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On the Hausdorff dimension
of spherical limit sets

By

Masayoshi HATA

1. Introduction.

In this paper we shall determine the Hausdorff dimension of a certain class
of limit sets in X = R P  w ith the usual Euclidean d is ta n c e . T h e  spherical limit
se ts , whose definition will be given in Section 2 , contain the spherical Cantor
sets investigated by M. Tsuji [9 ]  and A. F. B eardon [1] a s  a  generalization of
Cantor's ternary se t in  connection with function theory. For an application to
a  singular s e t  o f  some properly discontinuous group, see A . F . Beardon [2].
Moreover we shall study the metric dimension of such sets.

2. Definitions aud Theorems.

Throughout this paper we shall use the following notations :  th e  diameter
of a  se t E  is denoted by j E  j ;  the distance between two sets U and V  is denoted
by dist (U, V) ; the interior o f a  se t E  is denoted by E. We need some defini-
tions.

Definition 2.1. For any a > 0 ,  > 0 ,  and E C X , w e shall denote by AVE)
th e  lower bound of the sum s E IS.I" where {S.} nzi is an  arbitrary covering

?sal

of E  consisting of closed spheres of diameters less than 6. When 6—>04-, AVE)
tends to  a unique lim it A a (E )  (finite or infinite), which we call the a-dimensional
outer m easure. T hen  the re  ex is ts  a  uniquely determined number such that
sup {a ; A a (E)=00}=inf { a ; A a (E)=0}  , which we shall call the Hausdorff dimension
of E  and denote by dim H (E).

Let Idn _2 be an  in teger. T hen  I  n = fw =(w i ••• w n): l u , .) . ;.);  for
is called the set of finite words with length n.

Definition 2.2. A  set K  is said to be a  spherical lim it set provided that it
can be expressed in the form

K = f l  u s(w), (2.1)
n=1 ivE,E n
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w h e re  S(w)} are p-dimensional closed spheres satisfying

(a) S(w i  w n )DS(w w  w  )  for any (w1 ••• wnw.+1)eEn+i ;••• n n+1,

(b) . (w )r1 S (w ')= 0  for any w *w 'eEn;

(c) M n = max I S( w) I - ->  0  a s  n co .
we.E n

Remark 2.3. If the  fundamental closed spheres {S(w)} satisfy the following
condition, instead of (b):

(b') S(w)(1S(w ')=-- 0  for any w *w 'E fn

then the set K  is said to be a  spherical C antor set. Such sets were studied by
Tsuji and Beardon, although they required some separation conditions in addition.

Remark 2.4. Consider the compact metric space 2'..=. 1w=- (wi w, —) ;
. v.; f o r  j 1} w ith  th e  m etric  ds(u, v ) =  2 - n r(un, v n ) f o r  u-=(un), v=(v)

where r(i, j )= 0  for i#  j and r(i, j )= 1  for i = j .  Then it is easily seen that the
mapping 0: 2%..— >K defined by

is continuous. Moreover, if the set K  is a  spherical Cantor set, the mapping 0
becomes a  homeomorphism.

We are now ready to state our first theorem . P u t  mn l-- min I S(w)I ,
wc.rn

for brevity . Then w e have

Theorem 2.5 . L et K  be any spherical lim it set expressed in the f o rm  (2.1).
Then

log vi • • • 1 ) .  log -  •  l ' n - 2   <di m , in f  _
l o g  M n

urn inf —log mn

In particular, if  log vn =o(log v, v n )  and log M n
,--log mn a s  n—*00, then

log vi • •• vndimH  (K)=a-=lim inf —log M n

Moreover, i f  in addition

0< lim inf •• • vn _2) - lim ing (M41,, • • • vn ) < co ,

then we have 0<A n (K)<00.

Remark 2 .6 .  In the case where K is  a  spherical C an tor se t, X = R , and
M n =m n , th a t  is, I S(w)I =- I S(w ')I for any w w 'E E n , the set K  is known as
"un ensemble parfait de translation" (J. P . Kahane-R. Salem [6, p . 19]). If  in
addition vn  is independent o f n, then the formula (2.3) was first proved by A. F.
Beardon [3].

