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Around Yor's theorem on the Brownian sheet
and local time

By

Endre CsAKT, Ant6nia RiLDES and Y uji KASAHARA *)

1. Introduction.

Let { X ;  tER+ (R+ = [0, co)) be a standard Brownian motion sta rting  a t 0
and let {L(t, x ); (t, x )E R + xR1 b e  its  local time ; e . ,  L(t, x ) i s  a  jointly con-
tinuous process such that

A

L(t, x)dxZ_0 1A (X,)ds , a. s.,
 D

fo r a ll and  every measurable set A . W e also le t  t(t)=-- (1/2)L(t, 0). T h e
following characterizations of i(t ) are well-known (see pages 43 and 48 of Itô-
McKean [6] and page 130 of Ikeda-Watanabe [5]) : Let

dt (t) ,  the number of tim es that I X, I  crosses down from e to  0  up to time t,

7),(t)= the num ber of excursion intervals in (0, t ]  of length

and
et (t) = th e  total length  of excursion intervals in (0, t ]  of length  <E.

Then, it holds that

lim scl,(t)=2E(t), a. s.,

lim ,VrE/2 7),(t)=-- 2 e(t) , a. s.,

lim -Or/(2E),(t)=2.8(t), a. s.

S om e lim it theorem s for the  fluctuations are  obtained by one of the authors
([8], see also [2, 7]) :

Theorem A .  As s  0 , we have that
g

s- 1 1 2 {Ed(t)-2€(t)} —> -s/ 2 B(e(0),

2
s -114 , ,O r E  /2 7 (0-20)} --> (276' 14 13(00)

* )  R esearch  o f the  f irs t  tw o  a u th o rs  is  su p p o rte d  b y  H u n g a ria n  N ationa l Foundation
fo r  Scientific R esearch  G rant N o . 1808.

C om m unicated by P rof. S .  W atanabe, M ay 6, 1987
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and

e-1/4{-Vr/(2s),(t)-28(t)} (271-19)4B(i(t))

in the function space D(R + ; R), where {B(t)} e ,  i s  a standard Brownian motion
independent of it(t)h,0.

(Throughout th e  paper denotes the convergence in law.)
I n  t h e  p resen t paper w e  in troduce  ano ther param ete r x(>0) and extend

Theorem  A  fo r  two-parametered processes (t, x) dE.,(t), (t, x)' - ” )x ( t )  and (t, x)
,—e, r (t), and show  that, under suitable norm alizations, Brownian sheets appear
in  th e  lim iting  p rocesses. B y  a  Brownian sheet we m ean a  jointly continuous
G a u ss ia n  p ro c e ss  1W(t, x ); (t, x )E M I  w i t h  m e a n  z e ro  a n d  c o v a r ia n c e
E[W (t, x)W (s, y)]=min(t, s). min (x, y ) .  T h is  problem is motivated by th e  fol-
lo w in g  re su lt d u e  t o  M . Yor D OD , who obtained a  Brownian sheet from  the
local tim e o f  a  one-dimensional Brownian motion.

Theorem B . (M . Y o r )  As 2—>co,

(X e {L (t ,  - - ) -2 1 (t )} ) - ->  (X e , go, A/2 W (i(t), a )),2

over the function space C(M; R 3 ), w here {W (t, x); (t, x)ER_N is a Brownian
sheet independent of X 3} ezo.

H ere, C(RI ; R 8 )  is  the  space o f  a ll con tinuous func tions from  R !. t o  R 3

endowed with the  topology of compact uniform convergence.
In  th e  present paper, w e shall prove sim ilar results fo r  downcrossings and

other characteristics. M ain  re su lts  w ill b e  s ta ted  in Section 2. In Section 3
w e shall study the case of random  walks, and in Section 4 w e shall give other
lim it theo rem s f o r  d ,  an d  r2,. T h e  proof o f  th e  results in Section 2 is based
on point process method and  is quite  d ifferent from  Yor's w hile th e  resu lts  in
Sections 3 and 4 will be proved by reducing to Yor's theorem (Theorem B) using
strong invariance principles.

2 .  Main results.

