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On the Hausdorff dimension
of spherical limit sets

By

Masayoshi HATA

1. Introduction.

In this paper we shall determine the Hausdorff dimension of a certain class
of limit sets in X=RP with the usual Euclidean distance. The spherical limit
sets, whose definition will be given in Section 2, contain the spherical Cantor
sets investigated by M. Tsuji [9] and A.F. Beardon [1] as a generalization of
Cantor’s ternary set in connection with function theory. For an application to
a singular set of some properly discontinuous group, see A.F. Beardon [2].
Moreover we shall study the metric dimension of such sets.

2. Definitions aud Theorems.

Throughout this paper we shall use the following notations: the diameter
of a set E is denoted by |E|; the distance between two sets U and V is denoted
by dist(U, V) ; the interior of a set E is denoted by E. We need some defini-
tions.

Definition 2.1. For any a>0, ¢>0, and ECX, we shall denote by A5(FE)
the lower bound of the sums EIIS,,I“ where {S,}.z1 iS an arbitrary covering
nz

of E consisting of closed spheres of diameters less than e. When ¢—0+, A4(E)
tends to a unique limit A.(E) (finite or infinite), which we call the a-dimensional
outer measure. Then there exists a uniquely determined number such that
sup{a; A(E)=o0}=inf{a; A,(E)=0}, which we shall call the Hausdorff dimension
of E and denote by dimg (E).

Let v,=2 be an integer. Then Y,={w=(w, - w,): 1=Sw;Sy, for 1I=7<n}
is called the set of finite words with length n.

Definition 2.2. A set K is said to be a spherical limit set provided that it
can be expressed in the form

K= F\I \J Sw), 2.1)
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where {S(w)} are p-dimensional closed spheres satisfying
(@) S(wy - wa)DS(W; -+ WaWns,) for any (w; -+ WaWas))EZnss;
(b) Sw)NnSw)=@ for any w#w'eX,;

(c) M,,EmaEXIS(w)I——>0 as n— oo,
wel,

Remark 2.3. If the fundamental closed spheres {S(w)} satisfy the following
condition, instead of (b):
b)) SwNS(w)=@ for any w#w'el,,

then the set K is said to be a spherical Cantor set. Such sets were studied by
Tsuji and Beardon, although they required some separation conditions in addition.

Remark 2.4. Consider the compact metric space Yo={w=(w,w, +*); 1=w;
<y, for j=1} with the metric dg(u,v)=7§12'"r(um va) for u=(u.), v=(,)

where (i, /)=0 for i#; and z(i, /)=1 for 7=;. Then it is easily seen that the
mapping ¢: F.—K defined by
Gwyws )=\ S(w, -+ wy)
nal

is continuous. Moreover, if the set K is a spherical Cantor set, the mapping ¢
becomes a homeomorphism.

We are now ready to state our first theorem. Put m,= mivn |S(w)], n=1

weIy

for brevity. Then we have

Theorem 2.5. Let K be any spherical limit set expressed in the form (2.1).
Then

.., logyy g, <di <Pim log v, - vy,
llrrglnf “logm, =d1mH(K)=hnm_';nf ——-——_log M, (2.2)
In particular, if log vy=o(log v, --- v,) and log M,~log m, as n—oo, then
. o logyy ey
dlmH(K)—a——hR;nf log M, (2.3)
Moreover, if in addition
0<liminf (m%y, < vp-p) <lim ing (M&y, ++- v,) <00, (2.4)
N —oo T —=oo

then we have 0< A (K)< oo,

Remark 2.6. In the case where K is a spherical Cantor set, X=R, and
M,=m,, that is, |S(w)|=|S(w")| for any w+#w’'eX,, the set K is known as
“un ensemble parfait de translation” (J. P. Kahane-R. Salem [6, p. 19]). If in
addition v, is independent of n, then the formula (2.3) was first proved by A.F.
Beardon [3].

We now define another dimension as follows:
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Definition 2.7. For a totally bounded set E, the metric dimension of E,
which we denote by dimy (E), is defined by

. . log Na(e)
dim (E)=lim 300 —o0'

’

where Ng(e) is the minimal number of sets in a finite e-covering of E.
Note that we have clearly dimy (E)<dimy(E) for any E. Then

Theorem 2.8. For any spherical limit set K, we have

lim sup log v, -+ vy <dimy (K)<lim sup logu, - vayy

T —s00 _log mn N —~co ——lOg Mn (2.5)

In particular, if logv,=o(logy, -+ v,) and log My~log m, as n—oo, then we have

logy, - v,

dimM (K)=11m sup m—— .

(2.6)

As a corollary, we have immediately

Corollary 2.9 Suppose that log v,=o(log v, -+ v;) and log M,~log m, as n—oo.
Then dimg (K)=dimy (K) if and only if the sequence
E Yyt Vg
—log M,
converges to a finite limit.

3. Preliminaries.

In this section we will give an elementary ‘geometrical lemma’.

