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§1. Introduction.

Consider the Cauchy problem for Hamilton-Jacobi equation in two space
dimensions :

3 .
%Jrf(%):o in {t>0, xeR?}, (1)

u(0, x)=¢(x)€ F(R?). (2)

We assume that f is C*and uniformly convex, i.e., there exists a constant
C such that
0*f

/) det [ 0p;0p; (ﬁ)]lst.jszgc>0 ’

It is well known that, even for smooth initial data, the Cauchy problem (1)
and (2) does not admit a smooth solution for all t. Therefore we consider a
generalized solution whose definition will be given a little latter. The existence
of global generalized solution for (1) and (2) is already established (for example
{71, [8]). For detailed bibliography, refer to [1]. This paper is concerned
with the singularities of global generalized solutions.

For a single conservation law in one dimensional space, a solution satisfy-
ing the entropy condition is piecewise smooth for any smooth initial data in
Z(R? except for initial data in a certain subset of the first category ([4], [5],
[6] and [12]). T. Debeneix [2] treated certain systems of conservation laws
which is essentially equivalent to Hamilton-Jacobi equation (1) in R* (n<4), and
proved the similar results to [12] by the same method as [12]. The aim of
this paper is to make clear the situation how the singularities appear.

One of the classical method to solve first order non-linear equations is the
characteristic one. The weak point is that it is the local theory. The reason
is due to the fact that a smooth mapping can not have its smooth inverse
uniquely in a neighborhood of a point where the Jacobian vanishes, i.e., that
the inverse mapping takes many values in a neighborhood of a critical point of
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the mapping. Therefore the solution also takes many values there. As the
following definition says, we look for one-valued and continuous solution. Our
aim is to show that we can uniquely choose one value from many values of
solution so that the solution becomes one-valued and continuous. Then the
condition of semi-concavity is automatically satisfied. Here we give the defini-
tion of generalized solutions.

Definition. A lipschitz continuous function u(f, x) defined on R!X R? is
called a generalized solution of (1) and (2) if and only if i) u(f, x) satisfies (1)
almost everywhere in R'X R? and (2) on {t=0, x= R?}, ii) u(t, x) is semi-concave,
i.e., there exists a constant K >0 such that

u(t, x+y)+ul, x—y)—2u(t, x)=K|y|®* for any x, yeR? and t>0. (3)

Remark. Put v;=0u/dx; (=1, 2), then the equation (1) is written down as
a system of conservation laws:
9,
ot
Then the inequality (3) turns into the entropy condition for (4). See a Remark
in §3.

0 .
i+8_3c£f(v):0 (=12). (4)

§2. Construction of solutions.

The characteristic lines corresponding to (1) and (2) are determined by the
equations :

xi=§£—i(p>, pi=0 (=12

with initial data

HO=y  PO=3-() (=12,

On the characteristic line x=x(¢, v), the value v(t, y) of the solution for (1)
and (2) satisfies the equation:

v=—f(p)+<p, F1(p)>,  v(0)=6(y)

where f/(p)=(3f/0p,, 9f/3p,) and {p, ¢> is scalar product of vectors p and q.
Solving these equations, we have

x=y+tf'(¢'(»)) = Hy(y) (5)

u(t, Y)=¢)+t{—=f(@' (IN+<S" (), [/ (@' (N} . (6)

Then H, is a smooth mapping from R? to R® and its Jacobian is given by

0
{y‘—(t, y)=det [I+tf"(8"(y)$" ()] .
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We write A(y)=f"(¢’(y))¢”(y) and the eigenvalues of A(y) by A,(¥)=<A:(y).
When the space dimension is one, 2,(y)=f"(¢’(3))¢”(y). Since f”(¢’(»))>0 and
o(y)e #(R"Y), A,(y) takes necessarily negative values at some points. In this case
also, we can prove

mindy(y)=2,(y")=—-M<0,

and put °=1/M. Since we have for t<¢°

0x .
—aT(t, y)#0 for any ye R?,

we can uniquely solve the equation (5) with respect to y and denote it by y=
y(t, x). Then u(t, x)=v(t, y({¢, x)) is a unique solution of (1) and (2) for t<¢°.
Our problem is to construct the solution for ¢>1°,

Suppose that ¢—t° is positive and sufficiently small, and consider the equa-
tion (5) in a neighborhood of (¢°, y°). The Jacobian of H, vanishes on X,=
{yeR?; 1+44,(y)=0}. Assume the condition

(A1) 2,(y)#4(y), grad ,(¥)#0 on ¥, and %, is a simple closed curve.

