J. Math. Kyoto Univ. (JMKYAZ)
26-3 (1986) 445-464

Mixed problems for pluriparabolic equations
By

Reiko SAKAMOTO

Petrowski considered the well-posedness of Cauchy problems for evolution
equations with r-dependent coefficients, and introduced two typical subclasses
—strictly hyperbolic and p-parabolic ([1]). Volevich-Gindikin considered Cauchy
problems for pluriparabolic equation—the third subclass of evolution equations
([2]). Finally, Volevich proved the well-posedness of Cauchy problems for H-
correct evolution equations with (¢, x)-dependent coefficients, where the class of
H-correct evolution equations is a subclass of evolution equations containing
the above three classes ([3]). On the other hand, there are little works on mixed
problems for evolution equations other than hyperbolic or parabolic equations
(41, [5D-

In this paper, the author considers the mixed problems for pluriparabolic
equations. She uses the energy method, where the main tools are the pseudo-
differential operators with weight functions ([6]). She uses two types of weight
functions and pays attentions to the separation of two types of symbols. To get
the energy inequalities, the choice of energy forms is based on the technique used
in [7].

A typical example of pluriparabolic mixed problems is given by

0,u=—0,u+dut+f (t>0,x>0, —0<y<+o0),
u|z=0 =& (t>0’ —°°<J’<+°°),
\u|’=o:h ' (x>0, —°°<y<+°°).

More general pluriparabolic equations of order 1 with respect to 8, are investi-
gated under the name of ultraparabolic equations ([8], [9]).

§1. Pseudo-differential operators with weight functions.
L.1. For p=(py, o ***, 0,) (0;>0), we say that 2(£) (=1) is a weight func-
tion if
[0% 2(&) | =C, 2(E) .

Moreover, we say that a(x, £)E Sy, if
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l aag Dg a(x’ 6)l écwﬁ l(f)m_p.u >

Then we can define the pseudo-differential operator a(x, D,) by
a(x, D,) u(x) — (2:”')-"5 et a(x, £) B(E) d &

(see [6]). Moreover, we say that a(x, £)E SF,(2) if
2(x, &) a(x, §) ST,
for any x(x, §)e S , satisfying supp [x]C Q.

Lemma 1.1. Let us assume that a(x, §)ESX(2). For another weight func-
tion X’ (with same p), we assume

) V<line,
i) [0FD%a(x,&)|SCA**P 2 *in 2, ifk— a.p>0.
Then we have
alx, &) rmh e sk (2).
Proof. Let k—a+p>0, then we have

|8% Di(a (x, §) 27m*H)|
§C 2 |ag-u’ Dg al Iag/ l—m+kl
' <o
=c> Ah=(@=0)p am=k J-m+k-0'p
gcl 2 x/k—w.p .
Let k—a-p =<0, then we have
|0 Difa (x, &) 7| =Cc 2 **=ca*. A

Now we say that a(x, §)= S35/ (£2) for two weight functions 2, 2’ ('<2), if
) a(x, §)eST(92),
i) |0z D%a(x,&)|<C A~ 1+""in 2, if 0<a-p<k.

Lemma 1.2. Let a(x, §)ES0Y o(2) and b(x, £)E ST (2), then we have
a(x, §) b(x, ) S (2).

Proof. It is obvious that ab= S+ (2). From the Leibniz law, we have
0t Di(ab) = 33 Cpp afglp) biary

0sp’sB

+ X Cap ap-p) bph
0<p’<p

(®—a’) 7. ()

+ 3 Chu.pp aaZs)} bl .
o<’ <
osp’ <8

Let 0<a-p<k, then we have
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th—=0e -_— ’
| a$8 g0y begry| S CA*=*P am=k) 2™,
th—0be [
la(p_p') b?;))l §C X'n(x k—aep lm k) ,

ST |aETE] b | SCA e anmhee 2
oo <a

therefore we have
|6g DE(ab)| < C 2*+-* amtn'~k . W
1.2. In the following, we consider the polynomial
A, x;1,6) = > ap(t, x) T &Y (auwo = 1)
k+ JZ=1 vilp; = u