Lemma 3.1. Let S,, S,, S; be three closed spheres in X=RP? such that Siﬂéj
=@ for any i+j. Suppose that each S; contains a small closed sphere ¢; for
1<7<3. Then we have

3} dist (g, aj>gs(1—l/2i) min (151~ ;). 3.1)

Proof. Let O,, O,, Og be the centers of S,, S,, S; respectively. If the points
0,, 0, O, lie on a straight line in this order, it follows that dist(s;, 03)=
dist (S;, S5)=|S.|. Hence, in particular, (3.1) holds true in the case X=R.
Thus we can assume that X=RP, p=2 and that the triangle with vertices O,,
0,, and O, is contained in the 2-dimensional plane I7T={x=(x,, -*-, xp); Xs= -+
=x,=0}.

Let P: X=R?—]I be the projection definned by P(x,, -+, x)=(%1, X5, 0, -=-, 0)
Let o,, 05, 05 be the centers of ¢;, ¢,, o, respectively. Then it follows that

2 dist(ay, 0,)= 2 lloi—o,l =210l
1<J i<j J

= %IIP(Oi)—P(Oj)II—ZJIGJI- (3.2)
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On the other hand, let Q;; be the projection of the plane I7 to the straight line
through the points O; and O; for /<j. Then,

gj”P(Oi)—P(Oj)ugi?j"QijP(Oi)—QtjP(Oj)N
;%IIOi—OjII—;HO;—ojll(cos a;+cos B;), (3.3)

where a;+8;>0 for 1<;<3 and ‘?(aj—i-ﬁ,):zt (see Figure 1).

Fig. 1.

Put 6;=1/2(a;+B;), 1=<j=3 for brevity. Since cos a,+cos 8,<2cos 8;, it follows
from (3.3) that

%”P(Ot)—P(Oj)”%jEISﬂ—j2(|sj|—]Ujl)COS 0j
2§101|+§)(1—c050j)(ls,~]—Iojl)-
Since ;0,:7:/2, we have from (3.2),

%dist(oi, O'j)g?(l_cos 0',')‘11?}1'1 (|SJ|—|0'J|)

23(1=22) min (15,1~ 1a,).
This completes the proof. O

As a corollary, we have immediately

Corollary 3.2. Let S,, S;, S; be three closed spheres in X=RP satisfying
§im§j=® for any i#j. Let o be another closed sphere such that eN\S;# @ for
1=7<3. Then we have

V3

lo12(1-%>) min |5,
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4. Proof of Theorem 2.5.
We will first show the upper estimate of (2.2). Put B=lim inf(—logy, -

va/log M,) for brevity. For any 0>0, there exists a subsequence {n;} such that
M,/’;;"’vl---vnj<l. Since {S(w)}, weZ,,j becomes an e-covering of the set K
with e=M,, we have

ApeiltK)S 3 1) #HSMEpy, oo, <1, 4.1)

Hence Az.5(K)<1. Since § is arbitrary, we get dimy (K)<p as required.
We next show the lower estimate of (2.2). To this end, we will introduce
the set-function @ : ¥—R defined by

?(g)=Ilim ;#{wezn; oNS(w)# D}, 4.2)

n—wo Yyttt Vg

for any c= &, where & is the collection of all finite unions of closed spheres in
X=R?. Firstof all, the limit (4.2) certainly exists since T,=#{weX, ;e6N\S(w)
#@} clearly satisfies T +1=vn+:T». Then it easily follows that @ is monotone
and subadditive and that @(o)=1 for every o= satisfying ¢DK. Put y=
lim inf (—log v, -+ v,-,/log m;) for brevity. Then for any >0, mi %, - y,_,>1

N —co
for all sufficiently large integer n. Therefore there exists a constant ¢(6)>0
such that m% %, «-- v,_,=¢(8) for any n.
Consider now an arbitrary closed sphere S & satisfying @(S)>0. Then
there exists a unique integer N such that

L s>t . 4.3)
y] ces y;‘V-l yl oo yN
We will show |S|=c¢ymys, Where ¢o=1—4/3 /2. Suppose, on the contrary, that
|S|<comysr. Then it easily follows that Ty, =#{wey:i; SNSW)=Q}<L2

from Corollary 3.2. Hence

Ty < 2 1

Vit VYy+1 Vit VUNa Vi VN

P(0)=

lIA

’

contrary to (4.3). Therefore we get |S|=cemy+:. Thus,
1 < c-r

=775
vy yy-or T MR Ve

(9= N UsE VAN (4.4)

where ¢,=c¢37/c(d) is a constant independent of the choice of S. Note that the
estimate (4.4) holds true for every closed sphere S 4.
Consider now an arbitrary finite e-covering {S,} of K. Then we have

BISA TPz TO(SH)Z e O(LSA) =y’ (4.5)

Since K is compact, it follows from (4.5) that A;_s(K)=c7'; therefore A, ;(K)
=c7t. Since 0 is arbitrary, we get dimgy(K)=7 as required.

