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§ 1 .  Introduction.

In this paper we study the discrete models of the Boltzmann equation. It is
shown that there exist regular models with k  moduli of velocities for an arbitrary
integer k > 2.

Let M= {v i ,..., v„,} be the  se t o f velocities, i.e., the constant vectors in  R 3 .
We assume that the linear span of M coincides with R 3 . The model M is essentially
three dimensional in this se n se . First of all, we introduce the notion of the collision.
Let us d e n o te  b y  the set of all unordered pairs of distinct velocities. W e  m a y  set

E={(v i, vi ); i<j<m } .

Let a, /3 e Z .  Then, a =(v i , /3=(nk, v1), for some i, j, k, I. The ordered couple
formed by a and /3 is called a collision, if

( i ) a Ofl, i.e., the trivial collision is excluded,
(ii) the momentum of a equals the momentum of fl, i.e., v i + vi = vk + vi ,
(iii) the energy of a equals the energy of fl, i.e., I v i i2+  Iv./

1
2 _  

Ivkl2+1v112.
It is usual to denote collision formed by a and fl by a— q3. We call a and /3 the
initial and the final states of the collision a--fl, respectively. It is assumed in the
following that there exists at least one collision for the given model M .  Now let %a
be the set of all collisions for the model M .  We obtain a partition of by the equi-
valence relation given below.

We introduce the group of transformations acting in M .  We set

G = {T; Te 0(3), TM =M} .

Here, 0(3) denotes the orthogonal transform ation group. G  induces naturally a
group of isometric transformations on M, which we denote again by G . I t  is easily
seen that G is determined uniquely as the maximal set of isometric transformations
o n  M . Since M is a finite set, we may regard G as a permutation group. We define
that a—,6 and a r e  equivalent if these collisions are obtained from each other
by performing a transformation which belongs to G  or by interchanging the initial
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and the final states or by applying these two kinds of operations successively. The
constants appearing in the definition of the collision term may be identified with
a "step function" subordinate to the partion of W, which is induced from the equi-
valence relation defined above (See [3 ] for details). T h u s ,  if  '  consists of g  equi-
valence classes, we have g  arbitrary constants in defining the collision term. The
general form of the discrete Boltzmann equation is given by

a F i + v . —

1 
E (A j3F k F i — .), i = 1, 2,..., m.et 2  j,k,1 j

Setting F=t(F i ,..., F,n )  and denoting the right-hand side of (1 .1 )  by Qi (F, F), we
rewrite the equation as

OF3 O(1.2) + E vj  F   — Q(F, F),ot 1 =1o x ;

where Vi =diag v4), j=  1, 2, 3. Q(F, F)=t(Q i (F , F),..., Q„,(F, F)) is called
the collision term . Here we understand that 2,11 is set to  b e  zero if the formal
expression (vi , vi )-4v,„ vi ) does not correspond to  a collision.

We say that (1.1) is regular if the following properties hold:
1 ° )  The equation (1.1) is irreducible in  the sense that the system cannot be

decomposed into two decoupled subsystesm.
2 ° )  The collision term Q(F, F) is invariant under the associated transformation

group G .  Namely, TQ(F, F)= Q(TF, TF) for any TE G, Fe Rtm . Here F is regarded
as a function on M.

3 ° )  The stability condition for Maxwellians is satisfied (The precise statement
of this condition is given in § 3 .  We refer the reader to [3 ] for detailed discussions).

Note that 2°) is always satisfied when A J
1 is chosen according to the procedure

described above. The other conditions 1°) and  3°) can be verified without the
knowledge of A c i.  Therefore we may also say that the discrete model M is regular
by abuse of the terminology.

Our main result is summarized in the following theorem.

Theorem 1 . 1 .  L et k >2  be a n  integer. T hen  there  ex ists  a  regular discrete
model with k moduli of velocities.

We shall obtain a certain refinement of this theorem in §3.

§ 2. Construction of the models.

