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Gevrey-hypoelliptic operators which
are not C"-hypoelliptic
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Takashi OKAJI

1 .  Introduction

T h e  purpose of th is paper is to  show th a t th e  hypoellipticity in  the Gevrey
class is compatible w ith  th e  non-hypoellipticity in  C-  c la s s .  F o r  a  subset w of
R n, w e denote the  Gevrey class w ith index s b y  78 (w ). W e call th e  operator P
f-hypoelliptic Iresp. C - -hypoellipticl a t the point x if there is some neighborhood
w o f  x such that if  uEe'(w ) and  for any o/Cco, P u E rs(to ')  {resp. C- (0)')}, then
u ers(co') resp. C - (co')}.

L e t  Q  b e  a  s u b s e t  o f  Rn, I  a  re a l a n a ly tic  c o n ic  submanifold of
codimension 2 o f  T*(Q ) a n d  p a  poin t on  E .  W e define M r(E , p ) to  b e  the
class o f g e rm s o f  hom ogeneous analytic sym bols p(x, e)er'-„Sr.,, a t  p  which
h a s  th e  p ro p erty  tha t i n  some conic neighborhood r o f  p, p(x, e)=- 0 exactly
on X  and  fo r some zEC, zp-=a+ib, w here a, b a re  real-valued, cl$ a # 0  in
a n d  Hgb=0 o n  2 7 1 r  i f  j< k  b u t  I-M * 0  in P .  H e r e  H a = E  aa/de,a/ax,
avaxj aiae,. W e denote H fg b y  I f ,  gl.

W e consider a  classical analytic pseudo-differential operator P  with symbol
CO

p(x, e)- p, (x, and suppose thatj=0
1) p (x , e )= 0  exactly o n  X,
2) fo r  each pE .E  there is some conic neighborhood of p in  w hich pm (x, e)

=q 2 (x, e) w here qEMI,n"(E, p), and
3 )  A -1(x , e) 0  o n  T.
T hen , w e  have

Theorem 1. Under the assumption 1)-3), P  is  rs-hypoelliptic in Q if  2_s<4.
Moreover, if  f o r som e pEE, z(q) 2 Pf,i (p )E R _, then P  is  n o t  C- -hyPoelliptic at
7r(p), where z(q)=(Q, iq , q}}, and 77  is a projection on the base space.

Theorem 2. L et k be a positive even integer, c a non-zero complex number
and P=-- (D1d-ixiD2) 2 +cD2, w here .13;

, - -ia/ax 1 . T hen, P  i s  rs-hypoelliptic at
the origin for 1 s<2k/(k-1) but P  is not C- -hypoelliptic at the origin.

W e shall prove these results by constructing a  parametrix which is viewed
as vector-valued pseudo-differential operator of infinite order in the Gevrey class.
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2. G evrey pseudo-differential operators o f infinite order

In  [6], some class of Gevrey pseudo-differential operators o f  infinite order
h a s  b e e n  a lre a d y  in tro d u c e d . In  th is  section, we introduce another class of
th e m . Our class is a  generalization of the  class of analytic pseudo-differential
operators of finite order given by G . Métivier.

Let D be an open set of R I' and s, p, cl be rea l num bers such  that s_1, 0
and O (3< 1 . W e shall deno te  by  1s-S7:6 (12) th e  space o f  all functions

p(x, e)E C"(DX/V) sa tisfy ing  th e  following condition : for every compact set
K cD , there exist constants C and R, and for every s> 0, there  ex ists a  con-
s ta n t C, such that

là 1641)(x, e)I_C.X 1a + '91 ( 313/1e1) 4" 131 (l al s + lal s ( 1 - 6 ) 1e16) 1a1 exP(Elel" 8)

for every a, p, and xEK, eE R n  w ith  R1/318 .<1E1.
Replacing exp(Elel l ") by lelm in the above definition, we obtain 1'-SA(Q),

the class of Gevrey pseudo-differential operators of finite order.

For pEr'-s(,Q), the operator op(p) {or p(x, D)}, w ith  kerne l exp{i(x—y, e)}

Xp(x,e)de is well defined and maps rt,(D) in 7 , ( Q )  and 7 ( 8 ) / ( Q )  in  TV) '(D), where
7(S)I(Q) and TV) '(D) are the d u a ls  of 1 3(D) a n d  rgD), respectively, a n d  de=
(270'de.