We now suppose that logyv,=o(logy, ---v,) and log M,~logm, as n—oo,
Since it follows that
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=2 1SMNIPz 2 ISW)|P=y, - vam},
j€eZy wely

we have
0< log vp-1vn < log v,y log v,
—log m, —logmg,-;, —logm,
< plogva, plogvn, —50

log v, -+ vp-1—log ¢, logy, -+ v,—log ¢,
as n— oo,
Hence the formula (2.3) follows immediately. Finally, if we suppose (2.4) in

addition, one can take & to be zero in the estimates (4.1), (4.4), and (4.5);
therefore we obtain 0< A,(K)<oo. This completes the proof of Theorem 2.5. O

5. Proof of Theorem 2.8.

We first show the upper estimate of (2.5). For any &>0, there exists a
unique integer n=n(e) such that M, <e<M,. Since {S(w)}, we 2,4, becomes
an e-covering of K, we have

log Nx(e) _ logvi - vnes _ 10y - vayy
—loge —loge —log M,

’

as required.
We next show the lower estimate of (2.5). For any ¢>0, there exists an
e-covering {U;} of K in which the number of sets is Nx(e). Then for each Uy,
we can choose a closed sphere S; such that U;CS; and |S;|=2|U;|. Now define
a unique integer n=n(e) by cim,<e<cymn-, Where ¢,=1/2(1—+/3/2). Since
each S; intersects at most two members of {S(w)}, welX,-, by Corollary 3.2,
we have Ng(e)=(1/2)y; -+ vn-y; therefore
log Nk(e) _ logy - va-y—log2 log v, =  vpy
—loge — —logm,—logec, —log m,

as n— oo,
as required.
The second part of the theorem is easily verified since

logvaes  logvaes log vars \_ (108 v: - vau  \!
—log M, —logm,,—o(logvl---un)_o(( log vy 1))

as n-—oo,

This completes the proof of Theorem 2.8. O

6. Uniformity.

In this section we will discuss the local structure of spherical limit sets.
We need some definitions.

Definition 6.1. For any x< X, the local Hausdorff dimension of a set E at
x, which we denote by dg(x, E), is defined by

dg(x, E)=£r&dimg(EﬂS(x, g)), 6.1)
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where S(x, ¢) is the closed sphere of radius & centered at x. Similarly we will
define the local metric dimension dy(x, E) of E at x replacing dimy by dimy
in (6.1).

Note that dyz(x, E) and dy(x, E) are both upper semi-continuous functions
of x. For further properties on dy(x, E), see [1].

Definition 6.2. A set E is said to be H-uniform (resp. M-uniform) provided
that dy (x, E) (resp. dy(x, E)) is constant on the set E (as a function of x).

Let K be a spherical limit set. For any ¢>0 and x € K, there exists a word
welX, such that KNS(w)CKNS(x, e)CK. Therefore the set K is H-uniform
if and only if dimy (KNS(w))=dimg(K) for all finite words w. Obviously the
same result holds true for the M-uniformity. Then we have

Theorem 6.3. Suppose that log v,=o(log v, --- v,) and log M,~log m, as n—oo,
Then the set K is both H-uniform and M-uniform.

Proof. Let u=(u, - uz)el, be an arbitrary finite word. Put
m¥= min |S(uew)| and M¥= max |S(u-w)|
uowET U Wy

for n>k, where u-w is the composite word defined by uew=(u, - uw, - Wn-s).
Since m,<mif<M*<M,, we have log M¥~logm¥* as n—oo. Then it follows
from Theorem 2.5 that

dim g (KAS(u))=lim inf 28 ¥E+1 " Vn

—log M*
>lim inf %:dimm{).
n—00 —_ n

Similarly we have the same inequality as above for dimy. Since the converse
inequality is obvious, this completes the proof. [

Remark 6.4. A spherical limit set K is said to be self-similar provided that
v, is independent of m, say v, and that |S(w-j)|/|S(w)| is independent of
wel,, say t;, for 1=<j<v. Such self-similar sets were studied by P.A.P.
Moran [8] who showed that a=dimyg(K) is given by a unique positive root of

the equation ﬁ t9=1. Then it is clear that such sets are H-uniform. See also
Jj=1

J. Marion [7] for further results of self-similar sets.

Example 6.5. Let 2<m,; <m,< -+ <m, be kintegersand (v,y,---)E {my, ---, m,} ¥.
Suppose that the limit

p,:LiB:%#{lgign ; vi=m;}

exists for each 1=<;j<k. Suppose further that |S(w<7)|/|S(w)| is independent of
wei€X,, say t;, where yv,=m; Since {v,} and {M,/m,} are both bounded
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sequences, it follows from Theorem 2.5 and 2.8 that

k
2, pylog m;
dim  (K)=dim, (K)=-"———
__1;1 pjlogr;

and the set K is both H-uniform and M-uniform by Theorem 6.3.
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