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On two theorems concerning reductions
in local rings

By

Liam O'CARROLL

1. The purpose of this paper is twofold. First we wish to generalize a  recent
theorem of Rees [7, Theorem 1.3] on the existence of so-called complete reductions
of a finite set of ideals in a Noetherian local ring. Secondly we wish to give a proof
of the basic theorem of Eakin and Sathaye [1, Theorem 1] on the existence of re-
ductions which avoids the adding on  of an  infinite set of indeterminates and the
resulting action of a permutation group. (All rings considered here are commutative
with an identity element.)

Reductions o f  ideals were introduced by N orthcott a n d  Rees [5 ]  and have
proved extremely useful in local a lg eb ra . In fact reductions have a strong geometrical
content; the connections between reductions of an ideal and the homogeneous affine
coordinate ring of the fibre over the closed point, in the blow-up of the ring along
the given ideal, have been spelled out explicitly in [3, 6], for exam ple. Indeed in
this paper it is this ring which plays a crucial rôle in our proofs. Finally we remark
that in the proof of his theorem Rees used a multi-graded Rees ring; in our general-
ization we use a general position result in a singly-graded ring, together with a result
from N agata [4] on superficial elements in such rings.

2. We collect together some properties of reductions which will be used without
comment in the rest of the paper.

Let (R , m , k ) be a  quasi-local ring with infinite residue field k  (this is usually
a trivial restriction on k ; see [8, p. 10], for exam ple). L et /  a n d  J  be finitely
generated ideals in R  with J g I. Then J  is called a  reduction [5] of I  if J P =
for some positive integer n.

Consider the associated homogeneous affine ring G over k , where

G =k e llm l( ) 1 2 1m1 2 0.•• .

Then J  is a reduction of I  if and only if the images in //m/ of the given finite set of
generators o f J  themselves generate a  homogeneous affine subalgebra o f  G  over
which G is integral, and conversely every reduction of I  arises in this way; further,
the affine dimension of G is called the analy tic spread 1(1) of f , and if R is Noetherian
we have 136ger's inequality :
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l(I) dim R. (1)

(See [6], for example, for a discussion of these facts.) Thus /(/)= 0 if and only if
I is nilpotent.

The ring G is the coordinate ring of the fibre referred to in §1, and reductions
can be thought of either algebraically or geometrically. As an interesting example
of this, one can contrast the proofs of [7, Lemma 1.1] and [3, Proposition (5.5)].

Finally we recall from [5, Theorem 2 ] that the analytic spread V )  of 1 is the
smallest number of elements required to generate a reduction of I. (This also follows
immediately from the properties of G above.)

3. We now give our generalization of Rees' theorem [7, Theorem 1.3].

Theorem 1. Let (R , m , k ) be a N oetherian local ring such that k  is infinite,
and let 11 , . . . ,1 ,  be ideals of R .  Let r=1(I) , the analy tic spread of I ,  where I=
I t •••Is . Then there exist elements x i ;  ( j=1 ,. . . ,  r)  of I. fo r i=1 ,.. . ,  s  such that, if
y 1 =x 1 1 x 2 1 .••x s i ( j=1 ,..., r) , then J=(y ,,.. . ,  y r) is a reduction of !.

Pro o f . The proof will be by induction on r,  the result being trivial if r = 0,
since the zero ideal is then a reduction of I.

As in [7 ], it suffices to consider the case where I  contains a  non-zero-divisor,
by the usual device of factoring out

119(R)= U {0: I n n  >

= 0 :  / q ,  for s o m e  q >1 .