In this section we define a series of discrete models and compute the dimension
of the space o f summational invariants of these m odels. The regularity will be
shown in  the  next sec tion . T he models considered here are invariant under the
transformation group G= S4 X I. H e r e  / denotes the group of order two generated
by the central inversion (For the notations of the symmetry groups, we refer the
reader to [2]). First we give two discrete models as follows.
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t41 ) = (1, 0, 0), uS ' ) --(0, 1, 0), 14"  = (0, 0, 1), 14 1 ) = (- 1, 0, 0) ,

14(5' ) = (0 , -1 , 0 ), 14 ' ) =(0, 0, - 1) ;

14112) = (1 0, 1) ,  1 4 (22) = (0 , 1 , 1) , u (32)_(_ 1 , 0 , 1) ,  u 5t2)_(0 , -1  1 ) ,

u(
5

2 ) = ( -  I, 0 , -1 ), i4 2 ) = (0 , -1 , -1 ),  uV ) =(1, 0, -1), uL 2 ) =(0, 1, -1),

u 2 ) =(1, 1, 0), u (,20 ) =(-1, 1, 0), u (
i

2,) =(-1 , -1 , 0 ), 14 22= (1, -1, 0).

We set M(k)= {.1,4 1‘) ; 1 < i < m(k)} for k = 1, 2, where m(1)=6, m(2)=12. We define
N 2= M" ) U M( 2 ). Then N2 i s  a  model with two moduli of velocities. The com-
plete list of the collisions of this model is given in Appendix 1 (We have 192 collisions
for N 2 ). Let .4P2 be the space of summational invariants. We recall that any sum-
mational invariant t(4),, Cs) satisfies

(ki+ d); - ( P k  01 - 1 3

for all j, j, k , 1  such that (y,, y,) is a collision of N2  and vice versa.
the set of all summational invariants of N2  fo rm s a  subspace of = R 18 . I t  i s
shown by a  straightforward computation that dim X 2 = 5 .  Next we consider the
discrete model M( 3 )= {u 3 ; 1 < < m(3)}. Here, m(3)=8 and

u(
1

3 ) =(1, 1, 1), 14 (
2

3 ) =(- 1, 1, 1), uS 3 ) =(-1, -1, 1), u,S.3 ) =(1, -1, 1),

u(
5

3 ) = (-  1 ,  -1 ,  -1 ),  le  =( 1 , - 1 ,  - 1 ) ,  u ! 7
3 )  =(1 , 1 , -1 ), uL 3 )  =( -  I, I, -1 ).

The extremities of these vectors form the vertices o f a  cube . T he  extremities of 6
vectors i41) coincide with the centers of the faces of the cube, while the
extremities o f  12 vectors u (

1
2 )  , ,  ti(

i
2
2

) a re  the  m idd le  po in ts  o f the  edges of the
c u b e . W e note  tha t M ( ' ) a n d  M ( 3 )  a re  Broadwell's 6- and  8-velocity models,
respectively. We define N 3= M" ) U M ( 2 )  U M ( 3 )  and denote by .47

3 th e  space of
summational invariants of N3. T h e n , ../r3 c  3 =  R26. We shall show that dim .4t3
=dim .À =  5. First we note that

0,1) + 0,3 ) = u(,2 ) +uV )

and that
!Oi l )12 ± 1 1431 12 = 1142)12 ± I 2)12.

Hence

(u (
1.

1 ) , u(
i

3 ) ) - )  (01
2 ) , uV ) )

is a collision of N3 (N ote that only 143 ) belongs to M( 3 ) here). By applying trans-
formations of G, we obtain similar collisions. Each of these collisions contains only
one velocity of M( 3 ). Any velocity of M( 3 ) is a component of one of these collisions.
Now we write down the defining equations for .4r3 and look at the coefficient matrix
C 3 . We may suppose that the first 192 rows of C3 are corresponding to the collisions
of N2 (It is enough to consider just one half of the 192 collisions because the restitution
of a collision does not lead to a new equation. But here we consider the whole system
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of equations without reducing the size). We assume also that the first 18 entries of
the vectors of Y/-

