A note on the function $\sum_{n=1}^{\infty} [nx+y]/n!$

By

Iekata Shiokawa and Jun-ichi TAMURA

Let f(x, y) be the function of real variables x and y defined by

$$f(x, y) = \sum_{n=1}^{\infty} \frac{[nx+y]}{n!},$$

where [t] denotes the greatest integer not exceeding the real number t. In this paper we prove in §3 the linear independency over the filed Q of all rationals of the values of f(x, y) for different irrationals x and in §2 their transcendency for rationals x. Also some properties of the function f(x, y) are studied in §1.

1. Some properties of the function f(x, y).

From the definition it follows that

(1)
$$f(x, y) = e[x] + (e-1)[y] + f(\{x\}, \{y\}),$$

where $\{t\} = t - [t]$. It is easily seen that

$$f(x, y) \neq f(x', y')$$
 if $(x, y) \neq (x', y')$,

except when x = x' is a rational number, say x = p/q with coprime integers q > 0and p, and $r/q \le y$, y' < (r+1)/q for some integer r; in this special case we have

(2)
$$f(p|q, y) = f(p|q, r|q)$$
 if $r|q \le y < (r+1)/q$.

The quantity in the right-hand side of (2) will be expressed in Theorem 1 as a linear form of the values of the exponential function. If x is an irrational number, f(x, y) is strictly increasing as a function of y. f(x, y) is also strictly increasing as a function of x for any fixed y, not necessarily irrational.

The function [x] satisfies the equality

$$[nx] = \sum_{r=0}^{q-1} \left[\frac{nx}{q} + \frac{r}{q} \right]$$

for any positive integer q, so that we find

$$f(x, 0) = \sum_{r=0}^{q-1} f\left(\frac{x}{q}, \frac{r}{q}\right),$$

Communicated by Prof. Yamaguti October 29, 1985

which may be considered as an expression of a kind of self-similarity for the function f(x, y), whence we have

$$\frac{1}{q}f(qx, 0) = \frac{1}{q}\sum_{r=0}^{q-1}f(x, r/q)$$

The right-hand side above converges to the integral $\int_0^1 f(x, y) dy$, since f(x, y) is Riemann integrable, for it is a nondecreasing and bounded function of y in the unit interval. But, since by (1) the left-hand side converges to ex, we have for all real number x

$$\int_0^1 f(x, y) dy = ex.$$

We discuss now the discontinuity of f(x, y) which is inherited from that of the function [x]. We denote by N(x, y) the set of all positive integers n for which nx + y is an integer. Then if $N(x_0, y_0) = \emptyset$, f(x, y) is continuous at (x_0, y_0) . If $N(x_0, y_0)$ is nonempty and finite, x_0 must be irrational and $N(x_0, y_0)$ consists of only one point $N(x_0, y_0) = \{n_0\}$, say. Putting $m_0 = n_0 x_0 + y_0$, we have

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\n_0x+y\ge m_0}} f(x, y) = f(x_0, y_0)$$

and

$$\lim_{\substack{(x,y) \to (x_0,y_0) \\ n_0 x + y \le m_0}} f(x, y) = f(x_0, y_0) - \frac{1}{n_0!} \, .$$

Finally we assume that $N(x_0, y_0)$ is infinite. Then x_0 and y_0 are rational numbers and if $x_0 = p/q$ with coprime integers q > 0 and p, then $y_0 = r/q$ for some integer r. Denoting by $n_0 = n_0(x_0, y_0)$ the smallest integer in $N(x_0, y_0)$, we have

$$N(x_0, y_0) = \{n_0 + qk \mid k = 0, 1, 2, ...\}, \quad 1 \le n_0 \le q$$

We put $n_k = n_0 + qk$ and $m_k = n_k x_0 + y_0$, so that $m_k = m_0 + pk$, and define

$$D_0 = \{(x, y) \mid n_0 x + y \ge m_0 \text{ and } x \ge x_0\},\$$

$$D_k = \{(x, y) \mid n_{k-1} x + y < m_{k-1} \text{ and } n_k x + y \ge m_k\} \quad (k \ge 1),\$$

$$E_0 = \{(x, y) \mid n_0 x + y < m_0 \text{ and } x \le x_0\},\$$

$$E_k = \{(x, y) \mid n_{k-1} x + y \ge m_{k-1} \text{ and } n_k x + y < m_k\} \quad (k \ge 1).$$

