > 0} and that the poles of each are contained in the set of poles of f . H e n c e
g —h is a rational function having at most v poles, all simple, and taking the value
0 a t 0, z 1 ,..., z  a t cc , 2 ; 1 .  It follows that g — h=0. Consequently,
f  is an extreme point of I  as we wished to show.

3 .  A representation formula for the extreme members of I .  We return to the study
of finite Pick-Nevanlinna interpolation problems where there is more th an  one
solution and recall a standard representation for the totality of solutions. Cf. [14].
It will be seen that the part of the Nevanlinna interpolation theory to be used is easily
established with the aid of the Schur-Nevanlinna algorithm employed in Lemma 2.

We suppose that n, (zk)7, (w k )?, satisfy the conditions of the first two sentences
of Lemma 2 and that the family of analytic functions F on Ll of modulus <1 satisfying
F(z k)= wk , k=1,..., n, contains more than one m em ber. We have

Lemma 3 .  There ex ist rational functions A , B, C, where (i) B  is a Blaschke
product of  degree n, (ii) IAI, ICI<1 for I z I 1 ,

 an d  (iii) C(z)= Â(z)B(z), Iz1=1,
such that the totality  of  functions satisfy ing the stated interpolation condition is
exactly  the set of functions

(3.1) F g : z — * A (z)+B (z)g(z ) 1  1+ C(z)g(z)

where g  is in the closed unit ball of  FP (A).

P ro o f . For n = 1 we see from F = L ,o (g L z i )  that with A=w i , B= C=
i Lz i  the requirements of the lemma are fulfilled. T o  t r e a t  the case of index

n + 1 we introduce a representation

(3.2) z A n(z)+ B(z)g(z) 
1 + C (z )g (z )

for the interpolating functions corresponding to the truncated condition : F(z,)= wk ,
k=1,..., n, and note that the map
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(3.3) M :  EAn(z.+ i) + Bii(zn+ 001[ 1 + Cn(z.+1)0

is not constant since the points zk , k=1,...,n, are zeros of B— AC  and there are
no other zeros in A  by the inductive assumption on A„, B„, C„ and the theorem of
R ouché . Since there is more than one interpolating function for the problem of
index n + 1, we see with the  a id  of (3.2) that linv M (w „,,)I <1, "iv" denoting
"inverse". The interpolating functions for the case of index n +1 are exactly the
functions (3.2) where the g are the members of the closed unit ball of 11 0  satisfying
the interpolation condition: g(z„ ± 1 )=  inv M (w „ ,). U sing the coefficients given
at the beginning of this proof for the case, n= 1, we obtain the desired result by com-
position and normalization.

Of course, the discussion just given is simply a reduced qualitative version of the
Nevanlinna developments [14] combined with the Walsh normalization [20, p. 299]
intended for our present purposes.

Our object in introducing Lemma 3 is to obtain a representation for the extreme
members of I. By the results of §2 the map fi— f  is a bijection of the set of extreme
members of I onto the set of finite Blaschke products b satisfying b(0) = 0, b(z,)=
tt(wk ), k=1,..., n, and having degree v(b) satisfying 1 + n 2 n . W e  are
thus led to inquire under what circumstances Fg  of (3.1) is a finite Blaschke product
of given degree v. We have

Lemma 4 . The function F9  o f  (3.1) is  a f inite B laschke product of  degree I ,

if  and only  if  g  is a f inite B laschke product of  degree v- n. The set of  realized
degrees I ,  is  the set of  positive integers at least as large as n.

The proof of Lemma 4 follows on noting that Fg  is a finite Blaschke product if
and only if g  is and that, since B„ is a  finite Blaschke product of degree n, by the
theorem of Rouché when g is a finite Blaschke product of degree v(g), the degree of
F, is n+v(g).

The extreme members of I are the functions inv itoFb  where b is a finite Blaschke
product of degree n  and (3.1) is taken relative to  the interpolation data: 01-0,

>tt(wk ), k=1,..., n.
We now apply this result to obtain a parametric representation of the extreme

points of I  in terms of a simply described convex b o d y  in  C "+ '. To that end, let
Cn-I-1 be n + 1 distinct points of A — {0, z 1 ,..., zn ). We introduce

(3.4) K = {( f( 1 ), , f (C ,, i )), f e I}

and observe that K is a compact convex body (int K 00) in  Cn+1. The fact that K
is compact and convex is routine to  verify . The fact that int K 00 is a consequence
of (3.1).

We next observe that by Lemma 2 the map

(3.5) b(C.+1)),

b a finite Blaschke product of degree n, is injective. The image a of this map is
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the frontier of

(3.6) Ki={ (g(C,),..., g(C„, 1 )): g e IP(A ), sup ig151} ,

which is a compact convex subset of Cn+1 . Indeed, if g is a point of the closed unit
ball of FP(A ) such that (g(C1 ),..., g(C „,))E f rK ,, by Lemma 3  the function g  is
the only member of the closed unit ball of 1-1'(A) taking the value g ( )  at Ck ,  k =

n + 1. By Lemma 2 we see that g is a finite Blaschke product of degree n.
Consequently f rK i c

By a second application of Lemma 2 we show that .g  f rK i . To that end we
note that a point of int K 1 is attained by some g el-1' (A) satisfying sup I I  < 1  as we
see with the aid of a homothetic contraction (c 1 ,..., , ) ,  0  <  < 1 ,

near o n e . Hence a point of int K , is attained by more than one member of the
open unit ball of F P (A ) . Using Lemma 2 we conclude that M  frK  1 . It follows
that d =frK i .