For the conic sets QxrcS2xRn, we also define 7 '- ,S (Q x r) by an  obvi-
ous way :  replacing eE R n  b y  e E r .  W e often call p a  symbol of type (p, 3)
w hen there  is no ambiguity.

Now, we introduce the formal symbol : let p, be a  sequence of non-negative
real num ber such that for some K>0, E exp( — Kii i )<+ 00. We shall say EP.(x, E)

a  formal symbol if the following condition is satisfied : for every compact subset
K cS 2, there  exist constants C and R and for every  e>O, th e re  ex is ts  a  con-
s ta n t C, such that

la`laii);(x,e)15C:.C l a + PI(Ctii)iiilel - Pi(lAl s/161)P
1/31

X(Ials-Flal w - m le n 'exP (s le l"s )

for a ll j, a , p, X E K , eE R n  w ith  R(1,8 I -Etti+1).5 le I.
Next, we introduce the equivalence relation : le t Ep p  Eq . ; be formal symbols.

W e say these two sym bols be equivalent, (E p r , Eq i )  if  fo r  every  compact set
K cS 2 there exist constants C  and R and for every  E>0 there exists a constant
C, such that

e)—emx, e» I 5 CsC 1 "+/3 r(C pN )" IC - P N

X(I Pe/ leOP I Nial ' +Ial s ( " ) len - i  exp(sIel"s)

for a ll N, a , p, X E K, C E R N  w ith  R(Ipi-EgN+1)51ei.
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For a  conic neighborhood w x r o f  p fresp. a  neighborhood ai o f  x i, w e
consider the equivalence relation Xp.,--Eq, a t  p {resp. a t  x i  :  replacing Qx R n
by (»X i' {resp. aixRn} in the above definition.

Now, we introduce the auxiliary functions: it is w ell know n that if S21 122

a re  tw o  open  se ts , one  c a n  f in d  a  sequence of functions WNEC(S22) and a
constant C such  that WN =.-- 1 on Qi and  fo r any  N, a, la l5 N

(2.1)

w here pe[0, 1) is  a  g iv en  p a ram ete r. T ak e  TivE CP'(R n )  satisfying (2.1) with
Q1-={1e1 1} and 122=-- - fle1-521. We define

IE

X.1(6)=1—V2,(e/.13).

<f, xl(e),i fo r  lel > 2f, and for some costant C
laax.1(e)i <clar(I a is/1$1)plausw is-val

for any j, a ,$ , with I al 8 1$1. B y the sim ilar w ay to lem m a 3.1 in  [4 ], we
have

L em m a. Given two cone r1 r 2 c R n  and p [ 0 , 1 ) ,  there ex ist gEC - (Rn)
and a constant C such that g($)=0 f o r  $Ezr, o r  f o r  1$1 <1, g(e)=1 f or
w ith lel >2 and for any  a , e with 1a1 1 _5 EL

W e state  the  results on the calculus in th is  class.

Proposition 2.1. Let f p ,  be a form al symbol. Set

P(x, e)= . rp,J+i(e/ 2)P,(x,

where [p ]  denotes the greatest integer less than p. Then , for a  sufficiently large
2, p(x ,E) belongs to rs-SW Q). M oreov er p is uniquely  determ ined up to the
equivalence.

H ere w e call p  a  realization of f p i .

Proposition 2.2. I f  p(x, e)--, 0, then fo r  any  uEe'(Q), p(x, D)uE7s(g2).

Proposition 2.3. L e t  pE 11 -S;y(Q). T hen f o r  uEe'(Q),WP;(p(x, D)u)C
WF8(u). Furthermore i f  .1" is  an oPon cone in I r  and i f  p—o in coXF then for
any  uEe'((u), WF 8(p(x, D)u)ncoXT=2).

Proposition 2.4. L e t  aEr'-S7,4(2), b 11 -S(S2). I f  p '> 3 ,  th e  symbol
c(x, $)--, E(1/apaga(x, e)D'Ib(x, $) is a f orm al sy m bol in  7,57,,a (Q ) f o r  p"=
min(p', p). Moreover fo r  any  0 C (w ) such  that 0 = 1  in  a neighborhood of
(-51Cco, and for any realization c of the form al symbol, we have oP(c)-•-oP(a)0op(b)
on co,.

Here, the operator A--0 on co, means that fo r  any  uEe'((o), AuErs(co,).