Then we have

$$\lim_{\substack{(x,y) \to (x_0, y_0) \\ (x,y) \in D_0}} f(x, y) = f(x_0, y_0),$$

$$\lim_{\substack{(x,y) \to (x_0, y_0) \\ (x,y) \in D_k}} f(x, y) = f(x_0, y_0) - \sum_{m=0}^{k-1} \frac{1}{(mq+n_0)!} \quad (k \ge 1),$$

and

Note on the function
$$\sum_{n=1}^{\infty} [nx+y]/n!$$
 105

$$\lim_{\substack{(x,y) \to (x_0, y_0) \ (x,y) \in E_k}} f(x, y) = f(x_0, y_0) - \sum_{m=k}^{\infty} \frac{1}{(mq+n_0)!} \quad (k \ge 0),$$

Especially, we find

$$\sum_{q=1}^{\infty} \varphi(q) \sum_{m=1}^{\infty} \frac{1}{(mq)!} = e,$$

where $\varphi(q)$ denotes the Euler function, since f(1, 0) - f(0, 0) = e and f(x, 0) is an increasing function increasing only by jumps occuring at rational points.

The function f(x, y) satisfies some functional equations. It follows from the relation

$$[t]+[-t]+1 = \begin{cases} 1 & \text{if } t \equiv 0 \pmod{1}, \\ 0 & \text{otherwise,} \end{cases}$$

that

(3)

$$f(x, y) + f(-x, -y) + e - 1 = \sum_{n \in N(x, y)} \frac{1}{n!} = \begin{cases} 0 & \text{if } N(x, y) = \phi, \\ \frac{1}{n_0!} & \text{if } N(x, y) = \{n_0\}, \\ \sum_{m=0}^{\infty} \frac{1}{(mq + n_0)!} & \text{if } N(x, y) \text{ is infinite,} \end{cases}$$

where n_0 and q are as above. Here, for any pair of integers $q \ge 1$ and r with $0 \le r \le q-1$, we have

(4)
$$\sum_{m=0}^{\infty} \frac{1}{(mq+r)!} = \frac{1}{q} \sum_{k=1}^{q} \zeta^{-kr} e^{\zeta^{k}}, \qquad \zeta = e^{2\pi i/q},$$

in view of the formula

$$\sum_{k=1}^{q} \zeta^{k(n-r)} = \begin{cases} q & \text{if } n \equiv r \pmod{q}, \\ 0 & \text{otherwise.} \end{cases}$$

Especially

$$f\left(x,\frac{1}{2}\right) + f\left(-x,\frac{1}{2}\right) = \begin{cases} \sum_{m=0}^{\infty} \frac{1}{(2^{b-1}(2m+1))!} & \text{if } x = a/2^{b}, a, b(\geq 1) \in \mathbb{Z}, (a,2) = 1, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$f(x, 0) + f(-x, 0) + e - 1 = \begin{cases} \frac{1}{q} \sum_{k=1}^{q} e^{\zeta^k} & \text{if } x \text{ is rational,} \\ 0 & \text{otherwise,} \end{cases}$$

where $\zeta = \exp(2\pi i/q)$ and q is the positive denominator of x in its lowest term.

The function f(x, y) also has an interesting expression. Namely, we have

(5)
$$\sum_{n=1}^{\infty} \frac{[nx+y]}{n!} = ex + ey - [y] - \frac{e}{2} + \frac{1}{2} \sum_{n \in N(x,y)} \frac{1}{n!} + \lambda(y) + \frac{1}{2\pi i} \sum_{m=1}^{\infty} \frac{1}{m} (e^{2\pi i m y} + e^{2\pi i m x} - e^{-2\pi i m y} + e^{-2\pi i m x}),$$

provided $nx + y \neq 0$ for all positive integer *n*, where

$$\lambda(t) = \begin{cases} \frac{1}{2} & \text{if } t \equiv 0 \pmod{1}, \\ & \text{otherwise.} \end{cases}$$