3 = R 2 6  correspond to i/*2  =  R " .  Let D 3  be the submatrix of C3

obtained by striking out the first 192 rows and the first 18 columns. Then the above
observation shows that D 3  contains an 8 x 8 submatrix which is identical with the
unit matrix after a  rearrangement of rows. It follows that

rank of C 3 > rank of C 2 +8 ,

where C 2  is the submatrix of C 3  corresponding to the collisions of N 2 .  But, ./r3

has at least dimension 5. Hence dim ./r3  =dim X 2 = 5 . We define M( 4 ),..., M( 7 )
as follows. Let

uç4 ) =2uP )( 1 < i < 6 ) ;

uV ) -(2, 1, 1), u (
2

5 ) =(2, -1 , 1), uV ) = (2 , -1 , - 1 ) ,

u55 ) = (2 , 1 , -1 ), .t45 ) = ( - 2 ,  - 1 ,  - 1 ) , u 5 ) = ( -2 , 1 , - 1 ) ,

uf7
5 ) =(-2 , 1 , 1), uL5 ) = ( - 2 ,  - 1 ,  1 ) , W ) =(1, 2, 1),

4 = ( 1 ,  2 ,  - 1 ) , u; 5
1
) = ( -1 , 2 , -1 ) , u 2

) = (-1 , 2 , 1 ),

u (N = ( -  1 , -2 , -1 ) , u(N =( -1 , -2 , 1 ) , 14(
1
5
5

) = (l, -2 , 1 ) ,

u (,56 ) = (1, - 2 ,  -  1 ) ,

u (N = (-  1 , -1 , 2 ) ,

u (
2

5
2

) = ( 1 ,  - 1 ,  - 2 ) ,

u (,5
7

) == (1,

u (
2

5
0

) =(1,

u (
2

5
3

) =(1,

1, 2), u 5
8

) =(- 1, 1,

-1 , 2 ), u (
2.1) =(- 1 ,

1 , -2), 14(
2

5
4

) = ( - 1 ,

2),

- 1 ,  - 2 ) ,

1 , -2 ) ;

u (
i

6 ) =2u (
i

2 ) ( 1  j < 1 2 )  ;

14,7 ) =2u (
k

3 ) ( 1  k<_ 8).

For k =4,..., 7, we set Moo = {ulk ) ; 1<j<m (k )} , where m(4)=6, m(5)=24, m(6)-
12, m (7)=8. W e define N k =M ( 1 ) U ••• U M ( k )  f o r  k =4,..., 7  and  denote by ./rk

the space o f summational invariants of N k . Thus, ./rk  " r k =  R m " ) + - + m ( k ) . It is
shown that dim .41,=5 for k = 4,..., 7. We observe that

u&1 ) A-uç4 ) =u,f7
2 ) +u (

i
3 )

and that

Therefore,

1u1)12± 1u(14)12_lu (2 )12±1u(13)12.

( 4 1 ) , (uf72), u (,3 ) )

is a collision of N 4 .  By repeating a  similar argument as before, we conclude that
dim .A(4=dim X3 = 5 . N ex t w e  look at the following collision of N ,,

(u;' ) , u(i
5 ) (u(,3), u (

i
4 ) ),

and the collisions derived from this by performing a transform ation of G .  To
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proceed from k= 5 to k = 6, we consider
(u v) ,  u (16)) _ ,  0 4 (14),  u (157))

and the other collisions of N 6  like this. F ina lly  w e notice that

(uV ) , (u(i5-7), ue)
is a collision of N 7  and by employing the same argument as above at each stage we
conclude that d im  = d im  ‘ ,1 / '6 = dim X, =dim ./1/4 = 5. F o r  k > 8 ,  we define
M(c) = { i l") ; 1 ‹ I

 <  m ( k ) }  by  .1.,wo=2.tw,-4) (1 < i <m (k )) w here  m(k)= m(k— 4).
Let N k =A 4 ( 1 ) U •• • U M ( k )  and le t X , be  the space of summational invariants of N k.
Note that . / rk  is  a  subspace of Y/;,-- R'n' +Tn( k) . It is shown by induction that
dim ' ' k = 5 fo r  any k > 8. S in c e  N k , k =2, 3,..., is a  discrete model with k  moduli
of velocities, the proof of Theorem 1.1 is complete if the regularity is established
for these models.

§ 3 .  Proof of the regularity.

