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On the Kazhdan-Lusztig conjecture for
Kac-Moody algebras
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Kiyokazu SUTO

Introduction

Let A be an n x n  integral matrix which satisfies the following
conditions (i), (ii) and (iii):

( i ) a ii =2 for all i =1,..., n,

(ii) if i O f,

(iii) ai1 = 0  if and only i f  a1 i =-0.

We call such a matrix A  a generalized Cartan matrix (G C M ) . For example,
the Cartan matrix of a complex semisimple Lie algebra is a GCM.

One can associate a complex Lie algebra g(A) to a GCM A  (see §1 for detail).
If A  is  the Cartan matrix of a complex semisimple Lie algebra, then g(A) is the
corresponding complex semisimple Lie algebra, and otherwise g(A) is an infinite-
dimensional Lie algebra. W e call g(A ) a  Kac-Moody algebra with the Cartan
matrix A.

Kac-Moody algebras were introduced by [5] and [8] independently, as a gener-
alization o f complex semisimple Lie algebras. There are many theorems and
conjectures on Kac-Moody algebras which are generalizations o f corresponding
results on complex semisimple Lie algebras. Among those, we study in this paper
a generalization, given in [3], of the Kazhdan-Lusztig conjecture on the composition
series of Verma modules. Let us explain this in more detail.

At first, we recall Kazhdan-Lusztig conjecture for complex semisimple Lie
algebras. Let go b e  a complex semisimple Lie algebra, h o a Cartan subalgebra of
go , and bo a Borel subalgebra containing h o . Let do be the root system of (g o , 1. ),
and p o e bt, half the sum of all the positive roots with respect to 1)0 . Let Wo  be the
Weyl group of .40 , and So the set of simple reflections. We denote by M 0 (2) the
Verma module with highest weight 2 e tmh and W A ) the unique irreducible quotient
of M 0 (2).

Any irreducible subquotient of M 0(2) is of the form L o (y ) for some I/ e ht such
that 2 e Zd o and that w(2+p0)—p0 for some we Wo . E v e ry  M 0(2) has a
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finite Jordan-Hblder series, a n d  s o  th e  multiplicity [M 0 (2): L o (p)] is naturally
defined. All the multiplicities [M 0(.1): Lo (p)] for integral 2, y E ht, can be computed
if [M0(YP0 — Po): Lo(wPo — Po)] are known for all y, w E Wo . N o t e  that this index
is zero unless yLçw, where i s  the standard partial order on the Coxeter group
(Wo , S o )  in  which the unit is the smallest element. About these  fac ts, one may
refer to [4] for instance.

T he  following theorem o n  these multiplicities fo r  complex semisimple Lie
'algebras is well-known as the Kazhdan-Lusztig conjecture, which was conjectured
in [7] and proved in [2] and in [1] independently.

Theorem A [7, Conjecture 1.5]. For all y , w e Wo su ch  th at y .w , let P y o ,  be
the Kazhdan-Lusztig polynomial for (W 0 , S 0 ). Then, it holds that

[MaY Po —  Po): Lo(wPo —  Po)] = P y o v(1) •

The Kazhdan-Lusztig polynomials were introduced in  [7 ] , related to the base
change of Hecke algebras of Coxeter groups, and there were given the inductive
formulas to compute these polynomials.

The Kazhdan-Lusztig conjecture was generalized, in [3], to Kac-Moody algebras
with symmetrizable GCMs as follows.

Let h(A) be the Cartan subalgebra of the Kac-Moody algebra g(A), and p  an
element of h(A)* which takes the value 1 on each simple coroot. Let W be the Weyl
group of g(A), and S ={ s 1 ,..., s n } the set of simple reflections in  W . We denote by
M(A) the Verma module over g(A) with highest weight 2e h(A)*, and L (2) the unique
irreducible quotient of M e ) .  As in the case of complex semisimple Lie algebras,
any irreducible subquotient of M(2) is of the form L(p) (p E h(A)*). Although M(2)
does not have any finite Jordan-Hblder series in  general, the  multiplicity [M(2):
L(A)] is defined by means of local composition series as a generalization of that of
complex semisimple Lie algebras (see §1).

Deodhar, Gabber and K ac proved the following result in  [3 ] analogously to
the complex semisimple case.

Theorem B [3, §5]. Suppose that A  is a sym m etrizable GCM , that is, A  is
a GCM  and there exists a non-degenerate diagonal n x  n m atrix  D such that DA  is
a  sy m m etric m atrix . Let 1  be  a  dom inant integral em enent of 1)(A)* and y e W.
T hen, a l l  th e  irreducible subquotients of  M (y (1+ p)—  p) are L (w (1+ p)—  p)
(w e W, y), and the multiplicity [M(y(1+ p)—  p): L(w(1+ p)—  p)] is independent
of 1. Here is the standard partial order on the Coxeter group (W , S).