We now define another dimension as follows :

(2.2)

(2.3)

(2.4)
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Definition 2 .7 .  F or a  totally bounded se t E ,  t h e  m etric dimension o f  E,
which we denote by dim m  (E ), is defined by

log NE(s) dim m  (E )=Iirn sup3-0+ —log 6

where NE (s ) is the minimal number of sets in a finite 6-covering o f  E.

Note that we have clearly dirn H  (E )  dim m  (E ) for any E .  Then

Theorem 2 .8 .  For any spherical lim it set K , we have
log vi • •

d i m m  ( K ) . . . l i m  s u p  
 log vi • • • vn + ,

lirn sup —log m —log M 7 ,  •n

In particular, i f  log vn =o(log v i ••• yn )  and log M n , log m n as  n--Kx), then we have
log vi • •• v. dim m  (K)=1im sup (2.6)

.--- —log M n

A s a  corollary, we have immediately

Corollary 2 .9  Suppose that log vn =o(log v, • • •Ir n ) and log M,.»-'log m n as n--*00.
Then dim H  (K )= d im m  (K ) if  and only if  the  sequence

log vi • • • v.
—log M n

converges to a f inite limit.

3 .  Preliminaries.

In this section we will give an elementary 'geometrical lemma'.

Lemma 3 . 1 .  L et S i ,  S 2 ,  S 3  be three closed spheres in X = R 13 such that
= 0  f o r any  i 4  j .  Suppose that each S , contains a  sm all closed sphere a, f or

Then we have

E dist(a.„ cr,)_3(1—  m in (IS —I ai l). (3.1)
2

Pro o f . L et 0 1 , 0 2 , 0 3 be the centers of S1, S 3, S s respectively. If the points
0,, 0 2 , Os  l ie  o n  a  straight line in  th is order, it fo llow s that dist a 3 ) -
dist (S i , S 3 ) - 1 S 2 1 . Hence, in  particular, (3 .1 )  holds true in  th e  c a se  X =R .
Thus we can assume that X=RP, p 2  and that the triangle with vertices 01,
0 2 ,  and 0 3 is contained in  the  2-dimensional plane 11=.(x=(x 1 , • ,  x p ); x s = •••
= x 9 =01.

Let P: X=RP— *Il be the projection definned by P (x i , «, x p )= (x i , x 2 , 0, •• • ,0)
Let o„ o„ 0 3 be the centers of a i ,  6 2 ,  6 3  respectively. Then it follows that

E dist (ai, E —E I c i»1<.7

11P(0,) — P(o.di1 - 1d l. ( 3 . 2 )
./z‹

(2.5)
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On the other hand, let Qi i  be the projection of the plane H to the straight line
through the points Oi  a n d  0 ;  fo r  i < j .  Then,

E IIP(oi)—P(0; )11- EllQuP(00—QoP(0.)11
>= i;11 0 i— Oill"- -

1 110 J- 0 j11(COS aid - COS PJ), (3.3)

where a i +,61; >0 for 1 j 3 and (a,i --kPi )=2r (see Figure 1).

Fig. 1.

Put 05 =1/2(a1 +P ; ), 1.. 3 for brevity. Since cos af +cos /3.; _. _2 cos Op  it follows
from (3.3) that

E IIP(o1)—P(0J)11-EISJI —E IS —  I cD cos 0 ;

Since E0 j =r/2, we have from (3.2),

E dist(cri , a si). E (1—cos 0; )• min (I Si ! — )i<1

?JO  min (1.31— I cri ) •

This completes the proof. E

A s a  corollary, we have immediately

Corollary 3 .2 .  L et S „ S a, Sa be three closed spheres in  X =R P satisfying
,.' i r-)&= 0 f o r any i *  j .  L e t a be another closed sphere such that anS,--,= 0 for

Then we have

1611--(1—.‘/:)min
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4 .  Proof of Theorem 2.5.

