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Representations of W eyl groups and their Hecke
algebras on  virtual character modules of

a  semisimple Lie group* )

By

Kyo N1SHIYAMA**)

§ 0 .  Introduction.

Let G  be a  connected semisimple Lie group with finite center and  g  its  Lie
a lgebra . In the preceeding paper ([16]), we defined a Weyl group action on virtual
character modules with regular infinitesimal characters (recall that a virtual character
is by definition a  linear combination of irreducible characters o n  G ) .  There, the
representations of Weyl groups were completely decomposed by means of induced
representations. However, in the case of singular infinitesimal character, represen-
tations of Weyl groups cannot be canonically realized on virtual character modules.

In  th is paper, we will define representations o f  H ecke algebras o n  virtual
character modules with singular infinitesimal characters. These representations are
natural ones and can be considered as the "limits" of the representations of Weyl
groups.

Here we explain why we study the representations of W eyl groups o r  Hecke
algebras on virtual character m odules. The irreducible admissible representations
o f  G  were classified by R. Langlands ([1 1 ])  m odulo tempered representations.
Since irreducible tempered representations were classified by A. W. K napp and
G. J. Zuckerman ([10]), the classification of irreducible admissible representations
o f  G  is now complete. However, their parameters attached to each irreducible
representation are very complicated, and  do  not m ake unitarizability or primitive
ideal or its Gel'fand-Kirillov dimension etc. c le a r . We want to classify the irreducible
representations of G into some different classes which make the invariants of repre-
sentations as listed above much clearer. To achieve this, it is convenient to consider
the Weyl group actions or Hecke algebra actions on virtual characters mentioned
above.
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Let us explain our definition of representations of Hecke algebras. The defini-
tion has three different interpretations which are interrelated each other.

Let H  be a C artan subgroup o f G  and ■l e bt a n  infinitesimal character not
necessarily regular. We make some assumption o n  (see Assumption 2.1). This
assumption is not essential, since it is satisfied fo r appropriate multiple of .1 by a
positive in tege r. Let /1.0e 4t be a dominant regular infinitesimal character which
satisfies: (1) ,u—A0 —  be longs to  th e  roo t la ttice  o f  (ge, 4 c ) . (2 )  j i  satisfies
Assumption 5.3. Such a  20  always exists. Then the representations of the Hecke
algebras have three different constructions explained below.

Construction 1. Let T be the representation of the integral Weyl group WH (.1,o )
o n  Vi i (A0 )  defined in  [ 1 6 ] .  H ere, WH (4 )  is  a certain subgroup o f th e  complex
Weyl group W= W(9c, bc), and 1/11(4 )  is a  subspace of the virtual character module
V(.1.0 ) with infinitesimal character .1.0 . We have

1/(2 0 ) =  1 E9 V o ( i10),
[H ]eCar(G )

where Car (G) is the set of all the conjugacy classes of Cartan subgroups of G and
[H] denotes the class of H .  Put WA = {w  e A}, the fixed subgroup o f in  W .
Then WA i s  a  subgroup o f  WH (.1.)-- WH ( 4 )  a n d  we can define a  Hecke algebra
dr(147,,(A), WA)  (see §3 for precise definition). Since Yt‘'(W„(,1), WA)  is isomorphic
t o  a  subalgebra e A C[WH (A)]e A (w h e re  eA =(#14/A ) - 1 E s E w , s )  o f  th e  group ring
C[WH (A)], .e (W H (.1), WA) has natural action on VH (.10 ). We can prove

Theorem A (Theorem 4.2). T he vector space V H (.1.) is isomorphic to the vector
space t(e A )VH (4 )  an d  w e can def ine the  representation o f  .Ye(WH (A), WA)  o n  th e
space VH (11).- t(e A )VH (.1.0 ) naturally .

This theorem is valid in purely algebraic situation (Proposition 3.5).

Construction 2. The above space 1/1/( )  is isomorphic to a certain subspace of
analytic functions on H .  We denote this space by E (H ; A). For a canonical basis
of E (H ; ).), we can define an action of .re(WH (A), WA) analogous to the definition of
the representation T o f  WH (A) (Theorem 4.2). This is the second construction of
the representations.

Construction 3. L e t  = (plo a n d  V/ =1/P1.0 be Zuckerman's translation functors
(see §5.1 for precise definition). These functors play an important role in  repre-
sentation theory ( [1 0 ] , [1 8 ]) . W e define an  ac tion  o- o f  eA w e,e.e(W H ( ) ) ,  WA )
on VH (.1) by

o-(e A we A )v =(#WA )-  l(liot(e A we A ).9(v),

where we consider T as a  representation of the group ring C[WH (A)] = C[W„(2 0 ) ] .
This action turns out to be a representation of .e(W 11-(.1), WA) (Theorem 5.6).

Since is considered to be a  "lim iting" functor which sends a  regular para-
meter to singular one, we can characterize o. as the "lim it -  of T.
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Theorem B .  T he representations of  f e(W n (A ), WA) constructed in  th e  above
three ways coincide with each other.

We denote this representation by

Theorem C .  I f  t h e  inf initesim al character A  is integral, w e hav e Wf f m= W
f o r each C artan  subgroup H. T herefore w e can def ine a  representation a - o f  a
Hecke algebra <lf(W , WA ) on the w hole v irtual character module V (A ).

Now we comment about applications of our theory. Using the equivalence of
three definitions of a- , we can reproduce some results of D . Vogan about t-invariants
(see [19]), and get some new results. W e think our representation o- will clarify
Gel'fand-Kirillov dimensions of irreducible representations o f  G  and some other
invariants associated with primitive ideals of L/(g c ) (see [9]). These subjects are to
be treated in future papers.

O ur theory may supply a  number o f examples fo r representations of Hecke
algebras. W e carry out explicit calculations for the group G = U(3, 1).

Now we explain the contents of this paper briefly. After some preparations in
§1, we review the definition of the representation t of integral Weyl groups W H ( t
shortly in §2 (see [16]). §3 is devoted to a general theory of Hecke algebras .e(W ,
D), where W is a finite group acting on R" faithfully and D is a  subgroup of W . The
algebraic part of the proof of Theorem A is contained in  this sec tion . In §4, we
give th e  definition o f  th e  representation o-  o f  .ye(vv„(A), WA ). M ain  theorem,
Theorem 4.2, says C onstructions 1 and 2 are equivalent. W e study th e  corn-
mutativity of Zuckerman's functors and Hirai's method T of constructing invariant
eigendistributions in the first half of §5 (Propositions 5.1 and 5.2). These results
tak e  a n  im p o rta n t p a r t  in  th e  follow ing theory. T he  m ain  theorem in  § 5  is
Theorem 5.6 which states Construction 3 is  equ iva len t to  Construction 2 (and
hence to 1). Thus we establish Theorems B and C in this section. In §6, we apply
our results to study t-invariants and get several results. Some of them are already
obtained by D . V ogan ([19]). In  the final section §7, we give an  example of the
representations of Hecke algebras in case of G= U(3, 1). Essentially, G= U(n, 1)

2) can be treated in the same way.
Hirai's method T  is explained in  Appendix A  because it is an im portant tool

for ou r theo ry . A nd, in Appendix B , we discuss Assumptions 2.1 and  5 .3 . O ne
can conclude these assumptions are not essential.

The author is grateful to Professor T . Hirai for h is constant encouragements
and useful discussions.

§ 1 .  Notations and preliminaries.

1.1. Let G be a connected semisimple Lie group with finite c e n tre . We always
assume G is acceptable (see below ). Let g be the Lie algebra of G  a n d  U (g )  its
enveloping algebra. In th e  following, we denote Lie groups by  Roman capital
letters and its Lie algebras by corresponding German small letters. The complexi-
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fication of a Lie algebra will be denoted with the subscript C .  Let H be a Cartan
subgroup of G .  Then the complexification g c  of g has a  root space decomposition
with respect to h c :

gc =IMO' 
aeA

where A  is the set of roots of (g c , h c ) and ç  i s  the root space corresponding to a.
We fix a positive system A + and put p= E a/2 (a e  A ') .  Define an analytic function

(a E A ) on H  by Ad (h)X ,,-= Uh)X „ (h E H), w here X  is a non-zero root vector
for a. W e  c a l l  G acceptable if there exists a  connected complex semisimple Lie
group G c  w ith  Lie algebra g c  w hich has th e  following two properties. (1) The
canonical injection from g  into g c  can be lifted up to a homomorphism of G into
Gc . ( 2 )  Let H c  be the analytic subgroup of G c  corresponding to be . T h e n  (exp
x)—exp p(x) (X E hc ) defines a character of H e  in to  C*.

We denote the Weyl group o f A  by W= W(A) and call it the  complex Weyl
g roup . L e t B  be a  subgroup of G and D be a  subset of G (or of g c ). Then we
define W (B; D)=N B (D)14(D), where N o (D) denotes the normalizer of D in B  and
Z B (D) the centralizer. W e call W (B; D) a Weyl group of D in B.

Let A e ht be a  linear form on be . The complex Weyl group W acts o n  bt
and consequently acts on bc  in a contragredient m a n n e r . Let W,1, be a fixed subgroup
of A in  W:

WA -= tW e w )=)} .

