On the Hausdorff dimension of spherical limit sets

By

Masayoshi HATA

1. Introduction.

In this paper we shall determine the Hausdorff dimension of a certain class of limit sets in $X=R^p$ with the usual Euclidean distance. The spherical limit sets, whose definition will be given in Section 2, contain the spherical Cantor sets investigated by M. Tsuji [9] and A.F. Beardon [1] as a generalization of Cantor's ternary set in connection with function theory. For an application to a singular set of some properly discontinuous group, see A.F. Beardon [2]. Moreover we shall study the metric dimension of such sets.

2. Definitions aud Theorems.

Throughout this paper we shall use the following notations: the diameter of a set E is denoted by |E|; the distance between two sets U and V is denoted by dist(U, V); the interior of a set E is denoted by \mathring{E} . We need some definitions.

Definition 2.1. For any $\alpha > 0$, $\varepsilon > 0$, and $E \subset X$, we shall denote by $\Lambda_{\alpha}^{\varepsilon}(E)$ the lower bound of the sums $\sum_{n\geq 1} |S_n|^{\alpha}$ where $\{S_n\}_{n\geq 1}$ is an arbitrary covering of E consisting of closed spheres of diameters less than ε . When $\varepsilon \to 0+$, $\Lambda_{\alpha}^{\varepsilon}(E)$ tends to a unique limit $\Lambda_{\alpha}(E)$ (finite or infinite), which we call the α -dimensional outer measure. Then there exists a uniquely determined number such that $\sup\{\alpha; \Lambda_{\alpha}(E) = \infty\} = \inf\{\alpha; \Lambda_{\alpha}(E) = 0\}$, which we shall call the Hausdorff dimension of E and denote by $\dim_{H}(E)$.

Let $\nu_n \ge 2$ be an integer. Then $\Sigma_n = \{w = (w_1 \cdots w_n); 1 \le w_j \le \nu_j \text{ for } 1 \le j \le n\}$ is called the set of finite words with length n.

Definition 2.2. A set K is said to be a *spherical limit set* provided that it can be expressed in the form

$$K = \bigcap_{n=1}^{\infty} \bigcup_{w \in \Sigma_n} S(w), \qquad (2.1)$$

Received June 27, 1985

Masayoshi Hata

where $\{S(w)\}$ are *p*-dimensional closed spheres satisfying

(a)
$$S(w_1 \cdots w_n) \supset S(w_1 \cdots w_n w_{n+1})$$
 for any $(w_1 \cdots w_n w_{n+1}) \in \Sigma_{n+1}$;

- (b) $\mathring{S}(w) \cap \mathring{S}(w') = \emptyset$ for any $w \neq w' \in \Sigma_n$;
- (c) $M_n \equiv \max_{w \in \Sigma_n} |S(w)| \longrightarrow 0$ as $n \to \infty$.

Remark 2.3. If the fundamental closed spheres $\{S(w)\}$ satisfy the following condition, instead of (b):

(b') $S(w) \cap S(w') = \emptyset$ for any $w \neq w' \in \Sigma_n$,

then the set K is said to be a *spherical Cantor set*. Such sets were studied by Tsuji and Beardon, although they required some separation conditions in addition.

Remark 2.4. Consider the compact metric space $\sum_{\infty} = \{w = (w_1w_2 \cdots); 1 \le w_j \le \nu_j \text{ for } j \ge 1\}$ with the metric $d_{\Sigma}(u, v) = \sum_{n \ge 1} 2^{-n} \tau(u_n, v_n)$ for $u = (u_n), v = (v_n)$ where $\tau(i, j) = 0$ for $i \ne j$ and $\tau(i, j) = 1$ for i = j. Then it is easily seen that the mapping $\psi: \sum_{\infty} \to K$ defined by

$$\psi(w_1w_2\cdots) = \bigcap_{n \ge 1} S(w_1\cdots w_n)$$

is continuous. Moreover, if the set K is a spherical Cantor set, the mapping ψ becomes a homeomorphism.

