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Stationary solutions and their stability for
Kimura's diffusion model with

intergroup selection

By

Yukio OGURA and Norio SHIMAKURA

Introduction

I n  1983, M. Kimura proposed a  diffusion model o f  intergroup selection in
population genetics, with special regards on an altruistic allele (see [ 4 ]  and  [5]).
After that, one of the present authors proved the existence and uniqueness of the
solutions (see [8]). In  this paper, we study the global behavior of the solution ;
the existence and the number of stationary solutions as well as their stability.

The equation is a kind of initial boundary value problem for a parabolic partial
differential equation o f mean fie ld  type. The unknown U(t, dx ) is  a  probability
measure on the interval CI< x  < 1  depending on time (generation) t, where the space
variable x  denotes the  frequency o f the  altruistic allele. The coefficients of the
equation depend on  the  first moment, and also on  five important parameters y',
y ,  s ,  m  and  c  representing the rates of m utations in both  directions, individual
selection, migration and intergroup competition respectively (another parameter N,
the population size of the groups, is of less importance for our analysis).

The plan of this article is  a s  fo llow s. In  § 1 , we state our main results and
explain briefly the  model in population genetics. O ur Theorem 1  is basically a
reproduction of the former result in [8 ], while Theorem 2  gives the precise number
of the stationary solutions. In Theorem 3, we discuss the convergence of the solution
U(t, dx) as t.-“x) to  a  stationary so lu tion . Theorem 4  states how the parameters
in the coefficients affect this model, and in Theorem 5 , we verify one of the main
results of M. Kimura in  [4 ]  and [ 5 ] .  The proof of the Theorems are given in the
next consecutive §§2, 3  and 4. § § A  and B are devoted to the review of the theory
of continued fractions and to the study of a certain function F(y) which is represented
by continued fraction.

As in [8 ], we make a  systematic use of the moment sequences of the solutions.
Those of the stationary solutions satisfy a recurrence equation of the three consecutive
terms, so that we can make use of continued fractions (see § A ) .  It turns out by
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Lemma 1.1 that the stationary solutions are in one to  one correspondence with the
fixed points of the auxiliary function F (y ).  The study of this function F(y) in §§B
and 2 enables us to enumerate all the stationary solutions (Theorem 2). At the same
time, we can give the explicit formulas for the stationary solutions (see Lemma 2.1).

We need more delicate arguments for the study of the behavior o f U(t, dx) as
co. The crucial idea of the proof is a comparison lemma on moment sequences of

the solutions of elliptic equations of mean field type, which are derived by a difference
analogue of the parabolic equation (Lemma 1.2). In  the cases where there are
two stationary solutions, we study some properties of the principal eigenvalues and
the corresponding eigenfunctions for our elliptic equations, and exploit them to prove
the stability of stationary solutions.

Finally we note that T. Shiga proved the existence and uniqueness for a class
o f non-linear diffusion equations including the  present equations a s  well as the
multi-dimensional ones (see [7]).

The authors of the present paper would like to say that the relevant diffusion
model of M. Kimura has a  quite beautiful and interesting structure from the view-
points of the theory of partial differential equations and of the probability theory.
The authors are indebted to this structure for their analysis of the model.

§1. Problems and results.

Problem (K) or the diffusion model of Kimura. L e t N , v ', y , s , m  an d  c  be
given real numbers satisfying

(
1

)
N > 0 ,  v '> 0 ,  v > 0 ,  s > 0 ,  m > 0 a n d  0 < c< v+ m .

L et also  0(dx) be  a  giv en probability  m easure o n  [0 , 1 ]. A  m easure valued
function U(t, dx) defined on the half  line 0 < t< +  co is called a solution for the
dif fusion m odel o f  K im ura, if  it satisf ies the follow ing conditions (K.1), (K.2)
and (K.3):
(K.1) f o r each t e [0, + co), U(t, dx) is  a  probability  m easure o n  th e  closed
interval 0<x <1;
(K.2) f or any continuous function f (x ) on [0, 1],

1+ 1+
ir rot f(x)U (t, dx)= f 0 - f (x)0(dx) ;

(K .3 ) f or any function f (x ) of class C2 on [0, 1],

d
d

t f l +  f(x )U (t, dx)—  5 1+  [ x ( L x )   f"(x)+ fv' (1— x)— vx — sx(I— x)
o-

(2) + m(5Z(t)— x)}f '(x)+c(x—.t.(t))f(x )]U (t, dx ), t E (0, + cc),

1+
w here  A O = xU(t, dx).

o-

If 4)(dx) and U(t, dx) have density functions 0(x) and u(t, x) respectively (that
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is, 0(dx)= 4)(x)dx and U(t, dx)=u(t, x)dx), then the problem (K) is reduced to an
initial boundary value problem for a partial differential equation of parabolic type
(see M. Kimura [4 ], [5 ], and N. Shimakura [8]).

For a solution U(t, dx) of the problem (K ), we define the moment sequence
{Mn(()) 0 of U(t, dx) by

1+
(3 ) M (t )=

o- 
xn U(t, dx) f o r  t >  0  a n d  n=0, 1, 2,...

Moment equation (M ) .  A  sequence o f  real num bers {M n (t)} 0  de f ined  on
t E [0, 4- C O ) is called a solution of  the moment equation f or the diffusion model of
K imura, if  it satisf ies the following conditions (M.1), (M.2) and (M.3):
(M.1) f o r each t e [0, + cc), M 0 ( t )= 1  an d  {M„(t)} 0  is  com ple te ly  monotone,
that is

pio(— 1)P p i
n  )A fk+ p ( t )  0, f o r  k, n=0, 1, 2,...

'
1+

(M.2) lim W O =  
J O -

x n 0(dx) f o r n=0, 1, 2,...
t.to

(M .3 )  it satisfies the system of differential equations

d  = (n s +  c )M n + i ( t )+  n (
n - 1

 4 N   + v '+ m M i ( t ) ) M „_,(t)
dt

(4) — in (  n4 N
1 + v '+ v + s+ m )+ c /If i (t)1A4(t),

f o r  t e (0, +  oo) a n d  n=1, 2, 3,...

If U(t, dx) is a solution of the problem (K), then its moment sequence {M„(t)} o

is a solution of the problem (M) (with 540= W O )  and vice versa. Therefore, the
two problems (K) and (M) are equivalent (see Chapter III of D. V. Widder [10] for
the general theory on moment sequences).

The following theorem is proved in [8 ] in the case where 0(dx) has a density
function. The proof for the general case will be given at the end of this section.

Theorem 1  (Ex istence and uniqueness o f  th e  so lu tion ). A ssum e th a t  the
param eters (N, y', y, s, m, c) satisfy  the condition (1) except for the restriction on
c. T h e n , f o r each probability  m easure 0(dx) on [0 , 1], there exists one and only
one solution U(t, dx) of the problem (K).

In this memoir, we shall study the stationary solutions for the model of Kimura
and also investigate the convergence of the solution of the problem (K) to a stationary
solution as time t tends to infinity.

Stationary problem (S K ). A  m easure U (dx) is  called  a  stationary  solution
for the model of  K imura, if  it satisf ies the following conditions (SK.1) and (SK.2):
(S K .1 )  U(dx) is a probability  m easure on [0 , 1];
(SK .2) f or any function f (x )  of class C2 on  [0, 1],
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(5) 51+ [x(1— x)  f ,,( x ) +  { v ,(1 x ) vx — sx(1 — x) + m(" — x)} f ' (x)0- 4N

+c(x—X-) f (x )1 U (d x )=0 , where 1+ xU(dx).
o-

For a stationary solution U(dx), we denote its moment sequence by {Mn}nc°_,.
Then 1/1/1,1 0  is a solution of the following problem (SM), and the two problems
(SK) and (SM) are equivalent.

Stationary moment equation (SM). A  sequence o f  real num bers {M } ,  is
called a solution of  the stationary  moment equation for the dif fusion model of
K im ura, if  it satisfies the following conditions (SM.1) and (SM.2):
(SM .1) {M n}n°°=0 is com pletely  monotone with M 0 =1;
(S M .2 ) it satisfies the recurrence equation

(ns c)11/1„,,— in ( n 4N  +v '+v +s +m )± c M ,} M „1

(6)
n (n — 1

 + v
, 

m M  1 „ _  f o r n =1 , 2, 3, .4N

We first note that two unit distributions can be stationary solutions. L e t
So (SO be the probability measure defined by

1+
o -

f (x)(5 o (dx) = f ( 0 )  ( r e s p .  f  
o -

f  (x)6 1(dx)=f (1))
1+

for all continuous functions f (x ) on [0, 1 ]. Then it follows that

60 is  a stationary  solution if  and only if  v ' =0 ,

(5, is a stationary  solution if  and only  if  v=0.

Any other stationary solution U(dx) has a  density function u(x) (that is, U(dx)=
u(x)dx), which is obtained as a solution of a boundary value problem for an ordinary
differential equation (see §2 below). We call the density u(x) as well as the measure
U(dx)=u(x)dx  itself a stationary  L '-solution.

Let us now enumerate all the stationary solutions. For this purpose we should
divide the problem into seven cases:

Case (a) v' > 0, v > 0;

Case (b) v'= O, v > 0 and L 0 <0, where

( 8 )  L o =L o (N, v, s, m, c)

c
v +m + 1, 4N(v + m)+ 1; — 4N s — , 4 N (v  m );-4 N s)s

and „F„ stands for the hypergeometric series of Kummer (see (11) of  §B below);

Case (c) v' > 0, v = 0 and L ,<O , where

(7)
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L 1 = L 1 (N, v', s, m, c)
(9 )

 + 1, 4N (v ' + m ) + 1 ; 4N s) — , 4N(v' + m) 4Ns) ;
v' + m s

Case (d) v' =0, v> 0  and L 0 >0;

Case (e) v ' >0 , v= 0  and L 1 >0;

Case (f) v' = v -= 0 and cO4Nsm;

Case (g) v'= v= 0 and c=4Nsm.

Theorem 2. (Num ber of stationary  solutions).
(i) There is one and only  one stationary  solution in the cases (a), (b) and (c):

( a )  L 1 -solution, (b) ô , ,  (c) (5,
(ii) There are exactly  two stationary  solutions in the cases (d), (e) and (f):

(d) L '-so lu tion  and 60 , ( e )  L'-solution and 61 , ( f )  6 0  and  Si .
(iii) I n  the case (g ), there a re  in f in ite ly  m any  stationary  solutions. M o re
precisely, f o r each y E  [0, 1 ] , there exists a stationary  solution Uy (dx) with )7= M 1

= y .  U0 =5 0 , U 1 =6 1 an d  Uy is  an 1}-solution if  y 1).

In  some special cases, the L'-solutions can be easily found by integration of
ordinary differential equation. In the case (g), Uy (dx) for y e (0, 1) has the density

T(4N m ) x 4 N m y - 1 ( 1  x r N m ( 1 - y ) - 1 .(10) u y (x) = T(4Nmy)F(4Nm(1— y))

Also if c=4Ns(v'+v+m ) in the case (a), the first moment is equal to v'/(v' + v)
and the density function is given by

T (a) x.4-1(1_ x) w ith  a  = c/s ..(1-4)-1(11) u(x)= r(a )F (a (1

The stationary L'-solutions in the general case will be given in §2 below.
Let us now explain the idea of our proof of Theorem 2. As is noted above,

the problem (SK) is equivalent to (S M ). If  we put

(12) P = 4 N v ', Q = 4 N v , S = 4 N s , M  = 4 N m  a n d  C=4Nc,

then the equation (6) can be rewritten as

(13) Mn+ = 1)A4 n—  a n(M pi- f o r  n=1, 2, 3 ,...,

where an 's and b„'s are defined by (1) of § B . Regarding M, as a parameter y running
over the interval [0, 1], we introduce an auxiliary function

(14) R y )  a2(Y ) a ( y )  
b1 (y) — b2(Y) — •••— b(y)

where the right hand side is a  continued fraction. The following is the key lemma
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for our proof of Theorem 2:

Lemma 1.1. (First moment of the stationary  solution)
(i) L e t U(dx) be a  stationary  solution and ".t- its  f irs t  m om en t. Then is  a
fixed point of  the mapping y—>F(y), that is, it is a solution of the equation

(15) y = F (y )  a n d  0<y<1.

(ii) Conversely, if  is a solution of  the equation (15), then there ex ists one and
only  one stationary  solution U(dx) whose first moment is equal to Further, if
I is contained in (0, 1), then U(dx) is a stationary  L 1 -solution.
(iii) y =0 (or y=1 ) is a solution of  (15) if  and only  if  v' =0 (resp. v=0), and  it
corresponds to S o  (resp. S i ).
(iv) Except for the case (g), the equation (15) has at most one solution I  in the open
interval (0, 1). Every such solution .)7 (if exists) satisfies the inequality  F'(.t)<1.