Indeed, it follows from the Fourier expansion

$$\{\theta\} = \frac{1}{2} - \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin 2m\pi\theta - \lambda(\theta)$$

that

(6)
$$f(x, y) = \sum_{n=1}^{\infty} \frac{nx+y}{n!} - \sum_{n=1}^{\infty} \frac{\{nx+y\}}{n!}$$
$$= ex + (e-1)\left(y - \frac{1}{2}\right) + \frac{1}{2} \sum_{n \in N(x,y)} \frac{1}{n!} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{m=1}^{\infty} \frac{\sin 2m\pi(nx+y)}{m}$$

Applying now the Euler-Maclaurin formula, we have

$$\sum_{m=M+1}^{N} \frac{\sin \omega m}{m} = \int_{M}^{N} \frac{\sin \omega t}{t} dt + \int_{M}^{N} \left(\{t\} - \frac{1}{2}\right) \frac{\omega \cos \omega t - \sin \omega t}{t^{2}} dt + \frac{1}{2} \left(\frac{\sin \omega N}{N} - \frac{\sin \omega M}{M}\right), \quad \omega = 2\pi (nx+y),$$

so that

$$\sum_{m=M+1}^{\infty} \frac{\sin 2m\pi(nx+y)}{m}$$
$$= \int_{M}^{\infty} \frac{\sin 2\pi(nx+y)t}{t} dt + 0\left(\frac{n}{M}\right) = 0\left(\frac{1}{(nx+y)M}\right) + 0\left(\frac{n}{M}\right),$$

where the constants implied in 0-symbols are independent of n and M. Hence, noticing that $nx + y \neq 0$ for all positive integer n, we see

$$\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{m=M+1}^{\infty} \frac{\sin 2m\pi(nx+y)}{m} \longrightarrow 0 \quad as \quad M \longrightarrow \infty$$

Therefore we can change the order of summations in the double sum in (6) and obtain

$$\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{m=1}^{\infty} \frac{\sin 2m\pi (nx+y)}{m}$$
$$= \frac{1}{2i} \sum_{m=1}^{\infty} \frac{1}{m} \sum_{n=1}^{\infty} \frac{1}{n!} (e^{2\pi i m (nx+y)} - e^{-2\pi i m (nx+y)})$$

Note on the function
$$\sum_{n=1}^{\infty} [nx+y]/n!$$
 107
= $\frac{1}{2i} \sum_{m=1}^{\infty} \frac{1}{m} (e^{2\pi i m y + e^{2\pi i m x}} - e^{-2\pi i m y + e^{-2\pi i m x}}) - \sum_{m=1}^{\infty} \frac{\sin 2m\pi y}{m}$,

which together with (6) yields (5).

2. The values of the function f(x, y) for rational x.

Theorem 1. For any rational number α and any real number β , we have

(7)
$$\sum_{n=1}^{\infty} \frac{[n\alpha + \beta]}{n!} = a_0 + \sum_{k=1}^{q} a_k e^{\zeta^k}, \quad \zeta = e^{2\pi i/q},$$

where q > 0 is the denominator of α in its lowest term, a_0 is a rational number, and $a_k (1 \le k \le q)$ are algebraic numbers given in (9) below.

By the theorem of Lindemann-Weierstrass [1; Theorem 1.4], we have the following:

Corollary. The number $\sum_{n=1}^{\infty} [n\alpha + \beta]/n!$ is transcendental for any rational α and any real β , except when $\alpha = 0$ and $0 \le \beta < 1$.

Proof of Theorem 1. We put $p/q = \{\alpha\}$ and $r = [q\{\beta\}]$, so that $0 \le p < q$ and $0 \le r < q$. n_0 denotes as in the preceding section the smallest positive integer *n* for which np/q + r/q is an integer, and $m_0 = n_0 p/q + r/q$. Then

$$[np/q + r/q] = m_0 + [(n - n_0)p/q]$$

for any positive integer n, so that we have, using (1) and (2),

(8)
$$\sum_{n=1}^{\infty} \frac{[n\alpha + \beta]}{n!} = ([\alpha] + [\beta])e - [\beta] + \sum_{n=1}^{\infty} \frac{[np/q + r/q]}{n!}$$
$$= ([\alpha] + [\beta] + m_0) - [\beta] - m_0 + \sum_{n=1}^{n_0 - 1} \frac{[(n - n_0)p/q]}{n!} + \sum_{n=0}^{\infty} \frac{[np/q]}{(n + n_0)!}.$$