We are now ready to state our first theorem. Put $m_n \equiv \min_{w \in \Sigma_n} |S(w)|, n \ge 1$ for brevity. Then we have

Theorem 2.5. Let K be any spherical limit set expressed in the form (2.1). Then

$$\liminf_{n \to \infty} \frac{\log \nu_1 \cdots \nu_{n-2}}{-\log m_n} \leq \dim_H(K) \leq \liminf_{n \to \infty} \frac{\log \nu_1 \cdots \nu_n}{-\log M_n}.$$
 (2.2)

In particular, if $\log \nu_n = o(\log \nu_1 \cdots \nu_n)$ and $\log M_n \sim \log m_n$ as $n \to \infty$, then

$$\dim_{H}(K) = \alpha = \liminf_{n \to \infty} \frac{\log \nu_{1} \cdots \nu_{n}}{-\log M_{n}}.$$
(2.3)

Moreover, if in addition

$$0 < \liminf_{n \to \infty} (m_n^{\alpha} \nu_1 \cdots \nu_{n-2}) \leq \liminf_{n \to \infty} (M_n^{\alpha} \nu_1 \cdots \nu_n) < \infty, \qquad (2.4)$$

then we have $0 < \Lambda_{\alpha}(K) < \infty$.

Remark 2.6. In the case where K is a spherical Cantor set, X=R, and $M_n=m_n$, that is, |S(w)|=|S(w')| for any $w\neq w'\in \Sigma_n$, the set K is known as "un ensemble parfait de translation" (J. P. Kahane-R. Salem [6, p. 19]). If in addition ν_n is independent of n, then the formula (2.3) was first proved by A. F. Beardon [3].

We now define another dimension as follows:

606

Definition 2.7. For a totally bounded set E, the metric dimension of E, which we denote by $\dim_{\mathcal{M}}(E)$, is defined by

$$\dim_{M}(E) = \limsup_{\varepsilon \to 0+} \frac{\log N_{E}(\varepsilon)}{-\log \varepsilon}$$

where $N_E(\varepsilon)$ is the minimal number of sets in a finite ε -covering of E.

Note that we have clearly $\dim_H(E) \leq \dim_M(E)$ for any E. Then

Theorem 2.8. For any spherical limit set K, we have

$$\limsup_{n \to \infty} \frac{\log \nu_1 \cdots \nu_{n-1}}{-\log m_n} \leq \dim_M(K) \leq \limsup_{n \to \infty} \frac{\log \nu_1 \cdots \nu_{n+1}}{-\log M_n}.$$
 (2.5)

In particular, if $\log \nu_n = o(\log \nu_1 \cdots \nu_n)$ and $\log M_n \sim \log m_n$ as $n \to \infty$, then we have

$$\dim_{\mathcal{M}}(K) = \limsup_{n \to \infty} \frac{\log \nu_1 \cdots \nu_n}{-\log M_n}.$$
 (2.6)

As a corollary, we have immediately

Corollary 2.9 Suppose that $\log \nu_n = o(\log \nu_1 \cdots \nu_n)$ and $\log M_n \sim \log m_n$ as $n \to \infty$. Then $\dim_H(K) = \dim_M(K)$ if and only if the sequence

$$\frac{\log \nu_1 \cdots \nu_n}{-\log M_n}$$

converges to a finite limit.

3. Preliminaries.

In this section we will give an elementary 'geometrical lemma'.

Lemma 3.1. Let S_1 , S_2 , S_3 be three closed spheres in $X = \mathbb{R}^p$ such that $\mathring{S}_i \cap \mathring{S}_j = \emptyset$ for any $i \neq j$. Suppose that each S_j contains a small closed sphere σ_j for $1 \leq j \leq 3$. Then we have

$$\sum_{i < j} \operatorname{dist}(\sigma_i, \sigma_j) \ge 3 \left(1 - \frac{\sqrt{3}}{2} \right) \min_j \left(|S_j| - |\sigma_j| \right).$$
(3.1)

Proof. Let O_1 , O_2 , O_3 be the centers of S_1 , S_2 , S_3 respectively. If the points O_1 , O_2 , O_3 lie on a straight line in this order, it follows that dist $(\sigma_1, \sigma_3) \ge$ dist $(S_1, S_3) \ge |S_2|$. Hence, in particular, (3.1) holds true in the case $X=\mathbf{R}$. Thus we can assume that $X=\mathbf{R}^p$, $p\ge 2$ and that the triangle with vertices O_1 , O_2 , and O_3 is contained in the 2-dimensional plane $\Pi = \{x = (x_1, \dots, x_p); x_3 = \dots = x_p = 0\}$.

