A limit theorem for sums of i.i.d. random variables with slowly varying tail probability

By

Yuji Kasahara

§1. Introduction.

Let X_1 , X_2 , \cdots be nonnegative independent random variables with common distribution function F(x) belonging to the domain of attraction of stable law with index α (0< α <1); i.e.,

$$(1.1) 1 - F(x) \sim 1/(x^{\alpha}L(x)) as x \to \infty,$$

for some slowly varying L(x) (≥ 0). Here $f(x) \sim g(x)$ means that $\lim f(x)/g(x) = 1$. Let $S_n = X_1 + X_2 + \dots + X_n$, $n = 1, 2, \dots$. It is well known as Skorohod's invariance principle that, for suitably chosen v(t), $S_{[nt]}/v(n)$ converges in law to the one-sided stable process in the function space $D([0, \infty) \rightarrow \mathbf{R})$ endowed with J_1 -topology (see [7] for the definition and [9] for the result).

In this paper we will consider the extreme case of (1.1) as $\alpha \downarrow 0$; we treat the case where

$$(1.2) 1 - F(x) \sim 1/L(x) as x \to \infty.$$

As is well known, under condition (1.2), every linear normalization $a_nS_n+b_n$ leads to a degenerate limiting distribution. However, if we allow non-linear normalizations, we have

Darling's Theorem ([2]). If (1.2) is satisfied, then

$$\lim_{n\to\infty} P[\frac{1}{n} L(S_n) \le x] = e^{-1/x}, \ x>0.$$

(In [2] some technical conditions are assumed but they may be removed.) The convergence of the semi-group of the process $t \mapsto \frac{1}{n} L(S_{[nt]})$ was obtained by S.

Watanabe [10], and the purpose of this paper is to show the weak convergence of this process in J_1 -topology. Our idea of the proof is quite different from that of Darling or Watanabe and so may be read independently.

§2. Main theorem.

Let $\xi = (\xi(t))_{t \ge 0}$ be the symmetric Cauchy process such that $E[e^{i\theta\xi(t)}] = e^{-\pi t|\theta|}$, $\theta \in \mathbb{R}$. In other words, ξ is the Lévy process with Lévy measure $x^{-2}dx$. Define

(2.1)
$$m(t) = \max_{0 < s \le t} \Delta \xi(s) \quad \text{where} \quad \Delta \xi(s) = \xi(s) - \xi(s-1).$$

Thus $m = (m(t))_{t \ge 0}$ (m(0) = 0) is the maximum process of the Poisson point process with intensity measure $x^{-2}dx dt$, and therefore it is easy to compute the finite-dimensional marginal distributions; for $0 \le t_1 < \cdots < t_n$ and $0 \le x_1 < \cdots < x_n$,

$$(2.2) P[m(t_1) \leq x_1, \cdots, m(t_n) \leq x_n] = F(x_1)^{t_1} F(x_2)^{t_2 - t_1} \cdots F(x_n)^{t_n - t_{n-1}},$$

where $F(x)=e^{-1/x}$, x>0. Processes with the property (2.2) are often referred to as extremal processes (see [3]). Our main result is

Theorem 2.1. Let $L(x) \ge 0$, $x \ge 0$, be a nondecreasing function varying slowly at infinity. Then, under the assumption (1.2),

$$\frac{1}{n}L(S_{[nt]}) \xrightarrow{\mathcal{D}} m(t) \quad as \quad n \to \infty \quad in \quad D([0, \infty) \to \mathbf{R})$$

where $\xrightarrow{\mathcal{D}}$ denotes the weak convergence in J_1 -topology.

Proof. Since the convergence of finite-dimensional marginal distributions are obtained by [10], it remains to prove the tightness of the processes. However, it does not seem easy to check the well-known conditions for tightness such as Chentsov's moment condition (see page 128 of [1]), so we will adopt a direct method: On the probability space where ξ (and hence m) is defined we will construct processes ζ_n , n=1, 2, ... which are distributed like $(1/n)L(S_{[nt]})$, n=1, 2, ... and which converge to m almost surely in J_1 -topology.

Now let $\eta(t) = \sum_{s \le t} (\Delta^+ \xi(s))^2$ where $\Delta^+ \xi(s) = \max \{ \Delta \xi(s), 0 \}$. In other words, $\eta(t) = \int_0^{t+} \int_{x>0} x^2 N(du \, dx)$, $N(du \, dx)$ being the Poisson random measure defined by the jumps of the Cauchy process ξ . Clearly $\eta = (\eta(t))_{t \ge 0}$ is a one-sided stable process with index 1/2 and the Lévy measure is given by $\mu[x, \infty) = x^{-1/2}$, x > 0. Observe that m(t) may be expressed by using η instead of ξ ;

(2.3)
$$m(t) = \{ \max_{0 \le s \le t} \Delta \eta(s) \}^{1/2}, \quad \Delta \eta(s) = \eta(s) - \eta(s-1).$$

Indeed this is immediate from (2.1) and the definition of η . Let $F_0(x) = P[\eta(1) \le x]$, $x \in \mathbb{R}$. It is well known that

(2.4)
$$1 - F_0(x) \sim x^{-1/2}$$
 as $x \to \infty$.

