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A note on the fu n ctio n  I  [nx ±y]ln!
n= 1

By

lekata SHIOKAWA and Jun-ichi TAMURA

Let f (x , y) be the function of real variables x  and y defined by

[n x+  y ] 
.f(x, Y ).= E ,

n =, n!

where [t] denotes the greatest integer not exceeding the real number t. In this paper

we prove in §3 the linear independency over the filed Q of all rationals of the values
of f (x , y) for different irrationals x and in  §2 their transcendency for rationals x.
Also some properties of the function f (x , y) are studied in §L

1. Some properties of the function f (x , y).

From the definition it follows that

(1) f (x , Y )=e[x ]+(e —1 ) M -Ef({ x} , ty l),

where {t} = t —  [t]. It is easily seen that

f (x , Y )o f (x ', y ')  i f  (x , y )0(x ', y ') ,

except when x =  x ' is  a  rational number, say x =p lq  with coprim e integers q > 0
and p, and y , y' <(r+1)/q  for some integer r; in this special case we have

(2) f (p lq , y )=f (p lq , r ig ) if rlq_<y<(r+1)1q.

The quantity in the right-hand side of (2) will be expressed in Theorem 1 as a linear
form of the values of the exponential function. If x is an irrational number, f (x , y)
is strictly increasing as a function of y .  f (x , y) is also strictly increasing as a function
of x  for any fixed y, not necessarily irrational.

The function [x ] satisfies the equality
q - t  nx r [n x ]= E
r=0 q

for any positive integer q, so that we find
q-t

f (x , 0)= rEo f  ( —xq  ,
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which may be considered as an expression of a kind of self-similarity for the function
f(x , y), whence we have

1q - 1f(qx, 0) =-
1 E  f (x ,  rig).

q q r= 0

The right-hand side above converges to  the integral f(x, y)dy, since f(x , y ) is
0

Riemann integrable, for it  is  a nondecreasing and bounded function of y in the
unit interval. But, since by (1) the left-hand side converges to  ex, we have for all
real number x

51o
f(x, y)dy = ex.

We discuss now the discontinuity of f(x , y) which is inherited from that of the
function [x]. We denote by N(x, y) the set of all positive integers n for which nx + y
is an integer. Then if N(x o , y ) = ø , f(x , y) is continuous at (x0, yo). If N(x o , Yo)
is nonempty and finite, x o must be irrational and N(x o , y o ) consists of only one point
N(xo , y0) = {n0 }, say. Putting m o = no xo  + y o , we have

Jimf ( x ,  Y ) = . f ( x o ,  y o )
( x  ) " . (  x 0  0 )
nox+ y m o

and

lim f (x , y ) -- - f(x0, yo)— , .
( x , y ) - 0 , 0 , y 0 ) no.
nox+y <mo

Finally we assume that N(x o , yo ) is infinite. T h e n  x ,  and y o a re  rational numbers
and if xo =plq with coprime integers q > 0 and p, then y o = rlq for some integer r.
Denoting by n o = n o(xo , y o ) the smallest integer in N(x o , y o ), we have

N(xo , y o )= {no + q k lk = 0 , , 2,...}, 1 n 0 q

We put nk = no + qk and ni,= n kx0 + yo , so that ink = mo + pk, and define

Do = {(x, y)In o x +  y  m o and x ,

D k = {(x, y) I nk _ i x + y <mk _  and nkx+

E0 = {(x, y)In o x+ y <m o  and x ,

E k = {(x , y )  nk _ i x + y mk _  and nkx + y <mk } ( k ._ 1) .

Then we have

lim f(x , y )= f(x o , yo ),
(x , y) — ■(xo, o)
( X ,  y ) o Do

k - 1
l i M f ( x ,  y ) = f ( x o ,  y o ) —  E

( . , y ) — ( x 0 , 0 ) m=0
(x,y)EDk

1
(mq + no)! —

and
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1lim f (x ,  y )= f (x  y o ) — E
(x,y)—(x.,y0)

o, ni=k (m q +  no)!
( X , y ) eE k

Especially, we find

( k  0),

 

i(p(q) mE= i  ( m q ) !  — e,

where 0(q) denotes the Euler function, since f(1, 0)—f(0, 0 )=e and f(x , 0) is an
increasing function increasing only by jumps occuring at rational points.