We call A regular if WA = f e l and otherwise call it singular.
We introduce an integral Weyl group WH O.) for H and A afte r [16]. L et W (l)

be a subset of W defined by

W-H (.1) = { w e WI „,„,(exp x)= exp wA(x) (x e h) defines a character of HO ,

where H o denotes the connected component of H containing the identity element e.
Then WH (A) is by definition the largest subgroup of W which leaves W A) stable
under the right multiplication (cf. [16, P rop . 1 .5 ]). Let H , b e  a  connected com-
ponent of H .  Then an element we W (G; H 1 )  normalizes h. Therefore we W(G;
H O  determines a n  element o f  W(G; 1)) W .  Similarly, for w e W (G; H), the
element vT e W (G; h) can be defined. W e remark that W H().) is stable under the
left multiplication by the elements of W(G; h). F o r  se W (G; (or se W (G; H))
and t e W (A ), we write st e W (il) instead of It for simplicity.

1.2. Invariant eigendistributions. We review the facts about invariant eigen-
distributions (IEDs) and characters on G briefly.

Let (1t, 5 )  be an  irreducible representation of G  on  a  H ilbert space 5. We
assume 7t be admissible, i.e., K-multiplicities are finite. T h e n  n has a  character
0 1, which is a distribution on G:

Go„(f)=Trace 
G

 f (g)îv (g)dg (f  e C (G )),
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where Q (G ) is the space of C"-functions with com pact supports. The irreducible
character O R  has the following remarkable properties.

(1) It is invariant under the inner automorphisms of G.
(2) I t  is  a  simultaneous eigendistribution o f  two-sided invariant differential

operators (Laplace operators) on G.
(3) Essentially, it coincides with a  locally summable function/ .  R  on G which is

analytic on the open dence subset G' of regular elements of G.

Definition 1.1. We call a distribution 0 on G inv ariant eigendistribution(l)D)
if it satisfies the properties (1)-(2) above.

The property (3) follows from (1) and (2) (see [3, Th. 2]).
Take an [ED  O .  Then 0  is an eigendistribution of Laplace operators:

ze =x(z)0 (z e 3),

w here 3 is the  centre  of U (g) (identified with the space o f  Laplace operators).
The algebra homomorphism x of 3 into C is called the intfinitesimal character of O.

Let H be a Cartan subgroup of G .  We give a local expression of e on H .  By
the Harish-Chandra map n we can identify 3 and U(1 c )w, the space of W-invariant
polynomials on Iye . Then x defines an element of Hom a ,g ( U(10w, W :

Corresponding element A E bt is also called an infinitesimal character of 0  and we
denote this by x  =x ,. Remark that x,t =  x "  for any we W.

L et h e H n G ' be  a  regular elem ent. Then we have for a  sufficiently small
X  E  ,

De(h exp x)=  E c(w, h; x)exp w2(x).
wew

Here,

D (h )= (h ) ;1(h))

is called the Weyl denom inator. The coefficients c(w, h; x) are polynomials in x.
If all the coefficients can be taken as constants in x for any w, h and any Cartan
subgroup H, we call 0  a constant coefficient IED.

1.3. Virtual characters and IE D s. A v irtual character is by definition a linear
combination o f  irreducible characters. T h e  space o f  a ll  th e  virtual characters
with infinitesimal character A  is  d e n o te d  b y  V (2 ). W e proved  th e  following
in [14, 15].

Proposition 1.2. The space V(2) of v irtual characters coincides w ith the space
of constant coefficient IEDs w ith inf initesim al character A.
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B y  th is  proposition, virtual characters and constant coefficient IEDs are
identified. L e t u s introduce th e  results o n  IEDs obtained by T . Hirai ([5, 6]).
Let H be a Cartan subgroup of G and take an infinitasimal character A E 1 . D e fin e
a family of analytic functions on H as

23(H; ,1)= {C is analytic on H, satisfying the following conditions (1) and (2)1.
(1) is an eigenfunction of U(1),)w with eigenvalue A.
(2) is e-symmetric under W(G; H), i.e.,

(wh)=e(h; w)((h) (he  H, we W(G: H)),

where e(h; w) is defined as follows:

e(h; w)= ( — 1)"(w) 11 sgn( _i„(h)),
ct e R (w )

N(w)= # { o te  + l a is imaginary and w'Œ <O},

R(w)= {a ed+ la is real and w - la <0} .

W e say a  root a e d  is  rea l (o r  imaginary) if  it takes real (respectively, purely
imaginary) values on I). The function e(h; w) is locally constant on H, with values
in { ±

Each element e  (H ; A) can be written as

(h exp x)= E  a w (h ; x)exp wA(x) (x h e H),
weW

where aw (h; x) is a polynomial function in x depending on h and w .  If a w (h; x)can
be taken as constant in x for each h and w, w e ca ll of constant coe ffic ien ts . Put

E(H; A )=  e  /3(H; A)1( is of constant coefficients} .

Theorem 1.3 (T . H ira i). (1) There is  a  canon ica l linea r isom orph ism  T  of

11(H; A) in to  the space of IEDs 91(A) w ith  in fin ite s im a l ch a ra c te r A . Let 91,(A)=

T(21(H; A)). Then

91(A)= 91H (A)

is a direct sum, where H  runs through a ll the representatives of conjugacy classes of

Cartan subgroups of G.
( 2 )  Let VH (A)= T((H ; A)). Then

V(A)= V1(A)
If

gives a direct sum decomposition of the space of constant coefficient IEDs (or the

space of virtual characters).

The definition of the linear map T is described in [6 , § 3 ] . We explain the con-
struction of T  in Appendix A for later use.
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§ 2 .  The representations of integral Weyl groups WH (1) .

2.1. Let Car (G) be the set of all the conjugacy classes of Cartan subgroups of
G .  Take [H] E Car (G), where [H ] denotes the conjugacy class of H.

At first, we describe generators of the space ((H; ).). Let {H i b e  a
complete system of representatives of connected components of H  under the inner
automorphisms of G (we take H , as the connected component of e). For t E W'H(2),

and a 1 EH 1, w e define an analytic function (a 1, t).; h )  on H  a s  follows.
Define ((a i , t).; h) first on H i . Put for he H i ,

(2.1) ((ai, t ).; h)= E e(a,; s), A (aT'(sh)),
seW(G;11,)

where is an analytic function on H 0  defined by ,(exp x)= exp tA(x) (x E fi). On
W (G; H)-orbit of H i , we put ((a i , t ).; h) as

((a, t; w h)=e(h; w )((a i , t).; h )  (h  e H 1, w E W(G; H)),

and for h E H outside of W (G; H)-orbit of H i , put ((a i , t).; h)=0.
Easy calculations te ll u s  th a t  ((a i , t).; *)E (H; ). ). Moreover, one knows

th a t  ( ( a „  t).; *)10. 1, t  E  F r if(). ) } spans E(H; ).)  fo r  a  fixed set la, I a, e H i ,

In the following of this paper, we assume tha t fa i l  can be taken nicely for A.
More precisely, we put the following assumption on A.

Assumption 2.1. For each Cartan subgroup H  of G, there exists fa i l such that
( 0 )  ai e H i (O i l) and a0 =e.
(1) ,,,(a i7'(sa i ))=1 for any t E W71 ().) and s E W(G; H i ).

, Remark 2.2. F o r a  special G , Assumption 2.1 is satisfied for any  A. For
example, if G=S L (n, R), Sp(2n, R), S 0 0 (p, q) (p+ q = 2n) or a complex Lie group,
then the assumption is satisfied. In general, if we replace A by mA for some positive
integer m, the assumption above is satisfied. More detailed discussion is given
in Appendix B.

2.2. In the following of this section, we assume tha t A is regular. Then it is
know n that 0 (H ; ) .)=(H ; A ) and V().)=21().). W e recall the definition of the
representations of integral Weyl group WH ().) on VH ().) (see [16, §3]).

Since Z(H ; ).) =E(H; ).)= a(a i , t).; *)1O i  1 ,  t  E  WV().)> (linear span over
C ) and VH ().) = T(Z(H; ). )), we may identify 13(H ; ).) and VH (A ) b y  T .  Then WE
WH ().) acts on ((a i , t ).; *) as

M(w)((a i , t).; *)=((a i , tw - 1 ).; *).

An element WE H (A) acts on T ( ( a  t).; *) as

-r(w)( n (a„ *))= T(M(w)C(a i , t ) . ; )) .

Assumption 2.1 assures that this definition of T  is well-defined. We can decompose
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the representation (T-, V „) )  of WH ().) completely in terms of induced representations.
Let us explain  th is. Let W-H( ) . )  be a complete system of representatives of a
coset space W(G; H i)\ W A )IW H (A) and put

W (i, y) = WH (,l.) n y-  ' W(G; 111) y  ( y  e  i ),

e(i, y; w)=e(a i ; ywy- 1 ) (a e H 1 ,  w e W (i, y)).

Then E(i, y; *) is a character of the group W (i, y).

Theorem 2.3 ([16, Th. 5.1]). The representation T of WW2) on VH (A) given above
is decomposed into a direct sum of induced representations:

(T ,  v „ (A ))=  i s  Ee Ind (e(i, y; * ) ; W (i, y) 1' WH (A)),
i = 0  y E r ,

where Ind (E; A  B)= Ind le.