Remark. A more detailed argument will permit us to remove the restriction
v+ m in Theorem 2 (we keep all the other assumptions in  (1) unchanged). In

fact, if c> v+ m, we choose a  natural number n such that c< (n+1 )(v+m ) and
exploit the equation

an(y)a 2 ( y ) a i ( Y ) )  a n d  0<y<1.(15) F.+1(Y)=1).(Y)
(  

 b n _ 1 (y) — ••• — b i (Y )  —  Y

Here F„,,(y ) is the function defined in (3) of §B, which converges in power series
sense if  0 <c<(n +1)(v + m). T h e  equation (15') plays th e  sam e ro le  a s  (15).
Therefore, if we list up all the solutions of (15'), then we could enumerate all the
stationary solutions. Thus the restriction c <v+ m is not essential for Theorem 2.
But, in this paper, we assume this because it makes the situation much simpler.

Let us now turn to the covergence of the solution of the  problem (K ) to  a
stationary solution as t tends to infinity.

Let be the space of all finite measures on [0, 1] with weak topology. For
each U E we set

W O= J.1 +

xnU(dx), n=0, 1, 2,...

Since  the set of all polynomials are dense in the space of continuous functions on [0,
1], a solution U(t, dx) of the problem (K) converges weakly to U(dx) if and only if

(16) lim M (U (t, • ))=M „(U ) for e v e ry  n = 0, 1, 2,...

Let also .9 be the subspace of which consists o f all probability measures on
[0 , 1 ]. We define two subsets of .9; .9* = 9 * (M, Q) is the set of all 0 e.9 such that

(17) lim inf M(0)nfi >0 for so m e  fl <4N(v + m),
n-.+00

and .9* is the set of all 0 e .9 such that
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(18) lim sup M * (0)nc < + oo for som e e > 0 .
n-H-00

For example, (5a (the unit distribution with the support at x =a) belongs to <9* but
not to .9* if 0 < a < 1, while S i  to  g *  but not to .9*. Notice further that both of
the weak closures of .9* and g *  are equal to the whole space g .

Theorem 3 . (S tability  of stationary  solutions)
(i) In  the cases (a), (b) and (c), under the assumption m>c, any  solution of the
problem  (K ) converges weakly  to the stationary  solution as t—>+ oo.
(ii) In the case (d) ((e)), under the assumption m>c, every solution of  the problem
(K ) w ith the initial m easure 'I e g * ( r e s p .  cli e ,9*) rem ains in  .9 * (resp..9*) at
any  tim e t, and converges weakly  to the 1, 1 -solution as t—> + oo.
(iii) In the case (f), any solution of the problem (K) converges weakly, as t—>+ oo,
to .50  if  c<4Nsm (to 61 i f  c>4Nsm) unless the initial measure is .51 (resp. 60 ).

Rem ark. In the above theorem, we could state no results for the case (g).
But we can specify the limit (if exists) of U(t, dx) as t—>+ cc. F o r  each cli e g,
we can uniquely find a solution ti of the equation

s1+ 1+
(19)

o -  
esx0(dx)= IF i (M g, M ; S )  (=

o -  

esx  U (dx)) a n d  0 <ri <1.

Then, as t—)+ co, either U(t, dx) converges to Un (dx) or it has no lim it. (Indeed, in
this case, the function H(t) in (59) of §3 is constant and the possible limit measure
U(dx) is uniquely determined via (19)). Unfortunately, we can find neither a proof
of convergence nor counterexamples.

The assertions of Theorems 2 and 3 are summarized as follows except for the
case  (g ). There exist one or two stationary solutions. If there is one, then the
stationary solution is stab le. If there are two and one of them is an L'-solution,
then the D-solution is stable and the other one is a unit measure and unstable. 60

is stable if y' = 0 and c is sufficiently small, while 6, is stable if v =0 and c is sufficiently
large. T h e  r e l a t io n  1,0 (N, v, s, m, c)— (resp. L i (N , v', s, m , c)=0) is the
bifurcation equation of the stationary solution from 60 (resp. SO.

Our key lemma for the proof of Theorem 3 is concerned with the equation

J
+ r  x ( 1_ x) f " + {v'(1 — x)— vx — sx(1 — x)+ m()7 — x)If '(x)o_ L 4N

1+
(20) + {c(x — f(x)1U(dx)=  —.2. f  .f(x)0(dx)

1+
w here .3Z =  f 

o -  
xU(dx),

for all functions f  of class C2 on  [0 , 1 ]. As will be seen in Lemma 3.2 below, if
> c and m > c, then the equation (20) has at least one solution in .9. Further the

set of means of the solutions of (20) in g  is a non-empty closed set in [0, 1], possibly
a singleton, and we can specify a solution U(dx; ) , 0 ) of the equation (20) in  .9
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with the smallest (or the largest if necessary) mean.

Lemma 1.2. (Com parison of  m om ent sequences). L e t 2 >c , m > c  an d  0 ,,
02 E  , and assum e that

(21) Mn(01)-/Vin(02), n =0 , 1, 2,...

Then it holds that

(22) /14.„(U( • ; 2 , 0,)).< M n (U( • ; 2, 0 2 )), n = 0 ,  1, 2,...

The next theorem tells us how the parameters (N , v ', v , s, m , c) affect the
model of Kimura.

Theorem 4. (Dependence on param eters) Ex cept for the case (g), let {M n }nm= 0

be the moment sequence of  the stationary  L '-solution, and assum e that 0<c < 2rn.
Then we have

(23)

a a 
ON

<
O' av' 

M
"> ° ' O v

M

a a a
Es  

M

n
M

"

<  0  a n d m >ooc n

for every n>1.

The following theorem is one of the most interesting discoveries of M. Kimura
for this model:

Theorem 5. (N um erical result o f  K im ura [4 ], [ 5 ] )  A ssum e the cases (a),
(b) or (c) w ith 0<c<m , and f ix  N , s and m .  Denote by A t) the f irst moment of a
solution of the problem (K).
( i) Take a co such that 0 <c o <4N sm  and c o < m .  Then, for any positive number
e, there exists a positive number n such that

O< fim .t(t)<E f or a l l  0 < c < c 0  an d  v ' <1 1
t-H-co

(ii) Take a c , su c h  th at 4 N sm <c ,<m . Then, for any  positive num ber E, there
exists a positive number q such that

1—  e< liM  (t)<1 f o r a l l  c i < c  an d  v <q
t-p-rco

Following M. Kimura [4 ] and [5 ], we now explain the diffusion model (K) in
terms of population genetics. Consider a hypothetical population (species) consisting
of an infinite number of competing subgroups (dem es). Each of demes is assumed
to have an equal effective size N  independently of time (generation) t.

Let us look at a pair of alleles A and A ' at a particular gene locus, and denote
by x (0 <x <1) the frequency of A' in a d em e . We consider the frequency distribution
of x among the entire collection of demes making up the species. Let U(t, dx) be
the probability measure representing the distribution of x , that is, for a Borel set
E in [0, 1], the value U(t, E) is equal to the fraction of demes whose frequency of A'
at time t is in E.
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In each generation, mutation occurs from A to A' at the rate of y' and from A'
to A at the rate of v. A' is assumed to have selective disadvantage s (>0) relative
to A .  Migration is assumed to occur in the following way: each deme contributes
emigrants to the entire gene pool of the species at the rate m (>0) and receives
immigrants from that pool at the same r a te . '(t) represents the average frequency of
A' in the entire species.

Moreover, we also assume the effect of interdeme selection. Denote by c (>0 )
the coefficient of interdeme selection. Then cx represents the rate at which the
number of demes belonging to the gene frequency class x changes through interdeme
competition. T h u s ,  the allele A ' has disadvantage in  individual selection but
advantage in interdeme selection. So, we refer to A' as an "altruistic allele".

Theorem 4 above shows that the increase of everyone of the parameters N, y, s
and m is disadvantageous to A', while the increase of y' and c is advantageous to A'.

M. Kimura has introduced in [4] and [5] a simple indicator

(24) D =(c1m)— 4N s

to compare the effects of individual selection s and interdeme selection c. Assuming
that the mutation rates y' and y are very small and negligible, M. Kimura states that

(the mean of x in the stationary state) is very close to 1 if D >0 and to 0 if D <0
(see Theorem 5 above). And he concludes as follows: if D >0, then the interdeme
competition prevails over the individual selection and  the altruistic allele A'
predominates. If, on the contrary, D <0, then A ' becomes rare and cannot be
established in the species. In this memoir, we have justified his numerical result
by proving Theorems 3 and 5.

We close this section with the following

Proof of  Theorem 1. Let 0(dx) be any given probability measure on [0, 1].
We have to prove the existence and uniqueness of the solution U(t, dx) of problem
(K) which satisfies U(0+ , dx)=0(dx).

Take a function a(x) of class C' such that

Œ(x)=0 i f  I 1, a (x )  >  0  if Ix l<  1  an d a(x)dx = 1 .

For any positive number s, we put

1 f 1+
;(x) =  a(xls)le, K E = i f  o dx ;( x  — y)0(dy)}

1+
c/),(x)= ICE

 o -

ag(x— y)0(dy) fo r  x  n [0, 1]

a n d  40(dx)= C(x)dx

Then Oe(dx) is a  probability measure on [0, 1] with the density function C(x) and
converges weakly to 0(dx) as E  I 0. B y  the Theorem in §3 of [8], there exists one
and only one solution UM, dx) (with density function) of the problem (K) satisfying
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U (0+ ,  d x )=0 ,(d x ) . L et {Mn} c:=0, {M } 0 a n d  {M ( 0 } 0  b e  the moment
sequences of 0(dx), O c(dx ) and U (t , dx ) respectively. The weak convergence of

(dx) to 0(dx) implies

fim M (e) = M„
E 10 n

for e v e ry  n> 0 .

Hence by the Lemma in §5 of [8], for any n > 0 and 1> 0, M ( t )  tends to a limit as
e 4. 0, which we denote by M „(t) . Then the sequence {M„(t)} , is a solution of the
problem (M ) satisfying M „(0+)=M „ for a l l  n > O .  This sequence {M„(t)} 0

determines the solution U(t, dx) of the problem (K) with U(0 + , dx )=0(dx ).
Consequently, we have proved the existence of a solution.

The uniqueness also follows from the Lemma in §5 of [8].
Theorem 1 is proved.

§ 2. Proof of Theorem 2.

To prove Theorem 2, it suffices to prove Lemma 1.1 and apply it to the cases
(a), (b),..., (g).

In this and the next sections we use the letters P, Q, S , M  and C to denote

(1) P =4 N v ',  Q = 4 N v , S =4 N s , M =4 N m  a n d  C=4N c.

As in §B, we assume that

(B.1) P > 0 ,  Q > 0 ,  S > 0 ,  M > 0  a n d  O <C <Q +M .

Then by Lemma B.1, the continued fraction

(2) F ( y ) —  
a (y )a 2 ( Y ) a( y )  
1)1 (Y ) —  b 2 1 .0  —  —  b (y )  

converges (in power series sense) at every point y e [0, 1]. W e make use of the
results in §§A and B on continued fractions, especially on this function F(y).

The stationary problem (SK) is equivalent to the stationary moment problem
(SM). The latter is to find a completely monotone sequence {M„} 0  with M 0 =1
which satisfies

(3 ) + 1 = i)M.— an(14 1)M .-1 f o r  n=1 , 2, 3,...

Notice that the first moment M 1 = 5 uniquely determines the whole sequence {M „ } ,
through (3). Hence the uniqueness part in Lemma 1.1 (ii) is clear.

Proof of Lemma 1.1 (iii). The assertions in this part are direct consequences of
those in Lemma B.1 (ii) and (iii).

Lemma 11 (iii) being now established, for the proof of the Lemma, we have
only to deal with the solutions )7 of the equation

(4) y =F ( y )  a n d  0 < y <1
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(see (15) of §1).

Proof of  Lemma 1.1 (i). Let U(dx) be a  stationary solution (other than 60

and (51) and {M„} 0 be its moment sequence. Then the sequence {R„}, defined
b y  R n =  IM n ,M n -1 , n =1 , 2 , 3 ,..., is nondecreasing and satisfies 0 < R „ <1, n=1,
2, 3,.... P u t t in g  5c-  =M i ,  we have R=a„(501(b„(50—R n + i )  from the equation (3)
and so

R  =  a1 M a2(-t) cinM  
b 1 ( t )  —  b 2 (t) — •••—  b„07)— R n + , •

Hence, applying Lemma A.2 with a  = ak = a„M  for 1 k  < n , b = b „= b ,A  for
1 < k <n —1, b = b ( )— R + 1  and b„=b„(5Z), we obtain

a ( ) a 2 (. ) a „ ( t ) 1  <  R „ , 1 
b 1 (5 ) —  b 2 (x) — •••— b n (x)i bn (x)— R 1 k = 1  b k (e) —1 .

The right hand side of the above inequality tends to  0  as n—> + co and w e have
= F(k- ). The assertion (i) is proved.

For the proof of Lemma 1.1 (ii) and (iv), we introduce a  linear ordinary differ-
ential operator L y with parameter y:

(5) L y [f](x)----  d
d
x  B y [f ](x )+C(x —  y)f(x),

where

(6) By [ f ] ( x ) =  d
d
x  + S) {x(1 — x)f }  (x)

— (P + My) (1 — x)f (x)+(Q + M — M y)xf (x) .