I
= kzo al"—k(ta X, E) 7 >

where {p;} are positive integers such that p;=--+=p,=1, p;>1 (j=s+1, -, n),
and a,,€ B(R"*"). We denote p=(p;, ***, P»)-
Let us denote & =(¢', £/), where

E' =, &) and & =(( 6D
Moreover, denoting
€1, = G IE 1m0 1671, = (33 16,197,
we define
AG, &) = (It IE1)7 = @+ [ED € =o—iT),
A, &) =(lo|>+ 161",
Nz, &) = (P €717
Moreover, we define
A&) = (1€ AYE) = A+€]),
AY() = (141613,
Immediately, we have
A(t, x; 7, 6)ESK 0.0 »

where q=(1/py, ***, 1/p,).

Lemma 1.3. Assume that p, of the roots of A=0 w.r.t. 7, {t;};o,..u, are
inside of Ty and u, of those (u,+1,=1), {7;} j—p 41,..u, are inside of T,, where T,
and T, are simple closed curves on t-plane contained inside of a circle with radius
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RA(R>0) and dis(Ty, T',)=0Ay6>0) if EE82. Then we have
i i .
= ]1_:[1 (t—7)) = j;oal w8 x5 6)

and
A, ;=H (T—"';)—Zaznz it x;6) L

where a; ,(t, x; 4’)ESA ayd(2).
Proof. Setting

ety x; &) = 1 At x;7, &) dr
2xi r, A, x;7,¢)
we shall see ¢, €S ’j\'ol, Aé:q(.Q). Since we have
O A=A x; 7, 6| =6, AT (6,>0),
|87 8% DE A(t, x; 7, §)| S CA§~H="

for r&T,, we have

Ia?D { (fxrf)}|<cA_qu
A(t, x; 7, 6)

Therefore we have
|8% DY, ci(t, x; E)| S C AF™™7.

Especially when 0<a-g=1, since

Ia‘gDﬂ {—(t——x—TQ}IAZSCA"I uq
A(t, x5 7, 8)

we have
|8% Df . ci(t, x; )| AFF'=C A . 1
Lemma 1.4. Let a(E)ES" ! v (2), where 2C {At=c Aot (¢>0), then we have
{a(©)—a (&, 0} AT ESL;(2).
Proof. 1t is obvious that a(¢’, 0)ES%, (2), because Af(§)=c Ay(é) in £.
Then, we have

a(€) = a(e)—a(¢', 0) = 3} 3¢ al€’, €€,

where |€”|<|¢”|. Since
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|0¢; a(6)| SC AY "% AST,

we have

| 33 8¢ aE, &) &1 SC AT S A9
j=5+1 j=s+1
=C AFAY

Moreover, we have
|a@&) | < 1aE)(©) |+ 1a@E’, 0)]
SC AT AL CARTISC AT ALY

for 0<a-g<l. W

Corollary. Let us assume

Az, &) = ﬁ (z—74£),

where {t (&', O} joy,..u are distinct for &' €S*~'.  Then we have

F(3 O)ESL;fAéz’q @)

from Lemma 1.3, and we have
2(E)=1,&)—7,(¢', 0)ESLy,, (2)

from Lemma 1.4, where 2={|&'| =c|&],} (¢>0).

1.3. Let us specialize the direction of x;-axis in x-space, where we assume
AQ©, 1, 0, +++, 0)%=0. We may assume A0, 1, 0, -+, 0)=1, rewriting A(r, £)/4
0, 1,0, :++,0) as A. Denoting

&= (C’ M2s **°y 77’1) = (c’ 77) s

we have

[d .
A(r, ¢, n) = g(}) bu_j(x,n) {7

Moreover we denote
Az, 1) = (= 2+ 17|37,

iw, ) =(ol*+ 2|7,
and
A (z,n) = @+ 7" 1D,

where 7' = (7, =+, 7,) and 7" = (g1, ***, 70)
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Lemma 1.5.  Let my of the roots of A(z, {, n)=0 withrespect to {,{C(z, 1)} k=1, my»
be inside of Ty and let the rest m, (=p—my), {{i(z, )} jom, 41,1, De inside of T, for
(z, N)E L, where dis(T';, T,))=0A, (6>0). Then we have

Ay = TE @€ e, 1) = € by(e, 1) Oty (5, )
and

I
A =i=1;'[+1((_cj(r’ 7))) = sz+b2 (7 77) (mz'l""'*‘bz ,,,2(7.', 77) s

where
bij(z, n)ESj;':_A'lf'q 2.
Proof. 1t is proved in the same way as in Lemma 1.3. W

Lemma 1.6. Let b(r, n)ESk] a7, (2), where @C {A{=c A} (¢>0). Then we
have

{b(z, 1)—b(o, 7', O AT*'ESYy, (2).