Now we remark the connection between our representations and the represen-
tations of Weyl groups which Zuckerman defined ([10, Appendix], see also [1]).
In the case that A is integral for G, i.e., WH (.1)= W for any H , our representation of
W is defined on the whole space of virtual characters VW= ET, V ,.1 ). This repre-
sentation is equivalent (under Assumption 2.1) to Zuckerman's one. But for general
A, his definition is only applied to a subgroup

Wo = {W E — A  QM}
of W, while our definition can be applied to a larger subgroup than K . Rem ark
that Zuckerman's representation of Wo and ours restricted to Wo are almost equi-
valent (in fact, replacing A by mA for some integer m >0, we can prove they are
equivalent).

§ 3. Generalities on Hecke algebras.

This section is devoted to explain general properties of Hecke algebras and their
representations. We use notations independent of the other sections here.

3 .1 . H eck e algebras. Let W be a group (infinite or finite) and D its subgroup.
We assume that

(3.1) [D; D n Dx] <00 for a n y  x e W.

Let M = { DxD x  e W} be the set of double cosets, and we denote by  . 9 ( W ,  D )  a
free abelian group generated by M . For A , B, C E M , put p5,,B  = #(D \ A - 1  C n B)< oo
and define the product A .B  by

A .B = 125 B C.
cEm

The algebra A°z(W, D) with the above product o is called the Hecke algebra of (W, D)
over Z ([7, 8]). We simply call .Y r(W , D)=drz(W , D)O z  C  the Hecke a lgebra  of
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( W, D) in this paper.
Now we assume that W is a finite group . Remark that (3.1) is always satisfied.

In this case we have more convenient interpretation of .re(W, D ).  Let C [W ] be a
group ring of W and put

e —  1   E  d e C [W ].
D d e l )

Then the subalgebra er,C[W]e D  of C[W] is isomorphic to <e(W , D) as an algebra.
As a consequence, <Ye( W, D) is a semisimple algebra. Since eD  is  idempotent, ,Ye(W,
D )  e „,C[W ]e D  has a unit element eD . In the following, we always regard dr ( v, D)
as the subalgebra eD C [W ]e, of C[W].

Take a  representation it o f  W on a finite dimensional vector space V. Then
there corresponds a representation of the group ring C[W ] naturally. We denote
it also by 7T. Since xt.9(14/, D ) is a subalgebra, we can get a homomorphism

it I x ( " ) : D) End (V ).

But it does not send the unit element eD  to the unit element I v  of End (V). To avoid
this situation, we decompose V as

V= V00 V ,  (direct sum of D-modules) ,

where V, = VD= {t, e 7r(d)v = v for any d e D} and Vo i s  the complement of V,.
Since 7r(eD )V =V 1 , we have

.reqw, D) End(V1)c: End (V ),

and t r ( e D ) = i v 1. Therefore we get a representation of .e(W, D ) on V , from a repre-
sentation (7L, V ) of W . We call this representation of <Ye(W, D ) the reduction of
(7r, V ) to ,e(W, D) and denote it by Red tv,7r. The representation space of Red j,v7r
is as described above.

Lemma 3 . 1 .  If  i t  i s  irreducible, then Red tv,7r is irreducible.

P ro o f . It is easy to see that every vector of V, except 0 is cyclic, and consequently
Red nr is irreducible. Q. E. D.

3 .2 .  The representations of the Hecke algebra A."( W , WA) .
Let us consider the following c a se . Take a finite group W' acting on R n faithfully.

( * )  For a subset W-  o f W', let A and W be subgroups such that A c {a E I
aW -  =W - }  an d  W= { be W'1 W- b = W- }. Then there exists /1. E R n such that
WA = {w  W ' I 14, 2 =.1} is a subgroup of W.

Now we treat the Hecke algebra .Ye(W, WA) and  their representations. Take
a character x of A .  Define an element of the group ring of R" by

C(t, ) ) = x(a) exp at.10 ( t  E
aeA

and put 0 ( ). ) = a(t, ). )1It e W- > (linear span over C ), where .10 e R n is  a  regular
element, i.e., WA.= E 1474 = = {e}.
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Lemma 3 .2 .  L inear transformations -r(w)(w n W) on 0(2 0 ) defined by

-r(w): (t, A 0 ) --> C(tw - 1 ,

give a representation (T, 93(4)) of W.

As described in 3.1, we get a representation Red 2 of A°(W, WA) from (T, 0(4)).
In the following, we will give another interpretation of Red rv',T in the above situation.
This is achieved by translating regular parameter Ao to singular o n e .  Returning to
A E R n in (*), we define at, /3.) (t E W- ) and 23(A) as a t ,  4 )  and 23(4), using A instead
of A. D e f in e  a linear map P of 23(4) to 23(A) by

P(t, 2 0 ) =((t, 2).

Remark that P is onto but not injective in general.
We construct a  representation a of dr(W , WA)  on  the  space 23(A) a s  follows.

R e c a l l  th a t  Y e(W, WA )=e A C[W ]e A , w h ere  eA =OW A Y 'E s E 0 ,,, s. F o r  eA weA e
dr(W , WA), we put

(3.2) o-(eAweA)(t, A)= P(T(e A we A )at, A 0 )).

Lemma 3.3. The linear operators c(e A weA ) (w E W ) define a representation of
the Hecke algebra .Y ea(W, WA ).

Pro o f . At first we prove o-(eA weA )is well-defined. That is to say, we prove that
if

E  ci (t, A )=0,
teW-

then it holds

(3.3) P(T(eAweA) ciC(t, A0))=

for any w e W . We use the following lemma.

Lemma 3 .4 .  L et 0(4) 1 be  the space of all the WA -fixed vectors and 0(2 0 )0  the
complement in 23(4) as WA -m odule. T hen w e have Ker P = O(Ao)o.

We will prove this lemma after the proof of Lemma 3.3.
Now apply Lemma 3.4 to  the element E ct c(t, 20 ). Since it belongs to Ker P

by assumption, it generates a  WA-module that contains no non-zero fixed vector.
So we have

T(eA)( E  c,C(t, A0 ))=0
t e W

and we have proved (3.3).
To verify that a defines a representation is now an easy task. Take w1 , w 2  e W.

Then we have

c(e,w i e A )o-(e A w 2 e A ) ( t ,  A) = o-(eA w j e A )Per(e A w A eD at, AO)
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=Per(e Awt eA)T(e,t w2 e,t )C(t, An))

=P(r(e Awi eAw2 e) )((t, ) .0))

= 7(eAlVieAw2e,Mt, A).

Proof  of  Lemma 3.3. At first we show that Ker P contains
s e W,t , we have

161

Q. E. D.

F or any

P(T(s - ')C(t, A 0 ))=P(C(ts, A 0 ))

=C(ts, A)=C(t, A)=P(C(t, A 0 )).

Therefore, for any v e 23(4)0 , we have r(e A)v =0 and

0= P(T(e2 )v)=(#147,) -1 1P ( x ( s ) v ) =  W ) 1
 s ; A P(v)= P(v) .

Thus we have P(v)= O.
Now we prove the reversed inclusion. Assume that P(v )= O. Decompose v=

vo @v i along the direct sum 2 3 ( A 0 ) = Z ( A 0 ) 0 S Z ( A 0 ) 1 .  S in c e  P(v)=P(v 0 )+ P(v i )=
P(v i ) from the above, we can assume that v = v, e 0(4) 1 . Let {ti l in I}  be a complete
system of representatives o f A \ W- . Clearly, fa t i , /10) i s  a  basis of 23(4).
So we can write

v= E viC(ti, (c e
j e !

Using this expression for v, we rewrite the equality t(s)v= v for any se  WA. We have

T(s- 1 )v = E ci C(ti s, A O= E ci E x(a)exp at i sAo .
i e l j e !  a e A

If we write ti s = a(i, s)t i ( s ) e A{t i } = W- , then the above formula becomes

E ci E x(a) exp ua(i, s)t 1 ( 5 ) A0
i a

= E s)-1) E x(a)exp at ( S ) AO
a

= cix(a(i, s) - 1 )C(t1 (5 ) , A0 ).

This is equal to v = E cic(ti , A0 ). Therefore we have ci = x(a(i, s))c i ( s )  for any s e WA.
Now, since

0 = P(v)= ; ;  Aci ((t i , A)= ci E exp at i A,

the coefficients of exp at i A must be z e r o .  Remark that a 1 ti A =a 2 ti A (a 1 , a 2  e A ) is
equivalent to that there exists an s e  WA such that a i  ti = a 2 tJ s. Therefore the co-
efficients of exp at i A is equal to

E  ci ( o x (aa(i, s))= E  C  a(C 1 )= W  A )C  iX (a)  ,
seW seW

where we used ci =c i ( o x(a(i, s)). Now we proved that P(v )= O and v e Q3(2 0 ) 1 give



162 Kyo Nishiyama

ci = 0, and therefore v =O. Q. E. D.

Proposition 3.5. T he representation (a, 93(A)) of .'(W , W A )  is equivalent to
Red rvr,(r, 23(Ao )).

P ro o f . By Lemma 3.4, we have Ker P = Z(A0 ),. Therefore P defines a  linear
map of the representation space of Red 1* to 23(A). It is easy to see that P intertwines
Red tiv7 2 r and a. Q. E. D.

§ 4 .  Representations of Hecke algebras on virtual character modules.