Taking this result into account, they conjectured as follows.

Conjecture C [3, Conjecture 5.16]. There holds that

[M(YP — Pn = P , (1 )

f o r all y, w E W  such that y _w , w here P y o ,  are K azhdan-L usz tig polynomials f or
(W, S).

We call this conjecture also the Kazhdan-Lusztig conjecture.
The aim of this paper is to prove that the conjecture above is affirmative for
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certain pairs (y , w), even if  A  is not necessarily symmetrizable. We explain this
in more detail.

Let A =(a i.i ), < ,,J < „ be a  G C M . Take a  subset I  of {1,..., n} such that A 1 =
(a11),J 1 is  the Cartan matrix of a complex semisimple Lie algebra g,. L e t 1 ) , be a
Cartan subalgebra of  g, 1:) 1  a Borel subalgebra containing bi , and so  on. Then,
g, and the Weyl group WI  are canonicaly embedded into g(A) and W respectively in
such a manner that I), 1`)(A), 1)7 1)(A)* and the set S1 of simple reflections in  W, is
equal to {s 1 1 i E /}. W e define  a  category 0  of g(A)-modules and a category 0 ,  of
gr modules, containing all th e  highest weight m odules, and define some exact
functors from 0  to  0 , corresponding to a  decomposition of g(A)-modules as g ,-
modules.

By applying these functors to a local composition series of a Verma module
over g(A), we can prove

Theorem2.3. F o r an y  p a ir (A , p) in b(A )* x 1)(A)* such that A —  pe Z A 1 ,
we have the equality

[AAA) : L (1 1) ]  = Emi(A I 1)1): L i(it I th]).

We see that the pairs (A , p)=(yp— p, p )  ( y ,  w  e WO satisfy the condition
A— p e Z A , and that (up— p)11), =up i — p, for any u E  W1 . So, if y , w  E W 1 , Con-
jecture C is reduced to Theorem A by Theorem 2.3 above. Thus, we have one of
our main results as follows.

Theorem 3 .4 .  L et A =(a i i ), < ,„ be a GCM , and let I be a subset of  {1,..., n}
such that A 1 =(a L1),J 0  is  the Cartan m atrix  of  a complex semisimple L ie algebra.
Denote by W 1 th e  subgroup of  W  generated by  si ( ie  I). T hen, for all y, W E W,
such that i t  h o l d s  t h a t

[M(Y P — P): L(wP — P)]= Py ,.( 1).

Note that the symmetrizability of the GCM A  is not assumed here.
Now we concentrate on the special case, that is, the case where A  is a so-called

extended Cartan matrix which is one of symmetrizable GCM s. In this case, the
derived subalgebra g'(A) of g(A) is the universal central extension of a loop algebra
C[t, t- 9 0 g

0
 w ith  t  a n  indeterminate, fo r  a  complex simple Lie algebra g 0 ,  and

g(A) is the semidirect sum Cchxg'(A ) for a certain derivation d  on  g '(A ). We call
g(A) a non-twisted affine Lie algebra. There exists a subset I, of {1,..., n} consisting
of n - 1  elements, such tin t g 1. = g,. W e fix such a subset 1 0 .

We give a complete branching rule of Verma modules over g(A) as g 0 -modules
(Proposition 4.2) by using th e  fu n c to rs  f r o m  (9 t o  0, 0 , introduced before
Theorem 2.3. By this branching rule, the problem of computing the multiplicities
of irreducible subquotients of Verma modules over g(A) is reduced to the problem
of determining the branching rule of irreducible highest wiehgt modules over g(A)
as q 0 -modules (see Remark 4.3). Solving this problem, we will get a  useful tool
to study Conjecture C in full generality for this type of g(A).
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This paper is organized as fo llow s. In  §1, we recall the definition o f  Kac-
Moody algebras and some of their properties. In §2, we define certain subalgebras
of Kac-Moody algebras, which we call canonical subalgebras, isomorphic to some
complex semisimple Lie algebras. We prove some relations between highest weight
modules over Kac-Moody algebras a n d  those over their canonical subalgebras.
Making use  o f these relations, w e obtain a  multiplicity equality (Theorem 2.3)
which is our main tool in  proving Theorem 3.4, one of our main results. In  §3,
we introduce a  generalization o f the  Kazhdan-Lusztig conjecture after [3 ] ,  and
then prove that the generalized conjecture is true for certain good cases (Theorem
3.4), using Theorem 2.3. In  §4, we consider the special case where the GCM A is
an extended Cartan m a tr ix . For such an A , we fix a canonical subalgebra g 0  of the
Kac-Moody algebra g(A ) and give a  complete branching rule of Verma modules
over g(A) as 90 -modules (Proposition 4.2).