If u(x) is the density function of a stationary solution U(dx) (that is, U(dx)=-u(x)dx),
then u(x) satisfies the following conditions (7), (8) and (9) and vice versa:

(7) u(x)_ . 0  i n  (0 , 1 )  a n d  E u(x )dx =1;

(8) L [u ]= O  i n  (0, 1), w h e r e  ) 7 =  
o  

xu(x)dx ;

(9) B ,[u](x )---*  0  as e i t h e r  x  0  o r  x  t 1.

We call such a function u(x) a stationary L 1-solution as in §1.
Let tL y  be the transposed operator of Ly :

(10) iL y [g] (x)= x(1 —  x)(g"—  Sg')(x)+(P+ My)(1—  x)g'(x)

— (Q+M— My)xg'(x)+C(x—  y)g(x).

For each y e (0, 1), we put

(11) w(x, y)=xP+my—i(1_x)2+m(l—y)-1e—sx f o r  x e (0, 1) .
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Then we have

(12) By [w(• , y)f](x)= x(1— x)w(x, y)f '(x)

for any function f  of class C1 o n  [0, 1]. So, By [w(• , y )f ](x ) for such function f
tends to 0 as either x  0  or x  1 ,  provided 0<  y < 1 . Furthermore, if f  is of class
C2 on [0, 1], then we have

(13) L y [w (  y )f ](x )=w (x , y )` 1, [f ](x )•
Therefore, to solve the equation L y [u ]=0, it suffices to solve the equation 1L [û ] =0
and put u(x)= w(x, y)ît(x).

Lemma 2.1 (Particular solution). For each y e (0, 1), define

û(x , y.)=1+ C x "   6  F k (y ) 
(14) X  E  [0 , 1 ],

n = 1  nS+C ak(y)

where Fk(y)'s are those in (3) of B . T h e n ,  û(x, y )  is of class C " with respect to x
on [0, 1] and satisfies

(15) tLy[D(• Y)](x)=C{F(Y) .- .Y} •

P ro o f . Since 0 < F (y )< l for a ll k by Lemma B.1 and since ak (y ) tends to
infinity as k—>+ oo uniformly in y, it holds that û(x, y) converges and is of class Cc°
with respect to x .  Term by term differentiation of 6' yields (15), where we use

(16) tLy[x"]=(nS + C) {a n(y)x"-
1  ±  x n +1  b ( y ) x } f o r  n > 0 ,

with conventions a o (y)= 0 and b 0 (y )= y (see also Lemma A.3).
Lemma 2.1 is proved.

Proof of Lemma 1.1 (ii). Assume first that O <C <Q +M  and let g be a solution
of (4). Then, the function

1 (17) u ,(x)=  K  w (x, g)U (x, g) w ith  K =  
o

w(x, )7)û(x, .5Z)dx

satisfies the conditions (7), (8) and (9). Therefore, u (x )  is a stationary L 1-solution.
Assume next C = 0 .  Since tLy [1] = 0 in  this case, we have L y [w(• , y)]=0.

The function w(x, y) in  x  is non-negative, belongs to D (0 , 1 ) and  satisfies the
boundary condition provided y e (0, 1) (see (1 2 )) . Therefore, a constant multiple
of w(x, g) is a  stationary D-solution if and only if g E  (0, 1) and

Cl
(18)

o
xw(x, ))dx=5c. 

C l

 w(x, 5Z)dx

On the other hand, we can show by power series expansion of es( 1 - x) that

es f  
o

w(x, y)dx= r ( P +  M Y ) R Q  M —  M y )
 i F i (Q+ M — My, P+Q +M ; S ),T (P + Q + M )
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F(P+ My +1)F(Q+ M— My)e s  
o

xw(x, y)dx- F(P+Q +M +1)

x I FI (Q + M— M y, P+Q +M +1 ;S ) .

So, by (15) of §B, we have

cl Cl
(19) xw(x, y)dx1 I  w (x , y )dx =F(y ).

Jo Jo

Consequently, (18) holds if and only if  5i is a solution of (4). The assertion (ii)
is proved.

Proof  o f L em m a 1.1 (iv). A s s u m e  first that 0 < C < Q+ M .  It suffices to
prove that

(20) °F (.)< 1 whenever 5Z solves (4).
ay

Differentiating both sides of (15) with respect to y, we have

tL y r
a l+ M a —  C

F
y
 ( y ) _ 1} .Lay ax

Substituting y = multiplying both sides by w(x, and integrating them over
0 < x <1, we obtain

(21) CK 11— 
°_,F—  w O  (CD — M  d x
vy o ax '

where û and w stand for û(x, 37) and w(x, .5i) respectively. Here we used the fact

aa au
o w O'L ,[  a y id x  —  0   a y   L,[wO]dx =O.

To show (20), it remains to prove that

(22) 0 < M- (2-
6  

<C6 f o r  x e (0, 1).ax

06Let 4x)= / û . Then it is positive and of class C  on [0 ,  1 ] .  Further it satisfiesax
the equation

(23)   _  (P+ M5ig —07 (Q +  M —  M ) —C(1—) 
•dxx 1—x

By the continuity of igldx  at x =0 and x =1, we have from (23) that

Cx- C< a n d  W) —  C —  C< .P+ M x  M Q + M - 1 1 R  M

Suppose that th e  m a x im u m  o f  o n  [0, 1] is not smaller than C/M  and that the
maximum is attained at some interior point xo  e (0, 1). Then it holds that 4 ) 0 >
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(dcIdx)(x 0 )= 0  and  (d2 /dx2 )(x 0 ) < O. B u t a  computation with th e  a id  of
the first two inequalities shows that

d2t   i x  1 _   (P+ 11/Rg— C. (Q+ M -11/R )— C(1— .) 
dx2 " x02 (1— x0)2 >O.

Therefore, (d2 /dx2 )(x 0 ) must be zero . T his is possible only if  P =Q= C —SM= 0,
that is, in the excluded case (g). Thus, we have proved (22 ). Now the desired (20)
follows from (21) and (22).

W e next turn to the case C = 0. S in ce  F(0) > 0 and F(1) < 1, it suffices to show
that F(y) is of class C2 and that F"(x)= (0 2 F 10y2 )(x) is positive for y e (0, 1).

By (6) and (7) of §B, F„=OF„lay is positive for any n>1 because d = M IS> 0
in our case C= O. Next, differentiating twice both sides of F„, i (y)=b(y)— a n (y)1
F„(y), we have

F
" (2F„F„,i+a„

Therefore, it follows that

,
2  F„' ( Ftlak),

n=1 n k=1

the right hand side being convergent and positive. Thus, we have the the desired
conclusion. The assertion (iv) is verified.

The proof of Lemma 1.1 is now complete.

We note that, in the case (g), our continued fraction F(y) is identically equal
to  y  by Lemma B.3. Therefore, û(x, y )=  

se
 b y  in te g ra tio n  of the equation (15)

a n d  (x) is identically equal to S. The solution  u (x ) defined by (17) for arbitrary
y  in  p lace  o f  is nothing but u (x ) in (10) of §1.

Proof  o f  Theorem 2. The assertion (iii) (for the case (g)) is already proved,
because we have given the precise form of the stationary solutions (see (10) of §1).
Applying Lemma 1.1 to each of the other cases, we will enumerate all the fix points
of the function F in the closed interval [0, 1].
Case ( f )  where P=Q = 0 and C  SM . By Lem m a B.3 (ii) and (iii), F  has only
two fixed points 0 and 1 giving the stationary solutions 60  and S i  respectively.
Case ( a )  where P> 0 and Q> 0. By Lemma B.1 (ii) and (iii), F(0)> 0 and F(1)< 1.
Therefore, by Lemma 1.1 (iv), there exists one and only one fixed point of F in the
open interval (0, 1), which gives a stationary L 1-solution.
Cases (b) an d  (d )  where P= 0 and Q> 0. In this case, we have F(0) = 0 and F(1) < 1.

OFLet us make use of the formula (10) o f §B for F'(0)= (0). At first, it shouldOy
be noticed that i F i (C/S, Q+M; —S) is positive because of 0 < C <Q+ M (the proof
is not difficult if we expand this function in power series in S). Comparing F'(0) with

Lo= Q+ M 1F1(
c

' '+ 1  Q + M + 1 ; (
c

 Q + M ;— S ),
S S  
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we see that F'(0)< 1 (= 1, >1) if and only if L, < 0 (resp. =0, >0).
If L0 >0 (Case of (d)), then  F '(0)>  1 . So, there exists one and only one fixed

point of F in the open interval (0, 1), while 0  is  a n o th e r  f ix e d  p o in t. Therefore,
we have exactly two stationary solutions, an L 1 -solution and 6,.

If L 0 <0 (subcase of (b )) , F '(0 )< 1 . Then, 5-c= 0 is the only fixed point of F
in the closed interval [0, 1]. In fact, if there exists a fixed point in (0, 1), we should
have F'()7)> 1 a t the m inim um  in (0, 1). This contradicts to the assertion F' (.k)
<1 in Lemma 1.1 (iv). Therefore, (5 0 is the only stationary solution in this subcase.

In order to deal with the remainder subcase L 0 = 0  of (b), we will prove that

a2
(24) N ay

F
< 0  a t  y = 0  a n d  Q > 0  i f  P = 0 .

Emphasizing the dependence of F  on Q, we denote F (y )=F (y , Q ). As is shown
in the proof of (10) in §B, we have

a F ( 0  n \ a ; ( 0 ) a2(0)a n ( 0 )  
ay

,
b1(0) —  b 2 (0) — •••— b(0) — •••

where a,(0)—(aa 1 /ay)(0). So (a2F aQay )(o, Q) is calculated quite analogously to
a FlaQ is and we obtain (24) (see (6) and (7) in §B where d Q < 0 for any n).

Now assume that L 0 — 0
 7 3 F

(0, Q )= 1). Suppose moreover that there existsay
a point y ,  (0,  1) at which F(y 1 , Q)> y1. Then there exists a  fixed point )7 of F
such that y, < < 1. S in c e '' (.)7, Q)< 1, there exists a yo  e (0, at which F(y 0 , Q)ay
> yo . By continuity of F  on Q, we find a  Q' which is larger than but close to  Q

such that F(y 0 , Q')> y o . Combining (24) with  F  (0, Q)=1, we have —af- 0, Q')<1ay ay
which means that L 0 < 0  if Q is replaced by Q '.  From what we have shown just
above, it then follows that F(y, Q ')<y for y e (0, 1] contradicting the inequality
F(y,, Q')> y 0 . Hence F(y, Q)< y for all y e (0, 1] and 57= 0  is the only fixed point
of F in the in terval [0 , 1]. This means that 6 0 is  the only stationary solution also
in the subcase L 0 =0.

We have finished the proof for the cases (b) and (d).
Cases (c) and (e) where P> 0 and Q = 0 . By (9) of §B and (9) of §1, we have

OF (25) (1)=1+L, .(3y

If L 1 0 0, the reasoning is the same as in the previous cases (b) and (d). If
L, <0 (subcase of (c)), then .t- = 1 is the only fixed point of F in the closed interval
[0, 1] and so (5, is the only stationary solution. If L, > 0  (Case (e)), then we have
exactly two fixed points of F, one in the open interval (0, 1) and the other equal to

1. So we have two stationary solutions, an L 1 -solution and Si .
We now treat the remaining subcase of (c) w here  L , = 0 . Let us write F(y)=

F(y, P) regarding P as a distinguished parameter. We will show that
a2F

(26) apa y o( 1  P  )< 0  i f  P0 > 0 ,  Q = 0  a n d  -°F- P ) = 1a y 9  o •
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Suppose first that C = 0 . Then by (9) of §B,

OF (1 , P )=   F  (1  P+  M +  1; S )= MS f lOy ,7=0 k.o P+ M+ k

which is obviously decreasing in P .  So (26) holds.
Suppose nex t tha t 0 < C < M . P u tting  a  = C /S  a n d  y = P + M ,  w e have by

definition that

1(a+ n)F(y)S" (Ma+ Mn — ay —an)., t2_0 T (a+ 1).F (y+ n+ l)n !

If a >M, then the last factor Ma + Mn — ay —an is negative for all n> 1 and L 1 <0.
Thus we may assume 0<Œ <M  in  our subcase L 1 =0. I n  t h e  sequel, we will make
use of the integral representation

1F 1(Œ, y; S)—   (  

) F
( ( ; ) —f  0  g(r)dr ,

F(a+1).F(y —a) f r g (r )d r , ,

-w h e re  g(r)= ra - 1 (1—r)Y es,- OE

The above formulas can be obtained by power series expansion of esr. Note that
the function h(P)=F(a+1)F(y— a)L,IMF(y) is written as

h ( P ) =  o g (r )(r—  p )d r  w ith  p = al M

If L 1 =0 at some point P = P o , then h(P 0 )= 0 and

Oh 
o p  (PO —

 o
g(r)(r—  p) log (1— r)dr — f 

o
g(r)(r—  p) log  .

1 — r  

dr.
1 —  P

The function (r— p) log 
 1 — r

 is negative fo r r e (0, 1) except at r= p. Therefore,
ah1 —  p

p 0P  ) is negative and (26) follows from (25) and the definition of h(P ).

