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§  1 .  Introduction.

Consider the Cauchy problem fo r Hamilton-Jacobi equation in two space
dimensions :

t  
+  au  \

a ax in  It>0, x GR 2 I, (1)

u(0, x)=g5(x)G SP(R 2 ).( 2 )

We assume that f  is  C" and uniformly convex, i. e., there exists a constant
C such that

r  a 2f
f " ( p )  =  (P)]

d e f  v y y u p ,  1 t , j 5 2

It is well known that, even for smooth initial data, the Cauchy problem (1)
a n d  (2) does no t ad m it a  smooth solution for a ll t. Therefore we consider a
generalized solution whose definition will be given a  little latter. The existence
of global generalized solution for (1) and (2) is already established (for example
[7], [8]). F o r  detailed bibliography, refer to [1]. This paper is concerned
with the singularities of global generalized solutions.

For a single conservation law  in one dimensional space, a  solution satisfy-
in g  th e  entropy condition i s  piecewise smooth for any smooth initial data in
7 (R 2 ) except for initial data in a certain subset of the first category ([4], [5],

[6 ] and [12]). T . Debeneix [2] treated certain systems of conservation laws
which is essentially equivalent to Hamilton-Jacobi equation (1) in  R n  (n -4 ) , and
proved th e  sim ilar resu lts  to  [12 ] by the same method a s  [1 2 ] .  The aim of
this paper is to make clear the situation how the singularities appear.

One of the classical method to solve first order non-linear equations is the
characteristic one. T he weak point is that it is the local theory . The reason
is due to  the fac t th at a  smooth mapping can not have its smooth inverse
uniquely in  a  neighborhood of a point where the Jacobian vanishes, i. e., that
the inverse mapping takes many values in a neighborhood of a critical point of
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the  m apping. Therefore  the solution a lso  ta k e s  m a n y  values there. As the
following definition says, we look for one-valued and continuous solution. Our
a im  i s  t o  show  that w e can uniquely choose one value from  m any values of
solution s o  th a t  the solution becomes one-valued a n d  c o n tin u o u s . T h e n  the
condition of sem i-concavity is autom atically satisfied. Here we give the defini-
tion of generalized solutions.

Definition. A  lipschitz continuous function u(t, x )  defined o n  R 'x  R 2 is
called a  generalized solution of (1) and (2) if and only if  i)  u(t, x ) satisfies (1)
almost everywhere in R x  R 2 and (2) on It=0, x  R 2 } , ii) u(t, x) is  semi-concave,
i. e ., there exists a constant K>0 such that

u(t, x +y )-Fu(t, x — y )-2u(t, x)5_Kly 2 f o r  a n y  x , y R 2 and  t > 0 .  (  3  )

Remark. Put v,=au/ax i  (i=1, 2), then the equation (1) is w ritten dow n as
a  system of conservation laws :

a a 
f(v )= 0 (i =1, 2) . ( 4 )at ax,

T hen the inequality (3) turns into the entropy condition for (4). See a  Remark
in § 3 .

§ 2. Construction of solutions.

The characteristic lines corresponding to (1) and (2) are  determ ined by the
equations :

w ith  initial data

af — a p i (p), j), =0 (i =1, 2)

aox i (o)= y  , p,(0)— (y) (i =1, 2) .ay i

On the characteristic line x= x(t, y ) , the value v (t, y )  of the solution for (1)
and (2) satisfies the equation :

7)- - - f(P)+<P, P(P)> v(0)=95(Y)

w here n p )= -(a f/ a p „  6f /apo and <p, q> is scalar product o f  vectors and q.
Solving these equations, we have

x = Y + tf /(95 / (31)) L li t (Y ) (5)

v(t, y )=Ø(y)+ti— f(vv(y))+<0'(y), f/(0'(y))>I. ( 6 )

T hen H , is  a  smooth mapping from R 2 t o  R 2 a n d  its  Jacobian is given by
ax (t, y)=det [I-Ft f"(95'(y))0"(y)7 •ay
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We write A(y)= f "(0' (y))q5"(y) and the eigenvalues of A (y ) by 2,(y ) 2 2(y).
When the  space dimension is one, 21(Y)= f "(95 / (Y ))0 " (y ). Since f "(gY(y))>0 and
0(y)E y ( R 1 ) ,  21(y) takes necessarily negative values at some p o in ts . In  this case
also, we can prove

min 21(Y) =21(3' °)=. — M< ,

and put t°=1 / M . Since we have for t <t°

ax 
a y  (t, y )*0 fo r any yER 2 ,

we can uniquely solve th e  equation (5) with respect to y  a n d  denote it by y =
y (t , x ).  Then u(t, x)=v(t, y (t, x )) is a  un ique  so lu tion  o f (1 ) and  (2 ) fo r t <t°.
Our problem is to construct the solution for t >t°.