We assume from now on $p \neq 0$ and define for any positive integer h

$$w(h) = \begin{cases} hq/p & \text{if } hq/p \text{ is an integer,} \\ [hq/p] + 1 & \text{otherwise,} \end{cases}$$

so that $v(1) < v(2) < \cdots$ and

$$[np/q] = h$$
 if $v(h) \leq n < v(h+1)$,

since $hq/p \leq v(h) \leq n \leq v(h+1) - 1 < (h+1)q/p$. Then

$$\sum_{n=0}^{\infty} \frac{\left[np/q\right]}{(n+n_0)!} = \sum_{h=0}^{\infty} \sum_{n=v(h)}^{v(h+1)-1} \frac{\left[np/q\right]}{(n+n_0)!} = \sum_{h=0}^{\infty} \sum_{l=0}^{v(h+1)-v(h)-1} \frac{h}{(v(h)+l+n_0)!} \ .$$

Writing h = mp + j with $0 \le j < p$, we find v(mp + j) = mq + v(j), and so,

$$\sum_{n=0}^{\infty} \frac{\left[np/q\right]}{(n+n_{0})!} = \frac{p}{q} \sum_{j=0}^{p-1} \sum_{l=0}^{\nu(j+1)-\nu(j)-1} \sum_{m=0}^{\infty} \frac{mq+\nu(j)+l+n_{0}+jq/p-\nu(j)-l-n_{0}}{(mq+\nu(j)+l+n_{0})!}$$
$$= \frac{p}{q} \sum_{j=0}^{p-1} \sum_{l=0}^{\nu(j+1)-\nu(j)-1} \left(\sum_{m=0}^{\infty} \frac{mq+r(j,l)}{(mq+r(j,l))!} + \left(\frac{jq}{p}-\nu(j)-l-n_{0}\right) \sum_{m=0}^{\infty} \frac{1}{(mq+r(j,l))!}\right) - B$$

with

$$B = \frac{p}{q} \sum_{j=0}^{p-1} \sum_{l=0}^{\nu(j+1)-\nu(j)-1} \sum_{m=0}^{m(j,l)-1} \frac{mq + r(j,l) + jq/p - \nu(j) - l - n_0}{(mq + r(j,l))!},$$

where m(j, l) and r(j, l) are nonnegative integers such that

$$m(j, l)q + r(j, l) = v(j) + l + n_0, \quad 0 \le r(j, l) < q.$$

Therefore, using (4), we obtain

$$\sum_{n=0}^{\infty} \frac{[np/q]}{(n+n_0)!} = \frac{p}{q^2} \sum_{k=1}^{q} e^{\zeta^k} \sum_{j=0}^{p-1} \sum_{l=0}^{\nu(j+1)-\nu(j)-1} \left(\zeta^k + \frac{jq}{p} - \nu(j) - l - n_0\right) \zeta^{-kr(j,l)} - B.$$

This together with (8) yields (7) with

(9)
$$\begin{cases} a_0 = -\left[\beta\right] - m_0 - B + \sum_{n=1}^{n_0} \frac{\left[(n-n_0)p/q\right]}{n!}, \\ a_k = \frac{p}{q^2} \sum_{j=0}^{p-1} \sum_{l=0}^{\nu(j+1)-\nu(j)-1} \left(\zeta^k + \frac{jq}{p} - \nu(j) - l - n_0\right) \zeta^{-kr(j,l)} \quad (1 \le k < q), \\ a_q = \left[\alpha\right] + \left[\beta\right] + m_0 + \frac{p}{q^2} \sum_{j=0}^{p-1} \sum_{l=0}^{\nu(j+1)-\nu(j)-1} \left(1 + \frac{jq}{p} - \nu(j) - l - n_0\right), \end{cases}$$

Where, by means of the simple continued fractin expansion

$$\frac{p}{q} = \frac{1}{b_1} + \frac{1}{b_2} + \dots + \frac{1}{b_s}, s \text{ odd},$$

the integer n_0 can be expressed as

$$n_0 = q \left\{ \frac{-r}{b_s} + \frac{1}{b_{s-1}} + \dots + \frac{1}{b_1} \right\}.$$