N ow , due to  (26), w e have the only fixed point 1 o f  F  in  th e  closed
interval [0, 1] and 6 1 is  the only stationary solution, provided L, =0.

We finished the proof of Theorem 2 for the cases (c) and (e).

§ 3 .  Proof of Theorem 3.

In  this section we will prove Theorem 3 . Throughout this section except for
the Proof of Theorem 3 (iii) we assume that C <M .

For each y e [0, 1], we introduce a  differential operator g y , which is a  part
of the operator tL y in  §2;

(1 )  g y f (x)= x(1 — x)f "(x)+ {P(1 — x)— Qx — Sx(1 — x)+ M(y — x)} f '(x), x e (0, 1) .

This is a diffusion operator and the corresponding scale function s (x )  and the speed

1F 1(a+1, y+1; S)— + 1 )
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measure function my (x) are given by

sy (x )= f  xu r i e s u d u ,
1/2

m  ( x ) - -  x uP- 1 (1—u)q - 'e - sudu,
1/2

respectively, where

(3) p= p y = P + M y ,  q =a y = Q+ M(1 —y).

Note that these functions are chosen so that they represent 3 y a s  g y = d2 Idm y dsy .
The classification of the boundaries in Feller's sense is as follows (see [2], p. 130);
( i) the boundary 0 is  exit and non-entrance (regular, entrance and non-exit) if
py = 0 (resp. 0 < py <1, 1 < py),
(ii) the boundary 1 is  exit and non-entrance (regular, entrance and non-exit) if
qy = 0 (resp. 0 < qy <1, 1_<_q).

Further, the equations (2) and (5) in §1 are rewritten as

i+
4N  d   C ' +  

f (x )U(t, dx )= [.9,(,)f (x )+C(x-5c-(t))f (x )]U(t, dx),
ut0 - o -

(4) I+
t E (0, + G O ) ,  w h e re  A t)= xU(t, dx)

and

1-1+ i+
(5) [g ïf  (x)+ C(x —  f (x)] U(dx) = 0, where f  xU(dx)

o-J o -

respectively, for all functions f  of class C2 on [0, 1]. Notice that the equation (4)
corresponds to a diffusion process with reflecting boundary condition if the relevant
boundary is regular. The difference equation we will make use of for the study of
(4) is the following

of(x)+ C(x— +1))f (x )]U(k  +1, dx )

=  4
h  uN r

1 + f (x)U(k +1, dx)— f(x)U(k , dx)}  .
o- o-

i+
w ith  .)7(k + 1) = f o - x U(k  +1, dx ), k  = 0, 1, 2,...

where h is the tim e m esh. The equation (6) is reduced to (20) in §1, that is

f t+ 1+
0 -

 [.9,f(x)+ { C(x— .)—  A} f (x )]U(dx )= —A j .  f ( x )0 (d x )
J o -

(7 ) 1+
with xU(dx),

o-

(2)

for all functions f  of class C2 on [0, 1], where A=41‘11h as in (1) of §2. To solve the
equation (7) we consider, for each y, Z E [0, 1 ] , an auxiliary equation
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51+ 1+
(8)

o -  
[ g y f (x )+  {C (x - z )- A} f (x )]U (d x )=  - A SO -  f(x)0(dx),

for all functions f  of class C2 o n  [0 , 1 ]. We also need, for each y ,  z E  [0 , 1], the
o p e ra to r  y ,  on the space of all real sequences y= defined by

(9)
(g y ,,y)„=(nS+ C)y„.„,+ n(n -1+ P + M y)y„_,

-{n (n -l+ P + Q + M + S )+ C z }y „ , n = 0 ,1 , 2,... ,

where y_, =0 by convention. We note that a  measure U(dx) on [0, 1] solves the
equation (8), if and only if its moment sequence y„=M„(U), n=0, 1, 2,..., is com-
pletely monotone and solves the equation

(10) (gy,.Y)n- AYn= - AM ( '), n = 0 , 1, 2,-.

Lemma 3 .1 .  Let A > C, y , z E [0, 1] and 0 e .9. Then the equation (8) admits
a unique solution Uy ,z (dx)=U„,(dx; A , k) in It satisfies

(11) Uy,z([0, 1]; A, ' ) A/(A - C ) ,

and the sequence yn =y,(y, z; A , 0)=-M„(U y ,z ) is a unique bounded solution of (10).
Further, the function y„(y, z; A , 0 ) is continuous in y , z e [0, 1].

P ro o f . It is well known that there exists a positive increasing (decreasing)
solution g  (resp. g 2 ) of the equation

g y g (x )+ C (x -z )g (x )= A g (x ), x  E (0, 1).

The function g  (resp. g2 ) is unique up to a constant multiple either if the boundary
0 (resp. the boundary 1) is non-regular, or if we set a boundary condition limx  $ 0  g (x )
=0 (resp. limx  t i  gI(x)= 0) when the boundary is regular (see [2], §4.6 or [6] e.g.).
Further, it holds that g 1 (0)= 0 (g 2 (1)= 0) if and only if P= y=0 (resp. Q =1 -y =0 ) .
In  th e  above, th e  symbol g ± (x ) stands fo r the  right derivative o f  g (x ) with
respect to the scale function sy ; g ÷(x)=1im c $ 0  {g(x+s)-g(x)}1{s y (x + e )-s y (x ))=
g'(x)xP(1-x)qe - sx.

In our case, g 1 (X) (g 2 (x )) has a Taylor expansion a t x= 0  (resp. x =1) with the
radius of convergence 1. Indeed, setting

g,(x)--= E G„x" (resp. g2 (x )=  E 'On),
n=0 n=0

w e see that {G„} ,)  a n d  {0„ } 0  sa tisfy  recurrence equations. Thus w e can
determine them inductively if we start with

G1 =0 1 = 1 ,  Go = p y l(A + C z ), C o = g y l(A - C + Cz).

Actually we have a more precise formula for {G } 0 . Let

n(n-1+  P+ My) n(n -1+ P+Q+ M+ S)+Cz+ Aa„ -  b  - , n = 1 ,2, „ ,...,nS+C nS+C
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and { ,1 ) }„_ 0  and g 2 ) } ,  be those in Lemma A.3 (see also (35) and (36) of §A).
Then we have

C f   A  + Cz x (i) C  (2 )}
G " (n S ±  n a 2 ...a nA  ± CZ A +C z  " f o r  n>2.

This formula shows that G„> 0 for all n >1 if A > C.
Define as usual the Green function G(x, w), x, w E (0, 1) by

G(x, w)=G(w, x)= 13- 1 g „(x)g 2 ( w ) , x  <w , x, w e (0, 1) ,

where B = g(1/2)g 2 (1/2)—g,(1/2)g±2(1/2). We also set uy ,z (x)= A .1-.
0
1 + G(x, w)0(dw).

Notice that the function u (x )= u (x ) satisfies

J'0 ,9  f (x) + {C(x — z)— A} f (x)]u(x)dm y (x)

1-
= [ f (x)u(x)]4 —  [ f (x)u +(x)k-

i: — A
o

 f  (x )0(dx) ,
+

for all functions f  of class C2 on [0, 1].
Assume now that P + y> 0 and Q + 1 — y > O. T hen  w e have B= — (g ,g1)(0+)=

(g -tg 2 )(1—), and the measure U ( d x ) =u y ,z (x)dm y (x ) satisfies (8) and (11). Hence
yn =M (U y ,z ) is a bounded solution of (10).

Assume nex t tha t P= y = O. In th is case, it fo llow s that B =(gl-g 2 )(0+)=
(gtg 2 )(1— ). Hence we can see that the measure

U0 ,z (dx)=u 0 ,z (x)dm o (x )+A 0 (0)6 0 (dx)

1+
w ith  Ao (0 ) =  A g (0 ) f  g 2 (x)0(dx)IB(Cz+ A )

satisfies (11) and the sequence y„=M (U 0 ,z ) is a bounded solution of (10 ). Hence
Uo ,z (dx) solves (8).

Similarly, in the case of Q=1—  y=0, it holds that B= —(g ,g1)(0+)=
(1 Thus we see that the measure

U 1 ,z (dx) = u 1 ,z (x)dm 1(x) + A i(0)6 1(dx)
l+

w ith  A  JO) = — A g(1) j .
 0 - g 1 (x)0(dx)1B(Cz + A— C)

satisfies the desired conditions.
We will now prove that a solution of (8) is unique. For this, it suffices to show

that a  bounded solution of (10) is  u n iq u e . Assume that there are two bounded
solutions y(„1 ) and y(„2 ) . Then the difference yn =y;,' ) —y(„2 ) satisfies the equation

(12) (Wy,zY).— AY.=0 ,  n = 0 , 1 , 2 , —

Let {W ) }'"'  and 
M i 2 ) } ` : - 0

 be those in the above. Then we can express y,, as yn =
A ,;, 1 ) +A 2 ;,2 ) for some constants A , and A y .  Since y„ is bounded, A , must be zero
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by Lemma A .3 . Hence the equation (12) for n=0 is reduced to

A2{W 1 2 ) -
 (

2 ) ) - ( A  C * P 2 ) } .

Since the factor in-the parentheses is negative, we have A2 =0 and y n  —y 2 ) =0.
To show the continuity of yn(y, z; A , 0 ) in  y , Z E [0, 1], take yo , z 0 e [0, 1]

and {(yk , zk) }  such that limk +  (Yk, zi3 - - (110, zo). Since the system {U„,z,Sdx)}
is tight in (relatively compact in di with the weak topology), we can choose its
sub-sequence which tends to a  U(dx)E Then y,,=M „(U ) is a bounded solution
of (10) with y = y0 and z=z 0 . Hence due to the uniqueness, we have yn=Yn(Yia, zip;
A , 0 ), which implies U(dx)=U y o o (dx; A , 0 ) .  Since {(Yk, zk) }  is arbitrary, the
continuity follows. The Lemma is proved.

Lemma 3 .2 . L et A > C and  0 E Then the equation (7 ) has at least one
solution in The set of means of the solutions of (7) is a  non-empty closed set in
[0, 1], possibly  a s in g le to n . Further it is included in (0, 1] (resp. [0, 1)) unless
P=0 and 0 = 60 (Q=0 and 0 = 1).

P ro o f . Notice first that the equation (10) for n=0 is rewritten as

(13) C{Yi(Y, z ; A , 0)—zy 0 (y, z; A , 0)} — AYo(Y, z; A , 0) = — A , y , z e [0, 1].
Let E0 be the set of solutions of the equation

(14) Yo(Y, y; A , 0 )= 1 ,  0<y<1

and E1 be that of solutions of

(15) y,(y, y; A , 0 )=  y , 0<y<1.

We also denote E=E 0 n Ei . By the continuity of yr,(Y, z; A , 0 ) in  y , z e [0, 1],
the set E is closed.

Suppose now that C >O. It then follows from (13) and

y,(0, 0; A , 0 )=  f o xum (x; A , 0)dmy(x)> 0

Yo(1 , 1; A , 0)—y(1, 1; A ,  ) = J '  (1 — x)u i ,i (x ; A , 0)dmy(x).>_ 0 )

that y0 (0, 0; A , 0 )> 1  (resp. yo (1, 1; A , 0 )<  1). Hence we can see that the set E,
is not empty. Since E0 cE , in this case, this assures that E is non-empty. Also
in the case of C=0, the set E is non-empty, because of the relations E = E1 c E0 =
[0, 1], y,(0, 0; A , 0 )>0  and y,(1, 1; A , I) 1 for this case.

Now, if P>0 or 006 0 , then g 1(0)>0 o r 0((0, 1])>0 respectively. Hence it
follows that uo ,o (x; A , 0)> 0 and MO, 0; A , 0)> 0. Thus we see that the set E is
included in (0, 1] in both of the cases C=0 and C > 0 . By the same way, if Q> 0
or 006 ,, then yo (1, 1; A , 00—y1(1, 1; A , 0)> 0. Hence, the set E is included in
[0, 1) for C>0.

Finally, for each .t e E, the measure
U(dx)= A , 0)
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is a solution of the equation (7) in 9, and conversely, the m e a n  of each solution of
the equation (7) in ,9 belongs to the set E .  Hence the assertion (3) fo llow s. The
Lemma is proved.

In the sequel we denote a solution of the equation (7) with the smallest mean
by U(dx; A , 0 ) and its mean by .)7(A, 0 ) .  Notice that )7(A, 0 ) coincides with the
smallest solution of (15).

Proof of Lem m a 1.2. Assume that (21) in §1 holds. We will first show that

(16) A A , 0 ,)< A A , 0 2 ) .

For each y, z e [0, 1], let yi ) =y„(y, z; A , 0 i ), n= 0, 1, i =1, 2. Then it follows
from the equation (10) that

(g y ,z 0,(2)_ y (i)» n _ Ao(n2).__y  ) )  =  A (M (Z 2 ) M O M , n=0, 1, 2,...

The right hand sides of the above formulas are non-positive for all n=0, 1, 2,....
Further lim n _ +  (1, 2 ) - y ' ) )=  0 if qy > 0, and =A 1 (0 2 ) -  A,(0 ,)>  0  if q = 0 since
g , has a Taylor expansion a t 0 with positive coefficients. Hence, by Lemma A.4,
we obtain (yo) - yo)) n > 0, n=0, 1, 2,..., that is,

(17) MY, z ; A , 01) z; A , 0 2 ), n = 0 ,  1, 2,... , y, z e [0, 1].