This may be confirmed as follows. Since $\eta(n)/n^2$ clearly converges in law to $\eta(1)$,

appealing to Theorem 4 in page 124 of [5] we have that for every x>0,

$$n \{1 - F_0(n^2 x)\} \to x^{-1/2} \text{ as } n \to \infty$$

which proves (2.4). We also define $\phi(x) = F^{-1}(F_0(x))$ ($x \in \mathbb{R}$). Throughout the inverse of a nondecreasing function is chosen so that it is right-continuous;

$$F^{-1}(x) = \inf \{u: F(u) > x\}, \ 0 < x < 1.$$

Let, for $n=1, 2, \dots,$

(2.5)
$$\eta_{ni} = \eta \left(\frac{i}{n}\right) - \eta \left(\frac{i-1}{n}\right), \ i = 1, 2, \cdots,$$

(2.6)
$$\zeta_n(t) = \frac{1}{n} L(\sum_{i \leq nt} \phi(n^2 \eta_{ni})), \ t \geq 0,$$

(2.7)
$$m_n(t) = \begin{cases} (\max_{i \le nt} \eta_{ni})^{1/2}, & t \ge 1/n \\ 0, & 0 \le t < 1/n \end{cases}.$$

We are now ready to explain the story of the proof. We will prove the following three.

$$(2) m_n \to m (in J_1) a.s.$$

(3)
$$\sup_{0 \le t \le T} |\zeta_n(t) - m_n(t)| \to 0, \quad \text{a.s., for every } T > 0.$$

Indeed, (2) and (3) imply that $\zeta_n \rightarrow m$ (in J_1) a.s., which together with (1) clearly proves our Theorem.

The proof of (1) and (2) are easy. To see (1) it suffices to show that $\phi(\eta(1))$ (and hence $\phi(n^2 \eta_{ni})$) is distributed like X_1 . However, this is obvious from the definition $\phi(x) = F^{-1}(F_0(x))$. In fact ϕ was defined so that (1) holds. To see (2) define $\eta_n(t) = \eta([nt]/n)$, $n=1, 2, \cdots$. Since $\eta_n(t) \to \eta(t)$ (in J_1), we have from the continuity theorem that

$$\max_{i \leq nt} \ \eta_{ni} = \max_{0 \leq s \leq t} \ \varDelta \eta_n(t) \ \rightarrow \ \max_{0 \leq s \leq s} \ \varDelta \eta(t) \quad (\text{in } J_1) \ .$$

Therefore, considering the square root of each side, we obtain from (2.3) and (2.7) that $m_n(t) \rightarrow m(t)$ (in J_1) a.s., which is the desired result.

For the proof of (3) we need the next two key lemmas.

Lemma 2.2. For every $\lambda > 0$ and T > 0,

$$\lim_{n\to\infty} \sup_{0\leq x\leq T} \left| \frac{1}{n} L(\lambda \phi(n^2 x^2)) - x \right| = 0.$$

Lemma 2.3. For every $\varepsilon > 0$ and T > 0 ($\varepsilon < T$) and for almost sure ω , there exist K_1 , $K_2 > 0$ and n_0 depending on $\{\varepsilon, T, \omega\}$ such that, for every $t \in [\varepsilon, T]$ and $n \ge n_0$,

(2.8)
$$K_1 \phi(n^2 m_n(t)^2) \leq \sum_{t \leq n, t} \phi(n^2 \eta_{nt}) \leq K_2 \phi(n^2 m_n(t)^2) .$$

We postpone the proof until next section and return to the proof of (3). Since L(x) is nondecreasing, applying $L(\cdot)$ to each side of (2.8) and dividing by n, we obtain

$$\frac{1}{n} L(K_1 \phi(n^2 m_n(t)^2)) \leq \zeta_n(t) \leq \frac{1}{n} L(K_2 \phi(n^2 m_n(t)^2)).$$

Therefore, we have

(2.9)
$$\sup_{\substack{\ell \leq t \leq T}} |\zeta_{n}(t) - m_{n}(t)|$$

$$\leq \sup_{\substack{0 \leq t \leq T}} \max_{i=1,2} \left| \frac{1}{n} L(K_{i} \phi(n^{2} m_{n}(t)^{2}) - m_{n}(t)) \right|$$

$$\leq \max_{i=1,2} \sup_{\substack{0 \leq x \leq m_{n}(T)}} \left| \frac{1}{n} L(K_{i} \phi(n^{2} x^{2})) - x \right|$$

which converges to 0 a.s. by Lemma 2.2. and (2). Since $\zeta_n(t)$ and $m_n(t)$ are monotone in t, we also see