Suppose that t—t° is positive and sufficiently small, a n d  consider th e  equa-
tion (5 ) i n  a  neighborhood o f  (t°, y°). The Jacobian of H t vanishes on  f t =
{Y R2 ; 1-ka1(Y)=0}. Assume the condition

(A .1 )  Â1(y)#22(Y), grad 21(Y)*0 on E t  and X , is a simple closed curve.

In  this case , 2 ', is parametrized a s  E t= i t (Yi(s), 372 (s )); sE ll where I  i s  a
closed interval and y 1(s) C (I )  ( i= 1 , 2). P u t

E i= {3 )(0 )E E  t; 
d s

dv ( t ,  y ( s ) ) = 0  a t s=s°}

By the  definition o f H. W hitney [15], a  point in  I t — E  is  a  fold point of
th e  mapping l i t , i.  e.,

d  
d s  

x(t
'  

y(s))*0 on

Lemma 1. Assume that the number of elements o f El is two, then it follows

d dy  
d s  

x(t
'  

y(s))=(Id-tA(y)) =0 on X .ds

Pro o f . Put

/ -k tA (y )= 
aai2((tt,, 

y))

then

at(t, Y)ER 2 ( i = 1 ,  2) ,

then ai (t, y ) and  a Jt, y ) a re  linear y  dependent on X .  A s they a r e  smooth in
th e  interior o f  I t , they do  not take any direction of R 2 . Especially, when t—t°
is sufficiently small, ai (t, y ) (i= 1 , 2) are  almost constant, i. e., they move in  a
small neighborhood of a,(t°, y°)(i=1, 2) where at (t°, y°) an d  a2(t°, y°) a re  linearly
dependent. Contrary, when the point y=y(s) makes round of I t ,  dYlds(s) takes
every direction. Therefore dlds x(t, y(s)) vanishes at least at two p o in t .  But,
the points where it vanishes are contained in because
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d  v(t, y (s))=( ay
a  y  ,  di 

ds
s )

=( 0 '( y ) ,  d
d
s  x (t, y (s))). ( 8 )

Hence we get this Lemma. Q. E. D.

Assume here the following condition :

(A.2) E2=117
1 , Y 2 1, i .e . ,  the num ber of elem ents of  X i is tw o, and Y i (i=1, 2)

are cusp points of H ,, i.e.,

d x(t, y(s))#0 at y (s)=Y 1 (i=1, 2) .
s° 

Concerning the above assumptions (A.1) and (A.2), we give the following

Remark. Assume

(C.1) th e  singularities o f  /My) a re  non-degenerate, i. e., if  grad 2,(y)=0, the
hessian of 21 (y) is regular at the point,

(C.2) b'vlay(t°, y°)*0,

then, for t >t° where t—t° is small, E , becomes a sim ple closed curve and the
number of elements of 12 is two.

We denote the restriction of v(t, y) on I , b y  vE (t, y). By (8), we see that
vE(t, y )  takes its  extremum on Xi. Especially, if  we put v(t, Y i )=c i  (i=1, 2)
and suppose c1 <c 2, then vE takes the minimum a t y=37

1 and the m axim um  at
Y = Y 2. Denote by D , the interior of the curve T , a n d  b y  Q , th e  interior of
110(T 0). Then the curve {y ŒR 2 ; v(t, y) — c1 } is tangent to D , a t y= Y i  (i=-1, 2).
Here we apply the  results of H. Whitney [15 ]. According to his theorem, the
canonical forms of a  fold and cusp points are expressed respectively as follows :

