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The incompressible limit and the initial layer
of the compressible Euler equation

By

Seiji UKAI

1. Introduction.

The Euler equation of compressible ideal fluid flow in R™ is written, in
appropriate nondimensional form (cf. [5]), as

1
5 (kv VP+T-0=0,

(1.1) o, +v-Vu)+2°Vp=0,
(p) 7)) | t=0=(p0r vO) .

Here, the unknowns are the pressure p=p(¢, x)>0 and velocity v=uv(t, x)e R",
t=0, x=R", while p is the density governed by the equation of state p=p7,
r>1, and 2, the parameter arising from nondimensionalization, is M-y-¥/%, M
being the Mach number.

In this paper we discuss the limit of solutions as 4—co. Some fundamental
facts on this limit have been established by Klainerman and Majda in [5], (see
also [4] for the periodic case and [1], [2] for bounded domains). In particular,
it is shown that unique solutions exist for all large A on the time interval
[0, T] independent of 4, and that if the initial datum is incompressible datum,
then the solutions converge as A—co uniformly on [0, T] to a solution of the
incompressible Euler equation.

The aim of the present paper is to show that even if initial datum is not
incompressible, the limit still exists and satisfies the incompressible Euler
equation. However, the uniform convergence breaks near =0, due to the
development of initial layer.

To state our result more precisely, we put, as in [5],

p(t: x)=ﬁ+)‘-lq(t’ x) ’ Po(x)"—‘ﬁ'*“'z_l%(x) ’

where p is an arbitrarily fixed positive number. Set u=(g, v) and u,=(go, Vo).
Let H*® denote the Sobolev space H°®(R") with norm |-|[;., Throughout the
paper, we take s=s,+1, s,=[n/2]+1. The following theorem is the part of
results from [5] which is relevant to us.

Theorem 1.1 ([5]). (i) For any Co, ko>0, there exist two positive numbers
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T and C, such that for each 2=1 and u,= H* with

(1.2) luolls=Co,  po=ko,

the equation (1.1) has a unique classical solution u=u?* on [0, T1XR", satisfying
(1.3) uteCX[0, T1; HYNCH[O, T1; H*Y)

and

(1.4) lw*@®)l.=C,, tel0, T].

(ii) Suppose the initial u, satisfies the additional condition
qo=2""qs,
(1.5) vo=v3+A" W}, V-v3=0,
(g3, vills=C,.
Then the solution u* of (i) has the additional estimate
(1.6) lud®)lls- =Ci
on the same time interval [0, T]. Furthermore, u* converges;

1.7 ur—u==(0, v*°) weakly* in L=([0, T]; H*), and
strongly in C}([0, T1X R"),

as A—co, where v™ belongs to the class (1.3) and is a unique solution, together
with some p=>eC%[0, T]; H®), of the Cauchy problem for the incompressible
Euler equation;

V-v==0,

(1.8) (W7 +v=-Vo=)+Vp==0,
U° | i=0=15,

where p=(p)'".

As stated already, our aim is to establish a similar convergence result
without assuming the condition (1.5). We will prove the

Theorem 1.2. Let n=3 and let u* and u, be those of Theorem 1.1 (i).
Suppose u, is constant in A. Then, as A—oo,

(1.9) ut—u==(0, v°) weakly* in L>([0, T]; H®), and
strongly in C.((0, TJX R™),

with a limit v° belonging to the class (1.3) and giving a unique solution to (1.8)
with the initial condition replaced by

(1.10) V™[ 1=0=Pu,,

where P is the orthogonal projection of H*® onto the solenoidal subspace H$=
{veH * | V-v=0} (¢f. [3D).
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Remark 1.3. (i) Compare (1.9) with (1.7). In (1.9), (0, T] cannot be
replaced by [0, T], that is, the convergence is not uniform near ¢t=0. In fact,
at t=0, v*(0)=wv,, and in general v,# Pv,=v>(0). On the other hand, v{=Pvj in
(1.5). Thus, the initial layer develops if and only if v, is not solenoidal.

(ii) In case the initial u,—=u? varies with 2, just as is the case in (1.5),
then it suffices to assume that ui—uy strongly in H®: The conclusion of
Theorem 1.2 remains valid, with v, replaced by % in (1.10).

