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The incompressible limit and the initial layer
of the compressible Euler equation

By

Seiji UKAI

1. Introduction.

The Euler equation of compressible ideal fluid flow in R n  is written, in
appropriate nondimensional form (cf. [5]), as

1
— (P t ±v•Vp)-1-7•v=0,
7P

(1.1) p (y t+ y•7 y )+ 2 2 7  p  = 0  ,

(1), v)I t=0=(P 0, vo)

Here, the unknowns are the pressure p=xt, x)>0 and velocity v=v(t, x)ERn,
x ER'', while p  is  the density governed by the equation o f  state  p=pr,

r> 1 , and 2, the parameter arising from nondimensionalization, is  M - 'r - 1 1 2 , M
being the Mach number.

In this paper we discuss the limit of solutions as 2-00. Some fundamental
facts on this limit have been established by Klainerman and Majda in  [5], (see
also [4 ] for the periodic case and E ll [2 ] for bounded domains). In particular,
it is shown that unique solutions ex ist fo r a l l  large  2  o n  th e  time interval
[0, T ]  independent of 2, and that if the initial datum is incompressible datum,
then the solutions converge as 2--co uniformly on [0, T ]  to  a solution of the
incompressible Euler equation.

The aim of the present paper is to show that even if in itial datum is not
incompressible, the lim it s t ill e x is ts  and  satisfies th e  incompressible Euler
equation. However, th e  uniform convergence breaks near t= 0 , due to  the
development of initial layer.

To state our result more precisely, we put, as in [5],

P(t, x)=fi+2 - 1q(t, x), Po(x)=fid - 2- 1q0(x),

where j5 is an arb itra r ily  f ix ed  positive n u m b e r . Set u --= (q , y )  and u0—(90, yo).
Let H ' denote the Sobolev space Hs(R 3 ) with norm 11.11s. Throughout the
paper, we take s. s0 +1, s 0 = [n /2 ]±1 . The following theorem is the part of
results from [5 ] which is relevant to us.

Theorem 1.1 O D . ( i )  F o r  any Co, k0>0, there ex ist two positive num bers
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T  and C1 such that f o r each A 1 and uo E TP with

(1.2) II tioil 3

the equation (1.1) has a unique classical solution u=u 2 o n  [0, T ]x R n , satisfying

(1.3) u  E 0([0, T ];11 8 ) no(co, T ]; Hs - 1 )

and

(1.4)l u  2 (0118 C1 , tE [0, T ].

(ii) Suppose the initial uo satisf ies the additional condition

90=-2- 1 q ,

(1.5) , 7 .0 = 0  ,

14)118- Co.

Then the solution u 2 o f  ( i )  has the additional estimate

(1.6) II u(t)Ils-1

on the same time interval [0, T ]. Furtherm ore, u 2 converges;

(1.7) v -) weakly* in  L - ([0, T ]; H s), and
strongly in C23 ,([0, T ]x R n),

as 2-->00, where v-  belongs to the class (1.3) and  i s  a  unique solution, together
w ith som e pwEco([o, T ]; H s ),  of  the C auchy  problem  for the incom pressible
Euler equation;

7• v- -= 0,

(1.8) P(vr+v0•Vv")+Vp00=0,

I 1=0=- 4

where -,5-=. (15)11 r.

A s stated already, our aim is to establish a  similar convergence result
without assuming the condition (1.5). We will prove the

Theorem 1.2. L e t  n 3 an d  le t  u 2 a n d  uo b e  th o se  o f  Theorem 1.1 (i).
Suppose uo is constant in  2. Then, as 2--+00,

(1.9) u2—>u00=(0, v- ) weakly* in  L 0 ([0, 7 ] ; H s), and
strongly in  C20 0 (0, T ]x R n),

with a lim it v-  belonging to the class (1.3) and giv ing a unique solution to  (1.8)
w ith the initial condition replaced by

(1.10) i t '  t =  =  P V ,

w h e re  P  is  the orthogonal projection of  H ' onto the solenoidal subspace 11=
{ v Ells I V  •r=0}  (c f . [3]).
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Remark 1 .3 .  ( i ) Compare (1 .9 ) w ith  (1 .7 ) . I n  (1 .9 ), (0 , T ]  cannot be
replaced by [0 , T ] ,  tha t is, the convergence is not uniform near t = 0 .  In fact,
a t  t=0, v 2 (0)=v 0,  and in general v0#Pv 0=v - (0). On the other hand, yg=-Pyg in
(1.5). Thus, the initial layer develops if and only if  vo is not solenoidal.