Example 1. As the expression (7) in terms of (9) looks rather complicated, we give here some simple examples.

$$\begin{cases} \sum_{n=1}^{\infty} \left[\frac{1}{2}n \right] / n! = \frac{1}{2} \cosh 1, \\ \sum_{n=1}^{\infty} \left[\frac{1}{2}n + \frac{1}{2} \right] / n! = \frac{1}{2} \cosh 1 + \sinh 1, \end{cases}$$

Note on the function
$$\sum_{n=1}^{\infty} [nx + y]/n!$$

$$\begin{cases} \sum_{n=1}^{\infty} \left[\frac{1}{3}n\right]/n! = \frac{1}{3}\left(\frac{1}{\sqrt{e}}\cos\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{3e}}\sin\frac{\sqrt{3}}{2}\right) \\ \sum_{n=1}^{\infty} \left[\frac{1}{3}n + \frac{1}{3}\right]/n! = \frac{1}{3}\left(-\frac{2}{\sqrt{3e}}\sin\frac{\sqrt{3}}{2} + e\right) \\ \sum_{n=1}^{\infty} \left[\frac{1}{3}n + \frac{2}{3}\right]/n! = \frac{1}{3}\left(-\frac{1}{\sqrt{e}}\cos\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{3e}}\sin\frac{\sqrt{3}}{2} + 2e\right) \\ \left(\sum_{n=1}^{\infty} \left[\frac{2}{3}n\right]/n! = \frac{1}{3}\left(\frac{1}{\sqrt{e}}\cos\frac{\sqrt{3}}{2} - \frac{1}{\sqrt{3e}}\sin\frac{\sqrt{3}}{2} + 2e\right) \\ \sum_{n=1}^{\infty} \left[\frac{2}{3}n + \frac{1}{3}\right]/n! = \frac{1}{3}\left(-\frac{2}{\sqrt{3e}}\sin\frac{\sqrt{3}}{2} + 2e\right) \\ \sum_{n=1}^{\infty} \left[\frac{2}{3}n + \frac{2}{3}\right]/n! = \frac{1}{3}\left(-\frac{1}{\sqrt{e}}\cos\frac{\sqrt{3}}{2} - \frac{1}{\sqrt{3e}}\sin\frac{\sqrt{3}}{2} + 3e\right) \\ \left(\sum_{n=1}^{\infty} \left[\frac{1}{4}n\right]/n! = \frac{1}{4}\left(\cos 1 + \sin 1 - \sinh 1\right) \\ \sum_{n=1}^{\infty} \left[\frac{1}{4}n + \frac{1}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \sinh 1\right) \\ \sum_{n=1}^{\infty} \left[\frac{1}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 + \sin 1 + \sinh 1 + 2e\right) \\ \left(\sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{1}{4}\right]/n! = \frac{1}{4}\left(\cos 1 + \sin 1 + \sinh 1 + 2e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{1}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 + \sin 1 + \sinh 1 + 2e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{1}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 + \sin 1 + \sinh 1 + 2e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{1}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 + \sin 1 + \cosh 1 + 2e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{1}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 + \sin 1 + \cosh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \cosh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \cosh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \cosh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \cosh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \sinh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \cosh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \sinh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \sinh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \sinh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \sinh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n + \frac{3}{4}\right]/n! = \frac{1}{4}\left(-\cos 1 - \sin 1 + \sinh 1 + 3e\right) \\ \sum_{n=1}^{\infty} \left[\frac{3}{4}n +$$

Example 2.

$$\sum_{n=1}^{\infty} \left[\frac{1}{q} n \right] / n! = -\frac{1}{p^2} \sum_{h=1}^{q-1} \sum_{l=1}^{q-1} l\zeta^{-hl} e^{\zeta^h} + \frac{1}{2q} (3-q)e, \qquad \zeta = e^{2\pi i/q}.$$