Proof. It is proved in the same way as in Lemma 1.4. W

§2. Cauchy problem for pluriparabolic operators.

2.1. Pluriparabolic. Let us consider a polynomial with respect to (z, £):

A(Ta E) = 2 ak‘u(t’ x) Tk Ev ’

k+Xvi/pjsp
where a,,(t, x) € B=(R"*") and a,(t, £)=constant outside a ball in R**'. Let us call

A, &) = 3 ap(t, x)* &

+Xvjlbj=p

as the principal part of A(z, &), considered in §1. Let us use the same notation
E=(¢’, &) asin §1.

Assumption (A). A is pluriparabolic, that is,
1) Ao(l, 0)4:0a
ii) the roots {r;(6)} joy,..u Of Ay(z, £)=0 for £ €S~ satisfy

Imzj&)=cl¢”’|, (c>0),
iii) the roots of 4y(zr, &', 0)=0 are real and distinct for £’ S*7%,
First, we consider the 0-Cauchy problem:

A(t, x; Dy, D) u(t, x) =f(t, x) in R'XR",

(C.P) { .
u(t,x) =0 in (—oo,0)XR".
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Theorem 2.1. There exist 7,>0, C>0 such that for u€ H*(R"™") and r>r,,
we have

2 3 (D,—ir)* Dy ull

k+Zpi/pisp-1
I(D,—ir)* D ull
k+Zy;/B;su-1/2
k+2’u,‘$p—1
=ClIA"RAD,~ir, D) ull ,
where 3\’ means the summation about j for which p;=1.

By the usual way, energy inequalities of higher or lower orders are obtained
from the basic energy inequality stated in Theorem 2.1. Therefore, concerning
to the dual problem, we have the following existence theorem:

Theorem 2.2. For f& H(R"") with supplf]C {t =0}, there exists a unique
solution u€ H*(R"*™) with supp[u]C {t =0} satisfying

A(t, x; D,—ir, D,) u(t, x) = f(t, x) in R'XR",
where r>7,.
2.2. Energy inequality. We denote, for r=0—ir (r=1),
D' = {(g, ) ER'XR"; A(z, §) =&y A(r, &)},
D"’ = {(o, )ER' XR"; A'(z, &)=¢, A(z, )},
D =D'N{lo—t{¢,0)|=e Az, O)} ,
Dy = D'\ jl:ll D,

Taking ¢, ¢, small enough, we have
[Ay(r, O =]II(c—7 &) =2c Az, &)* in D”UD;.
Denoting
Ay(7, &) = (7 —7&)) (=, §),
we have
|Aj(z, &) =c Az, &)*' in Dj.

Since {r;(¢’, 0)} are real and distinct, we have from Corollary of Lemma 1.4
“w
Az, &) = ,.I;I, {r—( €, 0)+7,6)} in D',

where

Tj(f’s O)ES}\o,q(D,)s ?j(f)eskg.q(D,) ’
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and
Im #(&)=c|é”],.

Now, let x(z, &) be a C~-function with support in D} is defined by

o (ZEDGES)

where ¢(s) is a C=-function with support in e-neighbourhood of the origin, 0=
#(s)=<1, and ¢(s)=1 near the origin. Then we have

Lemma 2.3.
2(z, O)ESY 0,00
Set
T(z, &) = x(z, &) {(6—Re 7;(&)—i(r+Im 7 (£)}
—i(1—x(z, &) A"(z, £)
— x(r, &) (0—Re 7,(8))
—i{x(z, &) r+Im 7€)+ —x (z, ) A”(z, )}
=T(,&)—iT"(z, &),
then we have from Lemma 2.3
Lemma 2.4.