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} \sup_{0 \le t \le \varepsilon} |\zeta_n(t) - m_n(t)|$$

$$\le \lim_{\varepsilon \to 0} \limsup_{n \to \infty} (\zeta_n(\varepsilon) + m_n(\varepsilon))$$

$$= \lim_{\varepsilon \to 0} 2m(\varepsilon) = 0 \text{ a.s.}$$

This completes the proof of (3) and hence of Theorem 2.1.

Remark 2.4. We have a very simple proof for the special case where $L(x) = \log(x+1)$. Let $M_0 = 0$ and $M_n = \max(X_1, \dots, X_n)$, $n \ge 1$. Then we have

(2.10)
$$\frac{1}{n} L(M_{[nt]}) \leq \frac{1}{n} L(S_{[nt]}) \leq \frac{1}{n} L(nM_{[nt]}) .$$

Since $\log(nx) = \log n + \log x$, it is easy to see that the first and the third process (and hence the second) should have the same limiting processes. Thus our problem may be reduced to the study of M_n , which was treated by [4] and [6]. However, for general slowly varying L(x), we cannot apply this argument. For example, let $L(x) = \exp \sqrt{\log(x+1)}$. L(x) is a slowly varying function and we can show that the first and the second processes in (2.10) converge to m(t) but the third to $\sqrt{e} m(t)$.

§3. Proofs of Lemmas.

Proof of Lemma 2.2. Since $\phi(x) = F^{-1}(F_0(x))$, we have $1 - F(\phi(x)) = 1 - F_0(x)$ provided that F(x) is continuous. In general it holds that

(3.1)
$$1 - F(\phi(x)) \le 1 - F_0(x) \le 1 - F(\phi(x)/2).$$

By (1.2) both $1-F(\phi(x))$ and $1-F(\phi(x)/2)$ are asymptotically equal to $1/L(\phi(x))$ as $x\to\infty$, while $1-F_0(x)\sim x^{-1/2}$ (see (2.4)). Therefore, (3.1) implies that $L(\phi(x))\sim x^{1/2}$, or equivalently, $L(\phi(x^2))\sim x$ as $x\to\infty$. This also proves that

(3.2)
$$\lim_{x\to\infty} L(\lambda\phi(x^2))/x=1, \ \lambda>0,$$

since L(x) is a slowly varying function. Thus we have for every $\lambda > 0$ and $x \ge 0$,

(3.3)
$$\lim_{n\to\infty} \frac{1}{n} L(\lambda \phi(n^2 x^2)) = x.$$

Since $\frac{1}{n}L(\lambda\phi(n^2x^2))$ is monotone in x and the limiting function is continuous, the convergence in (3.3) is automatically uniform for x on every finite interval, which completes the proof.

Proof of Lemma 2.3. It is easy to find K_1 ; $K_1=1$ is the desired number. To find K_2 , define $\tilde{L}(x)=F_0^{-1}(F(x))$ ($=\phi^{-1}(x)$). By (2.4) we see that $F_0^{-1}(x)\sim 1/(1-x)^2$ as $x\to 1-0$. Therefore, $\tilde{L}(x)\sim 1/(1-F(x))^2\sim L(x)^2$ as $x\to\infty$, from which it follows that $\tilde{L}(x)$ is also a slowly varying function, and so has the canonical representation $\tilde{L}(x)=c(x)\exp\int_1^x\frac{\varepsilon(t)}{t}dt$, where $c(x)\to c>0$ and $\varepsilon(x)\to 0$ as $x\to\infty$ (see [8] page 2). Therefore $\phi(x)=\tilde{L}^{-1}(x)$ may be expressed as

(3.4)
$$\phi(x) = \exp \int_{1}^{q(x)x} \frac{\tilde{\varepsilon}(t)}{t} dt$$

where $\tilde{\epsilon}(x) \rightarrow \infty$ and $q(x) \rightarrow 1/c$ as $x \rightarrow \infty$. Using (3.4) we easily see that, for every a > 0,

(3.5)
$$\lim_{n \to \infty} n^2 \, \phi(n^2 \, a) / \phi(2n^2 \, a) = 0 \, .$$

Now let $a=a(\omega)=m(\varepsilon)^2/3$. Note that a>0, a.s. Since $m_n(\varepsilon)\rightarrow m(\varepsilon)$ a.s., we may and do assume that there exists $n_1>0$ such that

$$(3.6) m_n(t)^2 \ge m_n(\varepsilon)^2 \ge 2a, \quad t \ge \varepsilon, \quad n \ge n_1.$$