Let $P: X = \mathbb{R}^p \to \Pi$ be the projection defined by $P(x_1, \dots, x_p) = (x_1, x_2, 0, \dots, 0)$ Let o_1, o_2, o_3 be the centers of $\sigma_1, \sigma_2, \sigma_3$ respectively. Then it follows that

$$\sum_{i < j} \operatorname{dist} (\sigma_i, \sigma_j) = \sum_{i < j} \| o_i - o_j \| - \sum_j |\sigma_j|$$
$$\geq \sum_{i < j} \| P(o_i) - P(o_j) \| - \sum_j |\sigma_j|.$$
(3.2)

On the other hand, let Q_{ij} be the projection of the plane Π to the straight line through the points O_i and O_j for i < j. Then,

$$\sum_{i < j} \|P(o_i) - P(o_j)\| \ge \sum_{i < j} \|Q_{ij}P(o_i) - Q_{ij}P(o_j)\|$$
$$\ge \sum_{i < j} \|O_i - O_j\| - \sum_j \|O_j - o_j\| (\cos \alpha_j + \cos \beta_j), \qquad (3.3)$$

where $\alpha_j + \beta_j > 0$ for $1 \le j \le 3$ and $\sum_i (\alpha_j + \beta_j) = \pi$ (see Figure 1).

Fig. 1.

Put $\theta_j = 1/2(\alpha_j + \beta_j)$, $1 \le j \le 3$ for brevity. Since $\cos \alpha_j + \cos \beta_j \le 2 \cos \theta_j$, it follows from (3.3) that

$$\begin{split} \sum_{i < j} \|P(o_i) - P(o_j)\| &\geq \sum_j |S_j| - \sum_j (|S_j| - |\sigma_j|) \cos \theta_j \\ &\geq \sum_j |\sigma_j| + \sum_j (1 - \cos \theta_j) (|S_j| - |\sigma_j|). \end{split}$$

Since $\sum_{i} \theta_{j} = \pi/2$, we have from (3.2),

$$\sum_{i < j} \operatorname{dist} (\sigma_i, \sigma_j) \ge \sum_j (1 - \cos \theta_j) \cdot \min_j (|S_j| - |\sigma_j|)$$
$$\ge 3 \left(1 - \frac{\sqrt{3}}{2}\right) \min_j (|S_j| - |\sigma_j|).$$

This completes the proof. \Box

As a corollary, we have immediately

Corollary 3.2. Let S_1 , S_2 , S_3 be three closed spheres in $X = \mathbb{R}^p$ satisfying $\mathring{S}_i \cap \mathring{S}_j = \emptyset$ for any $i \neq j$. Let σ be another closed sphere such that $\sigma \cap S_j \neq \emptyset$ for $1 \leq j \leq 3$. Then we have

$$|\sigma| \ge \left(1 - \frac{\sqrt{3}}{2}\right) \min_j |S_j|.$$

608

4. Proof of Theorem 2.5.

We will first show the upper estimate of (2.2). Put $\beta = \liminf_{n \to \infty} (-\log \nu_1 \cdots \nu_n / \log M_n)$ for brevity. For any $\delta > 0$, there exists a subsequence $\{n_j\}$ such that $M_{n_j}^{\beta+\delta}\nu_1 \cdots \nu_{n_j} < 1$. Since $\{S(w)\}, w \in \Sigma_{n_j}$ becomes an ε -covering of the set K with $\varepsilon = M_{n_j}$, we have

$$\Lambda_{\beta+\delta}^{\varepsilon}(K) \leq \sum_{w \in \Sigma_{n_j}} |S(w)|^{\beta+\delta} \leq M_{n_j}^{\beta+\delta} \nu_1 \cdots \nu_{n_j} < 1.$$
(4.1)

Hence $\Lambda_{\beta+\delta}(K) \leq 1$. Since δ is arbitrary, we get $\dim_H(K) \leq \beta$ as required.

