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Around Yor’s theorem on the Brownian sheet
and local time

By

Endre CsAkI, Anténia FOLDES and Yuji KASAHARA®

1. Introduction.

Let {X,;t=R,} (R,=[0, «)) be a standard Brownian motion starting at 0
and let {L(t, x); (t, x)ER+X R} be its local time; i.e., L(¢, x) is a jointly con-
tinuous process such that

S L, x)dngblA(Xs)ds, a.s.
A 0

for all t=0 and every measurable set A. We also let £(t)=(1/2)L(¢, 0). The
following characterizations of ¢4(f) are well-known (see pages 43 and 48 of It6-
McKean [6] and page 130 of lkeda-Watanabe [5]): Let

d.(t)=the number of times that | X,| crosses down from & to 0 up to time ¢,
n.(t)=the number of excursion intervals in (0, {] of length =e¢

and
&.(t) =the total length of excursion intervals in (0, t] of length <e.

Then, it holds that

1.1) lm ed. (H)=2¢(), a.s.,

(1.2) 111;!3 Vre/2 9.()=24(1), a.s.,
and

(1.3) 11£r01 V7w/(2e) E.(1)=2¢(t), a.s.

Some limit theorems for the fluctuations are obtained by one of the authors
([8], see also [2,7]):

Theorem A. As |0, we have that

eI {ed (1) —26(0)) —2> /T B(EQ) ,

e (WRETE )= 2600} 2> 22) 4 Ble(D)
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and
- 9D
eV /(2€) £()—26(1)}) —> (2r/9)/* B(e(t))

in the function space D(R,; R), where {B(t)},s, is a standard Brownian motion
independent of {£(t)},;»o0.

(Throughout the paper 2, denotes the convergence in law.)

In the present paper we introduce another parameter x(>0) and extend
Theorem A for two-parametered processes (¢, x)—d..(t), (¢, x)—7..() and (¢, x)
—&..(?), and show that, under suitable normalizations, Brownian sheets appear
in the limiting processes. By a Brownian sheet we mean a jointly continuous
Gaussian process {W(t, x); (¢, x)R2} with mean zero and covariance
E[(W@, x)W (s, y)]J=min(, s)- min(x, y). This problem is motivated by the fol-
lowing result due to M. Yor ([10]), who obtained a Brownian sheet from the
local time of a one-dimensional Brownian motion.

Theorem B. (M. Yor) As A—oo,
(%o 60, Y21 (1, D) -200}) D> (X, 00, vEW ), 0,

over the function space C(R%; R®), where {W(t, x);{, x)ER2} is a Brownian
sheet independent of {X,}.zo.

Here, C(R%; R®) is the space of all continuous functions from R? to R®
endowed with the topology of compact uniform convergence.

In the present paper, we shall prove similar results for downcrossings and
other characteristics. Main results will be stated in Section 2. In Section 3
we shall study the case of random walks, and in Section 4 we shall give other
limit theorems for d. and .. The proof of the results in Section 2 is based
on point process method and is quite different from Yor’s while the results in
Sections 3 and 4 will be proved by reducing to Yor’s theorem (Theorem B) using
strong invariance principles.

2. Main results.

Theorem B is considered in the function space C(R2; R® but this space is
not suited for downcrossings because d.(t), 7.(t) and &.(t) are discontinuous.
Therefore, we shall consider the function space D(R?; R™), the space of all
functions from R" to R™ which are continuous from above and have limits
from below. We endow this space with Bickel-Wichura’s S-topology: f, con-
verges to f in D(R?; R™) if and only if there exist 1,(&)=(A>()), -+, A™(tL)),
k=1, satisfying the following three conditions.

(i) A(+) is a strictly increasing, continuous function from R, to itself

such that 2{°(0)=0 and A{’(e0)=00, (1S5<n, k=1).

(ii) Ax(t) converges to A.(t)=t uniformly on every compact subset of R?
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as k—oo, (j=1, -+, n).
(iii) f(A:(t)) converges to f(¢) uniformly on every compact subset of R}
as k—oo,

For the details we refer to Bickel-Wichura [1]. Notice that dy;q(t), 71/.(f) and
&.(t) are nondecreasing in a and ¢, and hence choosing suitable versions we
may regard them as random elements of D(R?; R).

