Gevrey-hypoelliptic operators which are not C^{∞} -hypoelliptic

By

Takashi Ōĸaji

1. Introduction

The purpose of this paper is to show that the hypoellipticity in the Gevrey class is compatible with the non-hypoellipticity in C^{∞} class. For a subset ω of \mathbb{R}^n , we denote the Gevrey class with index s by $\gamma^{s}(\omega)$. We call the operator P γ^{s} -hypoelliptic {resp. C^{∞} -hypoelliptic} at the point x if there is some neighborhood ω of x such that if $u \in \mathcal{E}'(\omega)$ and for any $\omega' \subset \omega$, $Pu \in \gamma^{s}(\omega')$ {resp. $C^{\infty}(\omega')$ }, then $u \in \gamma^{s}(\omega')$ {resp. $C^{\infty}(\omega')$ }.

Let Ω be a subset of \mathbb{R}^n , Σ a real analytic conic submanifold of codimension 2 of $T^*(\Omega)$ and ρ a point on Σ . We define $M_k^m(\Sigma, \rho)$ to be the class of germs of homogeneous analytic symbols $p(x, \xi) \in \gamma^{1-}S_{1,0}^m$ at ρ which has the property that in some conic neighborhood Γ of ρ , $p(x, \xi)=0$ exactly on Σ and for some $z \in \mathbb{C}$, zp=a+ib, where a, b are real-valued, $d_{\xi}a \neq 0$ in Γ and $H_a^i b=0$ on $\Sigma \cap \Gamma$ if j < k but $H_a^k b \neq 0$ in Γ . Here $H_a = \sum_j \partial a / \partial \xi_j \partial / \partial x_j - \partial a / \partial x_j \partial / \partial \xi_j$. We denote $H_f g$ by $\{f, g\}$.

We consider a classical analytic pseudo-differential operator P with symbol $p(x, \xi) \sim \sum_{i=0}^{\infty} p_{m-i}(x, \xi)$ and suppose that

1) $p_m(x, \xi) = 0$ exactly on Σ ,

2) for each $\rho \in \Sigma$ there is some conic neighborhood of ρ in which $p_m(x, \xi) = q^2(x, \xi)$ where $q \in M_2^{m/2}(\Sigma, \rho)$, and

3) $p_{m-1}^s(x, \xi) \neq 0$ on Σ . Then, we have

Theorem 1. Under the assumption 1)-3), P is γ^s -hypoelliptic in Ω if $2 \leq s < 4$. Moreover, if for some $\rho \in \Sigma$, $\overline{z(q)^2} p_m^s(\rho) \notin \overline{R}_-$, then P is not C^{∞}-hypoelliptic at $\pi(\rho)$, where $z(q) = \{\overline{q}, \{q, \overline{q}\}\}$, and π is a projection on the base space.

Theorem 2. Let k be a positive even integer, c a non-zero complex number and $P=(D_1+ix_1^kD_2)^2+cD_2$, where $D_j=-i\partial/\partial x_j$. Then, P is γ^s -hypoelliptic at the origin for $1 \le s < 2k/(k-1)$ but P is not C^{∞} -hypoelliptic at the origin.

We shall prove these results by constructing a parametrix which is viewed as vector-valued pseudo-differential operator of infinite order in the Gevrey class.

Received January 23, 1987

2. Gevrey pseudo-differential operators of infinite order

In [6], some class of Gevrey pseudo-differential operators of infinite order has been already introduced. In this section, we introduce another class of them. Our class is a generalization of the class of analytic pseudo-differential operators of finite order given by G. Métivier.

Let Ω be an open set of \mathbb{R}^n and s, ρ, δ be real numbers such that $s \ge 1, 0$ $<\rho \le 1$ and $0 \le \delta < 1$. We shall denote by $\gamma^s - S^{\infty}_{\rho\delta}(\Omega)$ the space of all functions $p(x, \xi) \in C^{\infty}(\Omega \times \mathbb{R}^n)$ satisfying the following condition: for every compact set $K \subset \Omega$, there exist constants C and R, and for every $\varepsilon > 0$, there exists a constant C_{ε} such that

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}p(x,\xi)| \leq C_{\varepsilon}C^{|\alpha+\beta|}(|\beta|^{s}/|\xi|)^{\rho+\beta|}(|\alpha|^{s}+|\alpha|^{s(1-\delta)}|\xi|^{\delta})^{|\alpha|}\exp(\varepsilon|\xi|^{1/s})$$

for every α , β , and $x \in K$, $\xi \in \mathbb{R}^n$ with $R|\beta|^s \leq |\xi|$.

Replacing $\exp(\varepsilon |\xi|^{1/s})$ by $|\xi|^m$ in the above definition, we obtain $\gamma^s - S^m_{\rho\delta}(\Omega)$, the class of Gevrey pseudo-differential operators of finite order.