) T'(r,&)S}}

AAN7,Q,9)s

i) T"(r, §)ESyr 0,9 and T"(z, £)=c A” (¢>0).
Lemma 2.5. There exist ry>>0 and C>0 such that
[|A""*(D,—ir, D,) ul| S C||A"*2T(D,—ir, D,) ul|
for ue H*(R'XR") and r>71,.

Proof. We denote T=T (D,—ir, D,) and e.c.. We consider the integral
form in R*XR":
(Tu, w)—(u, Tu) = (T'—iT") u, w)—(u, (T'—iT") u)
=T u,w)—, T' W} —i {(T" u, )+, T"” u)} .

Since

T*_T'~3 (a)) T

|®]>0 () >

we have from Lemma 2.4



Mixed problems for pluriparabolic equations 453

fa-ryu o < ClIA"R-18 PS C Y AR ol
(T" u, W+, T yZc||A"P ulP—Cr=Yf|A2 ulf,

where g=ming;. Therefore we have [[A”Zu||< C||A"7” Tul|, if r is large
enough. W

Proof of Theorem 2.1. Let us define /f, from A; in the same way that we
defined T=T; from z—(§). Let x; have the same properties as x; and moreover
supp[7;]C {x;=1}. Let us denote - as the product of operators and denote o
as the product in symbols. Then we have

zjodo = Tjodjok;,
A7 j A —Z o Ao) ul S CII A7 A
|A"(Tyo djoz,— T Ajo ;) ul S CI|A"77 A ]|
and moreover from Lemma 2.5
[|A773 Tye Ao 2; ul| Zc|| A2 Ao 250l
On the other hand, we have
([(A"2 45— Ao A7P)Z ul| S C|JAMA AR |
and
(| d; A2 35 ul| Z el| A AP T ul]

Let 7, be the localization symbol on Dj, then we have the estimations of
[|A"Y2(xy+ Ay— 200 Ay) ul| etc. in the same way as in D}. And moreover we have

([A7=Y2 Ay Zo ul| Z c|| A"~ A* Zoull .
Hence, summing up the estimations of {¥; u} j_,,..,u, We have

IA7172 A | S CIIA" 2 Aul| . W8

§3. Initial-boundary value problems for pluriparabolic operators.

3.1. Problems and results.

Let 4 be a pluriparabolic operator defined in §2. We consider the initial-
boundary value problem for A4 in a half space x,>0, where we assume the bound-
ary {x,=0} is non-characteristic of 4 in the weighted sense, i.e.

Assumption (C): Ay(0, 1,0, ---, 0)==0.

From the Assumption (A), the roots of 4,=0 with respect to &, are non-real
when Im 7<0 and (&, -+, £,)ER*™'. Hence, the number x, of the roots with
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Im £,>0 and the number #_ (#.+#-=p) of the roots with Im &, <0 are indepen-
dent of variables. We denote

AO(T’ 5) = A+(T’ f) A—(T’ 6) >

where the roots of 4,=0 are in {Im &,=0}.
Now, the boundary conditions are given by

Bj(Db Dz)ulxl=0 =§; U= 1, -, ,Lt_,.) s
where

Bz, &)= 3 by (1, x) Tk &Y
h+2uj/Pj§”j
(ri=we—1,ri=%nifj+k),
where b; ,(t, x) € B~(R**") and b, ,,=constant outside a ball in R**'. We say that

Bj(z, &) = 3 by, x) " &

htveg=r;
is the principal part of B;. Moreover we say that

Bi(z, &) = Ay(z, &, -+, £ Bz, §)
is the standardization of B. Here we introduce the Lopatinski determinant

1 [ Bz, &) &1 ]
R(z, &, -, €, =dt[__ e SAAA LI ;
R o AV Ney Rl

and we assume

Assumption (B) (Uniform Lopatinski Condition): R(z, &, -, £,)+0 for
{Im Téo: (62, oy é‘n)EIQ”_la (Ta EZ, "t E,,)#:O} .