The function f(x , y ) satisfies some functional equations. It follows from the
relation

{  1  if t - () (mod 1),
[0+ [— t]+1=

0  otherwise,

that

(3)
if N(x, y)= 0,

f (x , y)+f(—  x, — y)+ e —1= E I,
n€1■1 (x ,y )n :

_ 1
n o !

I

if

if

N(x, y)= {no} ,

m =0  ( m g  4 _ n o  ! N(x, is infinite,y)

where n o and q are as a b o v e . Here, for any pair of integers q  1 and r with
q— 1, we have

(4)
co q

.-0 (mg+ r)!  
_ q 6- 1 ‘. e2n ,/q ,

in view of the formula

l q  i f  n r  (mod q),
(k (n— r) =

k=1 0  otherwise.

Especially

( 1 1
f  x '--2-)+f(— x,

1 ) =  "I
t° ( 2 b - 1 ( 2 m + 1 ) ) !

1 

2
0

and

i f  x=a12b, a, b(._1)E Z, (a,2)=1,

otherwise,

/
I qE e x  i s  rational,

f(x , 0 )+ f(— x, 0 )+e-1=  q k = 1

CI otherwise,

where (=exp(2rci/q) and q is the positive denominator of x in its lowest term.
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otherwise.
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The function f  (x , y) also has an interesting expression. Namely, we have

(5)
[n x +y ] e 1 1—ex +e y  — [y ]—  + E - 2.(y)n! z L  n e lV (x ,y )  1 1 1

I ,c° .
2 n i  L  -ry7(e2 w ”  —÷ e 2 " ' — e - 2 1timY+1"- 2 '""

m r--1  —

provided nx + y00 for all positive integer n, where

Indeed, it follows from the Fourier expansion

{O} =j- — 1  L I  sin 2mn0 — /4692 n „,=1 m

that

(6) f (x ,
n x+y { n x + y }

n=1 n! n=1 n!

I ) sin 2mn(nx+ y) = e x +( e  — 1 ) ( y  2  +
I +  E

n e N ( x ,y )  n! n „=„ n!

Applying now the Euler-Maclaurin formula, we have

mm+1 
sin wmd t - F -r i  sin cut l)  co  co s  cot — sin na

m
({ t} —  dit 2 t2= m

+  2 1  ( s i n k o N  s in iv iw M )
,— 2 n ( n x  +  y ) ,

so that

i
° sin  2mn(nx+ y)

m=m+1

Ç  sin 27r(nx + y )t
.)Af

d t + O ( n  ) - 0  1 n 
M ( ( n x + y ) M ) 111

where the constants implied in  0-symbols are independent o f  n  and  M .  Hence,
noticing that nx + y00 for all positive integer n, we see

1s i n  2miT(nx + y) O a s  M oo
n! m=m+1

Therefore we can change the order of summations in the double sum in (6) and obtain

"  1 . 5-,"  sin 2mn(nx+ y) 
n = 1  h!

2 rz im (n x +y )_  e — D rim (n x +Y ))
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e° sin 2m ny_ v (e2n Im y+e e  2,rtm y e ) E
—  2i 4- mm=1 m=1

which together with (6) yields (5).

2 .  The values of the function f (x , y) for rational x.

Theorem 1. For any  rational num ber a and any  real num ber fi, we have

E  [ n 1 1 -  fi ]  = a 0 +  E ak eck, C=•• e 2 n i  I q,
n=1 n! k=1

where q >0  is the denominator of  a in its lowest term , ao  is  a rational num ber, and
ak (1 -.k _q ) are algebraic num bers given in (9) below.

B y th e  theorem o f  Lindemann-Weierstrass [1 ; Theorem 1 .4 ], w e  have the
following:

C orollary. The num ber E  [na+ M in! is transcendental f o r any  rational a
n=1

and any  real fi, except when c= 0 and 0 13 <1.