In this case, X, is parametrized as X, ={%(y.(s), yo(s)); s€I} where [ is a
closed interval and y (s)eC=(I) (=1, 2). Put

Zf={y(s°)ezt;%v(t, y(s))=0 at s=s°}.

By the definition of H. Whitney [15], a point in 3,—23¢ is a fold point of
the mapping H,, i.e.,

Lt y)#0  on 3,5,

Lemma 1. Assume that the number of elements of 2% 1is two, then it follows

d — .d_y— Ve
5 5 Y=UHAP) =0 on 3t

Proof. Put

al(tr y)

I+tA(y)=[ ], at, y)eR* (=1, 2),

ax(t, y)
then a,(¢, ¥) and a,(t, y) are linearly dependent on Y,. As they are smooth in
the interior of X,, they do not take any direction of R2 Especially, when ¢—¢°
is sufficiently small, a;(¢, ¥) (=1, 2) are almost constant, i.e., they move in a
small neighborhood of a(#°, ¥°) (=1, 2) where a,(t°, ¥°) and a,(t°, y°) are linearly
dependent. Contrary, when the point y=1y(s) makes round of X,, dy/ds(s) takes
every direction. Therefore d/ds x(t, y(s)) vanishes at least at two point. But,
the points where it vanishes are contained in X¢, because
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d o d
ot y0=(55 3)
(o), 20, ). (8)
Hence we get this Lemma. Q.E.D.

Assume here the following condition:

(A.2) Xi=1{Y,, Y,}, i.e., the number of elements of X% is two, and Y; (i=1, 2)
are cusp points of H,, i.e.,

2
%x(t, y(s)+0 at y(s)=Y; (i=1, 2).

Concerning the above assumptions (A.1) and (A.2), we give the following

Remark. Assume

(C.1) the singularities of A,(y) are non-degenerate, i.e., if grad 2,(y)=0, the
hessian of A,(y) is regular at the point,

(C.2) av/ay(®, y9)+0,

then, for t>t° where t—t° is small, X, becomes a simple closed curve and the
number of elements of X is two.

We denote the restriction of v(t, y) on X, by vs(¢, ¥). By (8), we see that
vs(t, v) takes its extremum on X§ Especially, if we put v(t, Y,)=¢; (=1, 2)
and suppose ¢;<c,, then vy takes the minimum at y=Y, and the maximum at
y=Y,. Denote by D, the interior of the curve X, and by £, the interior of
H,(X,). Then the curve {yeR?;v(t, y)=c;} is tangent to D, at y=Y,; (=1, 2).
Here we apply the results of H. Whitney [15]. According to his theorem, the
canonical forms of a fold and cusp points are expressed respectively as follows:

x;=%,% x,=Yy, In a neighborhood of a fold point (9)
X;=y1¥.—¥,% x,=7Y, in a neighborhood of a cusp point. (9),

This means that the mapping H, can be regarded as the mappings (9); and
(9), in a neighborhood of a fold and cusp point respectively. Moreover he proved
that any smooth mapping from R? to R? can be approximated by smooth mapp-
ings whose singularities are fold and cusp points only. By this result we see that,
when we put H(Y,)=X; (=1, 2), the curve H,3Y, has the cusps at x=JX;
(/=1,2). When we solve the equation (5) with respect to y for x£,, the
expressions (9); and (9), mean that the solution y=y(¢, x) becomes three-valued.
Write these values by y=g,(t, x), g.(t, x) and gy, x) where g,(¢, x)eD, for
any x€2,. When we write u;(, x)=v(t, g;{t, x)) (=1, 2, 3), the solution of (1)
and (2) takes three values u;(t, x) (=1, 2, 3) on £2,. Concerning these situa-
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tions, see Figure 1.

Y) Xl

v(t, y)=¢
1 c,
3, H,

v(t, ¥y)=c¢

Y u(t, ¥)=¢s H(u(t, y)=c¢) X,

2

C.

u(t, y)=c,

Figure 1. Curves X,, H,(X,) and H,"*(H /(X )).