(ii) In case the initial u0=- I4  varies with 2 , just a s  i s  th e  c a s e  in  (1.5),
th en  it su ffices  to  assum e th a t  14—>u7 strongly in H ° :  T he  conclusion  o f
Theorem 1.2 remains valid, with vo replaced by v7 in  (1.10).

(iii) Theorem 1.1 is true also for the periodic (in x ) case, (see [ 4 ] ) .  How-
ever, Theorem 1.2 is  n o t . T h is  is because no decay estim ates sim ilar to that
given in Proposition 2.1 below are possible for the periodic case.

The convergence (1 .7 ) i n  Theorem 1 .1  i s  a  d ir e c t  consequence of local
compactness assured by the  uniform estimates (1.4) and (1 .6 ) . In our situation,
only (1.4) is available. As for u , w e  m ere ly  have 1114 1 1 8 - 1 - - C 1 2 ,  s e e  [ 5 ] .  Thus
there is not enough compactness in  t.

In section 3 , w e w ill show tha t the solenoidal part Pv 2 s till sa tis f ie s  (1.6)
w hile (I —P)v 2 -->0 strongly fo r  t > 0 .  The main ingredient of the  proof is the
u s e  o f  a  nice asym ptotic behavior a s  2—›co o f  so lu tio n s  o f  th e  linearized
equation about u=(0, 0) o f (1 .1 ) . This asymptotic behavior will be established
in  th e  nex t section. O ur method of proof is similar to those developed in  [7 ]
and [8 ] , and will have other applications.

2 .  Linearized Operator.

In terms o f u=t(q, y ) and uo= t (40, yo) (column vectors), th e  equation (1.1)
takes the form

(2.1) ut+ M (u)uxi=0, u(0)=1/0,

w here th e  summation convection is  u sed , and B ;  are (n+1)X (n+1) matrices
given by

v; À rpe ;

B (u )=
—te ;

\

e; =(0, ••• , 1, ••• , 0) being unit vectors and /n th e  un it matrix, in Rtm.  We write
(2.1) as

(2.2)
u t + .13;(0)u x j = F 2 (u, —(I3j(u)— MON x j ,

u(0)= u .

In this section we study the group L/2 (t) generated by the linearized operator
—41(0)6/ax i . Using the Fourier transform

( gu)(e)-=- ii(e)=(270 - ni 2e - ix'eu(x)dx ,
Rn
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we readily find the group U 1 (t) in the form
u2( t )= g -1e -ta(2,e) 9 •7

where B  is the (n+1)x(n+1) matrix defined by

( 0  i2re ,

B(2, e)=1Bi(0)$ ; =
i2 t e  0  )

with e=cei, e 2 r  • • , ( la w  vector). H ere w e h a v e  p u t ii =ïo=1, which does
not lose generality because (1.1) is already in  nondimensional form.

The matrix B(2, e) has eigenvalues 0 and ± i 2 ' / T .  T h e  eigenvalue 0
is of multiplicity n-1  w ith the eigenvectors

e(e)= t (0 , i (e)),j = 1 ,  2, ••• , n -1 ,

where gi (e)ER n are such that

(2.3) e•osig)=0, 'J;(e)• (e) =  k r

for a ll e E R n .  Obviously, the adjoint eigenvectors eî(e) a re  tei (e). T h e  eigen-
values ± i 2 /  r lei are  both simple, w ith the eigenvectors

(2.4) e±(e)=cot(±'V r , (0), co=c2A / )- " 2 ,

and the adjoint ones

et(e)=c0(±1, r co).

feN ), et(e)}  is the adjoint basis to { ej (e), e ± ()} .
Accordingly, the group /P(t) has the following orthogonal decomposition.