Then, X5(e)=0 for
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Proposition 2.5. Let Ea ;  and Ib  be form al sym bols in coXF respectively in
rs-S; (3 and in r.9-Sc;a. Define

c e)=(1/a l)(aiai)(x, e)(D'Ibk)(xi C).

Then if p'>,3, c i , k , ,  is  a  form al sy m bol of ty pe  (p " ,  3 ) w ith p"=m in(p ', p).
Furthermore, for any realization a, b, c of these symbols, fo r  any  O EC((o), g5=1
in a neighborhood of .t'Eco, and for any g ( )  with support in P giv en by  lem m a
w ith param eter p i , 3<p 1 < 1 and such that g($)=1 for >2, in a conic neigh-
borhood o f  - E r, we have

op(gc)-- , op(ga)0oP(gb) a t  ( , $).

Here, the operator A-- , 0 at (x , $ ) m eans that f o r  any  uEe'(w ), IfF s (Au),r)
(.1.0 < r = 0  fo r  some conic neighborhood w x.r o f (, $ ).

These results are  proved by the analogous argum ents as [4]. T h e  most
different point is  in  the  presence of the factor exp(s e 1 1 " ) .  Roughly speaking,
the arguments consist of tw o  ty p e :  One is  about the equivalence re la tions. It
is easily  seen that p--0 im p lie s  p exP(—sol e 1 ") w ith  som e so > 0 a n d  C.
A n o th e r type  o f a rgum en ts  i s  t o  show  the pseudo-local property. S i n c e
exP(s e l i s)= E (6 I e 1 )k /k!, w e  n e e d  to  p ro c e e d  th e  in teg ra tio n  b y  part in

k O

m ore tim es a s  k  i s  la rge . B u t the  careful treatm ent in this process gives us
the above results.

3 .  Gevrey hypoellipticity

If  pEM I(E, p), p is  microlocally eq u iv a len t to  Mizohata o p e r a to r .  V I .
Considering a  canonical transformation and a elliptic Fourier integral operator,
w e m ay assume th a t  in  a  conic neighborhood oiXT of p-- , (0, en ),

p.(x, ,
w here cm _2 #0 in cox r . Dividing p by the elliptic factor and using Weierstrass'
preparation theorem we have

P(x, e)=(e1 - F i x . ) 2 + ao(x, V)(ei - Fix$ .) - E ai(x V)H- a ,(x , V)

w here  a,(x, $') are  the classical analytic symbol in some neighborhood o f p  of
order j  and e'=-- - (e2, ••• en). B y  the assum ption that p 1 4 o  on X , w e  have

ai (x, V)*0 f o r  (x, V )E n ixr(if necessary, shrinking (fix r ) .

This enables us to  factorize p as follows :

P(x, C)—P,(x, )01)2(x,
0 0

Pt(x, E b1, (x , V )
)=-1

w here  o deno tes the composition and bi ,_, satisfies that fo r  som e constants Co
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and C,

(3.1) laY gb,,_ ,(x , for any a, IS, j.

Therefore, to prove a  half of theorem 1, it su ffices to  show  that  i (x, D ) is
rs-hypoelliptic at p .  From  now on, w e drop the index / and denote a_lagp by
p .

Theorem 3 . 1 .  Let P(x, b_i(x, e'), where b_, satisfies (3.1).

Then, if k=2, p(x, D) is  r'-hypoelliptic at p with 2 s<4.

Pro o f . By considering the adjoint of p ,  it suffices to construct th e  right
parametrix o f p (x , D ). Let w = [ - 2 T ,  2T]X ce/, T>0 and we seek this parame-
trix  in the follwing form: denoting x, by t and x ' by x,

(3.2) Ku=1.ei.1' x, e)û(t', $)dtde,To

where we take T o = — T  if e n < 0  a n d  T ° = T  if  e ,,> 0 , an d  f i s tan d s  fo r  th e
Fourier transform in  x.

Hereafter, we assume e,z < 0 . In  th e  contrary case, we can prove the result
in a similar w ay. Let K(t, t', x, t ' ,  x ,  $ ) ,  where K , is a  formal symbol
in 7 3 ,3°,1 uniformly in t, t'. Then p(t, x, D t , D x )K , --, Id implies

(Dc-1-(1/a!)p(a)(t, x, e)D x )K(t, t', x,
and

K(t, t, x, C)=1.