We divide $\sum_{i \leq nt} \phi(n^2 \eta_{ni})$ into three parts;

$$\begin{split} S_{1,n}(t) &= \sum_{i \leq nt} \phi(n^2 \, \eta_{ni}) \, I(\eta_{ni} < n^{-2}) \,, \\ S_{2,n}(t) &= \sum_{i \leq nt} \phi(n^2 \, \eta_{ni}) \, I(n^{-2} \leq \eta_{ni} \leq a) \,, \\ S_{3,n}(t) &= \sum_{i \leq nt} \phi(n^2 \, \eta_{ni}) \, I(\eta_{ni} > a) \,. \end{split}$$

Here, $I(\cdot)$ denotes the indicator function. Since ϕ is monotone, we clearly have

$$(3.7) S_{1,n}(t) \leq nT\phi(1), \quad t \leq T.$$

On the other hand, using (3.4), we see that $\lim_{n\to\infty} n/\phi(2n^2a) = 0$. Therefore, by (3.7) and (3.6) there exists $n_2 > 0$ such that

$$(3.8) S_{1,n}(t) \leq \phi(2n^2 a) \leq \phi(n^2 m_n(t)^2), \quad \varepsilon \leq t \leq T, n > n_2.$$

We next consider $S_{2,n}(t)$. If $n^{-2} \le x \le a$, then we have

$$(3.9) 0 \leq \phi(n^2 x) \leq \phi(n^2 a) n^2 x.$$

Combining this with (3.5), we see that there exists $n_3 > 0$ such that

(3.10)
$$\phi(n^2 x) \leq \phi(2n^2 a) x, \quad n \geq n_3.$$

Therefore, we obtain that for $\varepsilon \leq t \leq T$ and $n \geq n_3$,

(3.11)
$$0 \leq S_{2,n}(t) \leq \phi(2n^2 a) \sum_{i \leq nt} \eta_{ni}$$
$$= \phi(2n^2 a) \eta([nt]/n) \leq \phi(n^2 m_n(t)^2) \eta(T).$$

In the last inequality we used (3.6). Finally let us consider $S_{3,n}(t)$. Notice that there are only finitely many $t \in [0, T]$ such that $\Delta \eta(t) > a$. Thus if we denote by $K_3 = K_3(\omega)$ the number of such t's, then $\sum_{i \le nT} I(\eta_{ni} > a) = K_3$ for all sufficiently large n (a.s.). Thus we have

$$(3.12) \qquad 0 \leq S_{3,n}(t) \leq K_3 \max_{i \leq nt} \phi(n^2 \eta_{ni})$$
$$= K_3 \phi(n^2 m_n(t)^2), \quad \epsilon \leq t \leq T, \quad n \geq n_4.$$

See (2.7) for the last equality. Now combining (3.8), (3.11) and (3.12) we obtain

$$(3.13) \qquad \sum_{i \le n, t} \phi(n^2 \eta_{ni}) \le K_2 \phi(n^2 m_n(t)^2), \quad \varepsilon \le t \le T, \quad n \ge n_0,$$

where $K_2=1+\eta(T)+K_3$ and $n_0=\max(n_2, n_3, n_4)$.

Thus Lemma 2.3 is proved.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA

References

- [1] P. Billingsley, Convergence of Probability Measures, John Wiley, New York, 1968.
- [2] D.A. Darling, The influence of the maximum term in the addition of independent random variables, Trans. Amer. Math. Soc., 73 (1952), 95-107.
- [3] M. Dwass, Extremal processes, Ann. Math. Statist., 35 (1964), 1718-1725.
- [4] B.V. Gnedenko, Sur la distribution limite du terme d'une serie aléatoire, Ann. Math., 44 (1943), 423-453.
- [5] B.V. Gredenko and A.N. Kolmogorov, Limit Distributions for Sums of Independent

Random Variables, Addison-Wesley, Mass. 1954.

- [6] J. Lamperti, On extreme order statistic, Ann. Math. Statist., 35 (1964), 1726-1737.
- [7] T. Lindvall, Weak convergence of probability measures and random functions in the function space D[0, ∞), J. Appl. Prob., 10 (1973), 109-121.
- [8] E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics, Vol. 508, Springer Verlag, Heidelberg, 1976.
- [9] A.V. Skorohod, Limit theorems for stochastic processes with independent increaments, Theor. Prob. Appl., 2 (1957), 138-171. (Eng. trans.)
- [10] S. Watanabe, A limit theorem for sums of non-negative i.i.d. random variables with slow-ly varying tail probabilities, Proc. 5th International Conf. Multivariate Anal. (1980), 249–261. North-Holland, Amsterdam.