The details are  as follows: set K =0 : iq  and pass to r?. =R IK , using to denote
images in K . If 1 = 0 , then I  is nilpotent and r =0 in  this case; th is is the trivial
situation dealt w ith above. If f 00, then 0: R / = 0 so I contains a  non-zero-divisor.
It is clear from the discussion a t the end of §2, since reductions are preserved by
homomorphisms, tha t if  1- = V )  then 1 -  <r. Hence even if  1^ = r and we suppose
the result known when the ideal contains a  non-zero-divisor, or if F< r and we use
induction, we can find elements x i j  ( 1 = P) of I. fo r s  such that, if

x i f  • •xs i , then for some positive integer n

= Min +(K  n /n÷ 1 ).

Therefore I n + q + 1 =(y i,..., y )ln+q, which clearly gives the required result.

So suppose tha t r> 1  and tha t I  contains a  non-zero-divisor. Consider the
following graded rings:

A = e  r i i t + i  a n d  G = C)

writing A= C) A , a n d  G = C ) G , in  a n  obvious n o ta tio n . T hen  G  has (affine)
tx)

dimension r. We now need a  result of 'general position' type, which we introduce
first in the following guise:
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Lemma 2 .  L et V 1 , . . . ,  Vs  be f inite-dim ensional vector spaces over the infinite
f ield k , and let H 1 ,..., H,„ be proper subspaces of the tensor product space V, where
V= V 1 0 • • • 0 1 /s . Then there exist vi eV i , l j < s ,  such that v 1 ® ..® v H i  U • •• U

Remarks. This result (which in fact holds even when the H i are affine subspaces)
is left as a  little exercise in  linear algebra. It can be given a  variety of proofsw,
especially for particular instances of the base field. One such case, of interest in
the present context, is where k  is algebraically closed. Then the set of such y, 0 •• • 0 vs

is the affine cone over the Segre variety in  V, which is known to be an irreducible
variety that is not contained in any linear subspace (indeed in any affine subspace)
of V [2, Chapter XI, § 2 ] .  The result in this case follows easily from these facts.

We use this lemma in the following form, employing the previous notation :

Proposition 3. L et W1 ,..., W „, be proper subspaces of  the k -v ector space I Im l.
Then there exist x, E i, I <  i <s ,  such that

Y  + m l  1171 U • • • U

where y = x i . ••x,.

P ro o f . N ow  I Im l is  a  k-linear homomorphic im age of the tensor product
space V: =/,/m/, C) • • • 0 / s/m/ s (over k ) with y + m/ having ( x  +m1 1 )® • • • 0(x, +  m / s )
as a  pre-im age . If we assume the proposition to be false and pull back to V , we
immediately contradict the 'general position' lemma.

We now return to the proof of the theo rem . Let Ass R = PO, let {Q 1 ,...,
12„} be the set of (homogeneous) associated primes of A  which do  not contain A 1 ,
and let be the (homogeneous) primes in G of co-rank r. Set m =it+ v + co,
and set

w1=(P1+mi)/m1, t <  < it;

w, + ,=(Q, n A l + m A ,) Im A „ 1 <i<v ;

a n d  Wi, + , + 1 =.1 1 11 G I , i < i < w.

Since I contains a non-zero-divisor, Wi is a proper k-subspace of G, for i= 1..... t,  by
Nakayama's lemma; similarly, for i =1 ,. . . ,  v, W g .f i  is  a  proper k-subspace o f G1 ;
since r > 0 , it is clear that each Wo + s + i , 1  <  <  co, is a proper k-subspace of G1 .

Therefore by the preceding proposition, by  the definition of the W ,  and by
the proof of [4, (22.1)], there exist x i E I  for i =1 ,... ,  s , such that, setting y = x,•••x s ,

( i ) y is a non-zero-divisor in R ;
(ii) y  +  / 2 is  a  superficial element [4, p. 71] of A in the sense that there exists

a positive integer c  with

1- T hanks to  Tom Lenagan, Terry Lyons and Allan Sinclair for energetically supplying just such
a varied lot of proofs.
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(In: y R )n Ic=1" - - , , w h e n  n> c;

and
(iii) (y +m l)G  is of co-rank strictly less than r in G.