4 .1 .  After the general theory in §3, we now return to the notations and subjects
in  §§1 and 2. Let H  be a C artan subgroup o f G and {H i 0  / }  a  system of
representatives of conjugacy classes of connected components of H under the inner
automorphisms o f  G .  L et A E ht b e  a n  infinitesimal character not necessarily
regular, and WA its fixed subgroup in  W . We choose A to be dominant with respect
to A + in the sense that Re <A, oc> 0 for a e A+ .  As is mentioned in §2, the virtual
character module V(A) with infinitesimal character A  is decomposed a s  a  vector
space over C:

V ( A ) =  E C I )  VI (A ) .
EH1eCar(G)

Each V (A ) is isomorphic to the vector space (1-1; A) of e-symmetric A-eigenfunctions
on H which are of constant coefficients. Put i(H ; A)= tA  ; '0 1  t e  W (A )>  and
ViH (A)= T( i(H ; A)). Then clearly it holds that

T(H; A) = EED ; A), V11 (2) = EG

Take a ti ijz such that (i) /2 belongs to the root lattice Q[A] and (ii) Ao  =A-Eft
is dominant regular. Then we have the following lemma.

Lemma 4 .1 .  (1) The subset W (A ) coincides with W"H(Ao ).
(2) The integral Weyl group WH (A) coincides with WH (A0 ).
(3) The subgroup WA is contained in WH (A).

The proof is easy. So we omit it.

4 .2 .  Now we apply the results o f §3 to this c a s e . Take a  character e(ai ; *)
of W(G; H i ) and form an analytic function ((a i , tAo ; *)(a i e H i , t e W (A )) on H i as

((a i , tAo ; a, exp x)= s(ai; s)exp stAo (x ).
seW  (G ;H  ,)

Then Ci(H; AO= tAo; *)I t e W (A )>  is  a  WH (A)-module a s  described in  §2
(under the Assumption 2.1). Define a  linear operator P: C i(H; A 0 )—* (H; A ) by
P(C(a i , tAo ; *))=C(a i , IA; *). Then we come to the situation of §3.2, if we replace
W', W, A, W ,  W, and x in §3.2 by W, W„(A), W(G; H 1), W (A), W 2  and e(ai ; *) in
this section respectively. We get the following.
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Theorem 4 . 2 .  ( 1 )  For eA weA E r i'( Wi i 1), WA ), put

o-(eA weA ) T((a i , tA; h)=( WA ) - 1  E tsw-'A; h )  ( h  E H).
SE WA

T hen  a is  a  representation o f  A'(W f f (A), WA)  w hich carries th e  u n it  elem ent of
Ae'(WH (A), WA)  to  th e  u n it element o f  End ViH (A). Denote again by  a this repre-
sentation o f  ,Ye(WH (A), WA )  o n  th e  v irtual character m o d u le  VH ( ) )= E 0  V A )
(0

(2) The representation (a, VH (A)) of  the Hecke algebra Ye(WH (A), WA ) is equi-
v alent to th e  reduction (w ith respect to  th e  subgroup WA )  o f  th e  representation
(T , V11(20 )) of  W (4 )= W H ), the integral W eyl group:

(a, V„(A))- Red ,Ir,;:i(A0) (-r, VH ().o )).

Using Theorem 2.3, we can decompose (a, VH 1)) into a direct sum of "induced"
representations. Namely, if we write

R I(e; A  B I ,C )= R e d g ln d le ,

we have the following.

Corollary 4.3. T he representation (a, VH (A)) o f  Ye(WH (A), WA)  defined in the
above is decomposed as follows:

(a, V! AA)) = E@ RI (e(i, y; *); W(i, y) T WI ( ) W  A) ,
i = 0  y e r i

w here  I' W(i, y ) and e(i, y; *) is given as in  §2.2.

Let

(4.1) (T, 17 (4 ) ) = newn(A) -

be the decomposition into irreducible components, where m u is the multiplicity of n.
Remark that we can get (4.1) from Theorem 2.3 easily for explicit cases. We put

.F(A)= fti E WH(Ar In has non-trivial fixed vector for WA}

=  E  W H (A ) Pi; Ind (1 ; WA T WH (A))] 0 0} .

Then we have

Corollary 4.4. T h e  representation (a, VH (A ) )  o f  .Yea(WH (A), WA) h a s  the
decomposition into irreducible components:

( a  V H (A)):- -=' E Redr,',f ( A0) n.
n cgr(A)

Pro o f . This is clear from Lemma 3.1 and the fact that Red n ( 0 )  is equivalent
to ri E ,F(A). Q. E. D.

In the case where A is integral, i.e., W„(A)=W for each Cartan subgroup H  of G,
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we have the representation

(a, VW =  EE° (a, VIM )
[H]ECar(G)

of "(W , W2 ). Then Corollary 4.3 is reduced to the following (see [16, Th. 5.2]).

Corollary 4.5. If  A  is integral, the  representation (a, V (1)) of  ,Y e(W, WO is
decomposed as follows:

(a, V(A))= Ec) Ee RI (c(a i ; ) ; W (G ; H i) t  W  W 2 ) .
[ H]eCar(G) 1=0

Theorem 4.2 says that "if we know WH O )-module structures completely for
arbitrary regular infinitesimal character 20 , then we know the ,Ye(WH (2), WO-module
structure for singular infinitesimal character 2 ", by translating the regular parameter
10  to the singular one A. This theorem is useful to study the properties of the virtual
characters (or irreducible representations of G) at singular parameters. For example,
we have the following result about the dimension of V(À,).

Corollary 4 .6 .  Let A  and 2 0 =2 +g  b e  as be f o re . For a C artan subgroup H,
put

n(H; A o , ))=dim  {v E  VH (Ao) I T ( S ) V  V f or any  se W2 }.

Then we have

dim V(A)= Lui
k ( G ) n (1 1 ; / 1 ° ' ) .11

Remark. Recall that dim V(A) is equal to the number of (equivalence classes
of) irreducible admissible representations which have infinitesimal character A.

§ 5 .  Relation to Zuckerman's translation functions: another interpretation of the
representation cr.

5.1. Zuckerman's functors. We use the notations of §4 (and, of course, we
suppose Assumption 2.1). Let y9=q )L  and '= ./ i°  be  Z uckerm an 's  translation
functors (see [2 0 ]). Here we explain the properties of ça and çli briefly for later uses.
Originally, Zuckerman defined them using the tensor products with finite dimensional
representations of G .  Functors ça and tif are defined as

ça =Proj (4).(F,,10( • )).Proj (A),

11i= Proj (2).(P0  0( )) • Proj (AO,

where F, is the irreducible finite dimensional representation of G with highest weight
p, and F o* is its contragredient. Notations Proj (A) and Proj (4) mean - projections"
to the components with infinitesimal character A and /I, respectively. So  ça and
are by definition the functors of categories of ( ,, K)-modules. Since both of
them are exact functors, they induce linear maps between the virtual character
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modules V(.1) and V ( 4 ) .  Here we denote these linear maps by the same letters 9
and III:

: V( ) .) - - 0  V(A 0 ), : V(Ac,) V(A) .

Take 0, e V (A 0 )  and [H] e Car ( G ) .  Then 0 0  h as  a local expression arround
a regular element h e H' =H n G' as explained in 1.2:

D 0 0 (h exp x)= E  c„(h)exp w).0 (x ) (x  e
weW

where c (h )  is a locally constant function on H '.  By (3.8) in [20], we have

D (t0 0 )(h exp x)= E= (h)c(h) w t( x )  (x el)) .w 

Similarly, if we express 0 E V(A) as

DO(h exp x)= E  a„(h)exp w1(x) (x et)),w  

then by (3.7) in [20], we have

D(90)(h exp x

for h e IF and x  1).

5 .2 .  Relation to Hirai's method T .  Let 9  be a  linear m ap from  0(H ; A ,)=
E(H ; A ,) t o  (H; ).) defined as fo llow s. For 0 and t e  W A 0 ), put

g a a i, 0 , 0 ; h ) = tA; h )  (h  e H),

where It = A0 —.1, is an element of Q[A ].

Proposition 5 .1 .  Fo r an y  e 3 ( H ; ) . 0 )=E(H; A 0 ) , w e  hav e tP(T 0=49(C )),
where the notation T  m eans Hirai's m ethod T  (see [6] and Appendix A).

P ro o f . It is sufficient to show  the  p roposition  fo r = (a , t ).0 ; *). Let D be
the Weyl denominator a s  in  § 1 . Then for a i exp x E H i (x e b), we have

ERDIII(T ) (aie x p  x)= E ( a ) 8 ( a ;  exp (tA, SX)
seW(G;H,)

= _ t p (a1) E g(ai ; s)exp(t )., sx),
sEw(c ; u )

by the results of [20] and the definition of T. Here we used

for a n y  s e W (G; H i ).

This follows from Assumption 2.1. On the other hand, we have

gR D T (9(0)(a i exp x)= .9(C)(a, exp x)

= g(ai; s)exp sx).scwkHo 

=  E  E  L p (h )aw (h )e x p  wt20(x),
tcw2  wEw

Thus we proved
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0(n) I,j = Pg(C )) H •

Since /i( T) an d  T(.9(C)) are extrema! IEDs of height H , we can prove t/J(n )  =
T(g(C))I j  f o r  another Cartan subgroup J  inductively on the order on Car (G ) as
given below. The proof depends fully on the construction of T. We explain about
T in Appendix A.