We will first show the upper estim ate of (2.2). P u t  p=lim  inf (—log vi  • • •
n

i. / lo g  M n )  for b rev ity . For any 3 > 0 , there exists a subsequence {n 5 } such that
M 4 61)1 ••• vni < 1 .  Since {S(w)}, w e E n , becom es a n  s-co verin g  o f  th e  s e t  K
w ith E=M n j ,  we have

E  I S(w)I ••• vni <1. (4.1)
w e Z n

i
Hence A + (K ) 1 .  Since 6 is arbitrary, we get dim H  (K )5 p  as required.

W e next show the lower estimate of (2.2). To this end, we will introduce
the set-function (P: g--47 defined by

0(a)= 1im
1

# {w E E n; anS(w )*(2.51, (4.2)
'•  • V n

for any a  g , where g  is  the collection of all finite unions of closed spheres in
X = R P . First of all, the lim it (4.2) certainly exists since T „= #  w e E n  ;anS(w)

0 1  clearly satisfies T . + 1 .<- vn + i T n .  Then it easily follows that 0 is monotone
and subadditive and th a t 0(cr) ,=--1 fo r  every  cre  g  satisfying a D K . P u t  7=
lim inf (— lo g  •-• vn ,/ lo g  mn )  for brev ity . T hen  for any 3 > 0 , m r n - 8 1 ) 1  V n - 2 >  1

n - .

f o r  all sufficiently la rg e  integer n. Therefore there exists a constant c(5)>0
such that m 1••• vii-2 c(3) for any n.

Consider now an  arbitrary closed sphere SE g s sa tis fy in g  0 ( S ) > 0 .  Then
there exists a unique integer N  such that

11  
• ( 4 . 3 )

• 11N-1 •••

We will show  ISI - comN.F, where c0 =1— Suppose, on the contrary, that
S  <comN+1. Then it easily  fo llow s that TN+1=#{w E 2 'n + i ; S r1S (w )*  0} 5 2

from Corollary 3.2. Hence

N-I-1 2 1 
0(S)„5

• vN+1 1)1 ••• N+1 ••• 2)N

contrary to (4.3). Therefore we get I S  -comN+1. Thus,
cf,- 7

0(S)5 1
<  ,_A C 11`517 -3 (4 .4 )

1)1 • •• 2)N-1 — niN4:11)1"• 2)N-1

where c1 =cô - r/c(3) is  a constant independent of the choice o f S .  Note that the
estimate (4.4) holds true for every closed sphere Se g .

Consider now an arbitrary finite s-covering {SO of K .  T h en  w e  have

E I S. I T- '. c.i 1 E 0 (S . ) c -i'0(ES.)--cTi (4.5)

Since K  is compact, it follows from (4.5) th a t  ./1.;,_5 (K ) c -i 1 ; therefore A ( K )
Since 3  is arbitrary, w e get dim E  (K ) T  as required.

We now suppose that log vn =o(log v i  • •• vn ) a n d  log M„ , log m „  as
Since it follows that

n—+00.
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E E vong,
w eE n

we have

0< <logl o g  _ 1l o g i n
—log mn —  —log mn _, —log mn

p log vn _ip  log v„
- - >  0

— log vi • • • v„_1—log c, log vi  • • • v. — log
a s  n 0 9  .

Hence the  form ula (2.3) follows immediately. Finally, if  we suppose (2.4) in
addition, one can take 3  to  b e  z e ro  in  th e  estimates (4.1), (4.4), a n d  (4.5) ;
therefore we obtain 0 < A.(K)< co . This completes the proof of Theorem 2.5. D