We next show the lower estimate of (2.2). To this end, we will introduce the set-function $\Phi: \mathcal{F} \rightarrow R$ defined by

$$\Phi(\sigma) = \lim_{n \to \infty} \frac{1}{\nu_1 \cdots \nu_n} \# \{ w \in \Sigma_n; \ \sigma \cap S(w) \neq \emptyset \},$$
(4.2)

for any $\sigma \in \mathcal{F}$, where \mathcal{F} is the collection of all finite unions of closed spheres in $X = \mathbb{R}^p$. First of all, the limit (4.2) certainly exists since $T_n = \#\{w \in \Sigma_n; \sigma \cap S(w) \neq \emptyset\}$ clearly satisfies $T_{n+1} \leq \nu_{n+1} T_n$. Then it easily follows that Φ is monotone and subadditive and that $\Phi(\sigma) = 1$ for every $\sigma \in \mathcal{F}$ satisfying $\sigma \supset K$. Put $\gamma = \liminf_{n \to \infty} (-\log \nu_1 \cdots \nu_{n-2} / \log m_n)$ for brevity. Then for any $\delta > 0$, $m_n^{\tau-\delta} \nu_1 \cdots \nu_{n-2} > 1$ for all sufficiently large integer n. Therefore there exists a constant $c(\delta) > 0$ such that $m_n^{\tau-\delta} \nu_1 \cdots \nu_{n-2} \geq c(\delta)$ for any n.

Consider now an arbitrary closed sphere $S \in \mathcal{F}$ satisfying $\Phi(S) > 0$. Then there exists a unique integer N such that

$$\frac{1}{\nu_1 \cdots \nu_{N-1}} \ge \Phi(S) > \frac{1}{\nu_1 \cdots \nu_N}. \tag{4.3}$$

We will show $|S| \ge c_0 m_{N+1}$ where $c_0 = 1 - \sqrt{3}/2$. Suppose, on the contrary, that $|S| < c_0 m_{N+1}$. Then it easily follows that $T_{N+1} = \#\{w \in \Sigma_{N+1}; S \cap S(w) \neq \emptyset\} \le 2$ from Corollary 3.2. Hence

$$\Phi(S) \leq \frac{T_{N+1}}{\nu_1 \cdots \nu_{N+1}} \leq \frac{2}{\nu_1 \cdots \nu_{N+1}} \leq \frac{1}{\nu_1 \cdots \nu_N}$$

contrary to (4.3). Therefore we get $|S| \ge c_0 m_{N+1}$. Thus,

$$\Phi(S) \leq \frac{1}{\nu_1 \cdots \nu_{N-1}} \leq \frac{c_0^{\delta - \gamma}}{m_{N+1}^{\gamma - \delta} \nu_1 \cdots \nu_{N-1}} |S|^{\gamma - \delta} \leq c_1 |S|^{\gamma - \delta}, \qquad (4.4)$$

where $c_1 = c_0^{\delta - \gamma} / c(\delta)$ is a constant independent of the choice of S. Note that the estimate (4.4) holds true for every closed sphere $S \in \mathcal{F}$.

Consider now an arbitrary finite ε -covering $\{S_n\}$ of K. Then we have

$$\sum |S_n|^{\gamma-\delta} \ge c_1^{-1} \sum \Phi(S_n) \ge c_1^{-1} \Phi(\sum S_n) \ge c_1^{-1}.$$

$$(4.5)$$

Since K is compact, it follows from (4.5) that $\Lambda_{7-\delta}^{\epsilon}(K) \ge c_1^{-1}$; therefore $\Lambda_{\gamma-\delta}(K) \ge c_1^{-1}$. Since δ is arbitrary, we get $\dim_H(K) \ge \gamma$ as required.

We now suppose that $\log \nu_n = o(\log \nu_1 \cdots \nu_n)$ and $\log M_n \sim \log m_n$ as $n \to \infty$. Since it follows that Masayoshi Hata

$$c_1 \equiv \sum_{j \in \mathcal{I}_1} |S(j)|^p \ge \sum_{w \in \mathcal{I}_n} |S(w)|^p \ge \nu_1 \cdots \nu_n m_n^p$$

we have

$$0 < \frac{\log \nu_{n-1} \nu_n}{-\log m_n} \le \frac{\log \nu_{n-1}}{-\log m_{n-1}} + \frac{\log \nu_n}{-\log m_n}$$
$$\le \frac{p \log \nu_{n-1}}{\log \nu_1 \cdots \nu_{n-1} - \log c_1} + \frac{p \log \nu_n}{\log \nu_1 \cdots \nu_n - \log c_1} \longrightarrow 0$$
as $n \to \infty$.