At first, we prepare notations. Let J 1 b e  a  connected component of J and F
a  connected component of J1(R )= {h E J1 I ot(h) 1 fo r  a e z1,1. Denote by E=
E(J 1 ) the root system consisting of all the real roots a E A ( ,  lc )  for w h ich  OE(h) > 0
on J 1 . L e t  S=S(J 1 ) be the subgroup of W(G ; J 1 ) generated by s„ (a e E), where sz

denotes the reflection with respect to Œ. P u t  P(F)= {a E  I  „(F)> 1} . Then P(F)
is a positive system in E and we denote by 17 = H(F) = arl the simple system in
P ( F ) .  Let B m  (1  m  r)  be a Cartan subgroup obtained from J by the Cayley trans-
form vŒ,, = v„, with respect to  the real simple root a n , e Il . T h e n  [13m] > [J] holds.
By the induction hypothesis, we have

(5.1) TC/IB- = T(9 0 1 ,3 -  (I m  r).

Put f  =  DO( TO I D T(9 (0)1 B ”, We devide th e  proof for i i ( T ) = ( C ) )  J

into two steps as in the proof of Theorem 4.3 in [16].
Step R . Put

EJI

L'„, = {h e t„, z (h ) 0 1 for a n y  ro o t  a  ± am } .

Then for a e E,, n J1 and x e j, we define

(R „  f  m)(a exp x)=fm(a exp v„,(x)).

On the other hand, if we write gm = D((T) IB „, as

gm(a exp x)= E  c, exp w.) 0 (x) ( c  C),
w  W

then, by (5.1) and the results of [20], we have

(5.2) f m(a exp x) = E _}„,,(a) exp
wEw

For a function g  on J of the form:

g(a exp x)= E exp 104x) (a E J' , X E D
wEW

we define an operation (If by

11/ j (g) (a exp x)= c exp w.1.(x).
WED'

Then, by (5.2) clearly it holds that

(5.3) R 2 f " ' ( 1  m  r )



V irtual character and  Hecke algebra 167

S tep S .  For a function g  on J ,  and S E  S , we define sg  as sg(h)=g(s - lh )(h  E

J , ) .  For each s,„= s  ( 1  m  .r), we put

sz1(f m ; s„,) = (1 — s„,)(1? f m).

Each element SE S can be written in the form s= si ,s,,• • •sik . Then we put

a f(f f  r ; s ) = szie1 (f i1 ; 5 .)+ 12; s12 ) + ;  Sik )  .

It can be proved .21(f f r; s )  is independent of a choice of expressions for s E  S.
Finally, we put

.1( f 1 f r )= 0 S y l s i(f1 ,...,fr ; s ) ;

Similarly, .4(g g r)  c a n  b e  d e fin e d . Then, w e have D  T (9 () )  F  = g (f  1 ,• • • f r )

and D T ( ) 1 F = a(g ig r ) .  Since D O JO  IF =  A a (g i  , •  •  . ,  g r ) )  holds, it is enough
to  show that ( a ( g g r ) ) = j f  r ). But this is reduced to  the fact that

t//j (s(R,,„gm))=s(k„,,,f  m ) .

Let us prove  th is. T ak ing  (5.3) into consideration, it is enough to show

(5.4) Ilij(sg)=s(11/j(g))

for an analytic function g  on J ,  of the following type: for a e F n J '  and x  E  i ,  g  has
an expression

g(a exp x)= E  cw exp w).0 ( x )  (cw  E  C).
wen, -

Put b = s a .  Since

sg(bex p x)= g(a exp s - 'x )=  E  c w  exp sw/10 (x) ,
weW

We have for x e j,

(*)
ili j (sg)(b exp x) = E  c --5wp(b) exp SWA(X)

weW

= E exp swil(x).
weW

In the equality (*), j  is applied to the expansion of sg a t  b e F n f .  On the other
hand, we have for the right hand side for (5.4),

s(IP j (g))(b exp x)= tfrj (g) (a exp s - lx)

(.)=  E  c ,(a)exp wil(s - 1 X)
weW

= E sw,l(x).
weW

Here, in the equality (*), LP, is applied to the expansion of g  a t  the  regular point
a e F n f .  Thus we proved T (g ( ) )  IF= 0( 1 ' )1 F•
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Now, since F  is arbitrary, we proved T(9/'( ))1 j =t11( n)1 j  and the induction
step is completed. Q. E. D.

Let be a linear map of E(H ; A) into O H ; /10 ) (from singular /1. to regular .10 )
defined by

tA ; h )= E twAo; h)
W E  W A

E ai)g(w-1)C(ai, tAo; h).
W E  W A

Then we can prove the following, similarly as in the proof of the preceeding propo-
sition.

Proposition 5.2. For a n y  E  (H; A), we have ço( = T (.2()).

We omit the proof to avoid the repetition of the same sentences.

5 .3 .  Representations o f H eck e  algebras. T o  c o n s id e r  re la tions between
Zuckerman's translation functors and our representation a ,  there appears always
the trifling constants { (a i )}. In the following, we want to consider the case where
these constants are all reduced to 1. We assume:

Assumption 5.3. For any t e W (.1) and 0 /, c (a i) = 1 holds.

This assum ption is not essential. I n  f a c t ,  w e can take p  a n d  {a,}  so that
Assumption 5.3 holds (see Lemma B.4 in Appendix B).

Corollary 5.4. Under A ssumptions 2.1 and 5.3. we have

Ker t/Jo= Kerr(e2) o n  V(A o ).

P ro o f . B y Proposition 5 .1 , w e  have  Ker tfr = T (K er ,9 ). Since P  in  § 3  is
equal to 9  by Assumption 5.3, we have

K e r  =  E e '  E(II; A0)0tinccar(G)

from Lemma 3.4. The subspace E(H; A o ) o  is given by

(RH; = g E AO) I g(ez)C =0} ,

where A ' is defined as in  2.2. C learly, it holds that T(E(H ; A 0 )0 ) = Ker -c(e,) (in
Vi ,(4 )) and, summing up through [H] e Car (G), we have the corollary. Q. E. D.

One can prove the following lemma similarly as in the proof o f Theorem C.2
in [10].

Lemma 5.5. For 9  e V(A 0 ), we have

yotli(0 ) =  ;; A  T(S)0 -= W2 )t(e ,)0 .

Using Lemma 5.5, we introduce another interpretation of the representation a
of the Hecke algebra de(WH (.1.), WA) in §4.
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Theorem 5.6. For eA vveA e H(WH (A), WA) and 6  E V ail), put

(5.5) o-'(eAweA)0 =(#WA)- 1 (tli.t(e A we A ),v )(6 ) .

Then (a', V IP)) defines a representation of the Hecke algebra Y e(W ,(,t), W A), and
moreover a' is equal to a.

P ro o f . Since T .P= T o g  is  surjective, there exists e  (H ; Ao ) such that
T(.9(C0))—  0. Then we have

(1#14, ) -  i i1Jot(eAweA)°(P(T(.9(0))

=(#W,0 - 1 1Pot(eAwe.t)o(P0( TCo) (by Proposition 5.1)

-=(#14/) - 1 00t(eA weA).(#WA)T(e,1)(TC0) (by Lemma 5.5)

=t1J.T(e,weA )(TC 0 ).

The last formula and Proposition 5.1 tell us that this is equal to o-(eA weA)( T(PC0))=
cr(eA weA)e . Q. E. D.

§ 6. r-invariants for admissible representations.

In  this section, we show some applications of representations of Weyl groups
o r Hecke algebras to study admissible representations of G .  O ur representations

and a  are closely related to so-called t-invariants o f a n  irreducible admissible
representation of G.

Let (n, 5) be an irreducible admissible representation of G on a H ilbert space
5 . We denote by (n, 5K ) th e  corresponding irreducible (g c , K)-module on the
K-finite vectors of 5 . Then we can define a grobal character 0(n) of (iv, 5K ) as in
§1. Here we suppose that 6(n) has a dominant regular infinitesimal character .10 e

Definition 6.1. L et H  be the simple system in A .  T h e n  -c-invariants Y (n)
of (ir, 5) is a subset of H defined as

.9'(n)= e  H <a, /10 >  e  z  and t(s a )0(n)-= — 0(n)} ,<a, a>

where < , > is an inner product on ht invariant under the action of W . Remark that
if <a, /1.0 >/(a, a> is an integer, then sc, e WH (.10 ) holds for any H.

R em ark. Our definition of t-invariants may slightly differ from that of Vogan's
(see [1 9 ]). The difference between our representations of Weyl groups and Vogan's
([1, 19]) is the cause of the difference of t-invariants. However, most of the results
obtained by D . Vogan are valid in our situation (for example, see Propositions 6.2
and 6.4).

Put t=(<a, A o >l<a, a>)a . Let p be a positive integer such that ,2(a ) =  1 for
any i  on each Cartan subgroup H ([H] e Car (G )) . The existence of such a  p  is
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assured for a special choice of fa i l (see Appendix B).

Proposition 6.2 (D . Vogan). Take a n  a e H  s u c h  th a t < a , 20 >i<a, a> G pZ.
P u t  .1.=.10 —  u= (< Œ , .1010, a>)cx. T h e n  WA =1e, sOE1 a n d  th e  fo llo w in g  tw o
conditions are equivalent.