E specia lly , it ho lds that yo(Y, Y; A , 0 1) Y; A , 0 2 )  a n d  Yi(Y, y: A,
yi (y, y; A , 0 2 ) for all y e [0, 1], which proves (16).

For the proof of (22) in  §1, let i- ( 1 ) =.t(A, 0 i ), i =  1, 2 and yi ) =(.t(i), 5c- (i);
A , 0,), n=0, 1, i = 1, 2. Then, by m eans of (10), the sequences
i =1, 2 satisfy the equation

(18) (ggc(),:k(i)y(o)n - Ay;,i ) =  - AM „(0 i ), n = 1 ,  2 .....

i =1, 2 .

Subtracting both sides of (18) for i = 1 from the corresponding ones for i = 2, we
obtain

(W1(2),.e2) (y ( 2 ) -  y( 1 ) ) ) . -  A0 ( 2 )  -  Y( 1 ) ),,

(19) =  ( z 2 ) _ )7(1)) { n my _  C y cno} _  A { n = 1 ,  2,...

Y(2)-Yo(1) _oo -  •

Since the sequence {y;,1 ) } n"Lo is non-increasing in  n, the inequality (16) and our
assumption M> C imply that the right hand side of (19) is non-positive for n=1,
2,... . Further, lim n ,  n o (yV) - y 1 ) ) > O . H en ce , due to Lem m a A.4 again, we
arrive a t the inequalities (y ( 2 )  -y ( 1 ))„>0, n=0, 1, 2,..., whence the desired (22) in
§1 fo llow s. The Lemma is proved.

Proof  o f  Theorem 3 (i). S tep 1. L et A =41\11h> C .  F or each  0 E . , we
inductively define a sequence of measures {U(k, dx; A , 0)},T,,, by



326 Yukio Ogura and Norio Shirnakura

U(0, dx; A, 0)=0(dx),
(20)

U(k+1, dx; A, (P)=U(dx; A, U(k, • ; A, (P)), k  =0, 1, 2,...

Then it is clear that the sequence { U(k, dx; A, (P)}r_ 0 satisfies the system of equations
(6). We define next a  system of measures {U A (t, dx; 0 ) ) , 0  by

U A (t, dx; 0)= A{(k+l)h-OU(k, dx; A, (P)+ A{t-  kh}U(k + 1, dx; A, (P),
(21)

f o r  t e[kh, (k +1)h), k=0, 1, 2 ,....

Then, by the exactly same way as in Shimakura [8; §6], we can see that

(22) lim U A (t, dx; (P) =U(t, dx; (P), weakly for each t> 0,
A-4-Vco

where U(t, dx; (P)  is  the solution of (4 ) w ith the initial measure 0(dx). Note
that the proof of (22) is based on the fact that the system of moments

{M„(U A ( t ,  ; (P)); 0 < t < TI A „

forms a n  Ascoli-Arzelà sequence for a ll n=0, 1 , 2 ,... a n d  T> O.
Step 2. Fix a  0 E  g .  By Lemma 1.2, we can easily show by induction that

M„(U(k, • ; A, 60 ))< M„(U(k, • ; A, (P)) .. M„(U(k, • ; A, 6,)),

M n(U(k+1, • ; A, 60 )) M  n(U(k, • ; A, 60 )),

M„(U(k + 1, • ; A, 6 M n(U(k, • ; A, 61 )), k , n = 0 , 1, 2,...,

fo r a ll A >  C . Hence, due  t o  (21 ) a n d  (22), th e  sequence {M„(U(t, • ; (5 0 ))}to

({M„(U(t,• ; 6,))) )  is non-decreasing (resp. non-increasing) in  t f o r  each  n =
0, 1, 2,... and it holds that

(23) M n (U(t, • ; 60 )) M n (U(t, • ; (P)) _ M„(U(t, • ; 6 1 )), n = 0 ,  1, t

Therefore there exist the limits

M („°) = lim  M„(U(t, • ; 60 )), Af1 1 ) = lim M n(U(t, • ; 6 1 )), n = 0 ,  1, 2,...
1.+.0

and

lim   d   M  (U (t  • ; 60 ) ) =  l im  d   M (U(t • • 6 1 )) = 0 ,  n =0, 1, 2,...
dt n dt '

This with the equation (4) implies that both of {A4„0 ) ) 0  and {MV ) };,°...., satisfy (SM.!)
and (SM.2) in § 1 .  But due to Theorem 2, the solution of (SM.!) and (SM.2) in §1
is u n iq u e . Hence we have

Mn= A t ( ) )  = n=0, 1, 2,...

This with (23) shows that

(24) Mn= lim M„(U(t, • ; n=0, 1, 2,...
t-H-03
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Thus, by the continuity theorem of moments, we obtain

(25) U(dx)—  lim  U(t, dx; 0), w eak ly ,
i-0+00

where U(dx) is the unique stationary solution of the problem (SK).
Theorem 3 (i) is proved.

We next turn to the proof of Theorem 3 (ii). Until the end of the proof of
Lemma 3.4, we assume C > 0 . Let y e (0, 1). Then, due to  the classification of
boundaries at the beginning of this section, both of the boundaries 0 and 1 of the
the diffusion process corresponding to the differential operator g y  a re  regular or
`entrace and non-ex it'. Hence the Green operators corresponding to the diffusion
operator g y +C x I  (with the boundary condition u+(0 + )= 0 (o r u+(1 —)= 0) if
the boundary is regular) are compact operators on the Hilbert space L2 ([0, 1], d m )
and the generator g y +C x /  admits the maximal eigenvalue CŒ(y) and the corre-
sponding positive eigenfunction q(x) in L2 ([0, 1], dm ). S in c e  0 < my (1)— my (0)<
+ co, the eigenfunction p(x) also belongs to L 1([0, 1], dm ). T h u s  w e  can
normalize it so that

(26) fio goy (x)dm y (x )=1,

which makes the measure (py(x)dmy(x) a probability measure.
We will later show that, in the case of (d) ((e)), l  e .9, (resp. 0 e ..9*) implies

the relations M „(0)>M „(0 y )  (resp. M „(0)<M „(0)), n =0 , 1 , 2 ,... fo r some ye
(0 , (resp . (5Z , 1)) (see Lemma 3.5). Further, we will show that the moment
sequences M„(U(t, • ; 0 y ) ) ,  n=1 , 2 ,... are non-decreasing (non-increasing) in  t  for
y E (0, (resp. ( . 7 ,

 1)) in the case (d) (resp. (e)).
Now by virtue of the symmetry of g y  on the space of L2 ([0, 1], d m )  (see the

argument in the proof of Lemma 3.1 for details), it holds that
s i+

(27) [3), f (x) + C{x — oc(y)} f (x)]0y (dx)= 0

for allall functions f  of class C2 o n  [0, 1]. Hence the sequence =Yn(Y)= M O O ,
n =0 , 1, 2,... satisfies the equation

(28) (gy,„(y)y)„=0, n =0 , 1, 2,...

Note that the equation (28) for n =0  is reduced to

(29) a(y) = y i (y )= x 9(x )dm (x ) e (0, 1) ,

and the equation (28) is equivalent to

(30) T n + 1 =  bn(Œ(Y))Y. an(Y )Y , n =0 , 1, 2,...

where a„'s and b„'s are given in (1) of § B .  Motivated by this fact, we consider the
difference equation
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(31) Yn+ = bn(z)Y„ -  an1.0Y n =0 , 1, 2,...

and the continued fractions

(32) //n(y , z )  _  an(Y) a„+1(Y) an-Fk(Y) 
b ( z )  -  b 1 (z) ••• - bn+k (z ) -•••

for all n =1, 2 , 3 ,..., and y, z  e (0, 1).
For each y E (0, 1), we can find an integer no ( > 1) such that

(33) b (z )>b (0 )>a(y )+ 1 for all z E (0, 1 )  a n d  n> no .

Hence, by virtue of Lemma A.1, the continued fraction H (y , z ) converges in power
series sense for all z E (0, 1) and n> no . We define inductively a sequence {z (, : ) (y)1,7_,
by

z (,,f )(y)= 0, n> n0 ,

(34) z,k( ")(Y) -- Inf {Z E (4n + 1 ) (Y) ,  1 ) :  bn(z)>I1 n +1(Y , z)} , n= no -1 , n o -  2,..., 1 .

Since b ( z )  is increasing in z , we can show by induction that Hn (y , z ) converges in
power series sense for z e  ( 4 ( y ) ,  1) and decreasing in z  there, which justifies the
above definition. Clearly, 1>  4 1 ) (y) > 42 ) (y)> • • • > z;»(y) > • • • >0.

L em m a 3.3. (1) The f unction 4 ' )(y ) is non-decreasing i n  y .  Further, for
each y e (0, 1) and n=1, 2 ,.. . ,  the continued fraction H„(w, z) converges in power
series sense for (w, z)e (0, y] x (4 ' )( y ) , 1 1  It is increasing in w  and decreasing in
z on the rectangle.
(2) I f  th e  equation (31 ) has a non-increasing positive solution y={y„}„x„. 0  f o r
some y, z e (0, 1), then z > 41)(y) and v lv,n, ,n-i= Hn(Y , z), n =1 , 2,• • •
(3) It holds that

(35) z ')(y )< ot(y ) y ,  y  E (0, 1) ,

(36) Hn(Y , (40= 1140 0 0 4 n-1(0
y ), n = 1 , 2 ,•••, Y e (0, 1),

where a A  b stands for min {a, b }.

P ro o f . ( 1 )  Noting that an (y) and b (z )  are increasing in y and z respectively,
one can easily prove the assertions by induction from the arguments just above the
Lemma.
(2) Let y= {y} be a non-increasing positive solution of (31), and set hn =y„Iy_
n = 1, 2 ,... (see Lemma A .3 ) .  Then by the exactly same way as in the proof of
Lemma 1.1 in §2, it follows from (33) that h„=H n (y , z ) for all n> n o . Further, by
the relations hn =a n (y)1(bn (z )-h„ + 1 ) and 0 < h „<1 <+ co, we can show that bn (z )>
1.1„4 . 1 for n=1, 2 , . . . ,  N - 1 .  This proves the assertion.
(3) It follows from the proof of Lemma B.1 that b ( y ) >F 1 (y ) for n=1, 2 ,...,
and y e (0, 1). Since Fn (y )=H n (y , y ), n=1, 2 ,..., we then have by induction that

bn (z )> 11„+ ,(y, z) for all z  y  a n d  n= no -1 , n o -  2,..., 1 .
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Hence 4 1 ) ( y ) < y .  On the other hand, due to  (30), the assertion (2) applied to
the sequence y„ =M„(0 y )  assures 4 1) (y )<a(y ) . Hence the inequality (35) follows.
The relation (36) is now clear from the assertion (2) and the equation (30) again.

The Lemma is proved.

Corollary 3 . 1 .  For each y e (0, 1), the eigenva lue a(y) is the unique solution z
of the equation

(37) H ,( y ,  z ) =z ,  4 1 ) (y )<z  <1.

P ro o f . It is clear from (29) and (36) for n =1  that the eigenvalue a(y) solves
the equation ( 3 7 ) .  On the other hand, a solution of (37) is unique, since H ay , z)
is decreasing in z e (4 1 ) (y), 1).

Lemma 3 .4 .  ( 1 )  The eigenvalue a(y) is increasing in y e (0, 1).
( 2 )  A n  e  (0, 1) is a solution of  the equation (15) in §1 if  and only  if  it solves the
equation

(38) oc(y) = y, y E (0, 1).

Further, for each such so lu tio n  e (0, 1), it holds that F(5Z)<1 if and only if a N -<1 .
Hence, for each y E (0 ,  1), F(y )<y  (= y , >y )  if  and only  if  a(y )<y  (resp. =y , >y ) .
( 3 )  If  P=0 (Q =0), then

(39) lirn 1(y) = 0 (resp. lim a(y) = 1) .
$o yIl

Further, it holds that

(40) lim Oy (dx )=6 0 (dx ) (resp. lim Oy(dx)=61(dx))•
y10 yt1

Pro o f . ( 1 )  Suppose that 0< y, <y 2  <1 and a(y 1 )> a(y 2 ). Then, from Lemma
3.3 (1) and Corollary 3.1, we have

000=  MY I, cc(Y 1)) <11 (y2, 00 1)) - 1 1 (Y  a(1 12))= Œ(Y2)

which contradicts a(y ,)> a(y 2 ). Hence the assertion (1) follows.
( 2 )  The first assertion is easily seen from Corollary 3.1 and the relation F(y)=11 1 (y,
y). For the second assertion, differentiate the relation a(y )=H i (y , a(y)) and put
y=.)7 to obtain

(41) a' M {1 —  .t)}  =

On the other hand, from the relation F(y)=11 1 (y , y ), we obtain

F' M — H O ,  . ) + 11107,

Hence it follows that

(42) (a W  —  1) —  
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which with the relation OH1 (k, 5 )10z < 0 derives the conclusion.
The last assertion is a direct consequence of the first and the second ones.