In view of this, we define

K o (t, t', x, e)= --exP[ s2 1E. +ib,(s, x, $)-1-ib o (s, x, e)}ds],

,(t, t', x, $) f tE- 1K -= K0(/, s, X, e)21(s, x , e, D.,)K,_,_,(s, t', x, e)ds
1 = 0  V

where
x, e, D x )=  E  a! - lb?,)(s, x, e)D(1+31, 1 is 2 Dx

la l+ j=0
J o

+  E  a V iN (s , x ,
I al=1+1

Here, a, / i s  a Kronecker's delta.

Set A 4  s 2 1$.1ds a n d
 Q = A - 1 - A 1 3 1 $ . 1 1 / 6 .  T hen  w e  see  tha t for some con-e,

stant C,
1.40<cla-Ftsi+ta,/3,(21e1-1.1 for a n y  a, A ,

since 13ICn I fo r  som e  2> 0 . T h is  inequality and the formula for the
derivatives of a composition of functions (Faa di Bruno) g iv e  u s :  F o r  some
constants C and C'
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IK0V ) (t, t',

x exp(C' tœt' I $7, I " 2 —A/2)

where .31.- ---CE rj 0, rjEN n , i j EN .}- and /=(i1 , ••• i k ) .
:7=1

It is easily seen that for some constant A, we have

Q i i L  le.' if iii_lcr-i-/31/6

if 1 /1 < la+ 1 3 1 /6 .

Hence, using the  inequalities: yNe 1■1! for all y > 0  and for some constant B,

E n/(ii !•••ik !) .B1
a + /31

we obtain the estimate for K o .

Proposition 3.2. 8 o/x/ ' be  a  conic subset. Then, there ex ist constant
C;  (j=1 , 2, 3) and R such that

1K4)(t,t', x, e)1 Cia+ ,6 1 + 1 1al i a l lel - P1" 1(1131 - 1- 1■Slle1 1 - 0 L81

Xexp( — C2A+C31t — t'lle1 1/2 )

f o r  t t', (x, e)E8, any  a, 13, w ith RIal 51$1. Here p=5/6.

A s for the estimate for KJ, we have

Proposition 3 .3 .  There exist constant Co, C, C' and R  such that

Al ) (t , t' , x e)I _—_-CoCia+ 1I-1 (1a12 /1e1) - P1'(1j81 2 +1131 2 Plell - P )''''

1
x (j 2 / 1 1 ) 5/2 exp(—yC2A+c- lei 1 /4 )

fo r  t t', (x, e)E8, any  a, p w ith R (Ia l+ j+1 ) 2 51el.

P ro o f . By Leibniz'rule, we see that

( a + ) ! - '1<fri2) (t, t', x, e)= .1 .1 E t

v
 fl (ak!j3k!) - 1 Ko

(j,91 ,(t, s,t=0 k=1

X g'I ( , 2) (s , t', x, e, Dx)KA32,
(  )

(5, x, e)d s ,

where the sum is taken over all cri , 13;  such that E a, , a and E 13=,8.
Since

sz I fllexP (— C 2 A(t, s))ds-4/C2,

the induction on j  shows us that there exist constants Co , C  and R such that

Kg3),(t, t', x, e)i cocia+P+i(l a-Fil3 I +.7') ! I P i a l  - . 7 1 2

x( 1+ ICI P )1 NA 1 I

and < Al I I
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Xexp( 1

—y C2A(t, t')+C3 It— t' I I eV ")

for (x , $)E0, a n y  a, 13, j w ith  R (Ial j-E1) 2 . e . T h e  result follows
from  this since there exist constants and R ' such that

AN 1 3 lel - ' 1 6 e- c 2 A ' 2 _ C" N i f ICI 12.11

A(t, t')— cIt— t' le1" 2 >--{(21t — t' le ll"} I 11 1 4 .