Since th e  irreducibility is checked easily f o r  a ll m odels constructed  in
the preceeding section, it is enough to show that the stability condition h o ld s . The
verification of this condition for the model N , is given in  Appendix 2. To treat
the model N k  for arbitrary k > 2, we proceed as fo llow s. Let i be a positive integer.
Then there exist integers k, 1 such that i = m(1) + • • • + m(k)+ 1, where 1 < I< m(k + 1)
(W e se t d (0 )= 0 ) . L e t v1 =4 ‘+' )  f o r  k > 0  a n d  n(k)= m(1) + • • • + m(k) fo r  k > 1.
Then, N k = { V i; 1 <i<n ( k ) }  for k > 2. We write N = N k  for brevity 's sake. Let us
assume that k >2 in  th e  following. Thus N , is a submodel of N .  The space of
summational invarian ts of N  is  deno ted  by  x .  H ence, X  O E  =Rn ( k). Let
vi =(v i i , y , 2 , v13)  fo r  i = n ( k ) .  We define V i, j= 1, 2, 3, to be the  n(k)x n(k)
diagonal m atrix  w ith  diagonal elements v i i , 1=1,..., n ( k ) .  T h en  th e  stability

3
condition for N  reads as follows: Let 0 E X .  Let co E S 2  and  le t V (co)= E w .V i .

=1 j

Then, ,u0+ V(w)(/)= 0 for some It e R, implies that 4) = O.
We take a  basis of .A '. To be precise, w e define 0 1 ,..., 0 5 a s  fo llow s. Let

0 ' e 'V  be the vector whose entries are all equal to 1. W e define 0 2 , 0 3 , 0 4  e
to be the vectors obtained by projecting the velocities v i , i =1,..., n(k ), onto the three
axes of R 3 ,  respectively. Hence the  i-th  entry o f  0 i+  equals v i j ,  i =1,..., n(k ),
for j= 1, 2, 3. F in a lly  0 5  e Y/' is the vector whose i-th entry is given by Iv i 12 , i=
n (k ) .  The set of vectors 0 1 ,..., 0 5 defined above forms a  basis of .4/". Now we
assume that

/20+ V(co)0=0
5

for some ,u e R, w e S 2 and  that 4)e.iV . W e  w r ite  0 =  E oci cki and substitute this
into the above equation. Then we have

5 5 3
E E E cop i vioi=o.
1=1 i=1 j=1

(3.1)
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Now let P  be the orthogonal projection of Y/"= R n ( k )  onto = We denote
also by P  the n(k) x n(k) diagonal matrix corresponding to this projection in the
standard b a s is . Then, multiplying both sides of (3.1) by P , we obtain

5 5 3
(3.2) E itoci P(Pi + E w i a i P v iP o i =0.

i=1 i=1 J =1

Here we used PV.1 =P 2 V-1 = P V .T .  The set of vectors P 4)5  forms a  basis
of X 2 . Therefore, (3.2) can be written as

jiJ i + v 2 (0 ) ) 0 =0,
5 3

where we set tif = E oci P0 i and V 2 (a))= E  w i P v i .  Since the stability condition
i=1 j=1

is already verified for the model N2, we deduce that i,li =O. Hence a i =0 for 1 < i <5.
5

Therefore 49= E a id)i =O. This means that the  stability condition holds for the

model N .  The proof of the regularity is completed.
Finally we consider a modification of the models N k , k = 2 , 3 ,— . Let M (3 ) =-

{/43 ) , UP ) , UP ) , UP ) ). T hen  R (3 ) i s  a  subm odel of M (3 ). The transform ation
group for the model /11(3 ) is  no t S4 X I  but S 4 A 4 , because the extremities of the 4
vectors of M (3 ) form the vertices of a  tetrahedron. W e set that R 2 =M( 2) u
Then it is shown that N 2  is a  regular m o d e l. We define N 3

 = M ( ' )  u  M ( 2 )  u  A l ( 3 )

a n d  /ilk = ./V3 U M( 4 ) U • • • U M(k )  f o r  k> 3. By the  same argument as before, we
conclude that N k  is a  regular model for any k > 2 .  The transformation group for
N„, k =3, 4,..., is also S 4 A 4 . Thus we obtain a  refinement of Theorem 1.1, which
is as follows.