With the aid of the equality

(3.7) K = {(inv inv P°F
g (C,,+1)}

g  ranging over the closed unit ball of H (A ) , we conclude that f rK  is the set of
elements of K  having a unique antecedent with respect to

(3.8)0 : f & G O ,. f  (C.+ , f

and that 0- 1 (f rK ) is the set of extreme elements of I. It suffices to refer to the
representation inv itoFg  of f . T h e  map inv [010- 1 (f rK )] is a continuous bijection of
f rK  onto the set of extreme points of I.

As consequences of the results just stated we have (i) each point of f rK  is an
extreme point of K , (ii) each extreme member of /  is the unique maximizer on I  of
some continuous real linear functional defined on the space of analytic functions
on A.

(i) Given 0(f) E f rK ,  f E  I .  Suppose that 0(f )=(1- t)0 (f 1 )+ t0(f2 ) ,  where
0< t <1 and f l , f 2  E I. From 0( f ) = 0[(1 - t)f ,+ tf2 ] e f rK  we conclude that f =
(1- O f i + tf2 . Since f  is an extreme point of I , we have f1 =f2 and so 0(f 1 )=0 ( f 2 )
as we wished to show.

n+1
(ii) Let Re E  ck wk =d  define a  supporting plane for K  passing through

(faCi), foG n  + fo
are so normalized that

n+1
(3.9) max {Re E  ck uk , u„±i) e K } =d.

The point ( f 0 (C1 ) ,.. . ,f0 (C„ 1 )) is the only point common to K  and the supporting
plane since each point of f rK  is an extreme point of K .  Hence the real continuous

n+1
linear function ff-R e E c k fgo restricted to /  attains its maximum exactly at f o .

By the Krein-Milman theorem every real linear continuous functional on the
space of analytic functions on A  is maximized on /  by some extreme member of I.

an extreme member of I. It is supposed that the c, and d
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The result (ii) shows that every extreme member of I  appears as such a maximizer.
Hence the set of the extreme points of I is the minimal set of such maximizers.

One may also consider corresponding convex bodies of the form [(X i ),...,f
f E I} where m  n + 1 and C„, are distinct points of .4 — {0, z 1 ,..., ; } .  We
remark that the extreme points are exactly the images of the extreme functions of I
with respect to f1—(f (C,),..., f ((„)).

4 . A quantitative specification of the extreme members of I  via Pick theory. We
recall some basic facts of the Pick theory [1 5 -1 7 ]. Cf. [6, pp. 6 - 1 0 ] .  Here we are
concerned with n and (z k )? as in Lemma 2 and (wk )?, Wk E C, n. We seek a
necessary and sufficient condition for the existence of a function f  analytic on A
having nonnegative real part and satisfying f (z k )=w k , k=1,..., n . Let H(s) denote
the Hermitian form

(4.1) v   W i+ V TI k  s  

k .

The theorem of Pick may be stated as follows: A  necessary and sufficient condition
for the existence of an allowed f  is that H (s).0, all s. In this case there is exactly
one solution if  and only  if  there exists s° 00 such that H(s°)= O.

We sketch a proof of Pick's theorem and show that a very simple modification
of a remark of Pick [15, pp. 12-18] permits the exhibiting of the solution in the case
of uniquenesss. Our object is to describe the extreme functions of I  explicitly in
terms of the associated points of frK  as well as to characterize the latter points in a
simple quantitative way in terms of the data.

The starting point of Pick's necessity considerations is the study of the Hermitian
form

1  (27,
(4.2) M I T " )  +  f(re " )i2m o

2
.S k d B ,

1 re ")— z,

where f  is a function satisfying the imposed requirements and max I zk l < r < 1. On
evaluating (4.2) with the aid of the Cauchy integral formula for a disk and letting
ri- 1  we obtain H (s ). Hence if an allowed f  exists, H (s ) 0. On introducing the
nonnegative linear functional

1
(4.3) /r: 27c 0  Re f(rei°)X(0)c/0

on the space of real-valued periodic continuous functions X  on R  with period 2m,
we see that

2rz
(4.4) lim i r ( X )= Xdy,

r-■1 JO

where y is the normalized generating function in the Poisson-Stieltjes representation
of Ref and conclude, specializing X(0) to I Ê  sk (ei° — z) - 1 1, that

2ir 2
(4.5) s k

H ( s ) =  2    dy.
o ei° —zk
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Cf. [1]. Suppose that there is exactly one allowed f. Putting aside the trivial case
where Ref= 0, we see by Lemma 2 that there exists a polynomial Q of positive degree
<n having zeros at the poles of f. F r o m  the partial fraction decomposition