(1) VP1°(0 (70)= O.
(2) a e ,917r).

P r o o f .  This proposition is essentially known (see [19, Prop. 3.2]). But here
we give a proof because it shows usefulness of our theory . The proof is very short,
if we use the results of preceeding sections.

W e know from Corollary 5.6, Ker tp = {V G V(20)1 T(eA )v= 01. T h e  equation
T(e„)v= 0 means r(sŒ)y= — y because e,=(e+s,)12. Q. E. D.

Example 6.3. (1) If nf  is a finite dimensional representation, then Y(ir f )= 11.
(2 )  If Ira i s  a  discrete series representation with Harish-Chandra parameter

E bt, where b is a compact Cartan subalgebra o f  g .  Remark that G  has discrete
series representations if and only if G has a compact Cartan subgroup. Choose a
positive system d ± so that 2, is dominant regular with respect to d +. Then we have

Y(Ir d )= toce I /  a is a compact simple root} .

This is a deep result of W. Schmid ([17, Th. 9.4]).

Take a regular dominant infinitesimal character 2, E bt If necessary, replacing
20  by a multiple of 2, by some positive integer, we can assume:

(1) For suitable choice of fa i l, 2, satisfies Assumption 2.1.
(2) If <a, /10/0, a> E Z  f o r  a n  I E H , th e n  p=(<cc, 20 >/<a, c > ) Œ  satisfies

Assumption 5.3.
This is clear from the argument given in Appendix B.
Let l e i  j  e J1 be the set of all the irreducible characters of G with infinitesimal

character 2 „. Take an a E 17 such that <a, 2,>/<a, a> e Z .  We put s=S,, E  W, the
reflection with respect to  a  and 200= 2, — (<a, ) 0 >/<a, a>)oc. Then WA ( Œ ) = {e, s„}
W/1(20 ) and 2(a) satisfies Assumption 2.1 for the same {ai }. Let J(s), s=s„, be the
subset of J defined as

J(s)={jEJIT(s)O i =— O i } = f j e J ls E Y ( O i )}.

Proposition 6.4 (D. Vogan). (-I,) F o r k e J\J(s), we have

T(s)0 k =  k +  E  zi e ;  ,
je J(s)

w here zi  ( jE J ( s ) )  i s  a  non-nega tive  in teger. C onsequen tly , T(s)Gok i s  a  t r u e
character.

(2 )  If we put V 0 ) =  E J E , ze j , then T(s) preserves V(. 0 ).

P ro o f .  The proof is carried out similarly as in the proof o f Lemma 3.11 in
[ 1 9 ] .  So we omit it.
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Now we return to the situation in §5, i.e., start from a dominant A not necessarily
regular and put 2 = 2+y dominant regu la r. Of course, we assume Assumptions 2.1
and 5.3. Put n(1)= {a c /11 <A, a> = 0}. Then WA is generated by 1s„ I a E MA)} .

T h eorem  6 .5 . (1 ) Put

V 0 ; H U M =  < O f j 6 J(s)  f or some a E MAD/ Z

generated as  a Z -m o d u le . Then V(2 0 ; MA)) is stable under the action of V V ,
and V(A 0 ; 11(A))= V 2 0 ; 11(2))0  z  C  is the kernel of t(eA): V( 2 0)— V(1 0).

(2 )  For an  irreducible character 0 ,  it holds that 11/10(0 ) = 0  if  and only if
= —0 f or some a E ll (A ) .

P roo f. (1 )  At first, we show tha t V z (Ao ; 11(2)) is stable under the action of
WA . I t  is  e n o u g h  to  show that, for any j  e A 2 )=U  „ r i m  A s OE) and any a e 11(2), it
holds that

T(sŒ)0j e Vz (.1.0 ; MA)).

This is trivial, if j e J(s). S u p p o se ]  J ( s ) .  Then we have from Proposition 6.4,

t(s,,)0 i  =  f +  E  zk o k  (z„ e Z ).
k e J ( s )

The second term of the right hand side of the above equation is contained in V AA ( ) ;
11(2)) by definition. Since 0 i  is originally taken from  V(20; 11(2)), we proved

e V z (20 ; 11(2)), hence V (2 0 ; 11(2)) is WA-invariant.
Now we prove that V (2 0 ; 11(2)) contains no non-zero fixed vector for W A . Put

V 100= (1 +T(s a))V(2 0 ),

V0 (a)= (1 — t(s ,c))V (AO .

Then V(20 ) = Vo (a) e V 1 (cc) is  a direct sum  decom position. From  Proposition 6.4,
Vo (a) has a basis { 0 ;  I j  E Asa)}. If 0 e V (2 0 ) is a fixed vector for WA, 0  is contained
in V1(a) for every a E 1 (2), that is to say

E  n  V 1 (a) .
a e l l (A )

Therefore, if we denote by (  ,  )  a  WA-invariant inner product on V (4 ), we have
(0, V o (a)) = 0 for any a e M A ).  Consequently, (0 , 0 )= O holds for any j  e J(,1)
and we have (0 ,  V(20 ; 11(A))= O.

From the above, we see that V(20 ; 11(2))c Ker t(e Remark that dim V(20 ;
MA)) =  (A). From Proposition 6.4, we have for j  E J\J (A) and a e 11(2),

t (s jO i ----- Of  m od V (2 0 ; 1 (2)).

Since { e i lj c J\J (A)} is linearly independent modulo 11 (20 ; 11(1)) , the dimension of
the space of WA -fixed vectors is #(./V(2)). Now, since the complement of Ker z(e2 )
is precisely the space of WA-fixed vectors, we have dim V(20 ; 11(2))=#J(2)=#.1 —
#(J\J(A ))= dim Ker t(e ,t ). Thus we proved V(10 ; 11(A))= Ker T(e A).
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(2) is clear from (1) and Corollary 5.4. Q. E. D.

From this theorem, we know that the subspace Ker t ( e , )  o f  -1/(A0 )  (or equi-
valently, the direct sum of all the non-trivial representations o f WA in  1/(20 ) )  has a
basis consisting of irreducible characters. This is a  remarkable fact and maybe is
useful for picking up irreducible characters from the space of IEDs.

§ 7. The case of U(3, 1).

In this section, we give some examples of representations o f  Hecke algebra on
the  virtual character m odules of G= U(3, 1) (cf. [16, §6]). T he  results o f  this
section is valid (with appropriate modifications) for U (n , 1 )  ( n  2), however, we
restrict ourselves to the case n= 3  for simplicity of notations,

7 . 1 .  Irreducible representations of U (3 , 1 ) . Let G =  U(3, 1) b e  th e  group of
"unitary" m atrix w ith respect to  th e  Hermitian form x i +  x 2 k-

2 +x 3 3 — xvT4 .
That is to say, we put

G= {g e G L (4 , C )IgJr = J}  ,

1 13 0
J=

\O — 1  /

where 13 denotes the identity matrix of size 3. All the irreducible admissible repre-
sentations o f  G  are  classified by T. Hirai ( [4 ] ) .  W e follow after his notations.
Irreducible representations of G are described as follows.

a) Irreducible princ ipal series representations: Z(a; c i , c 2 ), where a =
(i t , 12 ) (1, > 1 2 ) is a row of integers and (c 1 , c2 ) a pair of complex numbers such that
ci + c 2  = an integer, and neither c ,  nor c2 are equal to an integer, or else, both c ,  and
c2 a re  equal to some of integers 1,, 1 2 . The infinitesimal character o f Z(a; c 1 , c 2 )
is (/i , /2 , c 1 , c 2 ).

b) Irreducible s u b q u a t i e n t s  o f  reducible princ ipal series representations:
where a =(/,,, l t , 12 , 13 )  is a  row of integers such that 10 > 4>  1 2 > /3 a n d  ( i, j)

is a pair of integers such that 0  i < j 4 .  The infinitesimal character of Dai , i  is a.
The representations DiŒ>i+' (O i  3) are discrete series representations and M. 4  is
a finite dimensional representation.

c) The limit representations of the representations of type b). We denote these
representations by the same letters as in b), while the parameters are degenerate.

1 2 3 4

0 D " D " D " D°4

1 D u D " D '4

2 D " D24

3 D 3 4

Figure A.
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T he representations with regular integral infinitesimal character belong to
the class b) and, in the following, we consider this class of irreducible representations.
Of course, irreducible representations of type c) and some of type a) naturally appear
when we consider the representations of Hecke algebras.

7.2. Representations of the W eyl group. Let W be the complex Weyl group,
then S 4  (symmetric group of degree 4). Take a  regular integral infinitesimal
character oc0 = (/ 0 , / 1 , / 2 , / 3 ), / 0 > 11 >12 >1 3 .  Then its integral Weyl group is precisely
W, and we realize the action of W S, on C4  = ht by the permutation of coordinates.
Simple reflections, which make a, dominant, are transpositions:

{s i = (0, 1), s 2 = ( 1, 2), s3 = (2, 3)}.