5. Proof o f Theorem 2.8.

We first show the upper estimate of (2.5). F o r  a n y  e >0, there exists a
unique integer n=n(s) such that M n .i.i s<M 72. Since {S (w )}, w  En+, becomes
an  s-covering of K, we have

log N K (s)  <  log vi  ••• vn , log ••• vn + ,
—log s —  —log s <  —log M n

as required.
We next show the lower estimate of (2.5). For any s >0, there exists an

s-covering {U i } o f  K  in  which the number of sets is  N K (s ). Then for each L
we can choose a closed sphere S .  that Ui c S i  a n d  I S,I =21U, I. Now define
a  un ique  integer n=n (s ) by col n,-s < c o n . ,  where c2 =1/2(1— V  3 /2). Since
each S i  intersects at most two members o f  {S(w)}, w E En-, by Corollary 3.2,
we have NK(6)(1/2)11 •-• v.-1; therefore

log N K (s)  >  log v i  • vn-1— log 2 log vi • .• v._, a s  n —> co
—log s =  —log m,,—log c, —log mn

as required.
The second part of the theorem is easily verified since

log ,,, + 1l o g  , , + ,  _ 0 (  lo g  v , , ,  \_ o tt  log v, • • • v„,, 1 )-1)
—log M,, m n\  log v, • • • vn ) log vn + 1

a s  n co .
This completes the proof of Theorem 2.8. D

6. Uniformity.

In this section we will discuss the  local structure  of spherical limit sets.
We need some definitions.

Definition 6 . 1 .  For any x E X , the local Hausdorff dimension of a  se t E  at
x, which we denote by dH (x, E), is defined by

(x, E)=Iim dim g (E('\S(x, s)), (6.1)
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where S(x, s) is the closed sphere of radius s centered at x .  Similarly we will
define the local metric dimension dm (x, E ) of E  a t  x  replacing dimH  b y  dimm

in (6.1).

Note tha t d11 (x, E ) and dm  (x, E) are both upper semi-continuous functions
of x .  For further properties on dH (x, E), see [1].

Definition 6 .2 .  A set E  is said to be H-uniform (resp. M-uniform) provided
that dH (x, E ) (resp. dm  (x, E)) is constant on the set E  (as a function of x).

Let K  be a  spherical limit set. F o r  any s >0 and x E K , there exists a word
111E2' 7, such that K nS(w )C K nS(x, s )C K . Therefore the set K  is H-uniform
if  an d  only if dimH  (KnS(w))=dim H  (K ) for all finite words w .  Obviously the
same result holds true for the M-uniformity. Then w e have

Theorem 6.3 . Suppose that log p„.= o(log v i • • • v.) and log M„ , log nin  as n—K)0.
Then the set K  is both H-uniform  and M-uniform.

Pro o f . Let u =(u i ••• uk)E E l,  be an arbitrary finite w ord. Put

m in I S(u w) I a n d  M :=  max I S(u w)no wE2-,, ..wEs

for n > k, where u. w is the composite word defined by u. w =(u, • • U k W i ' • • W n -k ).

Since w e  have log in  a s  n—>00. Then it follow s
from Theorem 2.5 that

lik+ -1 VIZdimH (KnS(u))=1imi °gnf  1 
n— —log M'71̀,

>lim inf  1 ° g = d i m H  (K ).—log m„

Similarly we have the same inequality as above for dimm . Since the converse
inequality is obvious, this completes the proof. El

Remark 6 .4 .  A  spherical limit set K  is said to be self-similar provided that
1.,„, is independent o f m , say  id , and that I S ( w o f ) I / I S ( w ) I  is  in d ep en d en t of
WEE . , s a y  ti ,  for Such self-similar sets were studied by P. A. P.
Moran [8 ] who showed that a=dim H  (K ) is given by a unique positive roo t of

the equation È' tff, = 1 .  Then it is clear that such sets are H-uniform. See also
.7= 1

J. Marion [7 ] for further results of self-similar sets.

Example 6 .5 .  Let 2 .772 i <M 2 <  •  •  •  <mk be k integers and (v i v2 .• .) E fm1, • • , mk IN .
Suppose tha t the limit

p= lim - 1-- 1^ i^n ; v i =m ; }n

exists for each 1 j k. Suppose further that I S(w .i)1  /  S ( w )  is independent of
w oiE E n , sa y  r i ,  where Since  {i)n } a n d  {Mn/m.} a re  both bounded
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sequences, it follows from Theorem 2.5 and 2.8 that

p j  log In ;

dimH  (K )=dim m  (K )= 
 k- E pi  log or ;f=i

and the set K  is both H-uniform and M-uniform by Theorem 6.3.
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