Proof of Theorem 1. We put plq= {a} and r = [q{/3}], so that 0  p <q and
r  < q . no  denotes as in the preceding section the smallest positive integer n for which
nplq+rlq is an integer, and mo =n o plq+r/q. Then

[nplq + rlq]= mo +[(n — no)Plq]

for any positive integer n, so that we have, using (1) and (2),

(8) [na + fi] ( [a] +  [fi])e— M + [h lilq+ rlq ]
n=1 n! n=1 n!

— (M +E M + m o) [fi] — mo+ nci :  [ ( n  n °) P I q]  + [n P I q]  
n! n=o (n+ n)!

We assume from now on p#0 and define for any positive integer h

hqlp if hqlp is an integer,
v(h)=

[hqlp]+ 1 otherwise,

so that v(1)< v(2)< • •• and

[nplq] = h i f  v(h). n <v(h +1),

since hq I p n + 1 )-1  <(h +1)ql p. Then

[np lq ] v(h+1)-1 ych+o-v(h)-1 h [n p lq ]  _  E  E  
—

n = 0  (n+ n o )! h=o n = v ( h )  (n+ no )! h=o 1=0 (v(h)+1+ n o )!

Writing h=m p+j with 0 ..j< p , we find v(m p+j)=m q+v(j), and so,

(7)



ao = — [fi] — mo — B  +  i  [(n — y plq]
n=1

(9 ) ak — 2

p  P v- 1  v ( j+ 1 ) - v ( D - 1

1

.J=0 l=o

aq = [a ]+  [fl] +mo+ 2  E
p  P - I  v ( j + 1 ) - v ( P - 1  (

1 +  
i q

v ( j ) - 1 _  n o ) ,.i=o 1=o
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[np lq ] _  p 1 v ( i + 1 ) - " i 1 - 1  O E )  m q+v(j)+1+n 0 +jql p— v(j)-1—  no E EEn=0 (n+ no )! q  j= 0 1 m 0=0 E--0 (mq+v(j)+1+n0)!

= P - 1  v ( j+ 1 ) - v ( j ) - 1 mq + r(j, I)_P__ E
q  J = 0 1 -0 m = 0  ( m q - F r ( j , I ) ) !

+ ( i q —v(j) — I — no) 
1

,n=o (mq+r(j,1))!) —

with

n
B —

P -1  v (J+ 1 1 - v ( j ) - 1  m ( 1 ) - 1 +r(si, +jql p — n oE
q  J = 0 1=0 m=0 (mq+r(j, I))!

where m(j, I) and r(j, I) are nonnegative integers such that

m(j, 1)q + r(j, v(p+ I + no , 0 r(j, 1)<q.

Therefore, using (4), we obtain

v ( j + 1 ) - v ( j ) - 1[np lq ]p e +
jq  — vo— /—  no ) C - k r ( j , l )  B

(n+ no )! q2 k = 1 j= 0 1=0

This together with (8) yields (7) with

Where, by means of the simple continued fractin expansion

P 1 1 
bi +  + — s  odd,

the integer n o can be expressed as

1  —rI 1  
n ' — q )  bs +  b s _1 +  +  b 1 j •

Example 1. As the expression (7) in terms of (9) looks rather complicated, we
give here some simple examples.

Ck i q v ( i ) _ 1 _  n o ) C - k r ( j , l )  ( 1  _ k<q) ,

f ni i [ 1
2 n1In!= 2  cosh 1,

GO

nE.+ In! = 1  cosh 1 + sinh 1,
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3 \ l e  cos V2
3 + v

1
3e S i l l  V3 )

2nti P3 n i l n ' -  
1  (  1
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3
_ sin V 3  )11 1 72

3 V3e 2H e)

n=I 3 3
Ecc ' [

1  

n 
2  

11 n!= (- cos \/3 +  1 s in  \/-3 + 2e)3 Ve 2 ,13e 2

4, 21 7 1 1h4.„.1n i l  n! = 3 ( \ 1 e cos V2
3
v 3 i  sin 1/23 + e)

:

E l l- 2 n +  1 - li n t _  1  (  2
L  33  i  .  -  3  v 3 e - sin +  2e)