M oreover, recall tha t by  a n  Artin-Rees resu lt [4, (3.12)] there exists a positive
integer d such that

(iv) In: yR when n >d , since 0: y R = 0 by (i) above.
By (ii) and (iv) therefore, when n >c +d ,

I": y R =I" --1 ,

so in this case,
(y )  In  n  y R =y 1 n - i ( n > c + d ) .
Now, consider the  ring  (R ', m ', k ), where R '=R ly R  a n d  m '=m 1 y R ; further,

fo r  i=1,..., s , consider th e  ideal /; in  R ' where each  1 = 1 11y R ; le t r'=I ( I ') ,  the
analytic spread of /', where / '= / • • • I 's s o  th a t  r=  I l y R .  N ow  th e  corresponding
homogeneous affine r in g  G ', w here  G '= C ) I"In f  I" , is easily  seen (because of

t o
(v)) to coincide in the n t h  graded piece with G/37G for all sufficiently large n, where
y = y + m l .  Hence, using (iii) above, we have that

(vi) r' =dim  G' =dim  G I5G <r.
By induction therefore, there exist elements xu, j = r ',  of I .  f o r  i = s

such that, setting y i =x , i •••x s i  for j =  I r',  for sufficiently large n

In =(y ,,..., y r ,)I" - ' +(y R  n In).

The result now follows easily from (v) and (vi).

Remarks I. B y 136ger's inequality (see (1 ) in  82 above), r<dim R , s o  the
theorem above does generalize (in an optimal way) [7, Theorem 1.3].

2. Clearly th e  above theorem  can  be  used  to  g ive  sligh t variations of the
remaining results in  [7 , §1]. The reader is referred to [7] for applications of these
so-called complete reductions.

4. T he  theorem  by E akin  a n d  Sathaye and  applica tions of i t  a re  given in
[1]; the proof is essentially repeated by Sally [8] who remarks [boc. cit., p. 38] that
the ideal in question may be taken to be finitely generated, without loss of generality.
This we now do, and in fact prove the result in the following mildly generalized form:

Theorem 4. Let G= 0  G ,  be a  hom ogeneous af f ine algebra, w ith G o = k  an
t o

inf inite f ield, w hich is generated as a k -algebra by  G I . Suppose that there ex ist
nin tegers n  and r, w ith  n >1  and r>0 ,  such that dim k G,,<(

+ r )
. T h e n  t h e r e

ex ist generic linear form s y ,,..., y r  in  G1 such that

G„= y i G „_,+ •••+y r G„_ i .

Remarks 1. The theorem has an  obvious trivial interpretation when r=0.
2. Suppose that we fix a  k-basis x 1 ..... x , o f  G , .  Thus if G were given by (1)
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in §2, x 1 ..... x, would be the images in  I/mI of a given finite generating set for I;
so our notation is chosen so as to tie in with that used in [1] in an obvious way.
By the phrase 'generic linear forms Y ! . . . . . Y r

 in G  we m ean a set of r linear forms

Yi=f o r  j = l . . . . . r,

given by a point {Œ 1} e which moves in a Zariski-open subset of  k r p  and moreover,
in the statement of the conclusion of the theorem, the property that G equals  Y i  G -  1

+  +y r G,_ j  is to hold for each of the sets of r linear forms given by the various
points in the fixed Zariski-open subset of k '.

3. The equality G n =Y i Gn _ i + " + Y r Gn _ i  is equivalent to the property that G
be a finite module (i.e. be integral) over the homogeneous  affine subalgebra k[y 1 .....
Yr] with the homogeneous module generators having degrees at most n -  1 in G.
Thus Theorem 4 can be viewed as a normalization theorem in which the degrees of
the generators are controlled at the price of the homogeneous system of integrity
{Y i ..... Yr} possibly no longer being algebraically independent over k .  (The 

y
 a re

algebraically independent over k  if and only if r is the affine dimension of G.)
4. Suppose that we fix positive integers s  and m  and consider varying sets