Our main results are the following.

Theorem 1. As ¢—+40,
(e7'*{ed.1a(t)—2aL(t)}, £(2)) 2, (VIWGW, a), ) in DR?; R
where {(W(t, a);t, a=0} is a Brownian sheet independent of {£(t);t=0}.
Theorem 2. As ¢—+0,
(7 nea)—~Ba/m L)}, (1))
2 ((2)"weew, v, av)  in DRE; RY,
where W(t, a) is the same as in Theorem 1.

Theorem 3. As ¢—+0,

(4= gt vBaTm 60}, 0)

o (o) "Weew, @y, ) in DRE; R,

where W(t, a) is the same as in Theorem 1.
Proof of Theorem 1. Throughout we shall use the convention that d.(t)=0

when e=co, and f~'(¢) denotes the right-continuous inverse function of the non-

decreasing function f(¢). Also X2Y means that X and Y are equally distributed.
Notice that d.(¢7'(t)) may be expressed as follows:

d(¢7 ()=Ni((0, t]X(e, o))

where N,(dt, da) is a Poisson random measure on (0, o)* such that E[N,(d¢t, dx)]
=2x"%dtdx, (see page 130 of lkeda-Watanabe [5]). We also remark that for
every fixed t>0, £7'(¢(t)) is the first hitting time of 0 after time 7. Therefore,
see that

2.1) 0Zd. (e e —d.)<T, a.e.
Lemma 2.1. Let

W, a)= edeo(¢7' W) —2at}, 1, a=0.

1y
V2
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Then, as e—+0,
W, @), ) D Wt a), ¢0),  in DR RY),

where W(t, a) is the same as in Theorem 1.

Proof. Let N(t, a)=N,<(0, t]x(%, oo)) t, a=0. Since N is a two-param-
etered Poisson process with E[N(t, a)]=2at, it is easy to see that, as ¢ |0,

1
V2
Indeed, for every fixed t=0, the convergence of W.(¢, -) to W(¢, -) is the usual
invariance principle and furthermore, for t>s=0, W (¢, -)—W.(s, -)is independent
of {W(u, -); u<s}. Therefore, we have that all finite-dimensional distributions
of W, converge weakly to those of W. In order to prove the tightness in S-
topology it is sufficient to show the following two conditions:

(i) Wt 0)=W.0, a)=0, a.s., for every t=0 and a=0.

(ii) There exists a constant K>0 such that E[W.(B)*W .(C¥*]<Ku(BUC)?
for every neighboring blocks B and C of R2, where W.(A) is the
increment of W, around A and g denotes the Lebesgue measure.

W1, a)= {eN(z‘, %)—2at}—@>W(z‘, a), in D(R:R).

For details we refer to Bickel-Wichura [1]. Let us check the above conditions.
(i) is clear by definition, and (ii) is also easy because W (B) and W.(C) are in-
dependent and E[W.(A)]=p(A). Therefore, (ii) is satisfied with K=1. Thus

we have seen that W .(t, a)£W(t, a) in D(R%; R). It remains to show the
independence of W(-, -) and ¢(-). Let 0<a,< - <a,. Then for every >0,
Z.=W(t, ay), -+, W, a,), £7'(t)) is an R™*'-valued Lévy process. Let Z*(¢)
=W*@, ay), -, W*@, an), ¢*(t)) be any limit process of {Z.}.. (As we have

seen above, {Z.}. is tight in D(R,; R™*').) Of course W* =W and ¢* < ¢,
and furthermore, Z* has independent increments since so has Z.. Since (W*, 0)
and (0, ¢*) are respectively the Gaussian and the Poisson part of Lévy process

Z* we conclude that W* and ¢* are independent by Lévy-Ité’s theorem.
(Q.E.D.)