Hence the formula (2.3) follows immediately. Finally, if we suppose (2.4) in addition, one can take δ to be zero in the estimates (4.1), (4.4), and (4.5); therefore we obtain $0 < \Lambda_{\alpha}(K) < \infty$. This completes the proof of Theorem 2.5. \Box

5. Proof of Theorem 2.8.

We first show the upper estimate of (2.5). For any $\varepsilon > 0$, there exists a unique integer $n=n(\varepsilon)$ such that $M_{n+1} \leq \varepsilon < M_n$. Since $\{S(w)\}$, $w \in \Sigma_{n+1}$ becomes an ε -covering of K, we have

$$\frac{\log N_K(\varepsilon)}{-\log \varepsilon} \leq \frac{\log \nu_1 \cdots \nu_{n+1}}{-\log \varepsilon} < \frac{\log \nu_1 \cdots \nu_{n+1}}{-\log M_n},$$

as required.

We next show the lower estimate of (2.5). For any $\varepsilon > 0$, there exists an ε -covering $\{U_j\}$ of K in which the number of sets is $N_K(\varepsilon)$. Then for each U_j , we can choose a closed sphere S_j such that $U_j \subset S_j$ and $|S_j| = 2|U_j|$. Now define a unique integer $n=n(\varepsilon)$ by $c_2m_n \le \varepsilon < c_2m_{n-1}$ where $c_2=1/2(1-\sqrt{3}/2)$. Since each S_j intersects at most two members of $\{S(w)\}, w \in \Sigma_{n-1}$ by Corollary 3.2, we have $N_K(\varepsilon) \ge (1/2)\nu_1 \cdots \nu_{n-1}$; therefore

$$\frac{\log N_K(\varepsilon)}{-\log \varepsilon} \ge \frac{\log \nu_1 \cdots \nu_{n-1} - \log 2}{-\log m_n - \log c_2} \sim \frac{\log \nu_1 \cdots \nu_{n-1}}{-\log m_n} \quad \text{as} \quad n \to \infty,$$

as required.

The second part of the theorem is easily verified since

$$\frac{\log \nu_{n+1}}{-\log M_n} \sim \frac{\log \nu_{n+1}}{-\log m_n} = O\left(\frac{\log \nu_{n+1}}{\log \nu_1 \cdots \nu_n}\right) = O\left(\left(\frac{\log \nu_1 \cdots \nu_{n+1}}{\log \nu_{n+1}} - 1\right)^{-1}\right)$$

as $n \to \infty$.

This completes the proof of Theorem 2.8. \Box

6. Uniformity.

In this section we will discuss the local structure of spherical limit sets. We need some definitions.

Definition 6.1. For any $x \in X$, the *local Hausdorff dimension* of a set E at x, which we denote by $d_H(x, E)$, is defined by

$$d_H(x, E) = \lim_{\varepsilon \to 0+} \dim_H(E \cap S(x, \varepsilon)), \qquad (6.1)$$

610

where $S(x, \varepsilon)$ is the closed sphere of radius ε centered at x. Similarly we will define the *local metric dimension* $d_{\mathcal{M}}(x, E)$ of E at x replacing $\dim_{\mathcal{H}}$ by $\dim_{\mathcal{M}}$ in (6.1).

Note that $d_H(x, E)$ and $d_M(x, E)$ are both upper semi-continuous functions of x. For further properties on $d_H(x, E)$, see [1].

Definition 6.2. A set E is said to be *H*-uniform (resp. *M*-uniform) provided that $d_H(x, E)$ (resp. $d_M(x, E)$) is constant on the set E (as a function of x).

Let K be a spherical limit set. For any $\varepsilon > 0$ and $x \in K$, there exists a word $w \in \Sigma_n$ such that $K \cap S(w) \subset K \cap S(x, \varepsilon) \subset K$. Therefore the set K is H-uniform if and only if $\dim_H (K \cap S(w)) = \dim_H (K)$ for all finite words w. Obviously the same result holds true for the M-uniformity. Then we have

Theorem 6.3. Suppose that $\log \nu_n = o(\log \nu_1 \cdots \nu_n)$ and $\log M_n \sim \log m_n$ as $n \to \infty$. Then the set K is both H-uniform and M-uniform.