The author is grateful to Professor T. H irai for his useful advice a n d  kind
encouragement.

§1 . Preliminaries for Kac-Moody algebras

We denote by C, Z and Z „  the set of all complex numbers, that of all integers
and that of all non-negative integers, respectively. For any complex vector space V,
the dual space of V is denoted by V * .  We denote by #(X) the cardinal number of
a set X.

In  this section, we recall the definition and  some properties o f Kac-Moody
algebras and of their representations (cf., [6 ] for detailed discussion).

1.1. Definition of Kac-Moody algebras

L et A=(a • •)• .,,J=1,...,n be  a n  n x n integral m atrix. W e call A  a  generalized
Cartan m atrix  (GCM) if A satisfies the following conditions (i), (ii) and (iii):

(i) a1 =2  f o r  a l l  i = 1,..., n,

(ii) a•si . 0  if i # j ,

(iii) =  0  if and only if a . =  O.

In this paper, we always assume A to be a GCM.
F or a  GCM A—(a i i ) ,  there exists a (unique up to isomorphisms) complex Lie

algebra g(A) which has the following properties (i), (ii) and (iii):

( i ) g (A )  has a commutative subalgebra b(A) such that dim 13 (A)=2n — rank A
and

g (A )=  E  g„ ,
ae l) (A ) .

where

q =  {x e g(A) I [h, x] = a(h)x for all h et)(A)} ,
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go = t)(A) •

( i i )  There exist a  linearly independent subset H = {oc1 ,..., an } of h(A)* and 2n
elements e1 ,..., e„, f ,  in g(A) .---- {0} such that

a) ga , = Ce i and g , =  C f  for all i= n,
b) f j] =0 if i j ,
c) h(A) U {e 1 ,• • • , en, f i ,...,f1 generates g(A) as a Lie algebra,
d) for each i = n, we put oel = [e , f i ], then FP = any} is a  linearly

independent subset of h(A) and it holds that a; (4 ) = a i i  for all i, j=1,..., n.

(iii) Any ideal of g(A) which intersects h(A) trivially is zero.

The Lie algebra g(A) is called a  Kac-Moody algebra, and the subalgebra b(A)
the Cartan subalgebra of g(A).

For each a e 13(A)*---.{0}, we denote by mult (a) the dimension of ga , and call
it the multiplicity of a. If mult (Œ) O, a  is called a  root of g(A ), and the set of all
roots of g(A) is denoted by d(A) and is called the root system of g (A ).  We call the
decomposition g(A )= h (A )+ E  g, the root space decomposition.

orEd(A)

We put Q =  E  Zoci and Q ,  =  E Z , Q is called the root lattice for g(A).
15 i5 n 1 . i 5 n  -

4(A) has the following properties.

zi(A) ■2 + (—  Q+).
(ii) F o r  any a e h(A)*, mult (a) = mult ( — a ) , in particular, a E  .4(A) if and

only if  — e zi (A).
(iii) Put + (A) = A(A) n Q + , a n d  it h o ld s  t h a t  A (A )= + (A) U (— A + (A))

(disjoint union).

We call each element of A ± (A ) a positive  root. Every element of H A  „(A)
(resp. Hy) is called a simple root (resp. a simple coroot). We define a partial order
on li(A)* by

y  if and only if A — e Q (A, pi e h(A)*).

For all a, fi e h(A)*, we have

[ g c o  913]

and so the subspaces n±  =  E  g± „ are both subalgebras of g(A), and we have a
a e d , (A )

triangular decomposition

g(A)=n_ +h(A)+ n + (direct sum).

1.2. The Weyl group

We define involutive linear operators si on b(A)* by

siA= A — A(ocnocii  n )

for all /1. e h(A)*. Let W be the subgroup of GL(b(A)*) generated by S = {s i ,..., sn}.
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We call W the Weyl group of g (A ) . The pair (W, S) is a Coxeter system . For any
a e h(A)* and any w e W,

mult (a) = mult (wa) ,

and so d(A) is W-invariant.
We define the subset /Jr  e (A ) and d i m (A )  of d(A) by

e (A )= {W Oli W  E W ,

4(A) 4r e (A) ,

and call each element of A r e ( A )  or  A m ( A )  a  real root or an imaginary root, re-
spectively.

1 . 3 .  Category (9 of g(A)-modules

For any g(A)-module M and any it e b(A)*, we put

= {v e M I hv= ii(h)v for all h et)(A)} .

M  is called the weight space of weight it. If /1/1,0 0, it is called a weight of M.
We define a category (9 of g(A)-modules as fo llow s. The objects of (9 are g(A)-

modules M which satisfy the following conditions (i) and (ii):
(i) M  is  b(A)-semisimple, i.e ., M =  E  A/1,i ,  and  dim M i,< + c o  for all

pef) (A)*
e b(A)*.