( 3 )  First we assume P = 0 .  Due to  the assumption M > C, we can find an e >0
such that

(43) a2(E)< b 2 (0)—

and the inequalities in (33) holds for all y E (0, E ), Z  E (0, 1) and n=3 , 4,... . Hence,
by virtue of Lemma A.1, the continued fractions H 2 (y, z) and H 3 (y , z ) converge in
power series sense for all (y, z) e (0, E) x (0, 1). Further, it ho lds that H 3 (y, z )< 1,
(y, z) e (0, 8) x (0, 1) and so

(44) 0 < H2(.Y, z)= a2(E) <  1 ,  ( y , g ) X  ( 0 , .b2 (0)— 1

But b i (z ).._ b t (0 )>  1 . Hence we have the convergence of H i (y , z ) for (y, z)e (0, E)
x (0, 1) and

(45) O <H t (y, z ) < (b2(0) — 1) MY <  +  co ,  (y, z) e (0, x  ( 0 , 1 ) .(S+ C)(6 2 (0)— 1 — azte»

This w ith  the relation cx(y)=H i (y , a(y)) implies lim y  t o  a(y)=0, proving (39).
Combining (39) with (30), we inductively obtain that

lim M„(49y) =  0 ,  n=1 , 2,...
y to -

Hence the formula (40) follows.
We next turn to the case of Q = 0 .  Notice first that 4 1 ) (y)< 1 and

1 _>_a(y)=H i (y, oc(y))> H i (y, 1), y  e  (0 , 1).

On the other hand, we have H i (y , 1) 1. F(1) as y  fi, an d  F(1)=1 by Lemma B.1
(iii). H e n c e  the relation limy t  a (y )= 1  fo llow s. This with (30) implies

lim Mn(0 ,)=  1 , n= 1 , 2 ,...
y 1

inductively, proving the relation (40) for this case.
The Lemma is proved.

In the case of C = 0 , the maximal eigenvalue of the generator g y  is equal
to  0 and the corresponding eigenfunction goy (x) is just a positive constant. Hence
we can not fix the function a(y) uniquely. In the following, we set

(46) a(y )=F(y ), y E  [0 , 1 ] whenever C=0 .

Notice that the formulas from (27) to (30) are also valid in the case of C = 0  with
the convention (46).

Lemma 3.5. It holds that

(47) lim su p  su p  M „(0 )0 + 4 1 ( - Y) < 00 ,
y(0,1)
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(48) lirn inf inf M„(0 y )n (2-t m( ' - Y) >0.
ye(1/2,1)

Proof. By the same way as in the Proof (ii) and (iv) of Lemma 2.1, we can
write down the eigenfunction p(x) explicitly:

(49) cp y (x )= gy(x )/ f gy (x)dmy ( x ) ,  x c [0, 1] ,

where

(50) g ( x )  1+ CxiH k ( y ,  a ( y ) )  
i=1 jS+C ak(y)

Since g ( x )  is increasing in x, we have

(51) 1 __g y (x )<  1 +  œ i

(

( _) , .,C, Hk(Y ,
 c X ( Y ) )  

a y) k=2 ak(Y)

where Fli= 2 Hk lak = 1 by convention. Further it holds that

Hk1Y, 04 0   <s u p  E  
y E ( o,j ) ; =1 js+ C  k=2 ak(Y)

Hence we can find a positive constant K such that

(52) 1 <g y (x) <1 + Kot(y)I(P + M y), x e [0, 1], y 1) .

This with (2) implies that

IVI„(0y ) < ( 1 +   K O E ( Y) I  xndm
Y (

x)I d m y (x)P+ M y  0 0

<0+  Ka(Y) T (P + n +  M y )F (P + Q + M )  
P+ My 1e T (P + Q +  M + n )F (P +  My)

N ow  by  the w ell know n formula lim,„ „  n- ar(n + a)IF(n)= 1 for the gamma
function (see [1], 1.18.(5) e.g.), we obtain (47).

Similarly, we have the inequality

W O O >  (1 +   Ka(y)
e
_s   F(P+ n+ My)F(P+Q+ M) 

P+ My F(P+Q + M +n)F (P+ My)

which implies (48).
The Lemma is proved.

Proof of Theorem 3 (ii). Since the following proof for the case (d) is also valid
for the case (e) with minor changes, we will only prove the assertion in the case of (d).
Thus we assume in the sequel that

P = 0 , Q > 0 , M > C  a n d  L 0 >0.

By Theorem 2, we have a unique L'-solution U(dx) with the mean .k" e (0, 1). Further
it holds that a(y)>y for all y e (0, by Lemma 3.4. In the following proof, we
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denote a solution of the equation (7) with the largest mean by U(dx; A, 0 )  and
its mean by .k(A, 0), same symbols as those for the smallest one which are defined
just after Lemma 3.2. Notice that all the parallel arguments there are also valid
for these values.
Step 1. In this step, we will show the inequalities

(53) M ( U( • ; A, (Py )) M  „ (0 ,) ,  n = 0 , 1, 2,..., y E (0, ,

for each A> C.
Let y E (0, and y , 1 (y)= M O ), n= 0 , 1, 2,... Then it follows from (28) that

(54) (T,,,,,(y)yo))„ — — AM„(0y ), n = 0 ,  1, 2,...

O n the  other hand, the sequence y 2 ) = Yn(ce(Y), cc(Y) 0 3,) (see Lemma 3.1 for the
definition of yn (y , z ; A, 0 )) satisfies

(55) (WŒ(y),„(y)y(2))„— Ay 2) = — A M„(0y ), n= 0, 1, 2,...

Subtracting both sides of (54) from those of (55), we then arrive at

(g.( y ),.(y )(Y ( 2 ) — T" ) ))n — A(Y ( 2 )  Y ( 1 ) )n =  n M 0 0 )—  Y M i l- ) 1 5 n= 0 , 1, 2 ,...,

with the relations y„1)=0, 1=1, 2. H e n c e , due to  the maximum principle
Lemma A.4, we obtain

yn(a(y), a(y); A, 0y)> WOO, n= 0, 1, 2 .....

especially

Y i(a(Y), c'e(Y); A, Oy ) M i(0
y ) = 4.0> Y

Therefore, the largest solution AA, 0 ) of the equation (15) is greater than a(y) by
the arguments there . N ow  using  the maximum principle again, we can easily
obtain our conclusion (53).
Step 2. In  this step, we will show the formula (25) where U(dx) is  the unique
stationary L'-solution  of the problem (SK).

By Lemma 3.2, we have SO= M ,(U(• ; A, (5,))< 1 , whence the measure
U(dx; A, (51 )  is different from 61 (d x ).  This with the inequalities (53) admits us to
trace the arguments in Proof of Theorem 3 (i) to obtain

(56) M n (U )=  lim  M„(U(t, • ; f ) )=  lim  M„(U(t, • ; 0 0)5
t-5-1-

n= 0 , 1, y e (0,

Now take a i i e e .  T h e n , comparing (17) in §1 with (47), we can find a n  e(O,
and an integer no (> 1) such that

(57) M ( 0 ) ,  y e (0, e), n  =  n o +1, no + 2,...

Further, since oP So , the formula (40) enables us to find a y e (0, e) such that

(58) m in M„(0)_>_ max M ( 0 ) .
15n5no
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Now the inequalities (57) and (58) with the arguments in Proof of Theorem 3 (i)
imply

M.(U(t, • ; 0 0) M n(U(t, • ; 0 )) Aln( U(t, • ; c5)),

n =0 , 1, 2,..., t > 0 .

This and (56) prove the desired (25).
Theorem 3 (ii) is proved.

Proof of Theorem 3 (iii).

1+
(59) H(t)= I esx U (t, dx )= t

Jo-
vo Sn

n!
M„(t).

Applying (2) of§1 to the function f (x )=esx , we then have

dC  —  SM1 +
(60) 11(t)— 4 N K ( t ) ,  w h e re  K ( t ) =  

0 -

( x  — i- (t))esxU(t, dx).dt

Notice that the relations esx — 1 <(e s-1 )x  for 0<x <1 and M „(t)>.t( On fo r  n=0,
1, 2,... imply

(61) H(t)— 1 <(es— 1) (t),

(62) .)7(t)< (1/S) log H(t).

In order to estimate the variance M 2 (t)— A t) 2 by m eans of the function K (t), we
rewrite K(t) as

f 1 + 1 +f
K (t)= (x— y)(esx —esY )U(t, dx)U(t, dy).

z 0 -  0 -

Since S(x— y)2 <(x— y)(esx — esY )<Ses(x— y) 2 for 0< x, y <1 , we have

(63) e-5K(t)_S{M2(t)—  A t) 2 } < K(t).

By the relation (60), we see that K (t) is integrable over the interval (0, + co),
because C S M  by our assumption and H(t) is bounded. Therefore, by (63), the
variance M 2 (t)— (t)2  is integrable. Furthermore, by the equation (4) of §1 (with
n=1), we obtain

d ( t )4N — (S + — At)2)— SAO (1 —  A t)),dt

which yields

(64) 5 +:  ( t)(1— (t))dt< + cc.

Suppose now that C> S M .  Then H(t) is non-decreasing by (60) and H(0)> 1
unless the initial measure is equal to 60 . Hence, by (61), the greatest lower bound
of the mean .5Z(t) is positive and, by (64), one hasS

o  
(1 —.57(0)dt < + cc. S in c e  the
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derivative dg(t)Idt is bounded, this implies that (t) tends to  1  as t—,  + c o .  Thus,
due to the inequality M (t) > A t)" again, we see that W O  a lso  tends to 1 for every
n> 1. This means that the solution U(t, dx) converges to 6 1 as t—, + cc.

Suppose, on the contrary, that C < S M . In this case, H(t) is non-increasing.
Further H (0)<es unless the initial measure is equal to (5 1 . S o  the least upper

+00
bound of the mean )7(t) is less than 1 by (62). Therefore w e havef 

o 
.t- (t)dt < +co,

which implies that (t) tends to 0 as t—>+ co. Hence, using the inequality MAO<
(t), we see that M,1(t) tends to 0 as t—>+ oo for every n > 1. This ensures that the

solution U(t, dx) converges weakly to as t—,+ cc.
The assertion (iii) of Theorem 3 is proved.

§ 4. Proof of Theorems 4 and 5.

Proof of Theorem 4. Let U(dx) and {M } 0 b e  the stationary L 1-solution
and its moment sequence. By Lemma 1.1, we have 0 < M I  =.k= < 1 and (aFI
Dy)(t)< 1. Moreover, the density function of U(dx) is positive in (0, 1) as is shown
in § 2 .  Therefore, by Schwarz' inequality M< M— rg - - n –  1 M n i  - 1  and the relation M n =
irk' =1 F we see that

(1) 0< .k< F„(5?)<F„.0)< 1 fo r  a ll  n> 1 .

This implies that

d„,Q<O, d <0,
(2) for all n> 1

d„,m  < 0  (except d i m  = 0 ) ,  d > O,

at y =5e, where d„,„'s are those defined by (7) in §B . Moreover, rewriting

an (y )= n ( ' + v' + my)/(n s + c),4N

bn(Y )=+(
n — 1
4 N  +v '+v +s +m )+c y ll(n s +c ) ,

and defining d„,N =acidaN—F n abpdaN, we have

(3) d "  =  0  a n d  d„,N  < 0 f o r  n> 2 .

Now, (1), (2) and (3) above with (6) in §B imply

a a a 
aN 

F

n

 < 0
' 0 1 ) '  

F

n

>  0

, O v
 F

<  0

,
(4) for a ll n > 1

a a a F

n

 <  0
' a M  

F
"

<  0
' O c

 F >  O
,

a t  y =  (note that P=4N v ', Q= 4N v , S =4N s, etc.).
Let us first show that the inequalities (23) in §1 holds for n = 1 .  Let u denote

one of the parameters N , v ', v , s, m and c. Then, by the relation .R= F W  we have
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_  OF 1( 1 a F  
aua u  l \ a y )

So the sign of 3x/au coincides with that of aF/au. Therefore, by means of (4) for
n=1, we see that the inequalities (23) in the Theorem hold for n = 1 . In order to
verify (23) for n>2, we put

a aa t  a 
6u au {F„(.0 } — (a u  Fn+  a u  e y  n )

We will show that

6 F

"

< 0

'  S y '  

F

"

> 0

'  b y
F„<0,

 

( 5 )

 

for a ll n > 2.

(5m
F  

"  

< 0
' ( 5 c

Analogously to (6) of §B, we can prove that

F n > 0,

 

k • •F u — F " ie n  u + en+k F n - 1 - 1 - 1 F n + J  

Yu an en ,u+
j=1 an+;

w h e re  e,,,u =d,,,,+  a: 4 d„, y .

Since d„,,,>0 for all n (because of C <2M) and since the sign of du,. coincides with
that of a:/au for n> 2, the sign of e,,,u is  the same as that of a /au . T h e re fo re  (5)
hold for n > 2 . Finally, by the relation

M n

 a  mau
n1 (5 E F k ,

k=1 k  O U

we have the inequalities (23) in the Theorem also for n> 2.
Theorem 4 is proved.