Lemma 2.

) gt )= go-(gt, XY for x€Q, (=1,2,3)

au,-

A
ox

ii) <gi(t, x)—g,t, x), %i— ><0 for x€8,, i+j,

i) w,(t, x)<uy(t, x) and us(t, x)<uylt, x)  for x8,.

Proof. 1) This is obtained by simple calculation. ii) From the definition of
gi(t, x), we have

x=g4t, x)-l-tf’(%(t, x)) s xe,.

As g(t, x)#g;{, x) for i=#j, it follows 0u;/0x(t, x)+#0u;/dx(t, x) for i#j. Us-
ing the convexity of f(p), we get the inequality ii). iii) We prove the first
inequality. Divide the simple closed curve 0f2, into two parts joining two cusp
points X, and X, of 2, and write them C, and C,. Here we introduce the
family of solution curves of following differential equation
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dx
W'—gl(tv x)—8:(t, x).

Then these curves start from C, (or from C,) and end at C, (or at C, respec-
tively), and the family of these curves covers the domain £,. On each curve
it holds

d (0w Ous
St -, =G~ 5, £1—8:)<0.
Since u,(t, x)=u,(t, x) on C, (or on C,), we get u,(t, x)<u,(, x) in Q,.

We are looking for a continuous solution. The iii) of Lemma 2 means that
we can not attain our aim by advancing from the first branch to the second
and also from the second to the third. The last choice is to pass from the first
branch to the third.

Lemma 3. Put I(¢, x)=u,{t, x)—uy(t, x). Then I'y={x<Q,: I, x)=0} isa
smooth curve in 2, joining two cusp poihts of 082,.

Proof. In this case we introduce the family of curves defined by
d
=at, —alt, %) (10)

Then these curves also start from C, (or from C,) and end at C, (or C;) and
the family of the curves covers the domain £,. On each curve it holds

d /) 0u, B Ous _
216 0=(G 5 amay<0.

By Lemma 2, we have

1@, x)|e,=us@t, x)—ust, x)|c,<0,
I, x)|c,=ust, x)—ust, x)|¢,>0.

Therefore on each curve of (10), I(¢, x)=0 has a unique solution. Obviously
I(t, x)=0 at the cusps X, and X,, and we have by ii) of Lemma 2

grad,I(¢, x)=0 in 2,.
Hence we see that I',.={xeQ,; I{t, x)=0} is the smooth curve joining the points
X, and X, in £2,. Q.E.D.
Since we seek for one-valued and continuous solution, we define the solution
u(t, x) in £, as follows: Writing £, .={x€2,; us(t, x)—u,(t, x)=0}, we define
u,(t, x) in Q:,+
u(t, x)=
uy(t, x) in Q,_.

As I', is smooth, it can be parametrized as I',={x=x(s)}. Then
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ou, Ouy dx >_0
ox ox  ds /-
This means that, though the first derivative of the solution u(¢, x) has jump

discontinuity along the curve I, it is continuous with respect to the tangential
direction of I,

d
I, x<s>)=(

§3. Semi-concavity of u(x, t).
Let n(t, x) be a unit normal of I", advancing from £, - to 2, ,, and define
at xer’,

ou . du
+0)= Z* 4 x+
ox ¢, x£0) slleo ox (¢, xxen).

Any C:-function satisfies the semi-concavity condition (3). Therefore, for the
proof of (3), it suffices to treat the case where x/', and y=en (¢>0). Then
we have

u(t, x+y)+ut, x—y)—2u(t, x)

:SK%—(” x+53’)—g—z<f’ x+0), y>ds

+S:<—‘;%(t, x—0) ——gz—(t, x—sy), y>ds

ou ou
+<E—(t, x40 — 2t x—0), y>.

The first and second terms are easily estimated by K|y|%. To get the in-
equality (3), it must be

ou ou
<W(t’ x+0) = St x=0), nt, x)>§0. (11)

Contrary, if (11) is true, then we can get (3). Hence (11) is equivalent to the
semi-concavity property.
On the other hand, we have by the definition

us(t, x)—u,(t, x)=0 in 2, .
which means
—d—{ua(t, x+sn)—u,(t, x+sn)}i =0,
ds $=0

that is to say,

0 3 a 1
<‘5’; t, =52 (t, ), n>go onT,. (12)

From the definition of u(f, x) in £,, it holds

0U,

ou ou, ou _ 0u;
(t, x) and E—(t, x—0)= o (t, x).