We continue the proof of Theorem 1. It is well known as Skorohod’s
theorem that convergence in law can be realized by an almost everywhere con-
vergence without changing the laws. Therefore, by Lemma 2.1, we can con-
struct stochastic processes W¥, ¢* (¢>0), W* and ¢* (on a suitable probability
space) such that

(2.2) W*@, a), €X() = W.@¢, a), £7(t)),
2.3) W, a), €*7'@) = W, a), £7'@),

and
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(2.4) lirrol (W¥, e =W, '), in D(R%; RY), a.s.
el

Since ¢*(t) is continuous, it follows from (2.4) that ¢*(t) converges to £*(t) uni-
formly for ¢ on every finite interval with probability one. Therefore, we see
that W*(¢*(@t), a) converges to W*(¢*(t, a)) in D(R%; R) almost surely, which
combined with (2.2) and (2.3) implies

(2.5) (W(et), a), €) = W), a), €@) .

Keeping (2.1) and definition of W, in mind, we see that (2.5) proves the asser-
tion of Theorem 1. (Q.E.D.)

Proof of Theorem 2. It is known that %.(¢7'(t))=N.((0, t]X(e, =)), where

Ny(dt, dx) is a Poisson random measure on (0, )* with E[N,(dt, dx)]=

2/m x**dtdx (see page 130 of lkeda-Watanabe [5]). Therefore, the assertion
of Lemma 2.1 holds for

Wit =(5)" e Ven s )~ VBIRatl, 1, a20.

Now the rest of the proof of Theorem 2 is the same as that of Theorem 1.
(Q.E.D.)

Proof of Theorem 3. Notice that £&.(¢7'(t)) may be expressed as follows:

55(5'1(0):“ xNy(ds, dx),

€0,81%(0,¢€)
where N, is the same as in the proof of Theorem 2. Let

X, a)=s““{7lg~——$sa(£“(t))—\/Sa/n: t} , t,a=0.

Then X.(t, a) may be expressed as follows:

X, a)z—-e'a“gg xNyds, dx),

(0,£3%¢0, ac]

where, Ny(dt, dx)=N,(dt, dx)— E[Ny(dt, dx)]. Therefore, for every 0<a<b,

ELX.¢, )X., b)]ze""ztgzaxzx/mx'mdx
=4/8/(9r) a®% .
Thus we easily see that the finite-dimensional marginal distributions of X.(¢, a)
converge to those of (8/(9x))'/*W(t, a®*) (see, for example, Theorem 4.1 of
Kasahara-Watanabe [9]). Tightness in D(R2; R) as well as the rest of the

proof of Theorem 3 can be established in a similar way as in the proof of
Theorem 1, and we omit the details. (Q.E.D.)

To conclude this section we remark that, by the scaling property of Brownian
motion, Theorems 1-3 may be rewritten as follows:
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Theorem 1. As A—oco,

(A4 dy o(A)—2a 808}, A7126(A1))

2 (V2W (@), a), €@))  in D(RZ; R?).

where W(t, a) is the same as in Theorem 1.

Theorem 2. As A—oo,
(A1) —8a/m £(A)}, A72E(AP))

9D / _
2, ((%) W, Va), €0)  in DR R,
where W (¢, a) is the same as in Theorem 1.

Theorem 3’. As A—co,

(A E,()—/Ba/m e(At)}, 27H24(At))

2, ((g—i—)'“ww(t), @), (1) in D(RY; R,

where W(t, a) is the same as in Theorem 1.

3. Local times of random walk.

Let X,, X,, .-+, be a sequence of independent, identically distributed (i.i.d.)
random variables taking values on integers Z. Throughout we assume that

E(X)=0, Var (X))=0*’<oo ,
and
g.c.d.{k; P(X,;=k)>0}=1.

We further put a technical assumption that
E{| X"} <0 for some ¢>0.

The random walk S,=0, S,=X,+X,+ --- +X,, n=1, is recurrent and the local
time is defined by

N, N=#{k;0=k<t, Sy=j}, (=R, jeZ.

For real x, we define N(¢t, x)=N(t, [x]).

Theorem 4. For A—co, and e=<(A) | 0 such that v/¢log A—»0 and As*— oo,
we have

(s'ﬂz-w{N(xt, %)—N(Zt, 0)}, AN, 0))

2 ((2)"wew. o, Zew),
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in D(RZ: R?), where ¢(+) and W(-, +) are the same as in Theorem 1.