Example 3. As we have seen in the proof of Theorem 1, the values f(p/q, r/q) can be written as a linear form of the numbers

$$e_{q,r} = \sum_{m=0}^{\infty} \frac{1}{(mq+r)!}$$
 $(r=0, 1, ..., q-1).$

For p=1, we have the following simple relation; however, in general, it could be

complicated. We have

	$ f(1/q, 0)\rangle$		1	0	- 1	-2	- <i>q</i> + 4	-q + 3	-q+2	$\left(e_{q,0} \right)$
(10)	f(1/q, 1/q)	$=\frac{1}{q}$	1	0	- 1	-2	- <i>q</i> + 4	-q + 3	2	<i>e</i> _{<i>q</i>,1}
	f(1/q, 2/q)		1	0	- 1	-2	- <i>q</i> + 4	3	2	<i>e</i> _{<i>q</i>,2}
				÷	÷	÷	4	3		
				÷	÷	-2	÷	:		
	f(1/q, (q-3)/q)		1	0	- 1	$q-2\cdots$	4	3	2	<i>e</i> _{<i>q</i>,<i>q</i>-3}
	f(1/q, (q-2)/q)		1	0	<i>q</i> – 1	$q-2\cdots$	4	3	2	$e_{q,q-2}$
	$\left f(1/q, (q-1)/q) \right $		1	q	q - 1	$q-2\cdots$	4	3	2	$\left\langle e_{q,q-1}\right\rangle$

and by (4)

$$\begin{pmatrix} e_{q,0} \\ e_{q,1} \\ \vdots \\ e_{q,q-1} \end{pmatrix} = \frac{1}{q} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \zeta^{-1} & \zeta^{-2} & \cdots & \zeta^{-(q-1)} \\ \vdots & \vdots & \cdots & \vdots \\ \zeta^{-(q-1)} & \zeta^{-2(q-1)} & \cdots & \zeta^{-(q-1)^2} \end{pmatrix} \begin{pmatrix} e \\ e^{\zeta} \\ \vdots \\ e^{\zeta^{q-1}} \end{pmatrix}$$

The determinant of the former matrix is $\epsilon q^{q-2} \neq 0$, where $\epsilon = 1$ if $q \equiv 1$ or 2 (mod 4) and $\epsilon = -1$ otherwise, and that of the latter is also nonzero, since it is Vandermonde's determinant. Thus q numbers f(1/q, 0), f(1/q, 1/q),..., f(1/q, (q-1)/q) are algebraically dependent.

Proof of (10). If
$$1 \le r \le q - 1$$
, we have

$$f(1/q, r/q) = \sum_{m=0}^{\infty} \sum_{s=0}^{q-1} \frac{[(mq+s)/q+r/q]}{(mq+s)!}$$

$$= \sum_{m=0}^{\infty} \left(\sum_{s=0}^{q-r-1} \frac{m}{(mq+s)!} + \sum_{s=q-r}^{q-1} \frac{m+1}{(mq+s)!} \right)$$

$$= \frac{1}{q} \sum_{m=1}^{\infty} \frac{1}{(mq-1)!} + \frac{1}{q} \sum_{m=0}^{\infty} \sum_{s=0}^{q-1} \left(\frac{1}{(mq+s-1)!} - \frac{s}{(mq+s)!} \right) + \sum_{s=q-r}^{q-1} \frac{1}{(mq+s)!}$$

$$= \frac{1}{q} (e_{q,q-1} + \sum_{s=1}^{q-1} (e_{q,s-1} - se_{q,s}) + \sum_{s=q-r}^{q-1} qe_{q,s})$$

$$= \frac{1}{q} (e_{q,0} + \sum_{s=1}^{q-r-1} (1-s)e_{q,s} + \sum_{s=q-r}^{q-2} (q-s+1)e_{q,s} + 2e_{q,q-1}).$$

Similarly we can write f(1/q, 0) as a linear form of $e_{q,0}, e_{q,s}, \dots, e_{q,q-1}$.

3. Linear independence of the values of the function f(x, y).

We generalize a theorem of Skolem [3; Theorem 6] concerning the linear inde-

Note on the function
$$\sum_{n=1}^{\infty} [nx + y]/n!$$
 111

pendence over Q of the numbers 1, $\sum_{n=1}^{\infty} [nx_1]/n!, \dots, \sum_{n=1}^{\infty} [nx_l]/n!$ when x_1, \dots, x_l are l distinct positive numbers such that 1 is not dependent on them over Q.