Theorem 3.1. Under the Assumptions (A), (B), (C), there exists positive num-
bers ry and C such that we have

Cud+Iull| = CHIIA" 2 A(D,—iT, D) ulli2crx 1)
I
+ 21 <B§'(Dt—i7', D, u>§.2(RlxR”‘1), s=of
=
for ue H*(R* X R%) and r>17,, where

«u»z = 2 L <(Dt_ir)h D: u>i2(RXR"'1), x=0>
htvegsp—

Ml =, 33 1A%AD i7" Dy sy

vegsp
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We can get the energy inequalities of higher orders or lower orders from the
above Theorem 3.1 in the same way as in the hyperbolic case ([7]). Moreover,
we can get the same type of energy inequalities for the adjoint problem. Hence we
have

Theorem 3.2. Under the Assumptions (A), (B), (C), there exists a unique solu-
tion

ue H*(R* X R%), supp [u]lC {r=0},
for the problem:

{A(D,—ir, Dyu=f for (t, ) ER'XR" ,
Bi(Dt_iT’ D,)u =& (G=1,- ) for (2, X)ER'XOR}

for any given datas:

i fEH™(R'XRY), supp[flc{t=0},
g, EH"(R), supp [g;]C {r=0},

where r>7,.
3.2. (H-P)-property. We say that
P(T, (, 7]) = (h+CI(T, 7]) ch—l_l_cz(r’ 77) ch—z+"'+ch(r9 77)

is a polynomial of { of order & with Sy , (U)-coefficients, if

D efr, DESKLAL. (U),
i) Im ez, n) AT/MeS)r, (U).

Here we denote
P'(r, ¢, 7) = "+ Re ¢z, 7) {F 14+« +Re (7, 7)
Pz, &, 1) =TIm ez, 7) 7o+ Im (e, 1),
then we have
P(r, ¢, n) = P'(c, ¢, n)+iP"(z, £, 7).

We say that P has (H-P)-property in U, if the roots {(z, 7) of P=0 satisfy
the following properties (P) or (H). We say that {(z, 7) satisfies the property
(P) if |Im{|[=c A, in U (¢>0). We say that {(z, 7) satisfies the property (H) if

|P"(z, {(o, 7', 0), )| =c A A% inU.

Moreover, we say that P has (P)-property in U if all the roots of P=0 has the prop-
erty (P) in U, and that P has (H)-property in U if all the roots of P=0 has the prop-

erty (H) in U.
Denoting a e-neighbourhood of (#y, X, 7o, 7o) by
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U, = {t x, 7, ) ER XR"XC* X R*™1; | t—t5 |2+ | x—x, |2 <€?,
Iz =70+ |7 =70 3<%},
we define the corresponding conic e-neighbourhood by
U, = {(t, x, A7, X2 7, =+, 2% ,); (¢, x, 7, 1) ET,, 2>0} .

Lemma 3.3. Let P(z, ¢, 7), Pz, ¢, 1), Pz, {, 1) be ploynomials of orders
h, hy, by with respect to { with Sy, (U)-coefficients, and

P(fa ¢, 77) = PI(T’ ¢, 77) PZ(Ts ¢, 77) s

where the distance between the roots of P,=0 and the roots of P,=0 is 0A, (6>0).
Then, P has (H-P)-property in a conic neighbourhood of (t,, x,, o, 75, 0) (EU) iff
P, and P, have (H-P)-property in a conic neighbourhood of (t, x,, 7o, 76, 0) (EU) .

Proof. Assuming that P has (H-P)-property near (f, X,, 7o, 76, 0), we shall
see that P, has (H-P)-property near (t, X,, 7o, 76, 0). Let (o, {;, #") be real and
P, (0, ¢y, ', 0)=0, then we have

P(0,¢,7,00=0
and
|P"(x, &, m) | Zc A ALY
On the other hand, we have
| P"(z, ¢y 7))
= | P{'(z, {3, 1) Pi(z, &y 1)+Pi(z, &1, 1) Py (7, &y, m)]
S| PY(x, )| | Poo, Cip 7', O) [ HC AP ALE
Hence we have
|P{'(z, &, m)| Zc A AT
in a small conic neighbourhood of (z,, 76, 0). H