(iii) Theorem 1.1 is true also for the periodic (in x) case, (see [4]). How-
ever, Theorem 1.2 is not. This is because no decay estimates similar to that
given in Proposition 2.1 below are possible for the periodic case.

The convergence (1.7) in Theorem 1.1 is a direct consequence of local
compactness assured by the uniform estimates (1.4) and (1.6). In our situation,
only (1.4) is available. As for u}, we merely have ||uf|;-,=<C,4, see [5]. Thus
there is not enough compactness in ¢.

In section 3, we will show that the solenoidal part Pv? still satisfies (1.6)
while (/—P)*—0 strongly for ¢>0. The main ingredient of the proof is the
use of a nice asymptotic behavior as A—oco of solutions of the linearized
equation about u=(0, 0) of (1.1). This asymptotic behavior will be established
in the next section. Our method of proof is similar to those developed in [7]
and [8], and will have other applications.

2. Linearized Operator.

In terms of u="%gq, v) and u,="4qo, Vo) (column vectors), the equation (1.1)
takes the form

2.1 u+Biw)uz,=0, u0)=u,,

where the summation convection is used, and B; are (n+1)X(n+1) matrices
given by

v Arpe;
Biu)=| 2, )

—te; wv;l,

p J J

2;=(0, ---, 1, ---, 0) being unit vectors and I, the unit matrix, in R*. We write
(2.1) as

ur+BiO0)u ., =F*(u, Vu)=—(Bu)— BI0)u.,,
u(0)=uo.

(2.2)

In this section we study the group U*(¢) generated by the linearized operator
—BX0)6/6x;. Using the Fourier transform

(FW@=0@=n) " e tu(n)dx,
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we readily find the group U?(f) in the form
Uz(t)___g-le-ta(l,ag,
where B is the (n+1)X(n41) matrix defined by
, 0 2§
BQ, §)=iBX0)§;=| . )
A% 0

with €=(&,, &, -, &,) (law vector). Here we have put p=p=1, which does
not lose generality because (1.1) is already in nondimensional form.

The matrix B(2, &) has eigenvalues 0 and +iAv/7 |&]. The eigenvalue 0
is of multiplicity n—1 with the eigenvectors

ej(5)=t(07 é}(&))! ]=1’ 2’ Ty 71—1,
where &;§)eR" are such that
2.3) £-246)=0, ¢58)-2,(8)=0,

for all £ R". Obviously, the adjoint eigenvectors e¥(£) are ‘e,(&). The eigen-
values +72+/7 |&| are both simple, with the eigenvectors

(2.9 e (E)=c(EVT, 0), =CV7)", o=/,
and the adjoint ones
eXO=co(*+1, V7).

{eX(&), eX(&)} is the adjoint basis to {e,(§), e.(§)}.
Accordingly, the group U*(t) has the following orthogonal decomposition.

(2.5) U=U,+Uit), UU=U¥HU,=0,
(2.6) U,uy="0, Puv,), on:g-l(é}k(é)'ﬁo(g))téj(e),
2.7 Ultyuo=F1e™ VT 181 (X(€)- 1o(8))e.(£),

(The summation convention is used in an obvious manner for +.) U, is the
part of U4(t) corresponding to the eigenvalue 0, and U¥t) that to +idv7 |&].
From (2.3) it is seen that the operator P in (2.6), the v-component of U,, is
just the projection P introduced in §1. By virtue of the Parseval theorem, we
obtain

(2.8) IPvolli=lvolle, U DUl =v7 luoli,  (ER.

Also we see that in general UXt)u, does not tend to zero as A, t—oo in H'.
However, it has an L= decay. Denote the norm of L?(R™) by |-|,. The
following is the main result of this section.