2E li n!= 1 ( - cos V31
n=1 _ 3

n+ 
3 3 Ve 2 7 3 e  sin  V23 + 3e )

E [ 7, niln! = 
1  

(cos 1+ sin 1 - sinh 1)
n = i ‘1. 4

[ =  (cos 1 - sin 1 +sinh 1)
n=1 4 4 4

[  n + 1211 n ! = 1-
4  

( -cos 1 -sin 1 + cosh 1 +e)

[ lt n+ 3
4 ]In!=— ( -cos 1 +sin 1 + sinh 1 +2e)

[ 3 nil n! -
4
 (cos 1 -sin 1 +cosh 1+e)

n = 1  4 

[-3
4-n+ '4 11 n! = 4' (cos 1 + sin 1 + sinh 1 +2e)

[ 3
4  n + 11  n !=  ( -cos 1 +sin 1 +cosh 1 + 3e)

:± 1 ± 111 =  ,1. (-cos 1 -sin 1 + sinh 1+4e)

Example 2.

q—iE [ 1 -n=1 q
E E ( 3  o e ,

P 2  h= 1  1 =1 2q C=e2 R ilq

Example 3. As we have seen in the proof of Theorem 1, the values f(plq, rig)
can be written as a linear form of the numbers

1 
e q,"=

 mt o (mq+r)! (r=0, q -1).

For p= 1, we have the following simple relation; however, in general, it could be
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complicated. We have

f (11q, 0) I 0 —1 — 2.••—q+4 — q+3 — q+2 e
q ,0

f (11q,110 0— 1 —  2.- — q+4 —q+3 2 e
q ,1

f(1/q, 21q) 0 —1 —2-• —q+4 3 2

4 3
(10)

—2

f(1/q, (q —3)1q) 0— 1 q — 2... 4 3 2 e
q , q - 3

f(1/q, (q —2)1q) 0q - 1  q - 2 . • • 4 3 2 e
q , q -  2

f (11q, (q — 1)/q) I q q — 1 q — 2.. 4 3 2 e
q , q - 1

and by (4)

e "

e
q , 1

C-2  " - ( q - 1 )

- (q - 1)C - 2(q - 1)  - ( q - 1 ) 2 e 0 - ,

The determinant of the former matrix is Egg - 2  0 0 , where e =1  if q-=-1 or 2 (mod 4)
and E=  — 1 otherwise, and that of the latter is also nonzero, since it is Vandermonde's
d e te rm in an t. T h u s q  num bers f (1/q, 0 ) ,  f (11q,11q),...,f (11q,(q-1)1q) are
algebraically dependent.

P ro o f of (1 0 ) .  If  1 r  q —1, we have

f(11q, r1q)= '1E 1 [(m q  + s)1q - F r1q]
m=o s=o (mq -Fs)!

/ 9—r-1 q—i m+
=  E  E +

„,=0 s = 0  (mq + s)! s =q -, (m q+s)!

= 1  + E  +  E  q (m q-1 )! q 0 ( ( m q +s - 1 ) ! (mq+ s)! (m q+s)!

q - 1 q - i
— (eq,s_i—seq, ) +  E  qe„ s )s=q -•

1 9—r— 1 9-2
= ---(e 0 +  E  (I — s)e q ,s +  E  (q— s+1)e q ,s +2e q ,q _ j ) .q q ' s=1 s = q -r

Similarly we can write f (1/q, 0) as a linear form of e g o ) , eq ,,,..., eq ,q _ i .

e
q , q - 1

3 .  Linear independence of the values of the function f (x , y).

We generalize a theorem of Skolem [3 ; Theorem 6] concerning the linear i de-
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co

pendence over Q  o f  th e  numbers 1, E E  [n x d ln !  when x,,..., x,
n=1 n=1

are / distinct positive numbers such that 1 is not dependent on them over Q.

Theorem 2 . Let x , be as above and let y , be any choice of  I real
CO

num bers. T hen  1 , E  E n x i + E  [n x ,+ y jIn !  are  linearly  independent
n=1 n=1

over Q.