Lemma 34. A(z, {, ) has (H-P)-property in a conic neighbourhood of
(ty, Xo» 00, 7%, 0), where (ag, 70) E S

Proof. Let (a,, o, 75) (F0) be real and Aoy, <o, 76,0)=0, then we have (o, 76)
#0. Denoting

AO(T’ C’ 77) = ];-[ (t—tlz(cy 77)) s

since {r,(¢,, 70, 0)} are distinct, there exists a number k, such that

Oy = Tko (CO’ 776, 0) .
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Therefore, we have
Im Ay(z, ¢, 7) = Im (r —7, (¢, 7)) Re‘g}b (z—7(C, 7))
0
+Re (t—74,(¢, 7)) Imkg (t—7(¢, 7).
0

Hence the rest of the proof will be carried in the same way as in Lemma 3.3. W
Let us consider the behavior of the roots of Ay(z, ¢, 7) with respect to ¢ in
{Imz=0, 7R, (r, 1)+ 0},

which is devided into three parts:

® Imr<0, 7&R*,
® (7, 7)ER", 7”0,
® (v, 7")=0: real, " =0.

In case ® and @, the roots ¢ of Ay(z, ¢, 7)=0 are non-real. In fact, let { be
a real root, then we have Im 7 <0, ({, 7)ER" and Az, ¢, 7)=0 in case @,
which is a contradiction to the Ass. (A). Incase @, let { be a real root of Ay, ¢,
7)=0, then we have (z, {, 7)ER"", 7”40 and A4,(z, {, 7)=0, which is a contradic-
tion to the Ass. (A). Hence we shall consider only the case ® in the following.

Let us fix (g,, 75) €8*7", and let {¢;} ;... be the real roots of Ay(a,, ¢, 76, 0)=
0 with respect to ¢, whose multiplicities are {#;}. From Lemma 1.5, Lemma 1.6,
Lemma 3.3 and Lemma 3.4, we have

Lemma 3.5. We have the local factorization
AO(T’ (, 77) = P(Ty Cs 77) Pl(f’ C’ ”)"'Pd(ra c’ 77)

in a conic neighbourhood U of (o, 7%, 0), where P is a polynomial of { of order
h(=n—33h;) with (P)-property and P; is a polynomial of { of order h; with (H)-
property, satisfying

Pi(fo, (7 77(/)9 0) = (c—-—cj)hj .

§4. Energy estimates.
First, we can easily get energy estimates for P with (P)-property, that is,

Proposition 4.1. Let P(z, {, 7) be a polynomial of ¢ of order h with (P)-property,
then there exist ry>0, C>0 such that

h-1
S} <Al D PD,~ir, D,) u>

h
+3|AL4712 DY, P(D,—ir, D) ul

=CI|ATY* P(D,~i7, D,) ull
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and

h
>3 [|A%*"2 D} P_(D,—ir, D,)ul|
k=0
<C{||ATY* P(D,—ir, D,) ul|

k-1
+3) <Al DY P(D,—ir, D,) u>}

for uEH"(R' X R%) and r>r1,, where A\=A(D;—ir, D,,, -+, D, ) and P=P,P._.

Next, we consider energy estimates for P with (H)-property. To get energy
estimates, we shall see that the method used in hyperbolic case ([7]) is applicable
also in our case. As is shown easily, we have

Lemma 4.2. Let P(z, {, ) be a polynomial of { of order h with (H)-property,
satisfying

P(UO’ ¢, 7769 0) = ((_(o)h s
where (o,, &y, 76) is real and |o,|2+ |7|2=1. Then we have
P(z,{,n) = (=G A e, 7) (E—C AY ez, 1),

where

l) Cj-(‘l.', ﬂ)ESj\':.A’l"q ’

i) Im ez, n) Ai7ES\r,,
i) |Im cy(z, 7)| =c AL AL (¢>0).
Moreover, denoting c;’=Im c,, we have

Lemma 4.3. There exist c>0 and C>0 such that we have
i) Re(ci’ u, AT wy=c||A{2 AT u|P—CR

if 0, cy(90, m0, 0)>0,
i) —Re(ci’ u, AT u)=c||A{2 AT |2 —CR
if 8, c4(o0, 5, 0)<0,
where
R= 3V A{A AT Ll (e = gf2), L =D, —Co Ay,
and
ci! = ej'(Dy—i7, Dy, o, D, )y Ay = Ay(D,—i7, Dy o, D, ), e