Since we only consider the virtual characters, we denote by the same letters D ij the
corresponding irreducible characters. We have, from 7.1,

V(Œ0 ) =  L E D  CD i p
0 5 i< j5 4

and the action of r(s k )  on V(a0 )  is given by

—D j if k 0 i, j

t(s k )Dij= D1 +D 1 j+Di+ 1 , jf if k= i

D1 , j - i +Dij+D 1 , j+ 1 if k= j,

where D" is considered to be O. This action of r(s k ) defines a  representation of W.
The decomposition of T. into the irreducible components is given in [16, §6]: V(oco )=
[14 ] C12[2 . 12 ] e [3 . 1] (for notations see [13]).

R em ark . The above formula of t ( s k ) is valid for U(n, 1) (n __ 2) without modifi-
cations for regular integral infinitesimal character oco . In this case, simple reflections
are {s,=(i — 1, i)11 i -. m} and the irreducible representations of G with infinitesimal
character oc„ are {Dij 10 i <j .. n +1} (see [4]). The decomposition of 2 is given by
(r, V(cx0 ))-.= [1" - " ] D42.1" - 9 0 [ 3 . - I  r1n- 2 j (L16, §6]).

By the formula of TOO, we know the r-invariants of Dij.

1 2 3 4

0 S2 S3 Si S3 SI S2 Si S2 S3

1 53 s, S2 S3

2 SI S3

3 SI S2

Figure B.

We explain how to read Figure B . For example, ..99 (D° 2 )= {s i , 83 }  is the r-invariants
o f D° 2 (we identify th e  simple system with simple reflections by usual manner).
From Figure B and Theorem 6.5, we know the irreducible characters with infini-



1/2 0 0

1 0 0

1 —1/2 0

0 0 —1/2 /

0 0 O '

—1 1 0

0 1 0

0 1

7 -1 /2

0
cr(e,s 2 e,)=

0

/ —1

0
o- (e 1 s3 e1 )=

0

0
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tesimal character (1'0 , 12 ,1 3 ), 1 =l'i > I> 2 > /3, are ItP(Dij)1 1=1  o r  j= 1 1 . T h e
other singular infinitesimal characters can be treated similarly.

From Proposition 6.5, we know
( i ) The space Ee C D " ( i0 1 , j0 1 )  is  invariant under the action of  W ,=

{1, s,1. This space is a multiple of the sign representations of W1 .
(ii) The space Ee CD" ((i, (1, 2)) is invariant under the action of W12=

0 1 , S2> = S 3 . This space is decomposed as 3[1 3]S3[2 .1] (for notations, see [13]).
The decomposition is calculated from [16, Lemma 6.2].

(iii) The space Ee C D " ((i, j)0(1, 3)) is invariant under the action of W1 3=
<SI , S 3 >  S 2  X  S 2 . This space is decomposed as 3(sgnOsgn) 3(sgn01)103(10
sgn).

7.3. Representations of the Hecke algebras. Essentially we have three different
types of Hecke algebras for G =U(3, 1).

( i )  At first, we consider the case where the singular infinitesimal character is
of the form a, = (4 ) , / 1 , / 2 , 13 ), 10 =1 1 > / 2 > /3. In this case, the irreducible characters
with infinitesimal character a, is given by fiP(Dij)1 1=1  or j= 11 as commented in
7.2. W e denote also by the  same letters degenerate characters. Then w e have
v( 0,1 )_<Doi , Di2 , Di3, Di 4 >/C where D°' and D' 2 are limits of discrete series repre-
sentations. The fixed subgroup W, of a l  is given by W, = {1, s,} an d  we put e l =
(1+ s,)12. Then a Hecke algebra A°(W, WO= e i C[W ]e i  is  of dimension 7 and for
the generators of .ye 047, WO we can take {h 2 =e,s 2 e1 , h 3 =e 1 s3 e , } .  The relations
of generators are given as follows:

h i= 4 ( 1 +h2),

(h 2 h3 )2 = h2 h3 h2 + --(h 3 h2 — h3 h2 h3 ),

(h 3 h2 )2 =h 2 h3 h2 + --(h 2 h3 —h3 h2 h3 ).

The actions of generators on  V (a,) are given as below:
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where the matrix is expressed with respect to the basis {D°', D12 5 D13, D 1
4 } in  this

o rd e r . T h is representation is reducible a n d  has three irreducible components.
Invariant subspaces are precisely,

<D°
'> /C , <D'4>/C, <D12+(D01 D14)/2, D' 3

 — (D° 1 3D14)14>/C.

Corresponding to this basis, operators are diagonarized as

l -1 /2

1 0
cr(e 1 s2 e 1 ) =

1 —1/2

—1/2/

/  — 1

cr(e,s 3 e ,)=
0 I

—1

(ii) Next, consider the case where the  singular infinitesimal character is of
th e  fo rm  a, 2 = (/o , 11 , 1 2 ,  13 ), 1 0 =1,=1 2 >1 3 . I n  th is  c a se , th e  only irreducible
character with infinitesimal character cx1 2 is  O W 2 ). This is a  degenerate principal
series representation (type a) of 7.1) and, in the same time, is a limit of discrete series
representations. We write this irreducible character by the same letter D' 2 . Since
the fixed subgroup W, 2 of 0(12 is generated by s, and s2 , the Hecke algebra P(W , W i2)
has dimension 2. A  generator o f ye(w, if, 2 ) is  h 3 = e , 2 s3 e 1 2 ,  where e1 2 =(1/6).
E s e w ,, s. The relation of the generator is given by

3 h - 2 h 3 — 1=0.

Non-trivial element e l 2 s3 e, 2  E A qW , W, 2 ) acts on D' 2 as

u(e, 2 s3 e 1 2 )D 1 2 = —D12 .

(iii) This case treats the  singular infinitesimal character o f  th e  form  ix1 3 =
(10 , 1,, 12 , 13 ), 1 0 =1, > 1 2 = 1 3 .  T h e  only irreducible character with infinitesimal
character cx, 3 is i/x(D' 3 ). This is a degenerate principal series representation of type a)
in 7.1. We write this character by the same letter D' 3 . The fixed subgroup of cc, 3

i s  W„ = <s, , S 2  X  S 2  a n d  th e  H ecke algebra dr( W, W1 3 )  has dimension 3.
Put e 1 3  =(114)E s e ,  i 3  s. Then th e  ac tio n  o f th e  generator e1 3 s2 e1 3  o f  A°(W, W, 3 )
is given by

cr(e i 3 s2 e, 3 )D 1 3 — 0.

In this case, the relation of the generator h2 = e, 3 s2 e, 3 is given by

2113—hi—h2=0.
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Therefore one dimensional representations of <Ye( W, W1 3 ) consist of three equivalent
classes. The other two classes are given by

o- '(e 1 3 s2 e1 3 )= —  
1

o r  12

respectively, and do not appear in the virtual character modules.
The above three types (i), (ii) and (iii) correspond to (i), (ii) and (iii) in 7.2.

R em ark . For G=U(n, 1) (n 2), one can claculate out the representations of
Hecke algebras using the formula of T  in 7.2. The details will be discussed elsewhere.

Appendix A.

This appendix is devoted to describe Hirai's method T  for the usage in §5.
For detailed arguments see [6, §3].

A.1. Let /1(.1) (A  e l l )  be the space of all the IEDs with infinitesimal character
A. Since O e 91().) is essentially a locally summable function on G which is analytic
on G', it is determined by the values on the set of regular elements G'. Moreover,
is determined by the values on the finite system of Cartan subgroups {H [H] e
Car (G)} because O is invariant under the inner automorphisms of G.

To understand Hirai's method T, it is essential to consider some kind of order
on Car (G). Let us explain this order on Car (G) (see [5, §3]). Take [A ] e Car (G),
where [A ] means the conjugacy class of a Cartan subgroup A .  For cx e AR = zi,(g c ,
cic), let H be the element of a c  for which a(X )=B (H OE, X ), where B ( , ) denotes the
Killing form on gc . Take root vectors X Œ , X_ Œ from g in such a way that [X Œ, X _ OE]
=H OE and we put

H '  =  
2  

Hlal 2a ' a 10(1
Let v = vOE be the automorphism of gc  defined by

v -= v„ = expi 1  ad (X 'OE + X  LŒ)} ,4

so-called Cayley  transform  with respect to a. Then b = v(a c ) n g is a Cartan sub-
algebra of g not conjugate to a under any automorphism of g, and f l=  v(Œ) is a
singular imaginary root of b. W e  have

a = Xa + R i f ;„ b = EOE +  —  1 RH'fl ,

where ZOE is the hyperplane of a defined by a = 0 and

=v(H'OE)=. 1 —1(X 'OE — XLOE).

This relation between a and b is denoted by (a, a)— (b, /I) or simply by a—)b. We
introduce the order < on Car (G) by defining [A ]<[B ] when a —q) for an appropriate
choice of a representative B of the class [B ], and extend it transitively.
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For e e 91(A), we put

Supp (9)= {[H] E Car (G ) el } , O },

Hght (e)= {[H] E Supp ( (9)1[H] is maximal in Supp (0)} .

and call [H] E Hght (e) a height of O. I f  e has the unique height [H ], then e is
called an extrema! IED of height [H] (or simply, H).