Theorem 2. Let $x_1, ..., x_l$ be as above and let $y_1, ..., y_l$ be any choice of l real numbers. Then 1, $\sum_{n=1}^{\infty} [nx_1 + y_1]/n!, ..., \sum_{n=1}^{\infty} [nx_l + y_l]/n!$ are linearly independent over Q.

Proof. Suppose that

$$A_{0} + \sum_{i=1}^{l} A_{i} \sum_{n=1}^{\infty} \frac{[nx_{i} + y_{i}]}{n!} = 0$$

for some integer A_i $(1 \le i \le l)$. Denoting by H_n the integer

$$H_n = -(n-1)!(A_0 + \sum_{k=1}^{n-1} \sum_{i=1}^{l} A_i[kx_i + y_i]/k!),$$

we have

$$H_n = \sum_{i=1}^l A_i x_i + O\left(\frac{1}{n}\right)$$

as $n \to \infty$. Hence $\sum_{i=1}^{l} A_i x_i$ is an integer, and so, by the assumption on x_1, \dots, x_l , we get

(11)
$$\sum_{i=1}^{l} A_i x_i = 0$$

so that $H_n = 0$ for all $n \ge n_0$ for some n_0 . Thus

(12)
$$\sum_{i=1}^{l} A_i(\{nx_i\} - [\{nx_i\} + y]) = 0 \quad (n \ge n_0).$$

We need now the following Lemma [3; pp. 79–80]: If $x_1, ..., x_l$ are *l* positive numbers, then there are $p (\leq l)$ positive numbers $\xi_1, ..., \xi_p$ linearly independent over Q such that

(13)
$$x_i = \sum_{j=1}^p a_{ij} \xi_j \quad (1 \le j \le l), \quad \xi_j = \sum_{i=1}^l b_{ji} x_i \quad (1 \le j \le p).$$

where a's are nonnegative integers and b's are rational numbers.

We will prove $A_1 = 0$. For this we may assume that

(14)
$$\gamma a_{i1}/a_{11} \not\equiv 0 \pmod{1} \quad (2 \leq i \leq l)$$

and

(15)
$$\gamma a_{i1}/a_{11} + y_i \neq 0 \pmod{1} \quad (2 \leq i \leq l)$$

where γ is the real number defined by

(16)
$$\gamma + y_1 \equiv 0 \pmod{1}$$
 and $0 < \gamma \leq 1$.

Indeed, we may assume $0 < \xi_1 < \xi_2 < \cdots < \xi_p$. Then $\xi_j - t^{j-1}\xi_1 > 0$ for all $j \ge 2$ and

all t with $0 < t < t_0$ for some t_0 . Putting t = r/s with r, s positive integers, we can write

$$x_i = \sum_{j=1}^p a'_{ij} \xi'_j$$
 $(1 \le i \le l)$,

where $a'_{i1} = s^{p-1} \sum_{j=1}^{p} a_{ij}t^{j-1}$ $(1 \le i \le l)$, $a'_{ij} = a_{ij}$ $(1 \le i \le l, 2 \le j \le p)$, and $\xi'_1 = \xi_1/S^{p-1}$, $\xi'_j = \xi_j - t^{j-1}\xi_1$ $(2 \le j \le p)$. Clearly ξ'_1, \dots, ξ'_p are linearly independent over Q and can be written as linear forms of x_1, \dots, x_l with rational coefficients. Since $\sum_{j=1}^{p} a_{ij}t^{j-1}$ $(1 \le i \le l)$ are different as polynomials of t, we can choose t = r/s so that a'_{ij} 's satisfy the required properties (14) and (15).

We choose ξ_j and a_{ij} as above. Then for any integer n

(17)
$$\{nx_i\} \equiv \sum_{j=1}^p a_{ij}\{n\xi_j\} \pmod{1} \quad (1 \le i \le l)$$

Noticing that 1, $\xi_1, ..., \xi_p$ are linearly independent over Q, we may apply Kronecker's theorem [2; Theorem 442]: For any real numbers $\gamma_1, ..., \gamma_p$ and positive $\varepsilon_1, ..., \varepsilon_p$, there are infinitely many n such that $|\{n\xi_j\} - \gamma_j| < \varepsilon_j$ $(1 \le j \le p)$.