Proposition 2.1. Let n=3 and [>n/2. Then, there is a constant C=0 such
that
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(2.9) [UH Ul =C| At~ u,|8llu,ll}-°
holds for all 2, teR and u,csH'NL*, with 6=1—(n—1)/({+n/2—1).
Proof. Referring to (2.7), it suffices to evaluate the integral of the type
210 P, 0)=] e tato)p@ds,
for ye R, a=C=(S*"!) and ¢=H'. Split the integral over |£|=R and |£|<R,
with R>0 to be determined later, and write the respective integrals as ¢, and

¢.. By Schwarz’ inequality, we get

(2.11) i DI el 181 dé

<al(],, aH160de) “Igl =CR-tmml g,

for [>n/2, where a,=sup|a(w)|. To evaluate ¢,, we put r=|&| and substitute
$=9¢ to deduce

R |
(2.12) g, )= etgtr, x)dr,
g, y=@m | ke, x=9)g()dy,
her, 0=, e ra)do.
By integration by parts, we find
_._i_ ipr R__ R Tpr o
el V=5, {[e’ g(r, )18 goe rg'(r, x)dr},
where g’=dg/or. Hence,
R
g, DS 1 (18R, )1t 180, )t | 1870, adr).
We shall evaluate the right hand side. In [6], it is shown that
2.13) ’Ssn_l e“’“’ﬁ(w)dw‘ <C|x|-t

holds for any /[0, (n—1)/2] and BC>(S*"!), with a constant C=0 independ-
ent of x. By this with /=0, we get |A(», x)| =C and so,

(2.19) lg(r, Ne=Crt-t|gl,.

Differentiation of g under integral sign yields

g'(r, x)=(n—Lr-'g(r, x)+(2ﬂ)‘"’2r"'lgmh’(r. x=y9(»dy,
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h'(r, x)=i§sn_lx-we““’a(w)dw.
If n=3, we can take /=1 in (2.13), to deduce |h’|=C|x||rx|'=Cr-'. This
and (2.14) give |g'(r, *)|«=Cr"*|¢|,, and then,
(2.15) [a(pt, NN=Clul*R* 1 1,.
Finally, choose R=(|g|l@ll./1¢])¢+*/2-Y in (2.11) and (2.15), and find
[(e, Ne=ClulC|pllali-2.
This is the desired estimate.

As a corollary, we have a decay for u, in H* but not in H'NL.

Proposition 2.2. Let n=3 and u,=H with I>n/2. Then, for any >0,
(2.16) Sl;?lUé(t)udm—)O as A—oo.
Proof. The proposition is true if u,eCy(R"). Now, it suffices to note that
C2(R™) is dense in H' and that
[UH ol =Cllull,

which comes from (2.11) by putting R=0. Thus, we are done.

3. Proof of Theorem 1.2.

Let u*=(¢* v*) be the solution of Theorem 1.1(i). By virtue of the
uniform estimate (1.4), there exists a subsequence such that

3.1) u?—u= weakly* in L=([0, T]; H?),

as A—oo, with a limit u*=(¢=, v*)e L=([0, T]; H®). Now we will establish a
stronger convergence. To this end, we first note that since u* is a unique
solution to (2.2), it can be expressed as

(3.2) uX(t)=Uﬂ(x)uo+S:U1(t—r)Fﬂ<r)dr,

where FA(r)=F*u*(r), Vu*(r)) was defined in (2.2). We shall evaluate F?.
Recall s=s,+1, se=[n/2]+1 in Theorem 1.1.

Lemma 3.1. There is a constant C=0 independent of A=1 and t<[0, T],
and there holds

(3.3) [FAT) [+ IIFA()lls- . =C.
Proof. Write F? explicitly as

(3.4) Fi=—Yv*-Vg?4+-2y(p*—1)V-v%, v2-Vo*+A(1/p*—1)Vq?).
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Recall that we have put p=pg=1. By Schwarz’ inequality,
(3.5) [FAL =0t o+ 1270 =1 o+ 121/ 04 =1)|5) | Tt 5.
By definition A(p*—1)=¢* and p*=(p*)''7, and so,

(3.6) ,2(1/p2—1)=7-1q25:(1+01-lq*>-<r+l>/rda.

In [5], the solution u? is constructed in such a manner that pi=k,/2 (k, is as
in (1.2)). Hence, from (3.5),

[FALsClutls|Vutl,.

Further, by standard calculus inequalities (see Lemmas 2 and 3 of [5]), we
have,

IF Al s- SCA+ A gen)* Ml s

Combining these estimates with (1.4) yields (3.3).