W(t' x+0)= ox
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Substituting these relations into (12), we get (L1), i.e., u(f, x) is semi-concave.
Summing up the above results, we have the following

Theorem 1. After the time t* where the Jacobian of the mapping H, vanishes
at first, the solution takes many values. But we can uniquely pick up one value
from them so that the solution becomes one-valued and continuous. Then the con-
dition of semi-concavity is automatically satisfied.

Remark. Putting v=0u/dx in (11), we get the condition on the jump dis-
continuity of v(t, x):

(t, x+0)—v(t, x—0), n)=<0 on[l,.

This is the entropy condition for the system of conservation laws (4) given in
Remark in §1. ’

§4. Collision of singularities.

In this section we consider the collision of two singularities Iy, and I,
constructed in §2, assuming the hypotheses (A.1) and (A.2). Here we use the
notations X; ¢, £;.., Dy, -+, for I';, (i=1, 2) which correspond to X', 2., D,, ---,
for I', introduced in §2. We see that there exist three kinds of collision as
described in Figure 2.

Z2,t
(i) (i) (i)
Figure 2. Collision of singularities.

Case (i). Consider the case where I';, and I, collide as (i) of Figure 2.
Then the solution becomes two-valued on a domain bounded by Iy, and [, ;.
By the almost same discussions as in §2, we can uniquely pick up one from
two values so that the solution is one-valued and continuous. Then we can
prove that the solution is semi-concave. In this case the new singularity ap-
pears as a smooth curve joining two points where [';, and I, , intersect each
other. It is described as a dotted curve in (i) of Figure 2.

Case (ii). Consider the collision (ii) of Figure 2. We put 2¢ ,={Y 1, Vi .}
and

Ay ={y; yeH, (2:.)—D;,. and H(y)el'; ,} (i=1, 2),
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then 4, is a smooth simple closed curve which is tangent to X, , at y=Y,,
and Y;, (=1, 2). When the end point of I',, is on I'y, A,, is tangent to
A, at the point y=A where A=Y, , or Y,, See Figure 3.

Al,t

4
) 1,2

Figure 3. Relation between 4, , and 4, ,.

As v(t, y) restricted on 4, , does not take an extremum at y=A, we get
ov/dy(t, v)+0 at y=A. i.e., the curve C,={yER?; v(t, y)=v|,} is smooth in
a neighborhood of y=A, and it intersects A, , at y=A transversally. On the
other hand, as v(t, y) restricted on A, takes extremum at y=A, the curve Cy,
is tangent to A, , at y=A. This is in contradiction with the above. Hence
this case (ii) does not happen.

Case (iii). When Iy, and I',,, meet first at a time t=¢° as (iii) of Figure 2,
2. 0J2, 0 is drawn as (i) of Figure 4. But, as the interior domain of the
curve X,={yeR?; 14+2,(»)=0} is monotonely increasing, X, ,\JY,,, is described
as (ii) of Figure 4 for t>t°. When it satisfies the conditions (A.1) and (A.2),
we can construct the singularity of solution by the just same way as in §2.

Zl,tl)
2!. LUZZ, t
y=y" t>1°
Zg, to
) (i)

Figure 4. Changement of X, ,\U2Y, , with respect to the time.

Remark on Figure 4. Assume that X, ; and X, ,0 meet at y=y=(a, b)
and that the singularities of 4,(y) are non-degenerate. As A,(y) does not take
minimum and maximum at y=y° we can suppose by Morse’s lemma
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A=)+ —a)—(y.—b)?,  1+°4((y)=0.

Therefore 3; .0 (i=1,2) have the singularities at y=3y°. But, for t>1° the
curve {y€R?; 1+44,(y)=0} is smooth in a neighborhood of y=y°.

Summing up the above results, we get

Theorem 2. Assume that the assumptions (A.l1) and (A.2) are conserved.
Then, even if two singularities collide each other, we can uniquely pick up one
reasonable value from two values of solution so that the solution becomes one-
valued and continuous. In this case also the condition of semi-concavity is naturally
satisfied.
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