Theorem  B is considered in  the  function space C (R ; R 3 )  but this space is
n o t su ite d  f o r  downcrossings because d,(t), )2 ,(t) a n d  e,(t) are  discontinuous.
Therefore, w e shall consider th e  function space D(R; R 'tm ), t h e  space o f  all
func tions from  I V  t o  Rrn w h ich  a r e  continuous from above and have limits
from  below . W e endow  this space w ith  Bickel-Wichura's S-topology : f , ,  co n -
verges to  f  in  D(R 7

+'; Rm ) if  a n d  o n ly  if  th e re  e x is t  k(t)= (4 ' ) (t 1), 2 1 n )(t  n »,
k 1, satisfying th e  following three conditions.

( i ) A P '(• ) is  a  strictly increasing, continuous function from  R ,  to  itself
such that 4) ) (0)=0 and 2k.0 (00)= 00, j5 n ,

(ii) y l k ( t )  converges t o  2.(t),_= t  uniformly on  every compact subset of
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a s  k—>00, (j=1, ••• , n).
(iii) f k(2k(t)) converges to  f ( t )  uniformly on e v e ry  compact su b se t of

a s  k--00.
For the deta ils w e refer to  Bickel-Wichura [1]. Notice th a t  dii.(0, 77i/a(t) and
ea(t) a re  nondecreasing i n  a  a n d  t, and hence choosing suitable versions we
m ay regard them  as random elements of D(R?_; R).

Our m ain results are the following.

Theorem 1. A s 6—r+0,
2  _(s - i i 2 i s d a a ( t ) -2 0 ( t )} , i ( t ) ) --> (A /2W (t(t), a), OD in  D (ft4 ; R 2 ) .

where W ( t ,  a); t, a_ -_01 is a  Brownian sheet independent o f  M t); t . - 01

Theorem 2. A s s--*+0,

(6 - 1 " { -%/ 72/a(t) - - V 8 a/ z 0 )1 , 0 ))
g  ( ( i rg ) 1/4v e  t(  )  ,/ a i ,  0 ) ) in  D (M ; R 2 ) ,

where W(t, a) is  the same as in  Theorem 1.

Theorem 3 .  A s 6—H-0,

(6 - 1 / 4 { e.(t)--A/8a/r i( t ) ,  i ( t ) )

D ( ( 9 87 c ) 114
W(t (t), a 2 1 2 ), t(t))

where W (t, a) is  the same as in  Theorem 1.

in  D(R 4̀1; R 2 ) ,

Proof  o f  Theorem 1. Throughout w e shall use the convention that d e (t)--- 0
w hen 6, 00, and f - '( t)  denotes the right-continuous inverse function of the non-

decreasing function f (t). Also X c±-Y means that X and Y are equally distributed.
Notice th a t  d ,(e - i(t)) may be expressed as follows:

d ,( i - J(t)) =N 1((0, t ] x ( ,  00))

w here Ari (d t, d a ) is  a Poisson random measure on (0, 00)2 su c h  th a t  E[N i (dt, dx)]
=- 2x - 2 dtdx , (see page 130 of Ikeda-W atanabe [5]). W e  a ls o  re m a rk  th a t  for
every fixed t> 0 , E- '(€(0) is  the first h itting  tim e of 0 afte r tim e t. Therefore,
see that

(2.1) 0_< dd-1(i(t)))— d,(t)51 , a. e.

Lemma 2 .1 . Let

1  W ,(t, a) ,  — { e d q  (€ ' ( t ) ) -2 a t} ,A/2e t,
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T hen, as

(W ,(t, a), E- '(t)) (W (t, a), € '( t ) ) , i n  D ( R 1 ;  R 2) ,

where W (t, a) is  the sam e as in  Theorem 1.

P ro o f .  Let N (t, a)=N i ((0, t1X ( 1

a
, co)), t, a. O. Since N  is  a  two-param-

etered Poisson process w ith E[N (t, a)]=2at, it is  easy  to  see  th a t, as E J,  0,

W,(t, a)--= ,v 2 i ieN (t, —
a

)-2at} W (t, a), in D(R1_ ; R) .