Proof. From Theorem 1.2 of Borodin ([3]) we have that, under the above
conditions,

sup| L(na?, x)—a®N(n, x)|=0(n'*log n), a.s., as n—oo |
xz
for an appropriate construction of L(-, -) and N(-, ). Consequently,

e"zl"“{N(lt, %)—N(,lt, 0)}

=o-rerz L (o, [2]) - Liaot, O} +0(e7 log 2).
By the scaling property of the Brownian motion, letting a.=e[a/e], we see that
o231 L (107, [%])—L(Zozt, 0}
is distributed like
g PN L(t, a./AN—L(t, 0)}, NV=ea/1,

which converges to 2«/2_0"3’2W(E(t), a) as Ae’—>oo, by Theorem B. Similarly one
gets that A'/2N(4t, 0) converges in law to (2/a)¢(t). (Q.E.D))

Remark. Obviously N(¢, a) can be replaced by any other characteristic of
the local time for which Theorem 1.2 or 1.4 of Borodin ([3]) holds.

4. Downcrossings and excursions around various points.

In the present section we consider downcrossings and excursions around
various points. Let {X,},., be a standard Brownian motion as before, and for
a <R define

d.(t: a)=the number of times that | X,—a| crosses down from
x=¢ to x=0 by time ¢
and
7.(t; a)=the number of excursion intervals of X,—a in (0, ]
of length =e.

Theorem 5. For A—oo, and e=¢(A) | 0 such that e (log 1/¢)*—0, we have that
| _ a
(%o, e, vae{d(t; 5)—dut; 0)
D _
—> (X, (1), 24/2W(L(1), a)),
in D(R2; R®), where ¢(-) and W(-, ) are the same as in Theorem B.

Proof. 1t is proved by Borodin (Theorem 1.5 of [2]) that
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4.1) ed.(t; &)= L(t, )=0(V< log %) a.s, asel0,
uniformly for (¢, a)e[0, T]X R for every fixed T>0. Therefore, we get

VI{d(t;5)—d.t; 0

=\/2_{L(t, %))—L(t, O)}+\/Z—O(\/Elog%), a.s., asel0,

where O(+/s log 1/¢) is uniform in (¢, a, )€[0, TIXRX R for every fixed T >0.
This combined with Theorem B proves the theorem. (Q.E.D.)

Corollary. For e=e() such that ¢ |0 and +/¢log A—0, as A—co, we have,

1 ]' -1/4 . .
(T Xae < LG, €242t 5 @)= d (it O)F)

—94 (X, £@), 22W (£(1), a))
in D(R?; R®).

Proof. By the scale change property of the Brownian motion, the assertion
of Theorem 5 may be rewritten as

(5 Xaser 0000, VTelda 25 @)~ 215 0)))

D _
e (Xtv [(t)y 2'\/2W(e(t)y a)) .
Replacing 2% by 2’ and ¢ by &’/+/2’ we have the assertion. (Q.E.D.)

Theorem 6. For e=&() such that €10 and v/Ae'* log 1/e=0(1) as A—co,
we have

(%, et verfn(t: %) —nt; 0})

D 4
— (X, 60, =W, @),
in D(R}; R®), where £(-) and W(-, -) are the same as in Theorem B.

Proof. The proof is essentially the same as that of Theorem 5. The only
difference is that we use the following result due to Csirgé and Révész ([4))
in place of (4.1).

_ — 1
e a)— — 1/4 =
(a‘t)gggm.nlx/em(t,a) V2/xL(t, a)l o(e log E), a.s.

(Q.E.D))

Corollary. For e=¢e(A) such that ¢ | 0 and ' log A=0(1) as A—co, we have
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1 1 —
“.2) (3 Xae 7000, VEX M.t s @)= 7.2t 5 0)})
9 4
= (Xo 60, =W, @),
in D(R2; R®), where W(-, ) is the same as in Theorem 1.

Proof. Apply first the scale change property as in the proof of Corollary

of Theorem 5 and next replace A* by A’ and ¢ by ¢’/4’. Then we have the
assertion. (Q.E.D.)
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