Theorem 3 . 1 .  L et k > 2  b e  an  arb itrary  in te g e r. L e t M (G) b e  the set of
regular discrete m odels inv ariant under the prescribed transform ation group G.
Then, if G is either S 4 A 4  or S4 X  I , R (G ) contains a model with k moduli of velocities.

The counterpart of this theorem for other transformation groups will be given
elsewhere. See [5], [6] for the case of G= A , x I.

Appendix 1.

We set

E 1 = { (v i, v ); 6} ,

E2 = {(V i, V.) ;  7  < i < j  18} ,

E1,2= {(Vi, V.) ; 7  <j< 18} .

N ote that M ( 0 = {v,,..., v 6 }, M( 2 ) = {v7 ,..., t;1 8 ). W e  d en o te  b y  W 1 a n d  W2 the
sets of a ll collisions which have the initial and  the  final states in  E l  a n d  12,

respectively. Similarly W1 , 2  denotes th e  to ta lity  of collisions w hose initial and
hence f in a ll states a re  the  elements of 1 1 , 2. Any collision is contained in one of
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the three categories W2 and W1 , 2•T h e  following is the complete list of collisions
for the model N 2 .

1) 6 collisions of WI .

(v 1 , v 4 ) # (v 2 , y 5 ), (y 1 , v 4 ) # (v 3 , y 6 ), (v 2 , v 5 ) #  (v 3 , v 6 ) .

2) 120 collisions of W1 , 2

(111, 178 ) #  (V2 , U 7 ), (271, 278) (y3, 1715), (272, 177) (173, y 1 5 ) ,

(V1, V 1 4 ) # (2 1 2 , V 1 3 ), ( V I ,  V14) .172 (V 6 ,  V15), (V 2 , V 1 3 ) T ±  (V 6 , V 1 5 ),

(V2, V 1 8 ) # (1 7 3 , V 1 3 ), (V 2 , V 1 8 ) 4 - ( 75. V15), (112, V18) T±(1.76, p 7 ) ,

y 1 3 ) (y 5 , y 1 5 ), (y 3 , y 1 3 )  -4=± (V6, V7), (V 5 ,  V 1 5 ) T ±  (V 6 , V 7 ),

( V I ,  Y10)4=2  (V5 , y7 ), (y1 , V10 ) #  (V3, V18), (y5 , y7 ) #  (y3 , Y 1 8 ),

(V1, V12) -4:2 (u 5, V13), (V I ,  V12) 4- ( y 6, V18 ), (V s ,  V 1 3 ) T ±  (V 6 , V 18 ),

(v 1 , v 1 6 ) # (v 3 , v1 4 ), (u1 , v 1 6 ) # (v 4 , v 1 5 ), (v 1 , v 1 6 ) # (v 6 , v 8 ) ,

(V 3 , V 14 ) T±  (V 4 ,  V 1 5 ),  (V 3 ,  V 1 4 ) T -2 (V 6 , V 8 ),  (1 1 4 , V 1 5 ) T ±  (V 6 , V 8 ),

( V I ,  V9) 4-- (V2, V10),  (V 1 ,  V 9 )  T ±  (V 4 ,  V 7 ) ,  ( V I ,  V9) T-± (V5, V8),

(V 2 ,  V 1 0 )  #  (V  1 1 7 ),  (y 2 ,  2 1 1 0 )  #  (1 7 5 ,  2 7 8 ) ,  (V 4 ,  y 7 )  #  (y 5 ,  y 8 ) ,

(V1, V 1 1 )  #  (V 2 ,  V 1 2 ) ,  ( V I ,  1.711) # ( 1 4 ,  V 1 3 ) ,  (V I ,  V I I )  T± ( V s ,  V14)