Indeed, for every fixed  t O, the convergence of W e(t, •) to  W (t, •) i s  the usual
invariance principle and furthermore, for t>.s 0, W e (t, •)— W ,(s, •)is independent
o f {W ,(u, •); u s). Therefore, we have that all finite-dimensional distributions
of W , converge w eakly to those o f  W . In  o rd e r  to  p ro v e  th e  tightness in  S-
topology it is sufficient to show the following two conditions:

( i) W e (t, 0)=W,(0, a)=0, a. s., for every t O and a 1;).
(ii) There exists a constant K>0 such  that E[W s (B) 2W,(C) 2 ] . .K.f t(B uC) 2

for every neighboring blocks B  and C  of R 1_, where W s (A ) is  the
increment of W , around A  and 1.1 denotes the Lebesgue measure.

For details w e refer to  Bickel-W ichura [1]. Let us check the above conditions.
(i) is clear by definition, and (ii) is also easy because W ,(B) and W ,(C) are  in-
dependent and EMT ,(A)2 1=-72(A ). Therefore, ( ii)  is satisfied w ith K = 1 . Thus

w e  have s e e n  th a t  Ws (t, a) W (t, a) in  D(R.T. ; R). I t  r e m a in s  to  show the
independence o f  W( •, • )  a n d  €(•). Let O.< a,< ••• <a n . T hen  for every s>0,
Z s (t) , --(W ,(t, a 1),••• , W ,(t, a n ), ri(t)) is  an Rn ."-valued Lévy process. L et Z*(t)
=(W *(t, a 1), ••• , W *(t, a n ), 0*(0) b e  a n y  lim it p ro c e ss  o f  {Ze },. (As w e have

seen  above, {Z, }e i s  t i g h t  i n  D(R + ;  R " ') . )  Of course W *  W  and 0 *  0 ,
and furthermore, Z * has independent increments since so has Z , .  Since (W*, 0)
and (0, 0*) are respectively the Gaussian and the Poisson part o f  Lévy process
Z *, we conclude that W* and V ` are independent by Lévy-It6's theorem.

(Q. E. D.)

W e  continue the p ro o f o f  Theorem 1. I t  is  w e ll  k n o w n  as Skorohod's
theorem  that convergence in law can be realized by an  almost everywhere con-
vergence without changing the law s. T here fo re , by  L em m a 2 .1 , we can con-
struct stochastic processes (e> 0), W * and V ' (on a suitable probability
space) such that

(2.2) (IV(t, a), t t - '(t)) (W s (t, a), E - V )),

(2.3) (W *(t, a), e* - '(t)) (W (t, a), € 1(t)),

and
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(2.4) lim (1/1/, t? - ') = (W , 0 - 1 ), in  D(RT ; R 2 ) ,  a. s.E,0

Since  £*(t) is continuous, it follows from  (2.4) th a t  M t) converges to  €*(t) uni-
formly fo r  t o n  every finite interval w ith probability one. T herefo re , w e  see
th a t  TP,K(tt(t), a )  converges t o  W*(i*(t, a))  i n  D (R i.; R ) almost surely, which
combined with (2.2) and  (2.3) implies

0
(2.5) (W ,(e(t), a), t(t)) (147(0 )) ,  a), i(t)).

Keeping (2.1) and definition o f W, in m ind, w e  see  tha t (2.5) proves the  asser-
tion of Theorem  1. (Q. E. D.)

Proof o f  Theorem 2. I t  is  k n o w n  th a t  )7,(e'(0)=N 2 ((0, t ] X (, co )), where
N2 (dt, dx) is a  P o is s o n  random  m easure  o n  (0, 00)2 w i t h  E[N2(dt, dx)]=
.V2/7: x - 3 1 2 dtdx  (see page 130 o f Ikeda-Watanabe [5 ] ) .  Therefore , the assertion
of Lemma 2.1 holds for

r  1/ 4
W,(t, a)= —

)
(

8

6- ' 14 -Vs 12s/a2(t - 1 (0)—

Now the  re st o f  th e  proof of Theorem  2 is  th e  same a s  th a t  o f Theorem  1.
(Q. E. D.)