Returning to u? of (3.2), we decompose it according to the decomposition
(2.5):

3.7) ut)=ui®)+ui),

3.8) uf)="0, vit), viO=Po+| PGi()dz,

where G*(r) denotes the v-component of F?(z) (see (3.4)), and

(3.9 ud)=Uktot | Ut—0F @)z

We shall show that v} satisfies (1.6) while u{—0 strongly.
Lemma 3.2. i+ lvd Ol s-1 =C.

Proof. Since the decomposition (3.7) is orthogonal, we have [[u*|2=|u?|2+
ludl2. Then by (1.4), |u#|;=C. Differentiate (3.8) and obtain v}, =PG*(). But
P is a bounded operator on H®"! (see (2.8)), and G*, the v-component of F?,
enjoys (3.3). This completes the proof of the lemma.

Lemma 3.3. sgrl)lué(t)lmﬂo (A—>00), for any >0, if n=3.

Proof. Since s—1=s,>n/2, Proposition 2.1 can be applied to (3.9), with
[=s—1. We have,

k1S 1 UKo |t 5 s | PO RIF A8,

where 0=1—(n—1)/(s+n/2—2) is § of Proposition 2.1 for s—1. By Lemma 3.1
and since 0<1, the last term in the above is majorized by
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C|xl-6$:|t—r|-5dr§c'|z|-5,
for all t€[0, T]. This and Proposition 2.2 complete the proof of the lemma.

Lemma 3.2 implies that v, x) is uniformly bounded and equicontinuous
both in ¢t and x. Hence, passing to a subsequence,

vi-0? strongly in C.([0, TIX R™),

with some v7C%[0, T]JXR"). Taking account of Lemma 3.3, we then con-
clude (note that u also belongs to the class (1.3)) that

(3.10) wl=ui+ui—*40, v?) strongly in C((0, T]JXR™).

And by (3.1, we may put ¢*=0 and v*=v?. Thus v*eL=([0, T]; H?®)
NCYA[0, T1XR™. Furthermore, the orthogonality stated in (3.7) implies that
Py*=y%, and thereby, in the limit, Pv*=v?=v=. This proves that V-v==0.

It remains to prove that the whole sequence is convergent and that v~ is a
solution of the incompressible Euler equation, belonging to the class (1.3). In
view of the strong convergence (3.10), combined with (3.1), it follows from
(3.4) that

G*——v=-Vov= weakly* in L=([0, T]; H".

The space H° is then replaced by H*®"!, by using (3.3). Now, we can go to the
limit on both sides of (3.8). The result is,

(3.11) v°°(t)=Pv0—S:Pv°°(z')~Vv°°(r)dr.

Since v=-Vo*e L>([0, T]; H*"'), the integral on the right hand side is in
Lip([0, T]; H*-Y). By assumption of Theorem 1.2, v, H*. Hence, (3.11) implies

(3.12) vee L=([0, T]; H)NLip([0, T]; H*™Y),

and

V¥=—Pw>-Vv~),
(3.13)

™| =e=Puv,.
The equation (3.13) is just the incompressible Euler equation. In [3], it is
proved that the solution to (3.13) is unique within the class (3.12). A particular
consequence of this uniqueness is that all the convergence stated so far is true
for the whole sequence, not only by passing to a subsequence. It is also proved
in [3] that the unique solution to (3.13) necessarily belongs to the class (1.3).
Now the proof of Theorem 1.2 is complete.

Remark 3.4. From (3.1) it follows that

V-v4i=V.-v2=0 weakly* in L=([0, T]; H*Y).
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If s>n/2+2, we can infer that for any >0,
(3.14) sg;‘)lv-v‘(t)lmao.

Indeed, by Proposition 2.1 we find for />n/2,
IVU 1o |« =C |21 Vieo |2 Va1 -2,
and proceeding as in Lemma 3.1, we have
INFA@) L+ IVFA(2)]5-.=C,

if s—1>n/2. Now, (3.14) can be proved with V-v* replaced by Vuj, using the
argument of Lemma 3.3. Since V-v?=0, this verifies (3.14).
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