(V2, V 1 2 ) T ±  (V 4 , V 1 3 ), (V 2 , V 1 2 ) T .-±  (V 5 , V 1 4 ), (V 4 , V 1 3 ) T ±  (V 5 ,  V 1 4 ),

(V I ,  V 1 7 ) T ±  (V 3 , V 1 2 ),  (V 1 , V 1 7 ) TÉ-2 (V 4 ,  V 1 8 ) ,  ( V I ,  V 1 7 ) T ± (V 6 , V 1 0 ),

(V 3 , V 1 2 ) #  (V 4 , Y 1 8 ), (V 3 , V 1 2 ) 4 =2  (V 6 ,  V 1 0 ) ,  (y 4 ,  VI 8) 4=2  (V 6 , Y 1 0 ),

( 172 ,  V9) 4-- (V3, 17 16), (V 2 ,  V 9 )  #  (V 4 ,  V 8 ) ,  (V 3 ,  V 1 6 )  #  (V 4 ,  V 8 ) ,

(V 2 , V I I )  4-- (V4, V14), (V 2 , V 1 1 ) T 2  (V 6 , V 1 6 ),  (V 4 , V 1 4 ) T -±  (V 6 , V 1 6 ),

(V2, V17) T± (V 3 ,  V 1 1 ),  (V 2 ,  V 1 7 ) T ±  (V 5 ,  V 1 6 ),  (V 2 ,  V 1 7 ) ;±  (V 6 ,  V 9 ),

(V3, V 1 1 )7 4 0 1 5 ,  V 1 6 1 ,  ( 173 , V II )  T1  (V 6 , V 9 ),  (Vs, V 1 6 ) T ±  (V 6 , V 9 ),

(V 3 , V 1 7 ) Tit (V 4 ,  V 1 0 ) ,  (V 3 ,  V 1 7 ) P (V 5 ,  V 9 ),  (V 4 ,  V 1 0 ) T ±  ( V s ,  V 9 ),

(V 4 , V 1 2 ) T ±  (V 5 , V 1 1 ),  (V 4 , V 1 2 ) T ±  (V 6 , V 1 7 ),  (V 5 ,  V 1 1 ) # (1 7 6 , V 17 ).

3) 66 collisions of W2.

(V 7 , V 1 3 )4 - ( y 1 5 , V 1 8 ),  (V 7 , 1 7 1 4 )# - ( y 8, V13), (V 8 ,  V 1 8 )  T 1  (V10 , V 1 5 ) ,

(V12, V15) T± (V14/  1 ) 18)/ (V 7 ,  V 1 2 ) p  (V 1 0 , V 1 3 ), (V 8 , V 1 4 ) T ±  (V 1 5 , V 1 6 )

(V 7 ,  V 1 6 ) T ±  (V 9 , V 1 5 ), (V 1 1 , V 1 5 ) TA (V 1 3 ,  V 1 6 ) ,  (V 7 , V 9 ) T ±  (V 8 , V 1 0 ),

(v 7 , v 1 1 ) # (1)8, V 1 2 )5  (V 7 ,  V 1 1 ) #  ( .V9 , V13 ), (117, V 1 1 ) #  (V 1 0 ,  u 1 4 ) ,
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(v7, y 1 1 ) #: (v 1 5 , v 1 7 ), ( v 7 , v 1 1 ) 74. (v,,, v 1 8 ), ( v 8 , v 1 2 ) <=k. (v9 , v 1 3 ) ,

(v8, v 1 2 )T2 (v8, v i 2 )<=.■ (v i 5 , v 1 7 ), ( v 8 , v i 2 ) (v(v u14), 16, V18) ,

(1)9, VI 3) (V 10, V14), (V9, /113) (1)15, V 17), (1)9, VI 3) a  (V16 , V18),

VI4) 4.=> (y15, V17), (1.210, V14) a (V16 , V18) ,( V 1 5 , V17) a  ( 1) 16 , Y18)

Y13) a  (Y12 , Y14), (y7 , v, 7 )4=> (v9 , y  8 ) , (V11 ,  Y18) (V13, 1)17),

V12) a (V17 , V18), (1 )6, V9) T± ( V 7 ,  V12), (V8, V17) -> (V 10 , V16),

(V12 , V16) a (V14, V17), (119, V12) T 2  (V 0, V11), (V9, i ) (V16, Y17) •

Appendix 2.