Proof o f  Theorem 3. Notice th a t e , ( i - V )) may be expressed a s  follows :

e (t - 1 (t » -= xN2(ds, dx),
CO. t] (0, e)

where N 2  is  th e  same a s  in  th e  proof o f Theorem 2. Let

X,(t, a)=s - 1 /4 U -i -- ,,,(t - 0 (t))--N/8a/77 , t, a >.0 .

T hen  Xs (t, a) m ay be expressed a s  follows:

X e (t, a)=e - 3 1 4 d x ) ,co,t]x<0, as]

w here, g 2 (dt, dx)=Nz (dt, dx)—E[N2 (dt, dx)]. Therefore, fo r  every 0 _ a< b ,

E[X,(t, a)X,(t, b)1=s - 3 1 :  x 2 A/2/7rx - " 2 dx

= -V8 / (97) 0 1 2 1. .

Thus w e easily  see that the  finite-dimensional marginal distributions of X,(t, a)
converge to  th o s e  o f  (8/(97r)) 1 1 4 W(t, a3 1 0 ) (see , f o r  exam ple, Theorem  4.1 of
Kasahara-Watanabe [9]). T igh tness i n  D (M _; R ) a s  w e ll a s  th e  re st of the
proof o f Theorem 3 can be established i n  a  s im ila r  w a y  a s  i n  t h e  p roof of
Theorem  1, and w e  om it the details. ( Q .  E .  D.)

t,

To conclude this section we remark that, by the scaling property o f  Brownian
motion, Theorem s 1-3 m ay be rew ritten a s  follows :
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Theorem 1'. A s 2 - 4 0 0 ,

(2- 1 / 4 {dila(20 - 2a041, 1 / 2 € ( 2 0 )

2
----> (A/2W(f(t), a), e(t)) in D(R! ; R 2).

where W(t, a) is the same as in  Theorem 1.

Theorem 2'. As
( 2 - 1 / 4

{721, a (t)— A/8a/7r e(At)} , 2- i/2e(2t))
o  ( (  7 ,8 ) 2/4

W  (t), A/a), t(t))

where W(t, a) is the same as in  Theorem 1.

Theorem 3 ' .  A s 2—*co,

(2 - '" {e a (t)— A/8a/7r €(2t)}, 2 - 1 0 i(2t))

in D(.1V,'. ; 1r),

0 8 2/ 4t i )
W (t(t), a '"), 8 (0 in

97r

where W(t, a) is the same as in  Theorem 1.

D(R:1
3_ ;  R 2 ),

3 .  Local times o f random walk.

Let XI, X2, • • •  , be a  sequence of independent, identically distributed (i. d . )
random variables taking values on integers Z .  Throughout we assume that

E(X 1)=-0 , Var (X1)=a 2 < co
and

g. c. d . k ; P (X i =k)>01=1.

We further put a  technical assumption that

E  I Xil ° ±9 <00 for some s >0 .

T he random walk S,=0, Sn=X1-1-X2+ ••• +X7i, n  1 ,  is recurrent and the local
time is defined by

N(t, j)-= # { k ; O k t , S k = j} , tER+, jE  Z .

For real x , we define N (t, x )=N (t, [x ]).

Theorem 4 .  Fo r 2 — >0 0 , and s=s(2)1,0 such that A/ lo g and As'—*00,
we have

(E' 122- ' 14 {N(2t, 0)}, 2 -1 1 2 N(2t, 0))

0 23/22

---> w(e(t), a), _ € (t ) ) .
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in D (R .2,. ; R 2 ),  where e (•) and W (., • )  are the saine as in  Theorem 1.

Pro o f . From  Theorem  1.2 of Borodin ([3]) we have tha t, under the above
conditions,

sup I L(na 2 , x)—a 2 N(n, x)1 -= 0 (n iii log n), a. s., as n—>oo ,

for an appropriate construction of L (., - )  and N( •, •). Consequently,

6  112,

A -1,4 {N (2t N(2t , 0)}

= 0 .-261,22-1,44 (2 72t ,0 ) } ± 0 ( 6 1 , 2  lo g  2)

By the scaling property of the Brownian motion, letting a, , e[a/s], we see that

7 - 2 s 1 / 2 - 1 / (  0 . 2 t [  ] ) ( 2 a  2 t  0 ) } .

is distributed like

a - 3 0 (2') 1 1 2 {L (t, a l2 ')— L (t, 0)1, 2 '= ea V 2 ,

which converges to 2A/26 - 2 /2 W(t(t), a )  as 2s2 —>oo, by Theorem  B .  Similarly one
g e ts  th a t 2- 1 1 2 N(2t, 0) converges in law  to  (2/ a)t(t). (Q. E. D.)