Proof o f Theorem 5. Let us begin with the assertion (i). Choose c o and c as
in the Theorem and let U(dx) be the stationary solution U(dx) with the first moment

Assuming the case (a), we will show that 5Z<y/2 whenever v' > 0 is sufficiently
small (notice that .5-c =0 in the case (b)).

Denote F(y) by F(y; y', y, c) and .5Z by Av', v, c) to distinguish the parameters
v', y and c  from  the others. By Theorem  4, w e have (v', v, c)< .(v', v, c o) <
)-Z(v', 0, co). M oreover, by continuity of F in y', F(y; y', 0, co ) tends (uniformly in
y) to  F(y; 0, 0, co ) as y' .1 0 and F(y; 0, 0, co )< y  for y e (0, 1) due to Lemma B.3.
So, there exists a positive number n such that Av', 0, c0)<8/2 if v' <n, that is Av',
y, c)<e12 if v ' <n . On the other hand, by Theorem 3, U(t, dx) converges weakly
to U(dx) as t-+ + co. S o  the assertion (i) of the Theorem follows.

For the proof of the assertion (ii), we can proceed quite similarly as above.
Noticing that :X=1 in the case (c), we assume the case (a). If c, and c are chosen
as in the Theorem, then we have )7= Av', v, c)>.Tc(v', y, c 1)>:t(0 , y , c1 ). Further

(O, v, c1 ) tends to  1 as v  0  because F(y; 0, 0, ci,) > y for y  (0 , 1 ).  Therefore,

y=sec
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is sufficiently close to 1 if v > 0 is small enough. Moreover, A t) tends t o  as t-4 + co.
So the assertion (ii) follows.

Now, Theorem 5 is proved.

§ A .  Continued fraction and recurrence equation.

We shall start with fixing the notion of convergence in power series sense of a
continued fraction

(1) S —   a ' a2 an
b 1 —  b 2  —  —  —  b „ — • - • '

where {a n } ,  a n d  0 0 1 a r e  two sequences o f real o r com plex num bers. Let
us first deal with the special one

(2) zz 2 zn
1 — • T  -  •  •  •  •

Given a  sequence of indeterminates {z„} 1 ,  define th e  polynomials A n =
A„(z i ,..., zn) and B„= B n (z i ,..., z„) successively by

A i = f 1 2 = Z i ,  B 1 = 1 ,  B 2 = 1  — Z2 ,

(3 )
A n+  1

=  An —  Zn-l- 1 A n —  1  a n d  B „.,,=B „— z „, 1 _13„_ i f o r  n> 2 .

For each n > l ,  we shall call the meromorphic function

(4) Tn(z z„)= A„IB„

the n-th approximant of T. Then, it follows that

T1 (z 1 ) =z 1 , T 2 (z 1 , z 2 )-= z 1 1(1 — z 2 ) ,
(5)

T n+1(Z  1,• • • 5  Z / I  ±  1 )  =  Tn(z i• • • • Z n - 1
,
 z n I 0 Z n  +1)) ,

which proves

(6) Ti(z,)= z,, 7 n (z 1 , . . . ,  z n )—  z1 — 
Z2

 — — 
z

n fo r  n > 2.I ••. 1

Hence the meromorphic function TH is analytic at (z 1 ,..., z n) =(0,..., 0) and the coeffi-
cients in its expansion are nonnegative integers. Further, we have from (5) that

(7) Zn4.1)= Zn)-}-Z„+1Bn+I(21,— ., Z n +1 ),

where R „ is  a  function being analytic at (z 1 ,..., z n +  i ) =(0,..., 0) with nonnegative
integer coefficients in its expansion. Actually, the relation (7) is nothing but the
usual difference formula

(8) zn + i ) — Tn(z i ,..., z n)—   z , •••z „,,
/3„Bn + I

f o r  n> 1 ,

and (z 1 ,..., z n +  i ) =(0,..., 0) is a zero point of R n + i  o f  order n. From (7), we have
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(9 ) Tn (z i ,..., z n )= 
J=1

with convention R 1 = 1 .  Denote also the homogeneous part of degree k  in the ex-
pansion o f  T„ (resp. R n )  b y  H„,,,(R„, k ). Then R„,„=0 fo r  0 <k <n  —2, and the
expression (9) is expanded as

n k
z „)= E

k 1  j 1  
z R 

j
•,k- 1(z 1 , • • •

= =

+  E  E z1), n = 1 ,  2,...
k=n+1 j=1

Hence, for each k = 1, 2,..., the polynomials H n ,k ,  n >k  are the same and equal to

H k =  E i(Z  1 , ..., f o r  n> k .
j=1

Definition 1. W e say that the continued fraction

Z Z nT(z i ,..., zn,...)— Z

converges in power series sense at z , . . . )  if  and only  if

(10) E
k 1

 HAlz71,—,141)<°°'=

In  this case, we define T (z?,..., by

(11) z ?„...)= E H k (z?,...,
k=1

Notice that the condition (10) coincides with

k
E  E IzT)<00
k= 1 j=1

and, in this case, the formula (11) is equivalent to

co k
(12) T(z?,..., E E z3R . (z zo),,k—i o 0••., k

k=1 j=1

which implies

(13) T (z?,..., E  E =  l iM  7 ,( z ? .. ... 4) .
j=1 Ic= j

We now turn to a general continued fraction S in (1). Two continued fractions

(14) S—   a, a2 a„ a n d  S ' — a l a2 a:, 
b , —  b 2  —  •••—  b n  — b'l —  b '2  —  ••• —  b'n — •••

are said to be equivalent if and only if there exists a sequence of non-zero numbers
{r„}c°, 0  with r 0 = 1 such that
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(15) an' =r n _ i rn an  a n d  b„' =r„b„ for e v e ry  n >1 .

Notice that, in this case, the n-th approximants

(16) Sn—  a '
—

 a 2 —  —  
a " and S , =   a , a, arn

b i b 2 ••• b„ —  b'2  —  •••—  b,,

of S  and S' coincide with each other for all n = 1 ,2 , . . . .  Taking now  r=1/b„ for
n > l ,  we see that S„= T„(z?,..., z )  for all n =1 ,2 ,...  and the continued fraction S
is equivalent to T(z?,..., z,...), where

(17) z ? = a i lb i  a n d  4=a,,l(b„_ 1 bn ) f r o  n> 2 .

Thus, we can define the continued fraction S in the following way:

Definition 2. W e say that the continued fraction

aS —  1 a2 an
b, —  b 2  — •••—  b n  - -

converges in power series sense if  and only  if  the continued f raction T (z ,,..., z n ,...)
converges in power series sense at w h e r e  z ' s  are  given in (17). In
this case, we define S by

(18) T(z?,..., ( = lim  S n ).
n --0 - 1-  op

Now, we assume that an 's are non-negative and bn 's positive. Let us introduce
the following sufficient condition for S to converge in power series sense:

(A.1) a 1 > 0 ,  b 1 > 0  a n d  b 1 (b 2 - 1 ) >a 2 ;

(A .2) a,, > 0  a n d  bn >a n +1f o r a i !  n  >  2  .

The following lemma is a slight modificatin of the theorems of Pringsheim and
Perron (cf. W. B. Jones and W. J. Thron [3], pp. 92-93).

Lemma A .1 .  A ssume (A.1) and (A.2). Then,
(i) the continued f rac tion  S  converges in pow er series sense an d  S >0  (S =0
if  and only if  a i =0);
(ii) i f  moreover b 1 >a 1 +1, then  w e have S <1  (S = 1  if  an d  only  if  bn =a n +1

f or all n>1  and E;7°,, fJ ak = + oo).

Pro o f . Put

(19) r„— anl(b„-1) a n d  s„=r,,lb„_, f o r  n> 2 ,

with conventions r„=s„= 0 if a „= 0 .  Then the condition (A.2) implies

(20) 1 rn a,,l(b„—r,, + ,) f o r  n> 2 ,

or equivalently, 1/b„ .. ,,_>_s„>41(1—s„.„,) for n > 2. So, 1 > sn fo r n> 3. Further
(A.1) assures 1 > .32 . Therefore,
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(21) 1 > s n > 441 — s, 1 ) for all n > 2.

Repeated use of this yields

0 7 0Z°Zi 7n 4 + 1 , 0
1 — s2 1 —  1

—

1 1 \4 ' 1 5  •  •  •  
z 0 ) > z ?n —

for n > 2. Hence the sequence z)},,œL, is increasing and bounded to the
above by 4/(1 —s 2 ). Consequently. the continued fraction S  converges in power
series sense and satisfies 0 < z?<S <4/(1 — s 2 ). It is clear that S = 0  implies a 1 = 0
and vice versa.
(ii) Suppose moreover 6 1 > a 1 + 1. Then we have z? < 1 — s2 ,  or S < 1. If b„>
an + 1  for some n ,  then we have S < 1 .  Therefore, S = 1 , implies b n =c1„+ 1 for
all n>  1. Suppose now that b n = an + 1 for all n > 1 .  Then we have

1 — 1 + R w here R = ak1— S n=1 k=1

(see W. B. Jones and W. J. Thron [3], (2.3.28) in p. 37). Hence, S = 1  if and only
if R = + cc. T h e  Lemma is proved.

We next estimate the difference of two continued fractions S  and S ' in (14),
where both of the pairs {a n }, {b,,} and {(2 }, {b'n } satisfy the condition (A.1) and
that in Lemma A.1 (ii). Fix an n  (> 1 ) and set

SI" )  = Sln ) —  ak ak„+ia  
k b,, —  b k + , — •••—  b r,

f o r  1 < k < n, SW, = 0,

S " ) _  a cif+,
b jt b t

j+1

ak' _ f o r  1 < j < k < n + 1,— -• • — b'k _,— 51,n )

6 i,n ) =  S I P:k+ -S171 f o r  1 < k < n .

Notice that Sn = SY' )  a n d  Sn' =S17,4 1 . Further, as in the proof o f  Lemma A.1,
we have

(22) O<S 1, O < S (
i nl<   b ,

a  

1f o r  1 < j< k < n .

Lemma A .2 .  (i) For each 1<k < n, it holds that

(23) 4") = la rk — ak — (bk —  bk)S1" ) }1(bk —  Si!E)i) •

(ii) Under the above assumptions, it holds that

k-1
(24) S'„ — S r, = (5(

i n) + 6(,,n) f l  S
4i n)kS (i nk±1/di,

k=2 j=1

n , k - 1
(25) 15'„ — Snl 1 . 5 in) 1+  E I61" ) 111 M k ;  —1).

k=2 j=1

Pro o f . ( i )  The formula (23) is a direct consequence of the relations
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s  1 ` ," ,)k + 1
—  

b s l + n)1 s  - ak

 

b k — S(
k n+ ) ,

(ii) Noticing that

S ( n ) —
j ,k +1

a; ,b .; S 1,k+ 1 13 'j S  (14-) 1 , k
1< j< k ,

we have

S(inj+i—S(1:1=S!/:,),S(inj+I(S(in-F)i, k + 1 —  S (j+1 , k) »  1 <l<k>

which implies

„  k - 1
q (n ) (n)—  A ( n )  Fr ln )Q 1n)

11 '-' j , k ''j , k + 1 1 , ..j•
j=1

Combining this with the relation Sn—Sn = =1 (SY3,4.1 — S (in
, i ) ,  w e obtain (24).

The estimate (25) is now clear from (22) and (2 4 ) .  The Lemma is proved.

We now turn to the recurrence equation

(26) = b — a _ i f o r  n=1, 2, 3,...

A  sequence {„} 0  o f real numbers is called a  solution of  the equation (26) if it
satisfies (2 6 ) .  A solution is uniquely determined by the two values and Two
solutions { n } n

œ
= 0 and {rin } , 0  are said to be linearly  independent if —  no 0 0 -

We now specify the linearly independent solutions g ;, 1 ) },;°_0 an d  g 2 ) } of
(26) by

,(1)=13 a n d  e i
1 ) = 1 ,

(27) ,„2.) = 1  and2 ) =  5 •

Note that any solution { n } 0 of (26) is represented as

(28) fl - - - (1 -0 S ) ; ,1 )+ 4 W ) for all n >  1

The solution g 2 ) } _0  coincides with the minimal solution of (26) in the book
of W. B. Jones and Thron [3] (see pp. 163-164). The next lemma is related to the
theorem of Pincherle (ibid.).

Lemma A .3 . ( 0  A ssume (A.1) and (A .2 ) . Then we have

(29) 0 < , < 2 )f o r  a l l  n > 1 ,

(30) O< ( i ) < (

nl,.) , f o r  a l l  n> 2.

(ii) Assume (A.1), (A.2) and

co n
(A.3) E ak= + 0 0 .

n=1 k =1

Then,
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(31) Ern en
1 ) = + co .

n-H-co

Pro o f . Put

(32) F n = a
na n + 1 a n + k f o r  n = 1,2, 3,... b n —  b n + 1 • • • b n+k

Obviously, F 1 = S .  Analogously to the proof of Lemma A.1, we can show that all
the continued fractions Fn 's converge in power series sense and that

(33) 0<F„<rn<1 fo r  a ll n>2

(see (19) and (20)). Moreover, we have

(34) F„= a n/(b„— F 1) for all n >1 .