We put $\gamma_1 = \gamma/a_{11} - p\varepsilon$, $\gamma_j = 0$ $(2 \le j \le p)$, $a = \max_{\substack{1 \le i \le l \\ \varepsilon \text{ is a fixed positive number chosen sufficiently small.}} a_{i1}$, and $\varepsilon_j = \varepsilon$ $(1 \le j \le p)$, where ε is a fixed positive number chosen sufficiently small. Then we have

$$ya_{i1}/a_{11} - 2ap\varepsilon < \sum_{j=1}^{p} a_{ij}\{n\xi_j\} < ya_{i1}/a_{11} \quad (1 \le i \le l)$$

for infinitely many n, so that by (14) we see

(18)
$$\{nx_i\} = \sum_{j=1}^p a_{ij} \{n\xi_j\} - [\gamma a_{i1}/a_{11}] \qquad (2 \le i \le l),$$
$$[\{nx_i\} + y_i] = [\gamma a_{i1}/a_{11} + y_i] - [\gamma a_{i1}/a_{11}] \quad (2 \le i \le l),$$

and $\{nx_1\} = \sum_{j=1}^{p} a_{1j}\{n\xi_j\}, [\{nx_1\} + y_1] = [\gamma + y_1] - 1$, taking (14), (15), and and (16) into account. Thus we have by (12)

$$\sum_{i=1}^{l} A_i \sum_{j=1}^{p} a_{ij} \{ n\xi_j \} - \sum_{i=1}^{l} A_i [\gamma a_{i1}/a_{11}] - A_1 = 0$$

for some *n*. But, since ξ_1, \dots, ξ_p are linearly independent over *Q*, (11) and (13) imply $\sum_{j=1}^{p} A_i a_{ij} = 0 \ (1 \le j \le p), \text{ and hence } \sum_{i=1}^{p} A_i \sum_{j=1}^{p} a_{ij} \{n\xi_j\} = 0.$ Therefore we obtain (19) $\sum_{i=1}^{l} A_i [\gamma a_{i1}/a_{11} + y_i] - A_1 = 0$

Next we put $\gamma_1 = \gamma/a_{11} + p\varepsilon$, $\gamma_j = 0$ $(2 \le j \le l)$ and $\varepsilon_j = \varepsilon$ $(1 \le j \le l)$. In this case we find

$$\gamma a_{i1}/a_{11} < \sum_{j=1}^{p} a_{ij} \{ n\xi_j \} < \gamma a_{i1}/a_{11} + 2ap\varepsilon,$$

so that we have (18) and (19) again, and for i = 1

Note on the function
$$\sum_{n=1}^{\infty} [nx + y]/n!$$
 113
 $\{nx_1\} = \sum_{j=1}^{p} a_{ij}\{n\xi_j\} - [\gamma], [\{nx_1\} + y_1] = [\gamma + y_1] - [\gamma]$

for infinitely many n. Therefore in the same way as above we get

$$\sum_{i=1}^{l} A_{i} [\gamma a_{i1} / a_{11} + y_{i}] = 0,$$

which together with (19) yields $A_1 = 0$. Repeating this argument, we obtain $A_0 = A_1 = \cdots = A_l = 0$, and the theorem is proved.

Remark. We have established a theorem on linear independence of numbers 1, $f(x_1, y_1), \dots, f(x_l, y_l)$ when x_1, \dots, x_l are *l* distinct positive rationals such that 1 is not dependent on them over *Q*. However, the relation (3) shows that 1, f(1, 0) = e, f(x, y) and f(-x, -y) are linearly dependent over *Q* provided that *x* is irrational. It may be interesting to decide whether three numbers 1, *e*, and $\sum_{n=1}^{\infty} [nx]/n!$ with irrational *x* are linearly independent over *Q* or not.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY KEIO UNIVERSITY FACULTY OF GENERAL EDUCATION INTERNATIONAL JUNIOR COLLEGE

References

- [1] A. Baker, Transcendental number theory, Cambridge Univ. Press, 1975.
- [2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, Fourth edition, 1960.
- [3] Th. Skolem, Some theorems on irrationality and linear independence, Den Ilte Skandinaviske Mathematekerkongress, Trondheim, 1949, pp. 77–98. Johan Grundt Tanums Forlag, Oslo, 1952.