R em ark. O bviously N (t, a) can be replaced by any other characteristic  of
the local tim e for w hich Theorem  1.2 o r 1.4 of Borodin ([3]) holds.

4. Downcrossings and excursions around various points.

In  th e  presen t section w e con sid e r downcrossings and excursions around
various poin ts. L e t {X 2 }2 0 b e  a standard Brownian motion as before , and for
a E R  define

dE( t ;  a)=the number of tim es th a t IX 8 — a  crosses down from
x = s  to  x= 0  by tim e t

and
12,(t ; a)=the number of excursion intervals of X e — a in (0, t]

of length

Theorem 5 .  For 2 —f oc, and e=6(2)1 0 such that 2s (log 1/s)2 —>0, we have that

(X t , i(t), e-{d ,(t ; d s (t ; 0)} )

(X e , Et), 2V2W (t(t), a)),

in D(R_2, ;  R 3 ),  where €(•) and J47(., • )  are the saine as in Theorem B.

Pro o f . It is p roved  by  Borodin (Theorem 1.5 o f [2 ]) that
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(4.1) E d ,(t ; a )— L(t, a)=0(Ari - log ), a. s., a s  s 0,

uniformly fo r (t, a )E [0, T ]x R  fo r every fixed T >0. Therefore, we get

ds (t ; 0)}-

1
{L (t, —

a

))— L(t, 0) + 0(-Ve log a. s., a s 0,

where O(',/log 1/s) is uniform in (t, a, 2 )E [0 , T ]x R x R  fo r  every fixed T >0.
T his combined with Theorem B proves th e  theorem. (Q. E. D.)

Corollary. F or s=e(2) such that s 0 and ,/log 2—>0, as 2—>oo, we have,
( 1 1 

— X 2t £(2t), e2 -1 1 4 {d cUil,(2t; a)— t-V2

0 (x„ e(t), 2,0  W(E(t), a))
in  D(RT_; R 3 ).

Pro o f . By th e  scale change property of the Brownian motion, the assertion
o f  Theorem 5 may be rewritten as

(1X22'e —
1

E(22t) -V2e{cl 2 ,(22t; a)—d2,(2 2t; 0)1)
 2

2
- - > (Xe,2 A / 2 W ( t ( t ) ,  a)).

Replacing 2 by 2' and  s by s'/A/-2-' we have the  assertion. (Q. E. D.)

Theorem 6. F or s=e(2 ) such that s 10 and -V2s1"  log 1/s=0(1) as
we have

(x„ 0 ), ,vs— ,1{77,(t ; 1)--7) ,(t ; o)D

(x„ 0), ,v
4
77. W(E(t), a)),

in  D(RT; R 3 ), where €(•) and W (., -) a re th e same a s in  Theorem B.

Pro o f . T h e  proof is essentially th e  same as that o f Theorem 5. T he  only
difference is that we use  the  following result due to Cs5rg6 and  Révész ([41)
in place of (4.1).

sup I -\/ :7) (t ; a)--V2/7t- L (t, a )l=o (s 'I' log 1 ), a. s.
(a, t)e R x  [0 , T3

(Q. E. D.)

Corollary. F or E = E (2) such that e IA  and s'" log 2=0(1) as 2—>o°, we have
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(4.2) ( 1 X 2 t  -1 - € ( 2 t )  ,Ve2 - ' 1 4 {. (At; a)— (2t; O)} ).s/

0 4
---> (X , 0 )" —W(E(t), a)), Ahr

in  D(10; IC), where W (., •) is  th e  same a s  in  Theorem 1.

Pro o f . Apply first th e  scale change property a s  in  t h e  p roo f o f  Corollary
o f  Theorem  5  a n d  n e x t  re p la c e  2 ' by 2 ' a n d  s b y  s7 2'. T h en  w e  have the
assertion. (Q. E. D.)
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