x1=y12, x 2 = y 2  in  a  neighborhood of a  fold point ( 9 )1

x 1 = y 1 y 2 -y 13, x 2 = y 2  in  a  neighborhood o f a  cusp point. ( 9 )2

This means that th e  mapping H , can be regarded as the  mappings (9), and
(9)2 in  a  neighborhood of a fold and cusp point respectively. Moreover he proved
that any smooth mapping from R 2 to  R 2 can be approximated by smooth mapp-
ings whose singularities are fold and cusp points only. By this result we see that,
when we put Ht(Y %)= X i (1=1, 2), th e  curve Ht(E t) h as th e  cusps at x =X ,
(i=1, 2). W hen we solve th e  equation (5) with respect to y  fo r x ef 2 0,  the
expressions (9)1 a n d  (9)2 mean that the solution y =y (t, x ) becomes three-valued.
Write these values by y =g,(t, x ), g 2( t, x )  a n d  g 8( t, x )  where g 2(t, x )E D , for
any xE,Q t . When we write ui (t, x)=v(t, g i (t, x)) (i=1, 2, 3), the solution of (1)
a n d  (2) takes three values u,(t, x ) (i=1, 2, 3) on Q ,. Concerning these situa-
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dons, see Figure 1.

v(t, y)-=ci

- - >

Figure 1. C urves X , H ( X )  and 111- 1 (Ht(It)).

Lemma 2.

a ..(30i) u , ( t , (g,(t, x)) fo r  xE,Q t (i=1, 2, 3),ox oy

ii) (g i (t, x )— g,(t, x ), 
a
aux'a auxi )< 0 fo r  x E Q t ,

iii) u i (t, x)<71 2 (t, x )  and  u 3 (t, x )<u2(t, x ) f o r  xEf2t.

Pro o f . i) This is obtained by simple ca lcu la tion . ii) From  the definition of
g i (t, x ), w e have

au
x =g ,(t, x ) - k t f '( (t, x )), x  Q, .

As g i ( t, x )# g ) (t, x ) for it follows audax (t, x )#au,/ax (t, x )  for i* j .  Us-
in g  th e  convexity  o f  pp), w e  g e t  the inequality ii). iii) W e prove the first
inequality. D ivide the simple closed curve af2, in to  tw o parts joining two cusp
points X , and X , of Q 1,  and w rite  th em  C , and  C2 . H ere  w e  in tro d u ce  the
family of solution curves of following differential equation
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dx
dr -=g,(t, x)—g,(t, x).

T h e n  th e se  c u rv e s  s ta r t f ro m  C, (or from  C2)  and end a t  C, (or a t  C, respec-
tively), and  the  fam ily o f these curves covers th e  domain ,f22 . O n  each curve
it holds

d  
d r  

(u,(t
'  

x) u2(t, x))=1\a
a

u
x

ia
a
u
x
,

, g g  2 )  <0  .

Since ul (t, x)=u 2 (t, x ) on C, (or on C2 ), w e g e t u,(t, x)<u 2 (t, x ) in  Q2 .

W e are  looking fo r  a  continuous so lu tio n . T h e  iii) o f Lemma 2 means that
w e  can  n o t a tta in  o u r a im  b y  ad v an c in g  fro m  th e  first branch to  the second
and also from the second to  th e  t h i r d .  The last choice is to pass from  the first
branch to th e  third.

Lemma 3 . Put I(t, x)=u,(t, x)—u g (t, x). Then E 1 =-{xEi2-
2 ; I(t, x)=0 } is a

smooth curve in  Q t joining two cusp poihts of  aQt.

P ro o f. In  th is case we introduce th e  fam ily of curves defined by

dx
dr =g,(t, x)— g g (t, x).

T h e n  th e se  c u rv e s  a lso  s ta r t  f ro m  C, (or from  C2)  and end a t  C2 (o r  CO and
th e  family o f th e  curves covers the  domain Q t . On each curve it holds

d au, au,
I ( t

'

 x )= -
dr (a x a x  g i

—
gs)

<°

By Lemma 2, w e have

I(t, x )Ic i =ui(t, x)--71 2 (t, x )Ic i <0

x)1c 2 =u2(t, x)—ita(t, c2 >0

Therefore  o n  e a c h  c u rv e  o f  (10), /(t, x)=0 has a  unique so lu tion . Obviously
/(t, x)=0 a t  the  cusps X , and X 2 , and w e  have by  ii) o f  Lemma 2

grad s I(t, x) 0 in Q 2 .

H ence w e see that r t = { x , . ( t ;g t ,  . ) = 0 }  is the smooth curve joining the points
X , and  X 2 i n  S22 . Q. E. D.

Since we seek fo r one-valued and continuous solution, we define the solution
u(t, x) in  Q t as follows: W r i t in g  Q,,, = { x S2, ; u2(t, x)—u,(t, x)-Z- 01, we define

 

u i (t, x)

u g (t, x)
u(t, x )=

 

(10)

As [ '2  is sm ooth, it can be param etrized a s  I ' t =  fx = x (s )}  .  Then
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d au,a u ,  d x \/(t, x(s))=ds (0 x ax '
0

ds 1

T h is  means that, though th e  first derivative of the solution u(t, x) has jump
discontinuity along the curve r e, it is continuous with respect to the tangential
direction of rt.