(4.6) Q ( z )  _

fi(z—z k ) Z  - Zk

Sk0

we obtain a vector s° é  0 such that H(s°)= O.
Sufficiency. We put aside the trivial cases where n=1 or n >  1 and wk  is inde-

pendent of k and approach the question with the aid of minimum considerations
using Lemmas 2 and 3. Let a( e R) be such that there exists an analytic function f
on A with positive real part satisfying f (zk )= wk + a, k=1,..., n. Such a exist. They
satisfy Œ> — min Re wk . U sing  L em m a 2  w e see that for such a  there exists an
analytic function f a  of the form

(4.7) z yk  nk+ z 
1 nk—z

1111,1= 1 , yk 6  e  R , satisfying f a (zk ) = a + wk . W e  have

(4.8) Yk)(  ..cc+Re w 11

and

(4.9) 161_111n +(a+Re zzj ) 21

There exists a sequence of allowed a tending to 13, the infimum of the allowed a, such
that the associated nk , yk and (5 converge. Thus there exists a function f p  of the form
(4.7) satisfying f p (zk )=fl+ w k , k=1,..., n . By Lemma 2 if the degree of f p  w ere  n,
the function A of Lemma 3  associated with the interpolation requirement zk i-
/.(63+ wk ), k=1,..., n, would have the property that inf ., Re inv it.A> 0, so  tha t f1
would not be the infimum of allowed Œ. Hence f p  is of degree n —1 and it  is  the
unique analytic function F  on d  with positive real part satisfying F(z,)=13+w k ,
k=1,..., n.

The remainder of the Pick theorem is now readily established. The Hermitian
form corresponding to the interpolation requirement zk i—fl+ wk  is

(4.10) H (s)+ A Sk  
2

do.
it o è ' — zk

Since a necessary and sufficient condition for there to exist a function satisfying the
requirements of the Pick interpolation problem is that /3 0  we conclude that also
the Pick condition is necessary and sufficient. If there exists s° 0 such that H(s°)=
0, then

(4.11)
#  ( - 27r

it )o
± 12 dB

et
°
 — z k
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We conclude that /1= 0 .  There is a unique interpolating function.

A remark of P ick . Pick essentially noted (loc. cit.) that if there existed PO 0
at which the nonnegative H vanished, one could make explicit the  only possible
interpolating function. At that point of the exposition sufficiency is not established.
Pick uses arguments involving the rank of a matrix associated with the interpolation
data.

The object of the following observation is to note that one may operate directly
with H for an augmented problem to obtain the only possible interpolating function.
We merely consider the  augmented problem with the interpolation requirement:
z k l-+wk , k =1 ,..., n +1 , z n ± i 0 z k ,  k <n + 1, and note  tha t the value of the corre-
sponding H a t (s?,..., s ,  rio-)  is  nonnegative. Here I'll =1, o> O. W e  o b ta in  the
inequality

(4.12) 1
2
_
R
iz
e  

+ni+12'  cr2 + 2 Re [ 2_n +z
1
 n
+
+  i

/Tv-kk

Dividing by o- and thereupon taking the limit as ci-+0, we conclude that

Wn+1-11- t 3.k  §0 __ 0
t  1 —  Zn+1 2 k k

It follows that the only possibility for the interpolating function is

(4.14) z1— _ (t )/ (± )
1 - z 4  •

Extreme members of I  given in terms of the Pick theory. For convenience of
notation we write z„,,, for Ck , k =1,..., n+ 1, and denote a point of Cn+1 by  (wn+1,...,
w 2 n + 1 ) •  Further, in accord with the normalization for I  we set z o  =0, w0 = 1 . W e
see that the points of f rK  are the points (w„+  w 2 „ + 1 )  for which

2n+1
-

j , i = 0  1 —  Z fZk S iS k

is positive semidefinite or, equivalently, such that the least root of

(4.16) det(  w i +  w k —  Ab
j k

)  = 01— z i f k

is 0. The so obtained (wk)an+1 a n d  a n  associated eigenvector (4),3"+ 1 y ie ld  the
extreme function associated with (wn+ 1)•••9 W 2n+ 1) with the aid of (4.14).

Remark. Using both the qualitative results of §3 and the modified Pick ap-
proach, which led to (4.14), we may obtain in the case where H is strictly  positive for
sO 0 the corresponding coefficients A, B , C for a suitably normalized representation
of Lemma 3 without recourse to the customary recursive algorithms. It suffices to
introduce z„+ 1  e {z 1 ,..., z n } and to note that the vanishing of the determinant of
the augmented matrix determines exactly the values at zn + 1  for which the augmented
problem is u n iq u e . O n  calculating the interpolating functions corresponding to

(4.13)

(4.15)
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three such values with the aid of (4.14) and reverting to the situation of §3 by use of
we see that the qualitative facts of §3 permit the calculation of A, B, C on normalizing
suitably the correspondence at z, 1 (D enjoy  normalization, cf. [4]).
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