(ii) There exists a  finite subset {It o . . . ,  it,}  of b(A)* such that f for some
for any weight it of M.

Let /1. E VA)* and M  a  g(A)-module. W e call M  a  highest weight module
with highest weight if there exists v e M, -----{0} such that

n + v  = 0  a n d  M= U(g(A))v,

where for any Lie algebra a, we denote by U(a) the universal enveloping algebra of
a. T h en , we have

m= E MA =  CV,
aeQ+

and for a > 0,

MA — a —  E
where the sum runs over e  + (A), + • • • +f l i  =a. H ence, any highest
weight module is an object of O .  The above v is called a highest weight vector.

For a n y  e b(A)*, let IA  be the left ideal of U(g(A)) generated by n +  and 1/1 —
/1(h)1 h E b (A )) . Then, M(A )= U(g(A ))II is a  highest weight module with highest
weight and any highest weight module with highest weight is  isom orph ic  to  a
quotient of the Verma module MO.).

M(A)  has a unique irreducuble quotient, denoted by L (2 ) . Any irreducible
object of (9 is isomorphic to L(2) for some . e  ( A ) * .  As a U (n ) -module, M(A) is
a free module of rank 1 and any highest weight vector is a free basis.
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Each object in (9 does not necessarily have a finite Jordan-Wilder series, but has
a local composition series as follows.

Proposition 1.1 [3, Proposition 3.2]. L e t M e (9 an d  2 E b (A )* . T hen, there
exist a f inite sequence 0 =M 0 c M  • • • c M , = M  of  g(A )-subm odules of  M  and a
subset J  of {1,..., t}  such that

M ilM J-1`= f or some i f  j e J ,

(MJIM1-1) A = 0 f o r an y  1.1.. 2 i f  jEeJ.

We call this sequence a  local composition series of M at 2.
L e t e  t) (A )* . Take a  e  1)(A )* such that A. F o r any  object M  o f  0,

let 0=M 0  M, c • • • c M t = M  be a local composition series of M at 2, and A., ( j e J)
be as in Proposition 1.1. We put

[M: L(fi)] = E 11 - - -

Then, [M : L (p)] is independent of 2 and the local composition series. W e  c a ll
[M : L (u)] the multiplicity of L(y) in  M . If  [M : L(u)] 0 0, we call L(y) an irreducible
component o f  M . F o r  a n y  E 1)(A)*, L(p) is an irreducible component of M if and
only if L (2) is isomorphic to a subquotient of M.

1.4. Contravariant bilinear form

g(A) has a unique involutive automorphism w such that

w(h) = —h ( h  b ( A ) )  ,

w (e)= (1 i n).

Let M  be a g(A)-module and B a bilinear form on M .  B is called contravariant if

B(xv,, v 2 )= — B(v 1 , w(x)v 2 ) ( x  E g(A), v 1 , v2 E M ) .

F or any 2 eli(A)*, L (2) has a (unique up to  scalar multiples) contravariant
symmetric non-degenerate bilinear form, and the decomposition of L(1) into weight
sp a c e s  is  an  o rthogona l decom position with respect to  th is  b ilin e a r  form.
Conversely, any highest weight module which has a contravariant symmetric non-
degenerate bilinear form is irreducible.

§ 2 .  Relations between highest weight modules over g(A) and those over
their canonical subalgebras

In this section, we define some finite-dimensional subalgebras of g(A), and prove
some relations between highest weight modules over g(A) and  those over these
subalgebras. Making use of these relations, we have a multiplicity equality which
plays the principal role in proving the Kazhdan-Lusztig conjecture.

2 .1 .  Canonical subalgebras and branchig rules for them
Let I be a subset of the index set {l,..., n} of A .  We put
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th= E Cc', 12/ = E zoci ,
i e l i e l

(2.1) zl, = tl(A) n Q1 , z1 1  = A (A )  n Q1 ,

ni,±= g/ = 111,- +I/1+ ni,+ •

We call I of finite type if A ,= (a ) / e /  is  one of classical Cartan matrices, that is,
the Cartan matrix of a complex semisimple Lie algebra.

In this section, we assume Ito  b e  of finite ty p e . F o r  such an I, it is proved by
using Serre's structure theory of split semisimple Lie algebras, that g/ i s  a  finite-
dimensional complex semisimple Lie algebra which has the C artan matrix A I ,  a
Cartan subalgebra 1 , and a Borel subalgebra t + ri 1, ,  (cf., [9] and [6, Exercise 1.2]).
We call such a RI a  canonical subalgebra.

We define a category 0, of gr modules similarly to 0  as fo llow s. The objects
of 01 are gr modules M satisfying the following conditions.

(i) M is br semisimple with finite-dimensional weight spaces.
(ii) There exists a  finite subset /.41 of br such that II, for some i

for any weight pi of M.