We use the argument of Cercignani [1]. We have, by definition,

4i =i(1, 1, 1, 1, I , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, I, 1, 1, 1),

0 2 =  t(1, 0, 0, -1, 0, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, -1, - 1, 1),

4)3 = t(0, 1, 0, 0, -1, 0, 0, 1, 0, - 1 , 0 ,  - 1 , 0 ,  1, 1, 1, -1, -1),

4)4  =  t (0 , 0 , 1, 0, 0, - 1 , 1 , 1 , 1 , 1 , - 1 , - 1 , - 1 ,  -1, 0, 0, 0, 0),

='(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2),

for the model N 2 .  We set

00 = (1 , 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and use 0° , 44 a s  a  basis of .1V-2. Note th a t  00 =20 1 -0 5 . L et ck E •IV2
4

a n d  le t 4+  V (w)d) = 0 fo r  som e it E R , co e S2 . Then, substituting ck = E cvki
1=0

into this equation, we obtain
4 4 3
E pcc i cki + E E
1=0 1=0 j=1

We denote by .99 the set of 20 vectors cki, Vicki, 0 < i <4, 1 < j<3. Then, a set of
13 elements of <99 is linearly independent and every set of 14 vectors from ' is linearly
dependent. To show this, we note the following equalities

v 103_ v202 , v1o4_ v302 , v204_ v303 ,

(A.2) 41i+1= j=  I, 2, 3,

çb° = 2 ç b '- (V 'ç b 2 +  V 2 0 3 +  V 3 0 4 ) ,

and set

(A.1)

V100, i 2 = V241°, t/i3 = V 3 4 1 ° ,  0 4  V 1 0 1, l/15 =  V 2 411 ,

(A.3) v301 ,=  v1 4,2 , 0 8  V 2 02 , V 3 ç 6 2 , 010 = v203 ,

çli 11 = V303 , 0 1 2 =  V304 , 0 1 3 _ 0 1 .
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We define B to be the 18 x 13 matrix (t//',..., 0 ' 3 ) , where t//13 are the columns
of B .  We compute the rank of B and conclude that B is of full rank. H ence

are linearly independent. The expressions for other vectors of Y  by means of
0 1 3  a r e  already given above. This completes the  proof of the assertion.

We substitute (A.2) into (Al) and use ( A .3 ) .  Then, we obtain

(0 10(0tP 1 + (0 2ao0 2 + (0 30(00' + (cola +11 012)0
4

(w2Œ 1 + / 1 3 »  +(w3a1+ l2 g4)0 6  +(— Pao + 0 1 1c1 2)0 7

+ ( 0 1 2(1 2+w1ce3)0 8 + (( 0 3a2+( 0 101009 + ( - 11 c(0 + 0 1 22 3)0 1 °

+ ( 0 1 30c3+ (0 204)0 +( — 11 œ0 + (0 31 4)0' 2 ± ( 2 tiCtO tia 1 )0 1 3 = 0.

Equating the coefficients of t/ii, i = 1,..., 13, with zero, we get

T(//, W 1 , co2 , co 3 ) = 0 ,

where el; = t(a o . oc,) and T=T(pt, W 1 , co 2 , co 3 )  is the following 13 x 5 matrix,

cot 0 0 0 0

(0 2 0 0 0 0

w 3 0 0 0 0

0 oh /..t 0 0

0
( 0 2

0
/1

0

0 0)3 0 0 il

—/1 0 col 0 0

0 0 (0 2 a)]. 0

0 0 (03 0 (01

—/2 0 0 c°2 0

0 0 0 (03 (02

—/i 0 0 0 co 3

Let D i  be the 5 x 5 minor of T formed by the 5 rows inc uding w , as an e n try . Then,
it is shown that D1 = c o l .  We define similarly D2 and D3 and observe that D 2  = (03,
D3 = (0i. Since coid- coi+coi=1, o n e  o f  th e  three minors D i ,  D2, D3 does not
van ish . This implies that the rank of co2, co 3 )  is 5  for any t ie  R , we S 2 .

4
It follows that a i =  0  fo r i = 0 , 1,..., 4. Hence 0= E cqoi = O . This is the desired

1=0
result. The proof of the stability condition for N2 is completed.
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