Therefore, K ., i s  th e  fo rm al sym bol in 7 8-S7,5, i /G(coX r) if 2 s < 4 .  L e t
K(t, t', x , e) be a  realization of th is  sym bol. Then w e have p(x, D)K--, Id a t  p.
Sim ilarly, we can also construct the le f t parametrix o f  p (x , D ): Lp(x,
a t  p .  Then a t  p .  N ow  take  XEop(13 -S?0 (1171 )), properly supported such
th a t X, Id in  a  conic neighborhood of p  a n d  WF,(X) is  in  a  small conic neigh-
borhood of p .  Then, it  is  e a s ily  s e e n  th a t  (t, r, x, e, r ei)EEWFAXKX)
if (x, e) (x' e'). Since either (t, r)#(0, 0) o r (t', r')*(0, 0) if  (t, z )#(t', r '), the
ellipticity o f p a t  (t, r)4(0, 0) im plies that if  (t, r)#(t', r')

(t, r, x, t', r', x', C')EE WF;(XKX).

Therefore, we conclude that

WFAXKX)Cthe diagonal of T*(w)\ 0 .

Here, W F; stands for the analogy o f W F' in the space TP) '(R n ). This is well-
defined in virtue  of the kernel theorem  ([3]). Q. E. D. of theorem  1.

N ext, w e consider the  operator in theorem 2.

Proof  of theorem 2. In th is  case, w e  have the factorization of p: p—p l opz ,

Pi(x, e)=e1d-ix ite2+b,(x1, C2),

w h ere  bi E r '-S q (c o x r ). W e keep  the same notation as b e fo re . T h en , th e re
exist constants Ci (j=1, 2, 3) and R  such that

1KP ) (t, r, e)I
1for 2<0, any a with Ria l where p= y 4-1/(k-1-1) and A -A , s k l$21ds.

This is easily verified because 3 C and R,

if  Rlal lel.

1-0  12.1, 1-(A+Auck+i) 
IC 1 ) 1 ; (i - P)''''exp(— A)

T h ere fo re  Ko b e lo n g s  to  11-Sp ,1 _p (co' X F ) uniform ly in  t t'.
This and the same argument as before give us the result. Q. E. D.

4. Non-C - -hypoellipticity

Let us consider the operator P with symbol

and
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P(x, e){qm(x, e)H- E x ) ) ba.,(x, e')9(x, e)}
where q(x, e'), a, ba ,, c are the classical elliptic symbol in a conic
neighborhood of p-=(0, o f  order 1, la I, 0, respectively, especially a  is real-
valued and l(a , j) is a  non-negative integer. Let

-91={(a, /(ce, j)<(k+1)Ial +j—ml

a =min a(a, j), a(a, j)=-(m—j— I a I )/(k m — k j--/(a, j)),
and

ato={(a, .1)E-9 I :  c=a(t7,

For (y, )7)ER 2 , we introduce the function

P(. ), 72 ; P)=72 m Y 1 ( a• j) b a ,;( p ) 7 2 '

Then we have

Theorem 4 .1 . Suppose .31*0 and f or each y  w ith ya(p)<O, the equation
P (y ,  r i ;  p )= 0  h as a sim p le  roo t 72(y) such that 1m 72(y)<0. Then P *  is not
solvable at  p.

Here, the operator P  is solvable at pET*(Q )\0 iff there is a n  integer N
such that for every fE1-1 1§c(Q) we have

W F (P u — f)p for some uE .V (Q ).

T he results for non-C - -hypoellipticity in theorem 1 and 2  a re  th e  straight
forward consequance o f  this theorem since the  C- -hypoellipticity of P  at the
origin implies the solvability of P *  at every p=(0, e), $=0.

Proof  o f  theorem 4 .1 . We may assume that c(x , e)=1. S e t y 1 =.16  x i ,  and
y '= 2 .e .  Then,

P(exp(i.Ye)v(x))--exP(iY)Ea Rcei, )D v.

By considering Taylor expansion at x=0, this becomes

exp(iye)2°m{e+ E Yì a . ' ) ba,,(p) ,V( ' - ' ) z )+E E')

X25 " 1- 1 ) - 1 A'' - "A '') ) zW , }v(y),
where

z=e1+D y 1
- FiAa(p)2 5 , 6=i1d1(k+1) — m- 1- 1— l(ii, ])}/)km —kj— l(ã , j) )

with (a, DE.320 , c ig, i  a re  smooth and s(19', i) E0>0.
Therefore the same argument as in [5 ] enables u s  to  show  that for any

M > 0  there exists the asymptotic solution u ( x )  of Pu=0(2 - m) such that

J(m)
uf(x)=exp w(y, 2)• E  2— Jui (y),

J=0

where u ;  a n d  w a re  C- -function in a open set Q in R n , and

a s  j---).00
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Im w(Y h(Y  2) -÷ Y ' 2 )2 8 , 1Re w(Y  2) —  Y' =0(2 3 )

Here the  smooth function h  has a minimum a t  y 1 -----s(2) which satisfies : lim s(2)
=s o *O, and (s o , O)EQ.