The morphisms in 0, are gr homomorphisms.
Let M 1 (A) be the Verma module over g/ w ith highest w eight e bp, and L I M

the unique irreducible quotient of M ,(A). As in the case of g(A), every highest weight
module over g/ i s  an object o f  0,, and so  M,(.1.) and L 1 (2)  belong to 0 , for any

W e consider the  quotien t b(A)*/Q/ a s  a d d itiv e  g ro u p s . L e t A e 1)(A)*/Q,.
We define MA for any object M of 0 by

M " = E  m A .
AGA

It is clear that MA is an object of 0, and that M  decomposes into the direct sum of
MA's as a gr m odule. We have

Lemma 2 . 1 .  For any A e b(A)*IQ I , the functor

3  M M A E

is exact.

P ro o f . Let M e 0  and  N  a  g(A)-submodule o f  M .  Since NA =N  n M A , we
have

NA= A; ( N  n m,t) N n (AEm A),A  

and so N A .N n m A . Conversely, take y e N n M A . It is written as

v= E  v ,  ( v ,  E M A).
AEA

Because N  is  b(A)-invariant, v A e N  fo r  a l l  /1 e A  a n d  s o  y e E (N n MA)= N A .
AEA

Thus, N n m A  NA, whence NA =N  n M A . This implies that
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Ker (pl 
M A ) _

 N4,

where p is the canonical projection from M onto MIN.
On the other hand, p  is a surjective g(A)-homomorphism so that

P(mA )= (11 /1\1),t

for every A e fi(A)*, and so

p(MA ) =- (MIN)A
•

Therefore
M "/N ' — (m /N )A

through p, which implies the lemma.

251

Q. E. D.

For an  element A E 1) (A)*, we denote by [A ] the residue class containing A in
1)(A)*/Qi . We have the following lemma which explains what MP.] is for a  highest
weight module M over g(A) with the highest weight A.

Lemma 2 .2 .  Let M  be a highest weight module over g(A ) with highest weight
A e b (A )* . T hen, M [ n  i s  a  highest w eight m odule over g ,  with highest weight
A11)1. Moreover, we have the following isomorphisms

(2.2) /14(A)[ M l(Alth)

(2.3) LMEA1= Li(A, t/i) •

Proof .. Let y , be a non-zero highest weight vector o f  M . By definition

U(g 1)v0

On the other hand, if ti is a weight of M , then

M A =Ig-iii•••g-a,v o

where the sum runs over f3j E  ,(A ), 13 1 + • • • + =  A — it. This implies that
M tt c U(g i ) y ,  fo r p E [A ], because if e A ± (A ) a n d  131 + • • • + 13i  e Qi ,  then
131 ,..., A i e A , .  Hence we have

U(g 1)y0 =M [ A1 .

This proves the first assertion of the lemma.
It is clear that U(g 1 )v 0  is  U(n i ,_)-free if M is U(n_)-free, which implies (2.2).
Let B  be a (unique up to scalar multiples) non-degenerate contravariant sym-

metric bilinear form on L (À ). Since the weight space decomposition of L(A) is an
orthogonal decomposition with respect to B , we have B(L(A)A, L(A)°) =0 for A  and
e two different residue classes in b(A)*/Q/ . Hence, the restriction BIL(A)EAJ is
non-degenerate. Thus, we have a non-degenerate contravariant symmetric bilinear
form on L(A) [ A] . On the other hand, L(2)[A] is a highest weight module with highest
weight A lt), as we have proved above, so that L(A)1A1 is isom orphic to LP 1 1 )  as
is stated in (2.3). This completes the proof of the Lemma. Q .  E .  D .
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2 .2 .  Multiplicity equalities

Now we can prove the following theorem, using the above two lemmas. This
is one of our main results, and plays the principal role in  proving the Kazhdan-
Lusztig conjecture.

Theorem 2.3. Let I {1,..., n} be of finite type. Let A, A' E VA) * and assume
A— A' E Qi . Then, there holds the following equality  for the multiplicities

(2.4) [M(,1): L(A')] = [M P I 1//) I I/0] •

P ro o f . If A  A' , the left hand side of (2.4) is zero . O n the  other hand, if A A'
and A— A' E 021, then /1, I I), A' I br and so the right hand side of (2.4) is also equal to
zero.

Assume now A  A '.  Let 0=M 0  M, c • • • c M t = M(A) be a local composition
series of M(A) at A', that is, there exists a  subset J of f1,..., t} such that if j e J, Mi l
M i _ i 'eL(Ai ) for some A  and if j (M i lM i_ i ) „ =  0 for any A'.