(2.5) Ua(t)=Uid-IAz(t), UI U(t)=U(t)U 1 =0,

(2.6) U1u0=t(0, Pv o), Pv 0=g - co(e)•Doce)m (e ),

(2.7) U(t)u0=g-1e7i1's/7 'el (et(e)• fio(e))e±(e),

(T h e  summation convention is  u sed  in  an  obvious manner fo r  ± . )  U, is  the
part of U 2 (t) corresponding to the eigenvalue 0, and U ( t )  t h a t  t o  ±i,w r
From  (2.3) i t  is  s e e n  th a t  th e  operator P  in  (2.6), the  v-component of U1 ,  is
just the projection P  introduced in § 1 .  By virtue of the Parseval theorem, we
obtain

(2.8) 11Pv011/5_Ilvolli, t,R .

A lso  w e  se e  th a t in  general U ( t)u 0 does not tend to  zero as 2, t—.00 in  H t.
H ow ever, it has a n  L -  decay. D enote th e  norm  o f  L P(R n) by I The
following is the main result of this section.

Proposition 2.1. L et 72 -3 and 1>n12. Then, there is a constant C O  such
that
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(2.9) IU(t)uol. ClAtl-31u01111/10111-6

holds f o r all A , t R  and uo e H in l , ',  w ith 3=- 1—(n-1)1(1+n/2-1).

P ro o f .  Referring to (2.7), it suffices to evaluate the integral of the type

(2.10) sb(p, x)-= ,1• R n e ipii+ix•Ea (a ) ).2-3(e)de ,

for pER, aEC"(Sn - 1 ) and 0E1P. Split the integral over  I I R  an d  11 <R,
w ith  R>0 to be determ ined later, and w rite  the respective in tegra ls as 02 and
02. By Schwarz' inequality, we get

(2.11) 101(p, x)I
112

(1° 0 lel2R
( 1 +  l e1)-21de) 11011t CR-(1-n/2>iiolli,

for l> n12, w here ao=sup a(w) . To evaluate 02, w e put r  =  le l and substitute
-= gg5 to deduce

(2.12) 02(1i, x)=Y:e'Prg(r, x)dr,

g (r, x)=(27r) -- ni2rn - 1 11 0 h(r, x—y)0(y)dy,

h(r, x)-A . e 'rx '''a ((o )d co .

By integration by parts, we find

02(te, g(r, x ) ] -T o eiP re(r, x)dr},zp

w here g '= a g la r .  Hence,

102(p, x)1 1 1- 1 (1g(R, •)1-±1g(0, •)I..+5 R
o l e(r, •)1041 - ) .

W e shall evaluate the righ t hand  side . In  [6 ] ,
 it  is  sh o w n  th a t

(2.13) P ( w) "

holds for an y  /G[0, (n-1)/2] and 13GC- (Sn - 1 ), w ith  a constant C O  independ-
ent o f x .  B y th is w ith  1=0 , w e  g e t  h(r, x)I . 0  and so,

(2.14) Ig(r, .)100-5Cr n - 1 1011.

Differentiation of g  under integral sign yields

g '(r, x )= (n— l)r - ig(r, x)-F(27) - ni 2 rn - 1
.h '( r,  x — y ) q 5 ( y ) d y ,

R7,
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h'(r,
1
 x•weirx''a(w)dto

If w e can  take  1 =1 in  (2.13), to deduce Ih'I-C1x1Irx - ' =-Cr - 1 . This
and (2.14) give  Ig'(r, •)1....Cr il- 2 19511, and then,

(2.15) 102(p, •)1.—CIpl - I R n - 1 14511.

Finally, choose R=(Ipell1011111011) 11 " " - "  in  (2.11) and (2.15), and find

10(P, •)I- C11/1 - 3 19511110111- 3 .

This is the desired estimate.

A s a  corollary, we have a decay for uo in  H ' but not in  i - P n y .

Proposition 2 .2 .  Let n 3 and uo EH with l >n12 . Then, for any r>0,

(2.16) suP I U'(t)uo I a s  2-+00
2- Zt

P ro o f. The proposition is true if  u0 eC7(Rn). Now, it suffices to note that
C7(Rn) is dense in H ' and that

which comes from (2.11) by putting R = 0 . Thus, w e are  done.

3 .  Proof o f Theorem 1.2.