Proof. Let $u = (u_1 \cdots u_k) \in \Sigma_k$ be an arbitrary finite word. Put

$$m_n^* = \min_{u \cdot w \in \Sigma_n} |S(u \cdot w)|$$
 and $M_n^* = \max_{u \cdot w \in \Sigma_n} |S(u \cdot w)|$

for n > k, where $u \circ w$ is the composite word defined by $u \circ w = (u_1 \cdots u_k w_1 \cdots w_{n-k})$. Since $m_n \le m_n^* \le M_n^* \le M_n$, we have $\log M_n^* \sim \log m_n^*$ as $n \to \infty$. Then it follows from Theorem 2.5 that

$$\dim_{H}(K \cap S(u)) = \liminf_{n \to \infty} \frac{\log \nu_{k+1} \cdots \nu_{n}}{-\log M_{n}^{*}}$$
$$\geq \liminf_{n \to \infty} \frac{\log \nu_{1} \cdots \nu_{n}}{-\log m_{n}} = \dim_{H}(K).$$

Similarly we have the same inequality as above for \dim_M . Since the converse inequality is obvious, this completes the proof. \Box

Remark 6.4. A spherical limit set K is said to be *self-similar* provided that ν_m is independent of m, say ν , and that $|S(w \cdot j)|/|S(w)|$ is independent of $w \in \Sigma_n$, say t_j , for $1 \leq j \leq \nu$. Such self-similar sets were studied by P. A. P. Moran [8] who showed that $\alpha = \dim_H(K)$ is given by a unique positive root of the equation $\sum_{j=1}^{\nu} t_j^{\alpha} = 1$. Then it is clear that such sets are H-uniform. See also J. Marion [7] for further results of self-similar sets.

Example 6.5. Let $2 \leq m_1 < m_2 < \cdots < m_k$ be k integers and $(\nu_1 \nu_2 \cdots) \in \{m_1, \cdots, m_k\}^N$. Suppose that the limit

$$p_j = \lim_{n \to \infty} \frac{1}{n} \# \{ 1 \leq i \leq n ; \nu_i = m_j \}$$

exists for each $1 \leq j \leq k$. Suppose further that $|S(w \circ i)|/|S(w)|$ is independent of $w \circ i \in \Sigma_n$, say τ_j , where $\nu_n = m_j$. Since $\{\nu_n\}$ and $\{M_n/m_n\}$ are both bounded

Masayoshi Hata

sequences, it follows from Theorem 2.5 and 2.8 that

$$\dim_{H}(K) = \dim_{M}(K) = \frac{\sum_{j=1}^{k} p_{j} \log m_{j}}{-\sum_{j=1}^{k} p_{j} \log \tau_{j}}$$

and the set K is both H-uniform and M-uniform by Theorem 6.3.

Acknowledgement. The author would like to thank Prof. J. P. Kahane and Prof. M. Yamaguti for their valuable comments.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- A.F. Beardon, On the Hausdorff dimension of general Cantor sets, Proc. Camb. Phil. Soc., 61 (1965), 679-694.
- [2] A.F. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math., 88 (1966), 722-736.
- [3] A.F. Beardon, The generalized capacity of Cantor sets, Quart. J. Math. Oxford, 19 (1968), 301-304.
- [4] A.S. Besicovitch and S.J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measuro, J. London Math. Soc., 29 (1954), 449-459.
- [5] R.T. Bumby, Hausdoff dimensions on Cantor sets, J. für Math., 331 (1981), 192-206.
- [6] J.P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, 1963.
- J. Marion, Le calcul de la mesure de Hausdorff des sous-ensembles parfaits isotypiques de R^m, C. R. Acad. Sc. Paris, 289 (1979), A65-A68.
- [8] P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Camb. Phil. Soc., 42 (1946), 15-23.
- [9] M. Tsuji, On the capacity of general Cantor sets, J. Math. Soc. Japan, 5 (1953), 235-252.