Let j E J .  Then, Ai  because Ai  is a weight of M (A ). So, Ai — A' eQ, because
0 — A —  E Ql . This implies [Ai ] = [A] for any j e J . So, by Lemma
2.1, (2.2) and (2.3), we have a filtration of Mi().1 10

0 =M I» c c • • • c MV 1 = Mi(A1 1)1)

such that for every je J

My'/M'yJ, = (M i l M _ 0 [ "  L 1 ( 2;11) )

Let j $ J .  Then, by definition, any weight o f  M [1 ]/Mil_1
1 =(M i /M i _ 1 P ] i s

of the form p lk ,  where p is a  weight of M i /M i _ i  such that it— A' G Q i and ill A'.
Hence, (M [1 1/0 1 2 1 )„, = 0 for any it' /1:

Putting these together, we see that the series

0 = M t »  M [e ] c • • • c MV 1 =

is a local composition series at A' I th, and so

[M P I b/): L P' 110] = 6  I A  f ir =

On the other hand, for any j E J, [Ai ] = [A ] and so k i ll)/ = A' I th implies Ai  = A'.
Therefore

#0 E./ 12;1 I EJ I ki=21

L(.1')] .

This proves the theorem. Q. E. D.

§ 3 .  A partial solution of the Kazhdan-Lusztig conjecture for
Kac-Moody algebras

In  this section, at first, we recall the Kazhdan-Lusztig conjecture for complex
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semisimple Lie algebras, and then introduce a  generalization of it to Kac-Moody
algebras after [3]. M aking use  o f Theorem 2.3, we prove that th e  generalized
conjecture is true for certain good cases (see §3.3).

3.1. Kazhdan-Luszitg conjecture

L et g , be a  complex semisimple Lie algebra, h, a Cartan subalgebra of go ,
and 6 0 a Borel subalgebra containing 1) 0 . Let po be  the element of bt which takes
the value 1 on each simple coroot corresponding to b 0 . Let W, be the Weyl group
of (go , ho )  and S, the set of simple reflections. For each ). e ht, let M 0 (A) be the
Verma module with highest weight A and L 0 (.1.) the unique irreducible quotient of
Mo()D.

The following theorem on  multiplicities of irreducible subquotients of Verma
modules is well-known as the Kazhdan-Lusztig conjecture, which was conjectured in
[7] and proved in [2] and in [1] independently.

Theorem 3.1 [7, Conjecture 1.5]. For all y , w  in W o such that y where
is  the standard partial order on the Cox eter group (W o , S o ) ,  let P be the

Kazhdan-Lusztig polynomial for (W o , S o ). Then, we have

[Mo(YPo —  Po): Lo(wPo —  Po)]=Py ,w(1 ).

Note that the computation of multiplicities of irreducible subquotients of Verma
modules with integral highest weights is reduced to the case in the above theorem
(cf., [4], for example).

3.2. Generalization of the conjecture

In the case where A is a symmetrizable GCM, Deodhar, Gabber and Kac proved
the following result in [3] analogously to the complex semisimple case.

Theorem 3.2 [3 , § 5 ] . L et A  be a  dom inant integral elem ent of  b(A )* and
y e W . T hen, all the irreducible subquotients of M(y(A+ p)— p) are L(w(A+ p)— p)
(w e W, y), and the multiplicity [M(y(A + p)—  p): L(w(A + p)—  p)] is independent
o f t . H e re  p  is  an element of b(A)* which takes the value I  on each simple coroot
and is the standard partial order on the Coxeter group (W , S).

Taking this result into account, they conjectured as follows.

Conjecture 33 [3, Conjecture 5.16]. For all y, w in W  such that y_w ,

[M (y  P )9): L(wP — P)] = Py ,.( 1),

where P the K azhdan-Lusz tig polynomial for (W , S).

We call this conjecture also the Kazhdan-Lusztig conjecture.
Note that the polynomial P  and the multiplicity [M(y p — p): L(w p — p)] are

both equal to z e ro  if  y  w.

3.3. Main theorem

Making use of Theorem 2.3 in §2, we can prove the following theorem which
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implies that Conjecture 3.3 holds for some pairs (y, w).

Theorem 3.4. Let I be any  subset of  f inite type of {1,..., 0  and  WI the sub-
group of W generated by  si ( l e i ) .  Then, f o r all y, w in WI such that w e
have the following expression for the multiplicity:

PAY P P): L (w P —  P)] = P y ,w( 1 )

P ro o f . N otations are as in 2. It is clear that W, is isomorphic to the Weyl
group of (g,, fi,), whose standard order as a  Coxeter group is the restriction of
in ( W, S). And so, by Theorem 3.1, we have

(*) P y ,w(1) = [Mi(YPI — P1): LI(wPI -

for all y, w in W, such that w, where p, is half the sum of all elements in AL + .
On the other hand, for any i e I

M an - p(4 )= I - 1 = 0.
Hence, we have (p,— p) I =  0 ,  which implies that

P)=- P

for all y e W ,. Therefore, it holds that for all y e W,

YPI —Y ( P + P)— Pr

=YP+PI — P — PI= YP — P.