§ 3 .  Semi-concavity o f u(x, t).

Let n(t, x) be a unit normal of advancing from Q3 ,_ to f21 ,+ ,  and define
a t x E r t

au . au( t ,  x±0)= ( t  x-Hen).ox E--F0 ox

A ny C 2 -function satisfies th e  semi-concavity condition (3). Therefore, for the
proof of (3), it suffices to treat the case where x E r ,  and y = s n  ( s > 0 ) . Then
we have

u(t, x+y)-d-u(t, x—y)-2u(t, x)

au
o
(f l a

x
u a x "(t x+sy)— (t x+0 ) y )dsJ\ 

L ( ' Il  au au-, 30\ ax  (t ,  x  0 ) ax (t, x—sy), y)ds

+ ( a
a

u
x  (t, x+0) a

a :   (t, x—O), y ) .

The first and second terms are easily estimated by K yI 2 . To get the in-
equality (3), it  must be

aua u
ax (t, x+0 ) ax (t, x — O), n(t, x))_-<0. (11)

Contrary, if  (11) is true, then we can get (3). Hence (11) is equivalent to the
semi-concavity property.

On the other hand, we have by the  definition

it 3 (t, x)—u i (t, x). - 0 in  Qe.±
which means

that is to say,

d  
d s  

fu j (t
'  

x-Fsn)—u,(t, x - Fsn)} ,

8=0

(au sa u ,(t
'
 x ) - - ( t  x )"  n ) 0 on r e . (12)ax ax —

From the definition of u(t, x) in  Q,, it holds

au au au (t
'

 x + 0 )= 1 (t
'

 x ) and (t ' 'x  0)=  au ' (t x ) .ax ax ax a x  
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Substituting these relations into (12), w e g e t (11), i . e., u(t, x ) i s  semi-concave.
Summing up the  above results, we have the  following

Theorem 1. After the time t° where the Jacobian of  the mapping Ht vanishes
at first, the solution takes many values. B ut we can uniquely pick up one value
from them so that the solution becomes one-valued and continuous. Then the con-
dition of  semi-concavity is automatically satisfied.

Remark. Putting v =. 6u/ax  in  (11), w e  g e t the  condition  on  the  jump dis-
continuity o f v(t, x):

<v(t, x F0)— v(t, x— O ), n> on F .

T h is  is  the  entropy condition fo r th e  system  of conservation law s (4) given in
Remark in  § 1.

§ 4. Collision of singularities.

I n  th is  section we consider the collision of two singularities F L , and T2, t
constructed in  § 2, assuming th e  hypotheses (A.1) and  (A .2 ). H e re  w e  use the
notations E , D i,t , • • -, for F (i=1, 2) which correspond to Et, Q t, D t,
fo r r , introduced in  § 2. W e  se e  th a t th e re  e x is t  th re e  k in d s  of collision as
described in  F igure 2.

(i)

Figure 2 . Collision of singularities.

Case (i). Consider the  case where r , , ,  and r,,, collide a s  (i) of F igu re  2.
T h e n  the  so lu tion  becomes two-valued o n  a  domain bounded by r i . ,  and F .
By the  almost same discussions as in § 2, w e  c a n  u n iq u e ly  p ic k  u p  o n e  from
tw o  values s o  t h a t  th e  so lu tion  is one-valued and continuous. Then w e can
prove that the solution is  sem i-concave. In th is  c a s e  th e  new  singularity  ap-
pears a s  a  smooth curve joining two points w here r,,, and  1"2 , ,  intersect each
o ther. It is  described  a s  a  dotted curve in  (i) of F igure  2.

Case (ii). Consider the collision (ii) of F igure  2 . W e put t = {Y,„1, Y1I
and

A i , ,= fy  ;  y E l l t - l (f2  ,t )— D i,t and H ( y ) F 1 , } (i=1, 2) ,
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then 4„ 2 is  a  smooth simple closed curve which is tangent t o  X  a t  y=17
1

and Y 1 ,2 ( i= 1 , 2 ) . When the end point of [ ' 2 , 2  i s  on t, A2, 2 i s  tangent to
A L ,  at the point y = A  where A=Y 2,1 o r  Y2,2. S e e  Figure 3.