Pro o f . Suppose that
rLnx i + y i ]  _ 0A o +  E A i E

i =1 n=1 n!

for some integer A iD e n o t i n g  b y  Hn the integer

r1-1
Hn =  —(n— I)!(11 0 +  E  E  Alkxi+YiNk!),

k=1 1=1

we have

Hn =  A ix i +
t=1

as n — o o . Hence E Aix, is an integer, and so, by the assumption on x 1,..., x,, we get
/=1

E A .x•=0,
i=1

so that H,,=0 for all no  for some n o . T h u s

(12) + (n n e ).
t=i

We need now the following Lemma [3; pp. 79-80]; I f  x 1 ,..., x , are  I positive
num bers, then there are  p  ( . 1 )  positive numbers l i n e a r l y  i n d e p e n d e n t
over Q such that

(13) x i=  E E b n x i
i=1

where a's are nonnegative integers and b 's are rational num bers.
We will prove A 1 = 0 .  For this we may assume that

(14) y a11 la11#0  (mod 1) (2 ._ /)

and

(15) y a , /a , ,  + y ,# 0  (mod 1) (2 -

where y is the real number defined by

(16) y + y , . 0  (mod 1) a n d  0<y:5_1.

Indeed, we may assume 0 <  < 2 < • • •  < Then >0 for all j_.2 and
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all t with 0< t< t 0  for some t0 . Putting t= ris with r,s positive integers, we can write

X i =  E cm;
i=1

where a 1 =sP"- - 1  E  a u tj - i a ;;=a i; and

(2' p). Clearly 4 '  a re  linearly independent over Q  and

can be written as linear forms of x, with rational coefficients. Since E au ti - 1

.1=1
are different as polynomials of t, we can choose t=r1s so that a: i 's satisfy

the required properties (14) and (15).
We choose and a j j  as above. Then for any integer n

(17) E au ftg i l (mod 1) ( 1

Noticing that 1, 4  are linearly independent over Q, we may apply Kronecker's
theorem [2; Theorem 442]: F o r any real numbers y,,...,y ), and positive e i . . . . . . . . . . .  E
there are infinitely many n such that 1{n}—y <e i  (1 p).

We put yt = Y/a t PE, y i = 0 p), a=  m ax a11 , and ei =E p), where

s is a fixed positive number chosen sufficiently small. Then we have

yai1 /a11 -2ape< ai i {n } <ya i da„
.i=1

for infinitely many n, so that by (14) we see

(18) {nxi} E
i=1

[lnxil +Y i]=[Y aidai yi] [ Y a i d a  1 ]  ( 2  i ,

and Inx 1 1= a u fnM , [{nx i l + y i ]= [y + y , ]  —1, taking (14), (15), and and (16)

into account. Thus we have by (12)

I PE A, E E A i [ya i aa i d— A, = 0
t=1 i=1

for some n. But, since are linearly independent over Q, (11) and (13) imply

E A i a..=0 (1 p), and hence E A i E  ai i {n }  = O . Therefore we obtain
i= 1 i=1

(19) Ai[yaiila„+ yd— A,=0
i=1

Next we put y,=y1a,,+pe, y1 = 0 0  and e_i =e In this case
we find

yaida„ < E ai i tnM <ya i1 /a1 , +2aps,
i=1

so that we have (18) and (19) again, and for 1=1
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Inx i l = [{nxi}+Yi]=Ev+Yil— [ y]

for infinitely many n. Therefore in the same way as above we get

E A bau /a ii+ y /]= 0 ,
i = 1

which together with (19) yields A, =0. Repeating this argument, we obtain A o =
A l = • •• = A,= 0, and the theorem is proved.

Remark. We have established a  theorem on linear independence of numbers
1, f (x 1 , y  1 ) ,. •  • , 

f ( x 1 ,  Y i) when x 1 ,..., x , are 1 distinct positive rationals such that 1
is not dependent on them over Q .  However, the relation (3) shows that 1, f (1, 0)=
e, f (x , y) and f(— x, — y) are linearly dependent over Q provided that x is irrational.
It may be interesting to decide whether three numbers 1, e, a n d  E  [nx ]ln! with

n= 1

irrational x are linearly independent over Q or not.
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