From this and the fact that yp i —wp, belongs to 121 for any y, w in W1 , we see that the
right hand side of (*) is equal to

[M(YP — P): PO]

by Theorem 2.3. Q. E. D.

§ 4. Branching rules for Verma modules over non-twisted affine Lie algebras

In this section, we consider the case where the GCM A is a  so-called extended
Cartan m a tr ix . In  this case, g(A) is called a  non-twisted affine Lie a lgeb ra . As
the subset / in §2, we take the most natural and maximal one in the sense that the
derived subalgebra of g(A) is the universal central extension of the loop algebra C [t,

F o r this subset /, we give a  branching rule fo r Verma modules over g(A)
considered as g 1-modules.

4 .1 .  Non-twisted affine Lie algebras

Let go  be a complex simple Lie algebra and let fio , bo , Wo and S o  be as in 3.1.
We denote by A 0 and z10 ,, the root system of (go , LW and the set of positive roots in
zlo corresponding to 60 , respectively. Let cz,} be the set of simple roots in
A0 ,,  and 0 the highest r o o t .  We define an (/ +1) x (/ +1) matrix A =(a i,) 0 < 0 < , by
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2(oci , cli )/(oti , c(,) if j I,

—20, 0040, 0) if i = 0 and /,
a i i =

2 if

O)/(Œ, ot i)

i =j= 0,

if 1 and j= 0,

where ( • , • ) is the bilinear form on tmk induced by the Killing form K (• ,•) on go .
Then, A  is called an extended Cartan matrix and is a symmetrizable GCM, and the
Kac-Moody algebra g=g(A) is called a  non-twisted affine Lie a lgebra . In  th is
section, A  will always denote the extended Cartan matrix given above.

The non-twisted affine Lie algebra g has a simple realization. We describe this
realization without proof (cf., [6, Chapter 7], for exam ple). L et C [t, r- 1 ]  be the
algebra of Laurent polynomials in  t  with coefficients in C .  A s a vector space, g
is isomorphic to

c40 = C d()C c(D (C [t, t 1 ] ® g0 )

and the bracket in induced by this isomorphism is given by

[a i d +b i c +P I G x ,, a 2 d+b 2 c+P 2 (Dx 2 ]

=Res ((dP adt)P 2 )K (x  x 2 )c+a 1 t(dP2 Idt)Qx 2 +

+a 2 t(dP 1 ld t)0x 1 +P 1 P2 C)[x 1 , x 2]

for ai , b e  C, P i e C[t, t - 1 ] and Xi E go (1=1, 2), where for P e q t , Res (P) is
the coeffitient of in P.

We identify g with 40 . Then, we have an injective Lie algebra homomorphism
from g, into g:

goax 1 , 10 .xeg ,

and so we may (and do) consider g, to be a subalgebra of g. In these identifications,
the Cartan subalgebra b(A) of g is Cc® 

C d O b o •  W e  regard bt as a subspace of
b* by

A(c)= .1.(d) = 0 f o r  A e E .

We define (5 E I)* by

(5(c)= 0, 5 ( d ) =1  and (5 I 1)0 = O.

Then, we have

Œ0  (= the 0-th sim ple root)= —  E

where c , are positive integers, and a i i s  the i-th sim ple root for each 1=1,..., I.
Moreover, we have

A= A(A)=fot+ Mote d o , j e Z1 U 6 Z-""{(2/}}
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z1+  =,(1 4.(A )={a+P la  e U {0},j e z,f >0} u zlo,+ ;

g.+ 0 =tjOg0,„ f o r  /E d o , j e  Z,

g ji3 =  t i  0 1)0 for j e Z - {0},

where g o ,„ is the root space in go corresponding to a e d o .

4 .2 .  Branching rules relative to go

Notaions are as above. W e take {1,..., 1} a s  a  subset I of the index set {0,
1,..., 11 in 2.1, then it holds that g i = go , l = I , zl, = J o and so on . In  this section,
we write Q0  for QI , M o (A) for M1(A) etc. W e  put

11-0,± = E 9±(a+0),

where the sum runs over a e.%10 u {0} and j e  Z , j> O. Then, 110 ,±  is subalgebras of
n +, and we have

n± = no , +  u 0 , ± (direct sum).

For any A eb* , the set of all weights P(M(.1)) is contained in A —Q+ , and so if
A e b " / Q 0  and M(2)" rIz 0, then we have

A =[A—cx] for s o m e  a E Q+

Since a o  ( 5  modulo Q0 , we can take j6  as a above for some non-negative integer j.
Thus, M(A)n =M() [ •'- i 6 ] ( j  Z „ )  if M (A )" 0, and so, in the rest of this section,
we determine what M(A)P - -0 1  i s  as a go-module, that is, we give a branching rule
for M(A) as a go-module.