L e t u 2 =- (q2 ,  0 )  b e  th e  so lu tio n  o f  Theorem 1.1 (i). B y v irtue  of the
uniform estimate (1.4), there exists a  subsequence such that

(3.1) u 2 —ne0 w eak ly*  in  L.00([0, T ]; Hs),

as 2->co, with a  lim it u- =(q - , v00) L 00 ([0, T ];  H s ). N ow  w e w ill establish  a
stronger convergence. T o  th is  en d , w e  f ir s t  no te  that since u2  i s  a unique
solution to  (2.2), it can be expressed as

(3.2) u2(t)=-1/2(t)uo+YoU2(t—r)F2(r)dr,

w here P 2 (v)=F 2 (0 (r ),7 u 2 (r ) )  w as defined i n  (2.2). W e shall evaluate  P 2 .
Recall s sod-1, so=[n/2].+1 in Theorem 1.1.

Lemma 3 . 1 .  There is a constant independent of and .r [0, T],
and there holds

(3.3) IF2(r)11+11FÀ(v)113-15C.

P ro o f. Write P 2 explicitly as

(3.4) F2=—'(0•7q2+27(p2-1)7•0,0•70±2(11,o2-1)7e).
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Recall that we have put f i= p = 1 . By Schwarz' inequality,

(3.5) IF211-5.(17)212+127(P2-1)12+12(1/p2-1)12)17012.

By definition 2(p 2 -1 )=q 2 a n d  p 2 =- (p 2 )"T, and so,

(3.6) 2(11p2-1)=7-iqT(1+02-1q2)-01-"Ird0.

In  [5], the solution 7i 2 is constructed in  such a  manner that 132 .>:k0 l2  (k , is as
in  (1.2)). Hence, from (3.5),

1F2 11-5.Clu 2 1217u2 12.

F u rth e r, b y  standard calculus inequalities (see Lemmas 2 and 3 o f  [5 ]), we
have,

11F2118-1-5C(1+11u21180+1)s-111u2118.

Combining these estimates with (1.4) yields (3.3).

Returning to 722 o f  (3.2), we decompose it according to th e  decomposition
(2.5):

(3.7) u2(t)=u(t)--I-u(t),

(3.8) u(t)=1(0, v (t)), v i(t)=Pv 0 + .Ç:PG 2 (r)dr,

where G 2 (r) denotes the v-component of F 2 (r) (see (3.4)), and

(3.9) uW )=UR t)u0+:0(t— t-)F '1 (7)dr .

We shall show tha t 74 satisfies (1.6) while strongly.

Lemma 3.2. 1174(011s-FIlvft(0118-1=C.

Pro o f . Since the decomposition (3.7) is orthogonal, w e have 117.12 11=141M+
Ilua  Then by (1.4), 1143--5C. Differentiate (3.8) and obtain vi t =PG À (t). But
P  i s  a  bounded operator on  H 3 - 1  (see  (2.8)), and G 2 ,  the  v-component of F 2 ,
enjoys (3.3). This completes the proof of the lemma.

Lemma 3.3. sup u(t)100—>0 (2—+œ), f o r  a n y  >0, i f  n 3.

Pro o f . Since s - 1 _ s 0 >n12, Proposition 2.1 can  be app lied  to  (3 .9 ), with
/= s - 1 .  We have,

114(01,5_ I UROilo I .+  C   1t 1  kIt-1-1 )1611IF2(7)Ujidr, ,!2 13  0  I '

where 3=1—(n-1)/(s±n/2-2) is 3 of Proposition 2.1 for s - 1 .  By Lemma 3.1
and since 3<1, the  last term  in the above is majorized by



330 Seiji Ukai

dr-5_C' 21 - 3

for a ll tE [0, T ] .  This and Proposition 2.2 complete the  proof of the lemma.

Lemma 3.2 im p lie s  th a t 24(t, x )  is  un ifo rm ly  bounded  a n d  equicontinuous
both in  t  and x. Hence, passing to a  subsequence,

77-+vr strongly in  C70,([0, T ]x R n ),

w ith som e vrEC°([0, T ]x R n ) .  Taking account o f  Lemma 3 .3 , w e then  con-
clude (note th a t  7v2

1 a lso belongs to  the class (1.3)) that

(3.10) er) strongly in  C70 ,((0, T ]x R n ) .