For a Cartan subgroup H, put

DH(h)=c(h) cc ri ,  (1 - (h) - 1 ) ( h  E H),

Dli f (h )= j j  (1 — ,x(h) - 1 ) ( h  e H).
cce 4

For a given IED 0 on G we put

CH (0 )(h )=D H (h)0 (h ) (h G H'),

C'H (0 )(h )= (h )D H (h )0 (h ) (h  E H'),

where eg(h)= sgn (Dg(h)) (h E H').
Define a family of analytic functions 0(H; A) as in § 1 .3 . Then we have

Theorem A.1 (H ira i [5 , T h . 1 ]) . Let be an IE D  on G  with eigenvalue
If  0 has a height [H] E Car (G), then C'H ((9) can be extended to an analytic function
on the w hole group H. M oreover, it belongs to 93(H; A).

A.2. Hirai's method T is the method to construct an extremal TED with height
H from an element C E 23(H; A). This is done by induction on the order on Car (G),
and has two different steps R  and S .  Roughly speaking, the step R  corresponds to
boundary conditions to be satisfied by IEDs, and the step S  corresponds to  Weyl
group symmetry which assures the invaraince of IE D s . As is mentioned above, an
IED (9 is determined by the system of functions C ( 0 )  ([J] e Car (G )) . So, in order
to give an IED TC f o r  E 0(H ; A), it is sufficient to give functions  C (  T )  for every
[J] e Car ( G ) .  T. Hirai gave necessary and sufficient conditions for the system of
functions C ( 0 )  ( [J] e Car (G)) obtained from an  1 E D  0  in  his works ([5, 6]).
Using his results one can verify that constructed functions CA T O ([J] e Car (G))
really determine an IED  TC.

Let us explain the construction in detail. Take an element C e Q3(H; A). We put

CH ( TO = ell • f o r  H itself,

C .1( TC) 0 f o r  [ 1] E1-n

Let A be a Cartan subgroup of G and assume that we have already constructed C B ( TO
for [B ]> [A ]. L e t  A , be a connected component of A and F a connected component
of A'i (R )= A , n A '(R ), where A '(R)= {h E A I ,,(h) 0 1 for any a G  , } .  Denote by
E =E(A 1 ) the set of all the real roots a e z l, for which ( h ) > O on A l . Then E is a
root system . Let S =S (A 1 ) be the subgroup of W(G; A O generated by c0.1 A  (OE E E),
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I /where w„ is  th e  conjugation by a n  element gc,=exp i -n(X„ — X )  e G .  We put

collA i  = S . .  Let P(F) be the set of a e E. for w hich „(F)> 1. Then P(F) is the set of
all the positive roots of I w ith  respect to a certain order of r o o ts .  Let 11= II(F)=
{a i ,..., a,.} be the simple system in P(F).

S tep  R . Denote by Er a Cartan subalgebra obtained from a  by  the Cayley
transform v ac,. = vm  with respect to  the real root a m (1 m  r). By assumption, the
functions CB „,( TO have been already determined. We write C m  instead of CB „,(T()
for brevity.

We put

I'm = {h E Al L (h)=1}  ,

I = { h  E  i m I „(h)0 1 for a n y  ro o t a  + a m } .

Then for a e I'„, nA, and x e a, we put

exp x)= Cm (a exp v„,(x)).

Here v„,(x) may not be contained in bin, but Cm  is locally a linear combination of the
form exp p(x) (p e (bn,)*) (or its multiple by a certain polynomial function), so C„,(a
exp vm (x)) has natural meaning.

Step S .  F o r a  function f  on  A 1 a n d  se S, we define s f  as (sf )(h)=f(s - lh)
(h E A i ). For each sm = s„,,, (1 m  r) ,  we put

.915„, = (1 —sm )(R ,,C,„).

Each element SE S can be written in the form s = s o , :  ••sik (see, for example, [2]).
Then we put

=  s a f  +  d 5 + • • • + 5 i ,5i 2 . • • S _.

It can be proved that si s is independent of a choice of expressions for s e S .  Finally
we put

= a(c 1, C2,..., Cm ) = (#S) - 1

SES

Denote by E A , the union of wA i  over WE W (G; A ) .  Define CA( To on EA, n A '(R) by

CA (T )(w h)=det(w ).4(h) (w  E W(G; A), h E F).

Let A 1 , A2,... be a complete system of representatives of connected components
of A under the conjugation of W (G; A ) .  Then A is the disjoint union of E A i , EA „ .. . .
Repeating the same construction for every A i , we get C A ( TO on the whole A .  Thus
we can define C ( T )  ( M e  Car (G)) inductively. W e see that they altogether
define an IED TC by Hirai's arguments.

Our proof of Proposition 5.1 is carried out along the above construction of T.
Steps R  and S  there correspond to the same parts of this appendix.
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Appendix B.

Here we remark about the Assumptions 2.1 and 5.3.
At first we prepare some notations. L et H  be a Cartan subgroup of G .  We

can choose a  0-stable Cartan subgroup from [H ], where 0 is a Cartan involution
with respect to a maximal compact subgroup K .  So, we may assume H is 0-stable.
Then the Lie algebra h of H is also 0-stable and we define b+ =((+1)-eigenspace of 0)
and 1)- -  =(( — 1)-eigenspace of 0). Put

H +  = H  K ,  H = ex p 1 .

Then H=H+H -  (direct product) and H -  is connected. D enote the adjoint repre-
sentation of G by Ad: G-+Int (g). T h e  kernel of Ad is the centre of G .  Put

F = FH= Ad -  (A d (K ) n exp h --)) .

Then we have the following lemma (see, for example, [12]).

L em m a B .1. (1) F  is  a f inite group and com m utes with Z G (H - )0 , identity
component of the centralizer of H -  in  G.

(2) It holds that H = rH 0 =1-10 F and P c  H+.
(3) F is stable under the action of  W(G; H).

Put M= n {Ker Ix X: Z G (H - )-+ R*, a  continuous homomorphism}. Then M
is a reductive subgroup of G containing a compact Cartan subgroup H .

Lemma B.2. Let F0 =F  n H o . T hen w e hav e
(1) The f inite group F o  is contained in the centre of  M o , the connected com-

ponent of M containing e.
(2) For a e z1s i -f R uz1, and a e F o , c,(a)=1 holds.

Pro o f . (1) is clear from Lemma B .1  (1 ). Let us prove (2). For a e
take a non-zero root vector X Œ . B y  the definition of F, Ad (a) (a e F) has the form
exp(/— 1 ad x) (x e h - ). We have Ad (a)X„=exp(,/ — 1 ad x)X OE = exp(,J— 1 a(x)) •
X =  XŒ  since a(x)= O. S o  „(a)= 1 h o ld s . The proof o f  ,c(a)=1  ( EA R )e  4 )  is carried
out similary, since a e H . Q. E. D.

Lemma B.3. F o r  E 1)t an d  teW -H (A), there ex ists a positive integer m such
that

r.,,t(a)=1

The integer m can be taken as

Pro o f . Since T o  i s  a  finite group, there exists an  m such that a'n=e for any
a e r o .  T h e n  t ,,,(ain)— 1 holds. Q. E. D.

Let {H i I i e /} be a complete system of representatives of the conjugacy classes
of connected components of H , under the action of W(G: H ) .  As for Assumptions
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2.1 and 5.3, we have the following lemma.

Lemma B .4 .  T here ex ists a  subset { a i l i e I}  f o r each C artan subgroup H
([11] e Car (G)) satisfying the following conditions.

(1) It holds that a i e H i for i E l.

(2) Fo r an  arbitrary  inf initesim al character x =x ,1e l ) t ) ,  t h e re  e x is t s  a
positive integer m such that

r„,,(aTisa,)= 1 ( t  E W7,(M/1), j e !, s E  W(G; H i )).

( 3 )  There exists a positive integer p depending only  on G, such that

,(a ) = 1f o r  an y  l ie  Q[A] .

P ro o f . It follows from Lemma B.3 and its proof that there exist a positive
integer p depending only on G, and fa i l i c I}  a subset of H  such that

(a) It holds that a i e H i for i E /.

(b) For any .1.e bt, we have

Isa i)— 1 (t E i e I, se W (G; H i )).

( c )  For any y e Q[21], it holds that (a1)= 1.
In fact, we can take p= 11 #F,/ and {a 1 1 i e /} can be taken from r 11 .

[ H ]eC a r(G )

By the definition of W (2), it is clear that V r(pyl) W 7 1 (3.). Therefore, for some
positive in teger r, 14/71 (pr).)=W ii(pr - 1 .1) h o ld s . P u t  A' = y/1. B y  th e  above
argument, we have

(aT 's a)= 1 ( t  E W a r - 1 4  ie I ,sE  W (G ; H i )).

Since W I
- Apr- 1 ,0= W );) , w e  have

1-sa ,) = 1 (t e W71 (3.'), i I  se  W (G ; H .)) .

Q. E. D.

Remark B .5 . An integer m in Lemma B.4(2) can be taken as m pr (r=#W  and
p as in the p ro o f ) . This is clear from the above.

For an arbitrary ;. e lj., if necessary, take mil instead of 3.. Then Assumption 2.1
is satisfied.

Also, we can take y c bt which satisfies Assumption 5.3 as follows. It is clear
that there exists a  te e Q[zI] such that 3. 0' = ,1 + y ' is  dominant regular. Then it
holds that

(a1) 1  ( t  e i E I),

where It = py'E Q [z1]. Clearly 3. 0  = /I+ y is dominant regular and  Assumption 5.3
is satisfied for this y.
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