Proposition 4.4. Let P(r, {, 1) be a polynomial of { of order h with (H)-property,
satisfying
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P(z,{,n) =< A1)h‘|'cj("', 7) ((—Co Al)h-l+”'+ch(r3 7,
where
ICj(T, 77)lga A{ (j:]’ ""h)'
Then there exists x, as follows. For any 0<x<r,, there exist C.>0, ,>0, r,>0
such that we have
h-a . ;
DS PSRN I
i=h
[ . ,
+ 2 ”A{/lﬂ Ailn—J—l L7 u||2
j=0
h+-l . .
S CJIAY 2 Pu|P4-£ D) <AV L u>?
j=0

for ue H*(R* X R%), 0<0 <0, and r>7,, where
® h,=h_=h/2 (if h is even and 8, ¢,(0,, 76, 0)>0),
® hy=h_=h/2 (if h is even and 9, c,(0,, 716, 0)<<0),

® h+=h_+1=h'|2' L fhisoddand 8, cy(oy, 74, 0)>0),

® hy+1 :h-:% (if his odd and 9, c,(ay 7, 0)<0),
and
P = P(D,—ir,D,), A,= A(D,—ir,D,,, -+, D,), - .
First, we introduce energy forms, which will be used to prove Prop. 4.4:
I; =2 Im(Pu, A}~ I/ u)
= 2Im({L*+cf L' oo teh} u, AV L w)
—2 Re({c}’ L* 4y L 24eedci’} u, A1 L)
= {LF u, AN L2, AT D)
oo L uy, AT L )
+{[et L2 u, A7 L 4-Cef L2 u, AT L)

el Ly AEIY L ] e e
—[Keh u, A7 L udee4-Ceh, L7, A7 D)}
+V;

:W]+W;+VJ (.]:0’ la "'sh)’
then we have

Lemma 4.5. i) We have

| V]I éC(R_I_V) (j = 1: ot h))
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[ Vo+2 Re(e u, AT u)| SC(R+V),
where R is the same one stated in Lemma 4.3 and
— SUIAY2 AR L ul] 35 (AL AL L
ii) We have
IWil=c@ WetW.) (j=1,,h),

where ¢(8)—0 as §—0,
k-1
W, =3 AT LA,
k=0
and

h_
W — 2‘ ARV [* >
E=hy
iii) In case ©, @, or ®, we have
| Wyl =C WP w2,

Lemma 4.6. There exists 0, as follows. For any 0<<6<0,, there exist c(8)>0
and Cy>0 such that ¢(0)—0 (as 6—0) and

h . .
STIAYE AL L uPSc@IAL AL ullP+CyIAL P PP+ R)
j=1

Proof. First we remark the interpolation inequality:

h

2 ”A”Vz Ah—, -1 uH<C2 ”A//I/Z AT 1k ulll—!j”A{'l/z A’l‘—l u“!i
j=1

(0=de;<1), that is,
k . .
2 IAL2 AL L | SCIAL AT L ull+el| AP AL
i<
for any e>0. On the order hand, since

P=Lipe Lo te,,

we have

AL AT LFull SCUA AT Pull+ 3 IIALY AT 6 L7
SCIIAL2 Pull+c(2) 3T IAP AL il +C R

Hence, applying the interpolation inequality to the second term of the right hand
side of the above inequality, we have
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[|A12 AT L2 ul| S C(IAY 72 P ull+R'7)
+c(®) (IA2 AT L al|+H|[A 2 AT ull)
Therefore, taking ¢, small enough, we have
1A{°2 A7 LF W S CIAL ™ P ull+RE)+c@|AY Al

Moreover, applying the above inequality to the interpolation inequality, we have

3 (1A Af L
SCG(|AY T2 Pull+-RP)+c@)IA A A . W
Corollary. We have
REC ™ (|A{ AL ullH| AL 2P ull)
and
VE(c@)+Cy r)IIALR S Ul 4Gl | AL 2 Pull.