2,

Figure 3. Relation between A , and A 2 , 1 .

A s v(t, y )  restricted on A,,, does not take an extremum a t y =A , we get
av /ay (t, y)# 0 a t  y = A .  e ., the curve CA =

{ y  ER 2 ; v(t, y)=vI A }  is smooth in
a  neighborhood of y=- A , and it intersects A L ,  a t  y = A  transversally. On the
other hand, as v (t, y) restricted on A t  takes extremum a t y = A , the curve CA
is tangent to A t a t  y ---A . This i s  in contradiction w ith  the above. Hence
this case (ii) does not happen.

Case (iii). When P L , and [ ' 2 , 1  meet first at a time t =t°  as (iii) of Figure 2,
1ol_JE2, is  d raw n  a s  ( i )  of Figure 4. But, as the interior domain of the

curve E t = y E R2 ; 1 ±t21(Y)= 0 } is monotonely increasing, E1,1UE2,2 is described
as (ii) of Figure 4 for t > t°. When it satisfies the conditions (A .1) and (A.2),
we can construct the singularity of solution by the just same way as in § 2.

Figure 4. Changement of XL  t U f 2, t w ith  respect to the time.

Remark on Figure 4 .  Assume that E 2 , 20 and f  2 ,  2 0  meet at y ---y °=(a, b)
and that the singularities of 2,(y) are non-degenerate. A s  2 1 ( y )  does not take
minimum and maximum a t y=y°, we can suppose by Morse's lemma
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/11(37)•--=21(Y °)+CY 1—  a) 2 —(y 2 —b)2, 1+t °21(Y °)-=0 .

Therefore i o  (i = 1 , 2) have the singu larities at y - =y ° .  But, for t>t° , the

curve ly R 2 ; 1+t2 1 (y) -=- 01 is smooth in a neighborhood o f y =- y°.

Summing up the above results, we get

Theorem 2. A ssum e th at th e  assumptions (A.1) an d  (A .2 )  are conserved.
Then, even i f  tw o singularities collide each other, w e can uniquely  pick  up one
reasonable value f rom  tw o  v alues of  solution so  that the solution becomes one-
valued and continuous. In this case also the condition of semi-concavity is naturally
satisfied.

DEPARTMENT OF MATHEMATICS
KYOTO SANGYO UNIVERSITY
KYOTO 603

References

[ 1 ] S. H. Benton, Hamilton-Jacobi equation, A global approach, Academic Press, 1977.
[ 2 ] T . D ebeneix, Certains systèmes hyperboliques quasi-linéaires, preprint.
[ 3 ] A . D ouglis, Solutions in  the large for multi-dimensional non-linear equations of

first order, Ann. Inst. Fourier, 15 (1965), 1-35.
[ 4 ] M. Golubitsky and D. G. Schaeffer, Stability of shock waves for single conserva-

tion law, Adv. in Math., 15 (1975), 65-71.
[ 5 ] J .  Guckenheimer, Solving a single conservation law, Lecture Notes in Math., 468

(1975), 108-134.
[ 6 ] G . Jennings, Piecewise smooth solutions of single conservation law  exist, Adv. in

Math., 33 (1979), 192-205.
[ 7 ] S . N . K ru zk o v , Generalized solutions of non-linear first order equations with several

variables, Math. USSR Sb., 1 (1967), 93-116.
[ 8 ] S. N. K ruzkov, First order quasi-linear equations in several independent variables,

Math. USSR Sb., 10 (1970), 217-243.
[ 9 ] P . D . L a x , Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math.,

10 (1957) , 537-566.
[10] P. D. L a x , Hyperbolic systems of conservation laws and  the mathematical theory

of shock waves, Conf. Board Math. Sci. 11 , SIAM, 1973.
[11] O. A. Oleinik, Discontinuous solutions of non-linear differential equations, AMS

Transi. Ser., 26 (1957), 95-172.
[12] D. G. Schaeffer, A  regularity theorem for conservation law s, A dv . in  M ath ., 11

(1973), 358-386.
[13] M. T su ji, Solution globale et propagation des singularités pour l'équation de Hamil-

ton-Jacobi, C. R. A cad. S c i. Paris, 289 (1979), 397-400.
[14] M. T su ji, Formation of singularities fo r  Hamilton-Jacobi equation I , Proc. Japan

Acad., 59 (1983), 55-58.
[15] H. W hitney, On singularities of mappings of Euclidean spaces I, Ann. M ath ., 62

(1955), 374-410.