of s linear forms {z 1 ..... z }  in G 1 , where z =  1 1 f31x1 for j= 1..... s, a s  {fl} e ksp

m oves in its am bient space. If  u = d im k Gm _ i  a n d  v=d im k Gm  we can consider
Z1 Gm _ i +  +  a s  t h e  r o w - s p a c e  o f  a n  (su) x v-matrix over k , in an obvious
way. The condition that  Z1 Gm _ i + "+Z sGm _i is a  proper subspace of G m  is given
by the vanishing of the y x v-minors of this matrix. Hence

if  there ex ists a particular s -tu pie y ? . . . . . y °  in G 1 such that

Gm  =  Y?Gm_ + . . .  + y°G,,_ j ,  then there exists a generic set of (2)

elements Y i . . . . . Y5 in G 1 such that Gm=YiGm_i+•+YsGm_i.

Thus, in the context of Theorem 4, if suffices to concentrate (in the main) on
producing a single suitable r -tuple of linear forms in G 1 .

We now turn to the proof of Theorem 4, where, as is clear, we use many of
the central ideas of the original proof by Eakin and  Sathaye.

Proof  of  T heorem  4. The result is trivial if  r=O, and it is clear from (2) above
that the result is immediate if n =  1. T hus w e  take  n  2 and r 1. N o w  suppose
that the result is false and consider a counterexample G= $  G 1 in which r is mini-

t^O
mal, and n is minimal for this given value of r.

As before, let {x 1..... x }  be a k-basis of G1 .
Case 1. There exists i, with 1 ^ i^ p ,  such that

dim k x.G _ j >

For convenience, let I  =  I. W e cla im  that r ^ 2. F o r  i f  r =  I, then
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n +1> dim k Gn > dim k x i Gn _ i > n,

so G =x i G „_ ,.  It then easily follows from (2) above that the theorem is true for G,
which is a contradiction. Since x 1 is  a  homogeneous element, we can pass to the
homogeneous factor ring = Glx i G, where we write G =  G .  Since

+ r — 1 = (n + + r —1)
r — 1 ) r

-it follows that dim,, r — 1
'

)  By the minimality of r, there exist cor —1 
in G1 such that

1,•••, O r - 1

-6n - 6 16 n -1 +  • • • - 1 G n - 1

in an obvious n o ta tio n . Hence

Gn =w i Gn _ i +•••+o),._„Gn _ i +x i Gn _ i  ,

and a contradiction again follows from (2) above.
The alternative is
Case 2. For 1=1,..., p, dim,, x i G 1 <( n +

 r
r  1

F or 1=1,..., p , le t K( 0 = Ann, x i , a  homogeneous ideal, and let G( 0 = G/K(i).
Then fo r  each  i  w e w rite  K t =  ( )  1 0 ) a n d  G( ') = e 0), using th e  naturalix)
grading. N ow  for each i we have a degree 1 isomorphism induced
by multiplication by x i , so  d im , Gi(», 

< (  n  — 1 + r ) .
By th e  minimality o f  n  forr

the given r, there exists for each i a non-empty Zariski-open subset of k rP yielding a
set of r linear forms (say) in G1 such that

= 2,,Gi )
2 + • • • + Er i G;»,,

in an obvious notation. Then, for each i,

G n- 1  =  Z l iG n _ 2 +  • • • Z r iG n _ 2 + K (n i )1 ,

SO Z liG n -1+  • •• +Z riG n  1  .

Intersecting the  p  Zariski-open subsets yields a  non-empty Zariski-open subset of
el', independent of i, such that for the corresponding generic set of linear forms z 1 ,...,
Zr ,

z i Gn _ i + •• +z,.Gn _ l , f o r  i =1,..., p.

Hence

G,=xiG„_1±•••+x„G,,-1

gz ,G ,_ 1 +•-•+z,.G,,_ i gG„,

and we obtain a contradiction.
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