T hen  by  the standard argum ent, i t  is  s e e n  th a t  f o r  e v e ry  C, N, i , every
neighborhood U  o f th e  origin and every properly supported pseudo-differential
operator A  w ith  W FA lp  th e  following inequality

(4.1) Ilvil-N—C{11/301.+1101-N-.+11Avilol

does not hold fo r  v=w2u7E C (U ) if A  a n d  M  a r e  la r g e  e n o u g h . H ere, 02=
X(2° x i — s(2), Ax') w ith  X EC (R n) whose suport is sufficiently small and contains
the  orig in . II o stands fo r the  Sobolev norm.

Therefore, by lem m a 26.4.5 in  [2], we conclude that P* is not solvable a t p.
Q. E. D.

5 . Appendix

I n  th is  sec tion , w e  sh a ll g iv e  so m e  re m a rk s  o n  t h e  solvability for the
operator L :

L=(Did-ix1W2)2-Fbx1D2

w here , k  and 1 a re  non-negative integers and bEC \O.
In  [8], th e  following result has been announced without proof :

T heorem . L * is locally  solvable at the origin i f  and only  i f  k  is ev en and

T h e  proof o f  th is  re su lt is  g iv en  in  [1], in  m ore general fo rm , k  is odd.
W hen k  is even, one can  find  it in  [6] except fo r  th e  c a se  t h a t  1 is  o d d  and
b>0.

In  th is  section, w e shall g ive the  proof fo r this exceptional case,:

Theorem A . 1 .  I f  k  is even, 1 is odd and b >0 , th e n  L *  is  n o t solvable at
(0, 0, 0, 1).

Now, we consider the  case  th a t  k  is odd , in m ore de ta il. B y  the argument
i n  [1 ], i t  is  e a s ily  s e e n  th a t  L  is  no t solvabe a t  (0, 0, 0, 1) i f  k  is  od d . W e
shall show  the following result :

Theorem A .2 .  If  k  is odd , L  is solvable at (0, 0, 0, 1 )  and, more precisely,
L* is hypoelliptic at (0, 0, 0, —1).

Proof  o f  theorem A.1. F o r  sim plic ity , w e  assum e t h a t  b=1 a n d  denote
2=- 2>0. Taking Fourier transform ation in x2 , w e have

L =(D 1 ± i42) 2 4-xf2.

W e seek the solution u  o f th e  equation Lu=0 in  th e  form :

u=exp(xlz -"2/(k+1)—.42 2 P)v(x, A)
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w here !I is  a  small positive number determined later.
Let cr=1/(2k-1), 6=-(k —1-1)/(2k —1), a n d  y=x 2 21'. T h e n  fo r  a

positive num ber p< 1-26 , the re  is  v> 0  such  tha t

{—ai+t i V-1-2 - T (t, y , A, D t , D y )}v(t, y, 2)=0,

w h e re  F  i s  th e  differentia l operator o f  order 2 w ith sm ooth coefficients and
sa tis f ie s  th a t F(t, y , 2, 2, 2") a re  bounded if  (t, y )  is bounded a n d  2  tends to
infinity.

From  the asymptotic expansion theory of ordinary differential equations, it
follow s that there exist V ± (t) such that for some constants c;,

(—ai-ko)V ± (0=o ,

and
v exp(-1.-1:sti2 d s) a s  t—>00 ,

ict exp(— t
ost"ds)-1-c',: exp(Ç (Is )} as 1̀.— — co .

Set v± (t, 2)=1/ * (t2"' ( 1 4 . 2 )) and denote the W ronskian o f  fv+ (t, 2), v_(t, 2)1 b y  W.
Then W =C 2 2" + 1 ) w ith som e nonzero constant C.

W e define the operator K  by

2)v,(s, 2) f (s)ds+5:v+ (t, 2)v_(s, 2)f(s)d s .

Now, we define 17 ;  by

V 0(t, 2)=v_(t, A)
and

V ;(t, y, 2)=—K{2 - T (t, y , 2, 131 , D y )17; _t (t, y , 2)1 if j> 0 .