For j =0 , M(2)P1 is isomorphic to M o (A hi ) )  as proved in  Lemma 2.2 already,
and so we assume that j>  0. W e write the lexicographical order on Q with respect
to the coefficients of ao , a,. It is clear that if a, f ie Q and a  f i, th en
Let v, be a non-zero highest weight vector of M (A ). Then, we have

Lemma 4 .1 .  For any  positive integer j,

m m [A - ib i= E e  LED „o• • • gf l i _„o v
YEQ o (Y,i)

w here E  denotes the summation taken over fik E  4 0  U  { 0 } , n 1 ,• • • , nk 6

{ 0 }  such that

( 61— ni 6 )+ • • • +(fik — nk6 )=Y  — P

Pro o f . By Poincaré-Birkhoff-Witt theorem, we have

M ()= U (n

= U(n o ,_)U(u 0 ,_)v

11(no,—)9fik—no—gfli_noVA
fez YE.2o ( v i )i> 0
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and this sum is direct since M(.) is U(n_)-free. Q. E. D.

For a positive integer j ,  let 1 ( j)  be  the set of elements y  in Q 0  which can be
written as y =f3,+•••+f l i  fo r some f l 1 3 ;  e d o u {0}. W e define a  subset D  of
(z1,-,A 0 )x  Z  by

D={(f3, k)e Z I 1 5k <mult(13)}

and for each element a e Q +, we put

0 (Œ )=  {T  :  D 1— >  z,, Icx = E  T(13, k)13}.
(fl,k )eD

Then, g o (a) is the number of partitions of a into a  sum of elements of
where each element /3 of A +

— A0  is counted with its multiplicity mult (/3).
Recall

M(11) =
 L E E )  m (A )" = EED M ( A ) [ —

ib i
Aeh./Q0 je Z > c ,

as noted in §2. Now, we have the following proposition which, together with the
above decomposition, gives a branching rule of M()) as a go-module.

Proposition 4.2. For each positive integer j, we put

A o(J = fYi,• • • k < m i f
 yk> yrn,

where s= i1t1 0 ( j). Then, there ex ists an  increasing sequence 0= M (m  •••cM (s)=
M().) [ A- m  of  g o -submodules of MG1)[A - .0 1  s u c h  th at  M ( k ) I M ( k - 1 )  is isomorphic
to the direct sum of .90 ( —yk +A-copies of M 0 ( A l t ) 0 + y k )  f or every  k=1,..., s.

P ro o f . For each k =1,..., s, we put

M (k) =  E E u(no, - • • g131 —niSVA 5
15 1 :.k  (y p , j)

where vA, is a non-zero highest weight vector of M (.1). By definition, M(k) is (fio +
n0,_)-invariant. F o r  any a e d o . + , we have in U(g)

-no - n d ]  + gflp -ndg.

got-F13p —np ,3
4- gfl p —np A c t,

and so, by the ordering of ys, M(k ) is also n o -invariant. Hence /Um  is a
go -submodule of M(A) [ A- j 6] . By Lemma 4.1, we have a U(n o ,_)-isomorphism

E  U (n o , ) g f i r n  _ „ , „ 6 • • •gf l i _n o vA .
(yk.i)

Hence, 
m c k > / m c k - i )

 i s  a  free module as a U(n o ,_)-module, and any basis of V -
_n o vA a s  a  complex vector space is a  basis of M(k)/M(k -1 ) as a

U(n o ,_)-m odule. Therefore, it suffices for the proof of the proposition to show
that the dimension of V over C  is equal to go( —yk +A .  In turn, this holds because
Q=Q 0 C), Z,r5 and so (16,— n i 6)+•••+(f 3— n6)=y k —jb if and only if fl i + •• • + f3,„—
yk and n i + ••• +n„,=j. Q. E. D.
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R e m a rk  4 .3 .  I f e b* are integral and we can write .1— A' =a+j6  with
some a E 120  and some non-negative integer j. Then, by the results of §2, we have

(4) EM( 2)[' l t)0)] = [ AAA): LW)] ELVV : 3  1 , 0() :  bOn •

The left hand side of (*) can be computed by Proposition 4.2, Theorem 3.1 and the
translation principle in  th e  complex semisimple case. O n  t h e  o th e r hand, the
coeffitient of [M(A): L(A ')] in the right hand side of (*) is equal to

[L(.1!) [ '
1
 : Lo(A' I bon = [W A' bo): L0( ,1 ' I 110)] = 1

by  (2 .3 ). H ence , if we determine the branching rule of MA") as a g 0 -module for
every integral .1" E b*, we can compute [M(A): LGI!)] inductively.
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