Lemma 4.7. (see [7]) There exists x, as follows. For any 0<x<x,, there
exist positive constants {2;=2,(x)} such that
) Aoy Wyt P2 s Wyg oo 2, W2 W_—k W, in case ©, ®
i) Aoy Wyt 2ya Wb b2, Wo=e P W_—& W, in case ®,
i) Aoy WyoiF 2oy Wyg oo+ 2g Wo=e ' W_—k W, in case ®.
Proof of Prop. 4.4. From Lemma 4.3, 4.5, 4.6, 4.7, we have

Mt Ly F g Lyt 24 L —20 I
=57t W_—k Wy—CR+V+c(8) W)+||A2 AT ulf?

in case @,
Ay1 Ih-l+lh-3+'”+zl Il+lo I
=5t W_—k Wy—C(R+V+c () W)+|A]2 A ul?
in case @,
;‘h-—l Ih—l+xh—3 Ih—3+ "'+ll Il_lo Io
>k  W_—k Wy —CuREV+c(3) W)+|| A2 Ay
in case ®,

VSRR PARE o PR ]h—3+'"+l] [1‘|‘lo I,
ST W —k W —CR+V+c(d) W)+ AL2 AR y))?

in case @, for 0<r <z, (W=W,+W_).
On the other hand, since
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ST LI SCIAY ™ Pull (1AL 2Pull +| A7 A a4+ R2)
SCIAY T2 PulP+R)+-el| A2 Al
we have
£V W_o—k WA [[AR AT UPS CIAY T2 PulP+R+V+c(8) W) .
For fixed «, taking d, small enough, we have
£V W_o—k WA AU P CIAY T Poulf?

for 0<d<6, and r>7r,. M

§5. Boundary energy estimates under the uniform Lopatinski condition.

Now we remember the local factorization of 4, in a conic neighbourhood
U of (ay, 76, 0), discussed in §3:
Ao(T, C’ 77) = P(T’ C5 77) Pl(rs C’ ”)"'Pd(ry Ca 77) >

where P is a polynomial of { of order /» with (P)-property and P; is of order & with
(H)-property. Let A, be the extension of 4, by the representation of the right
hand side. Using the usual notation of P=P,+P_, we define

+

yE= Al

Vi = Ak L Ao =1, lit, i=1, e d),
Vi = At e A
P,

and
V, = VE, v, Vi, VE, -, Ve, o Vi, e, Vi)
Lemma 5.1. We have
(CRY, A PR, e, ALY
=Ci(w, ) V7, ¢, 1)+ C(z, 1) V_(z, (1),
where

Cu(r, n)ESY!

" .
A ArLg

Now, we denote
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then we have

BO(T9 ca 77) = B+(Ts 77) V+(T5 {’ 77)+B—(T’ 77) V—(T’ (a 77) s

where B.(z, W)ES;’;:, Al and det B.(z,, 76, 0)== 0 from the Uniform Lopatinski
condition. Therefore, there exists a conic neighbourhood U of (z,, 76, 0) such

that |det B.(z, 7)| =c (¢>0). Let Et be extensions of B. outside of U, preserving
the above properties, and let

By, ¢, 1) = By(z, 1) Vi(e, &, M)+ B_(zr, 7) V_(r, {, 1),

then we have

V+(Ty (a 77)
= B3, 7) B(x, ¢, 0)—B3(z, 1) B_(z, 1) V(x, &, )
= 6-{-(7’ 77) EO(Ta () 77)+é_(f, 77) V—(T, ca 77) ’

~ 0,1
where C. & SAI'A;/,q.

Taking # small enough in Proposition 4.4, we have

Proposition 5.2. There exist C>0, 6,>0, r,>0 such that

(D,—ir}t D} up
ktvegsp—1

+ 3 AR (D —ir) Di ull

ktvegsp—1

S CUIAY ™ Ay ull+<By uD)
for ue H*(R'xX R%), 0<6<<d, and r>r,.

Proof of Theorem 3.1. 1In the same way as in §2, the proof is carried by
applying the above Proposition 5.2 to the finite number of local factorizations of
Ao- -
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