Then, it is easily show n that

I ard V;(t, y, 2)1 exp(-2(1+2)-1Y(t)t")/226),

where Cm,,, is some constant, Y (t)=1 if  t > 0 , Y (t)= 0  if  t < 0  and 5' , 23/(1+2).

Set u m =  E  2- 'iV j (t, y, 2)exp((k+1) - 1 4+ 12— .42'P). T h en  w e  haveJ=2

laTi ail 2 u m(x 2)1 5_C.,.2"+"'" 7" - 2 Pn exp x226, 2)

I aTi arx', Lu m (x , 2)1 c exp(x i 2°, x,28 , A),

w here  w(t, y, 2)=(-2Y (t)(/+2) - 1 t 1+2 ) 2 +(k +1) - 1 0+ 1)26 —y 2 . H e re  w e  note that
a— Fa' (/+2) - 1  <1.

Let co be a neighborhood of the origin in which (1+2) -
' x I t I

c1-1-2 2 <(k+1)Itik+ 1

and take X E C (o) such that X =1 near the origin. Put

Ulf(x)=X(2°x 1 , 2Px 2 )u m (x , 2)e i x22 .

T h en  the standard argument shows t h a t  th e  HOrmander inequality (4.1) does
not hold for Ulf as 1— co, if N  is taken  large enough as compared with N  and
v. T h ere fo re  w e  con c lu d e  th a t L *  is not solvable at (0, 0, 0, 1).  Q .  E .  D .
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P roo f o f th eorem  A .2 . Considering the adjoint of L * we are going to con-
s tru c t  th e  r ig h t  param etrix o f  L .  This param etrix  h a s  th e  different form
dependent on arg b and 1. W e only consider the typical case. L e t  1 be even,
b= —1, a n d  e2=  —  n<0. T h e n  it  is  e a s ily  se e n  th a t th e re  e x is t the solutions
V .(t, 77) of

LV=1—(at+01))2+tinIV(t, .0=0

such  that 17± (t, exp w± (t, n) as tn ig i , i) —)T- 0 0 , where

wi (t, 77)=— t" - '17/(k+1)-E .Yo lvin I" 2 dr.

W ith the sam e a, o  as before, le t s = t .  T h e n

wi (t, )2)=IT) ± (s, n ) , (— A k + i ) - 4 01-02dr) n3

For each -F, this function i v ,  has only one maximum a t  s=s ±  w here s+ >0 and
s _ < 0 . We define the operator E(t, n ) by

E(t, n )f-q +n_Qe+(t, t', n)f(e)dt' A _ i r c e_(t, t', 72)f (r)cle

w here e,(t, t', 77)=V ,(t, n)V T (t', n)/W(t', IA  and W(t', n ) i s  the W ronskian of
V_1(=exp(-20+ 1 7)/(k+1)). Then, it is easily  show n that

lae i (t, t ',  n )I 5_Ca n - Paexp {-21 (rk n ±(r1)1/2dr)}

if t ' is betw een s--1-77- 1  a n d  t, w here C„ is som e constant and

p=m in{1-2 - '3, 2 - ' +2 - '(k+1) - '(/-1-2)} .

Define the operator E  by

E f= le i ( s2- x"2' v) E(x l , 77)g()f(x)dxdn

where g()EC"'(Rn), g( )= 1  i f  n > 2  a n d  g ( ) = 0  i f  n < 1 .  T h e n  direct com-
putations show that

E*L*-s-Jd a n d  L * E * -1 d +R  a t  (0, 0, 0, — ri)

for some operator R  w ith  WF / (R)C1(0, x2, 0, e2, x1, x2, e„ e2)}. Here, A, - 43 at
p if there  exists a conic neighborhood 0  of p su ch  th a t WF'(A—B)ndiag 0=0.

From  th is, w e conclude that there  ex ists a  conic neighborhood 0  of (0, 0,
0 , — ) such that

W F u n O c W F L * u n 0  f o r  a n y  u s e '

since L * is e llip tic  a t (x, e) if (x1,
For the other case of argb and 1, there  ex ist solutions V ±  o f  L V=0 such

that Re log V  has only one m axim um . So, by choosing appropriately the lower
bounds of the integral in  the  definition o f  E(t, n ), th e  sim ilar argument show
the hypoellipticity of L * a t  (0, 0, 0, —n ). Q. E. D.
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