So we can make a solution {n„} 0  of (26) by setting no = 1 and tin = F„n„_ for n =1,
2,.... It satisfies 0<rin .,.1

 <n„ for all n> 1 due to (33). Since n„= 2 ) for n=0 and
n= 1, we have {r1n },T_0 = g (

n
2 ) } ,,,. Thus we see (29) and that

(35) e 2 ) = 1  and ( 2 ) = F, for all n>  1.
° k=1

Let us prove (30). By definition, we have 1 ) =.b1 a n d  6 1 ) =b i b.2 —a2 , so
6 1 ) > e2 ' ) > 0 because o f (A.1). Suppose now n> 3. A ssum ing ;,1 ) > 0 ,
we have

al+)i— =On —
 1 — arg 1 ) +a ( (.1 ) - -  ( ,1 ) 1)> 0 .

Therefore, {eni ) } 2 is non-decreasing, and (30) follows.
It remains to prove the assertion (ii). Using the above formula, we can show

by induction that

( 1>  1 11  a kJ

Therefore, the assumption (A.3) implies (31).
The Lemma is proved.

for n > 1 .

We note that, under the assumptions (A.1), (A.2), it also holds that

(36) V.1)= k r i ( b r — F r + i ) (  f l  F ) for all n > 1 ,
k =1  r=1 s=-k+1

with conventions 11?.=1 (b,.— F,. ,)=FP:=n+ F =  1 .
We close this section by introducing a maximum principle lemma in recurrence

equations. Let fAnInw=0, titnI=0 and {vn} „ be non-negative sequences with

(37) Ao +Po + vo  > 0  a n d  An , y„>O, n=1, 2,...

An operator V on the space of all sequences g,,l 0  is defined by

+ — (An+ kin+ v n g . ,  n = 0 , 1 , 2,... ,
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where = 0  b y  convention. Note th a t  the recurrence equation (26) can be
rewritten as (g )n = O, n =1, 2,..., with an appropriate choice of coefficients.

The following lemma is well known for the readers who are familiar to the
theory of birth and death processes or of one-dimensional generalized diffusion
processes (gap processes). But we will give it here for completeness.

. Lemma A .4 .  Let a sequence =t - .1 c, satisfy

(38) ( ) < 0, n  = 0 ,  1 ,  2 , . . .  a n d  lim inf 0 .

Then it holds that

(39) > 0 ,  n=0, 1, 2,...

P roo f. First we assume A0 =0. Then it follows from  (37) and (38) for n=0
that > O .  Suppose now that the inequalities (39) do not h o ld . Then we can find
a positive integer n o such that

(40) — 1 A  rIc■+ 1 and <.no 1V+  1  ,

where a A b (a y  b) stands for min fa, b) (resp. max {a, b p .  The second and the
third inequalities of (40) combined with (38) imply — v,j, 0 <0, contradicting the
first inequality of (40).

W e next assume that A o  > 0 .  In th is case, w e haveA 0 .  I n d e e d ,  if
<  A 0, then it follows that

0< Acgi — -02 (9+ vogo

which is a  self-contradiction. Now the rest of the proof is the same as that for
the case Ao =0 in the a b o v e . The Lemma is proved.

§ B .  Properties of the function F(y).

Let y be a variable running over the closed interval [0, 1]. Let P, Q, S , M
and C be real parameters. Throughout this section (possibly except in Lemma B.3),
we assume that

(B.1) P > 0 ,  Q > 0 ,  S > 0 ,  M > 0  a n d  O <C <Q +M .

We put
a(y)= n(n —1+ P + M y)I(nS + C),

(1) f o r  n> 1 .
b„(y)= {n(n —1+ P + Q+S + M)+ Cy} l(nS + C),

In this section, we consider the continued fraction

(2) F(y ) a i(y )a 2 ( Y ) a n ( Y )
b 1 (y) — b2(Y) b(y )- -

as a function of variable y with parameters (P, Q, S , M , C). We also deal with the
functions



c kF n _
k = n  F k  j = n

F3a aw h e r e  „ = a„ F „ b„.,ua ;  ' cl Ou (3u(6)
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b (y )  —  b 1 (y ) — abnn++:((;))
Fn (y ) _   a ( y )

a , , + 1 ( Y )  

for n = 1, 2, 3,... Obviously F i (y )=F(y ) and we have

(4) F„(y)=an(y)1(b„(y)—F„.4.,(y)) f o r  n>1 ,

whenever the both sides make sense.

L em m a B .1. ( i ) For each n, the continued fraction F„(y) converges in power
series sense at any point y  in [0, 1] and satisfies

(5) O<F„(y)_.<1 f o r n  > 1 ;

(ii) F(y )=0 if  and only  if  P=0 and y =0;
(iii) F(y )=l if  and only  if  Q=0 and y =1.

P ro o f . Notice first that a i (y )>0 (a i (y)= 0 if and only if P= y =0), a(y )>0
and b„(y)> 1 for all n  2  and y  in [0, 1]. Since

(nS+C)(bn(Y ) — I — an(Y ))= nQY +(nQ+ nM— C)(1— Y) ,

we always have 6„(Y )> an (y )+ 1 due to  the assumption (B.1). Moreover,
e ith e r  ( a )  b ( y ) >1  and bn+i(Y)_>_ an+ i(Y)+

1

or (13) bn(Y ).. 1 and b„+1(Y )> an+ i(Y )+ 1
holds for any n  a n d  y . Indeed, (a) holds if  0< y < 1 and (b ) holds if  0<y <1.
Applying (ii) of Lemma A.1 to the F ( Y ) ,  we see that the assertion (i) holds.

(ii) and (iii) follow from the assertions in brackets of Lemma A.1.

Remark. Actually F(y ) converges under a m ore relaxed condition on C,
for example, 0 <C < Min (P+ Q + M , 2(Q + M )). B ut in  th is  case, the value of
F(y) may exceed 1.

Lemma B.2. For e ac h  n >l, F (y )  is  a function of  class C 1 i n  6  variables
(y , P, Q, S , M , C) in the region given by  0< y  <1 and (B.1).

P ro o f . Let u  be one of y , P, Q , S , M  and C .  Differentiating both sides of
(4), we have

a 
Fn =(F„la n ) ( a

a
t i an — Fn au  b„+ F„

By repeated use of this, we obtain

(3)

A computation shows that

=(nM — CF„)1(nS +C), d n d s = n(1— F„)1(nS+C),

(7) d„,,2= — nF,J(nS+C), d s =  — nF„(1 — Fn+i)1(nS+C),

d„,m =n(Y — F„)1(nS+C), d,,,c =F n(Fn + 1 — Y )I(nS+C).
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At each point (y , P, Q, S, M, C), there exists a positive number L=L(y, P, Q,
S, M, C) such that id 1  < L  for n Therefore, the series on the right hand
side of (6) is absolutely convergent, because (5) holds and a„ tends to infinity as
n--P co.

It should be noted that, for n=1, the formula (6) is reduced to

aF — (d,,uidi
aF

 a t  y=P =0 .au 0, ay

aF The derivative at y =P=0 will be calculated in (10) below.ay
The Lemma is proved.

aF We have the following formula for ay
If P>0 or 0<y<1, then

( 8 \ a F F ( ( C I S ) + n ) F ( P +  M y ) S n - 1  

1a y  ' 1F ( ( C I S ) + 1 ) F ( P +  My +  n )(n -1 )!

c n (Fk-iFk),n k=1

where we put Fo =1 by convention.
If Q=0, then

a F
(9)

a y  
(1)= 1— P + M ; S )+ P+ M  1 F 1 ((C IS )+1, P+ M +1; S )

If P=0, then

a(10) F (0)— Q+ M
 1 F 1((C/S)+1, Q + M + 1 ; — S)liF i(C IS ,Q +M ;ay 

In (9) and (10), 1F 1

[1], Chapter 6);

(11) 1F1(01, Y; t)=
F(a+n)T(y)tn 

,o f(a)F(y + n)n! •

Proofs of (8), (9) and (10 ). The formula (8) follows at once from (1) and (6).
Substituting Q=0 and y=1 into (8), we obtain (9).

Let us prove (10 ). If P=0, then 
aF 

 (0) is equal to the continued fraction in (2)ay
with y=0 but with a l  replaced by (da 1 ldy )(0 ). So we have

aF (0)— 
Q +  M  

g(CIS, Q+M; —S),ay

where

(a+ 1)t( a  +2)t( a +  n)t 
(12) g ( Œ ,  y ;  t ) —  Y  

y —t +  y + l— t +  y + 2 — t + •••+  y + n — t + ••• •

stands for the confluent hypergeometric series of Kummer (see
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Note that the function g satisfies the functional equation

a + 1 ,(13) g(Œ, y; t)=y1(y—  t+ tgoc+1, y +1; t)).y +1

A formal power series in t whose coefficients are rational functions in (a, y) is unique
if it satisfies (1 3 ) .  In addition, it is easy to verify that ,F,(a + 1, y +1; 01 ,F i (a, y; t)
does s o .  Therefore, we have

(14) g(a, y ; t)= ,F,(a+1, y +1; t)I,F,(a, y ; t)

The formula (10) is proved.

A further application of (14) is the following:

( 1 5 ) F (
P+ M y   1 F 1 (Q+M(1—y), P+Q+ M+1; S)  i f

Y i—  P + Q + M  I F 1 ( 2 + M ( l — Y ), P+Q +M ;S )

Pro o f . Putting a = P+ M y  and fi =P+Q +M , we have

an(y)= (n a ) I S  a n d  bn (y)=(n — 1+ [1+ S)IS

Therefore, F(y)=(c1)3)g(Œ, 13; — S). This and Kummer's identity

1 F 1 (Œ, )6; -0= e- t iFI(fi )6; t)

imply (15).

Lemma 13.3. A ssume th at P=Q =0 , S> 0, M > 0 and C > 0 (C  can be larger
than M  in this lemma).
(i) If  C =S M , then F(y ) converges in power series sense and F(y )=y  f or all y
in the interval [0, + oo);
(ii) if  C <S M , then F(y ) converges in power series sense f o r all y  in  [0, 1] and
0<F(y )<y  f or all y  in (0, 1);
(iii) if  C >S M , 0<y <1 and if  F(y ) conv erges in pow er series sense at y , then
F(y )>y .

P ro o f . As in (9) of §A, let us define z„'s by

(16) z1=  a i(Y)I b i(Y) an d  z n = a n(Y)I(bn- i(Y)bn(Y))
To prove (i), suppose C =S M  and put

n(n — 1 + M) n+ M  A n — a n d  rn  — for n> 1.S (n+ My) n+M y

Then, r i a,(y)= yA „, r„_irnan(Y )= An  for n >2 and rnb„(Y )=1+ An  for n  >1 .  Hence,
F(y)/y is equivalent to

A, Ay
1+A 1 —  1+ A 21 + A , ,  — • • •  •

The last continued fraction is convergent in power series sense at any y e [0, +  cc)
and is equal to 1, because An > 0 for all n 1 a n d  nœ- Frkl = Ak =

 0 0  (see Lemma

C=0.

f o r  n> 2.
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A.1 (ii)). Therefore, F(y) is identically equal to y in [0, + co).
To prove (ii) and (iii), we first assume that C > 0 . Fix S  and M , and denote

F(y )=F(y , C) and CF(t1C , C)=F(t, C ), Then we have

F(t, C )= 1
( t  C ) 2 2 ( t  ,   C ) C) 

1 — 1 — • • • — 1 —

where 21 (t, C)=Cz 1 (t1C, C) and 2(t, C)=z„(t1 C, C) for n> 2. 2  is  in d ep en d en t
of C and positive for t > 0. Further, it holds that

(17) 2„(t, C )-2„(t, SM)=K„(t)(C—SM)(C—t) f o r  n> 2,

where K ( t)  is positive for 0 < t < + cc.
If O<C<SM, then 0<± (t, C )<±- „(t, S M ) for all n > 2  and 0< t < C .  There-

fore, the convergence of F(t, SM) in power series sense implies that o f F(t, C) for
0< t< C  and the strict inequalities 0< F(t, C )<F(t, SM ) fo r  0< t< C .  Since (i)
implies F (t, SM )=t, th is  assures O <F(t, C )< t f o r  0< t< C ,  o r  0< F(y , C)<y
for 0< y< 1.

Suppose next that C > S M . By (17), 2(t, C)>2„(t, SM )> 0 for all n>_2 and
0< t< C .  Therefore, i f  F(t, C ) converges in power series sense, th e n  w e  have
F(t, C )>F(t, SM)= t, or F(y , C)> y for 0< y <1.

I t  ramains the case where C = 0 . In  this case we have C < S M  automatically
and, by (15), it suffices to verify the inequality

(18) 1 F1 (a, y +1 ; t)< Jot, y; t) f o r  ot> O , y > 0  a n d  t>0.

In the power series expansions (see (11)), the coefficients of tn fo r  1 F 1 (Œ, y+ 1 ; t) is
positive and smaller than the corresponding one for 1 F 1 (Œ, y ; t) for every n > 1 .  So
(18) holds.

The Lemma is proved.
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