A n d  b y  (3.1), w e  m a y  p u t  r = 0  a n d  v" --- vr. T h u s  v0 E L - ([0, T ];11 3 )
nco([0, T ]x R n ) .  Furthermore, the orthogonality  sta ted  i n  (3.7) im plies that
Pz) --=v1, and thereby, in the lim it, Pv - -=v7=v - . This proves that V•v- =0.

It rem ains to  prove that the whole sequence is convergent and th a t v-  i s  a
solution of the incompressible Euler equation, belonging to the class (1.3). In
view  of the s tro n g  convergence (3.10), com bined  w ith  (3 .1), it fo llow s from
(3.4) that

G2->-v00 -7v°' weakly* in  L - ([0, T ]; H °).

The space H° is then replaced by H 8 - ', by using (3 .3 ). Now, w e can go to  the
lim it on both sides of (3.8). The result is,

(3.11) v00(t)=Pvo-toPv-(r)-77)-(z-)dr

S ince  v- •77v- e L - ([0, T ]; Hs - 1 ), t h e  in te g ra l o n  t h e  r ig h t  h a n d  s id e  i s  in
Lip([0, T ];11 3 - '). By assumption of Theorem 1.2, v o E H s .  Hence, (3.11) implies

(3.12) L-([0, T ]; lis)nLip( [0, T ]; H s - l),

and

v 7= -P(v -  •Vv - ) ,
(3.13)

v"I t.=0=Pv0 •

The equation (3.13) i s  j u s t  the incompressible Euler e q u a tio n . I n  [ 3 ] ,  i t  i s
proved that the solution to  (3.13) is  unique within the class (3.12). A  particular
consequence of this uniqueness is that all the convergence sta ted  so  fa r is true
for the whole sequence, not only by passing to a  subsequence. It is also proved
in  [3 ] th a t the unique solution to  (3.13) necessarily  belongs to  th e  c la ss  (1.3).
Now the proof of Theorem 1.2 is complete.

Remark 3 .4 .  From  (3.1) it follows that

7.7) 2 -77•v- =0 weakly* in  L - ([0, T ]; H3 - 1).
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If  s>n/2+2, we can infer that for any r>0,

(3.14) sup I V - v2 (t) I.-4) .

Indeed, by Proposition 2.1 we find for 1> n12,

17U(t)u ol .. C1 At I - 3  IV u 013 1I7 u olli - 3

and proceeding as in  Lemma 3.1, we have

17F 2 (r)11+117F 2 (7)113-2 C,

if  s —1>n/2. Now, (3.14) can be proved with 7.7) 2 replaced by V 4  using the
argument of Lemma 3.3. Since V .77. -=0, this verifies (3.14).

DEPARTMENT O F  APPLIED PHYSICS

OSAKA CITY UNIVERSITY

References

R. A gem i, The incompressible lim i t  of compressible f lu id  m otion in a bounded
domain, Proc. Japan Acad., Ser. A, 57 (1981), 291-293.
D. G. E bin , Motion of slightly  compressible fluids in  a  bounded domain. I .  Comm.
Pure Appl. Math., 35 (1982), 451-485.
T. Kato, Nonstationary flows of viscous and ideal fluid in R 3 , J . F unc tiona l Anal.,
9 (1972) , 296-305.
S. Klainerman and A . M ajda, Singular limits of quasilinear hyperbolic system with
large param eters and the incompressible lim it of compressible f lu id s , Comm. Pure
Appl. Math., 34 (1981), 481-524.
S. Klainermann and A. Majda, Compressible and incompressible fluids, Comm. Pure
Appl. Math., 35 (1982), 629-651.
M. Matsumura, Comportement des solutions de quelques problèmes mixtes pour
certains systèmes hyperboliques symétriques A. coefficients constants, Publ. RIMS,
Kyoto Univ., Ser. A , 4 (1968), 309-359.
S. Ukai and K. Asano, The Euler limit and initial layer of the nonlinear Boltzmann
euuation, Hokkaido Math. J., 12 (1983), 311-332.
K. Asano and S. Ukai, The convergence of the Vlasov-Maxwell s y s te m  to  the
Vlasov-Poisson system . (to appear).