For $p \in \gamma^s - S^{\infty}_{\rho\delta}(\Omega)$, the operator Op(p) {or p(x, D)}, with kernel $\int \exp\{i(x-y, \xi)\}$ $\times p(x, \xi)d\xi$ is well defined and maps $\gamma^s_0(\Omega)$ in $\gamma^s(\Omega)$ and $\gamma^{(s)'}(\Omega)$ in $\gamma^{(s)'}_0(\Omega)$, where $\gamma^{(s)'}(\Omega)$ and $\gamma^{(s)'}_0(\Omega)$ are the duals of $\gamma^s(\Omega)$ and $\gamma^s_0(\Omega)$, respectively, and $d\xi = (2\pi)^{-n}d\xi$.

For the conic sets $\Omega \times \Gamma \subset \Omega \times \mathbb{R}^n$, we also define $\gamma^s \cdot S^{\infty}_{\rho\delta}(\Omega \times \Gamma)$ by an obvious way: replacing $\xi \in \mathbb{R}^n$ by $\xi \in \Gamma$. We often call ρ a symbol of type (ρ, δ) when there is no ambiguity.

Now, we introduce the formal symbol: let μ_j be a sequence of non-negative real number such that for some $\kappa > 0$, $\sum_j \exp(-\kappa \mu_j) < +\infty$. We shall say $\Sigma p_j(x, \xi)$ a formal symbol if the following condition is satisfied: for every compact subset $K \subset \Omega$, there exist constants C and R and for every $\varepsilon > 0$, there exists a constant C_{ε} such that

$$\begin{aligned} |\partial_x^{\alpha} \partial_{\xi}^{\beta} p_j(x, \xi)| &\leq C_{\varepsilon} C^{|\alpha+\beta|} (C\mu_j)^{\mu_j} |\xi|^{-\mu_j} (|\beta|^s/|\xi|)^{\rho+\beta|} \\ &\times (|\alpha|^s + |\alpha|^{s(1-\delta)} |\xi|^{\delta})^{|\alpha|} \exp(\varepsilon |\xi|^{1/s}) \end{aligned}$$

for all $j, \alpha, \beta, x \in K, \xi \in \mathbb{R}^n$ with $R(|\beta| + \mu_j + 1) \leq |\xi|$.

Next, we introduce the equivalence relation: let Σp_j , Σq_j be formal symbols. We say these two symbols be equivalent, $(\Sigma p_j \sim \Sigma q_j)$ if for every compact set $K \subset \Omega$ there exist constants C and R and for every $\varepsilon > 0$ there exists a constant C_{ε} such that

$$\begin{aligned} \partial_x^{\alpha} \partial_{\xi}^{\beta} &\sum_{j < N} (p_j(x, \xi) - q_j(x, \xi)) | \leq C_{\varepsilon} C^{|\alpha + \beta|} (C \mu_N)^{\mu_N} |\xi|^{-\mu_N} \\ &\times (|\beta|^s / |\xi|)^{\rho + \beta|} (|\alpha|^s + |\alpha|^{s(1-\delta)} |\xi|^{\delta})^{|\alpha|} \exp(\varepsilon |\xi|^{1/s}) \end{aligned}$$

for all N, α , β , $x \in K$, $\xi \in \mathbb{R}^n$ with $R(|\beta| + \mu_N + 1) \leq |\xi|$.

For a conic neighborhood $\omega \times \Gamma$ of ρ {resp. a neighborhood ω of x}, we consider the equivalence relation $\Sigma p_j \sim \Sigma q_j$ at ρ {resp. at x}: replacing $\Omega \times \mathbb{R}^n$ by $\omega \times \Gamma$ {resp. $\omega \times \mathbb{R}^n$ } in the above definition.

Now, we introduce the auxiliary functions: it is well known that if $\Omega_1 \subseteq \Omega_2$ are two open sets, one can find a sequence of functions $\Psi_N \in C_0^{\infty}(\Omega_2)$ and a constant *C* such that $\Psi_N = 1$ on Ω_1 and for any $N, \alpha, |\alpha| \leq N$

$$(2.1) \qquad \qquad |\partial^{\alpha} \Psi_{N}| \leq (C |\alpha|^{\rho} N^{1-\rho})^{|\alpha|},$$

where $\rho \in [0, 1)$ is a given parameter. Take $\Psi_N \in C_0^{\infty}(\mathbb{R}^n)$ satisfying (2.1) with $\Omega_1 = \{|\xi| \leq 1\}$ and $\Omega_2 = \{|\xi| \leq 2\}$. We define

$$\chi_{j}^{\rho}(\boldsymbol{\xi}) = 1 - \Psi_{2j}(\boldsymbol{\xi}/j^{s}).$$

Then, $\chi_j^{\rho}(\xi) = 0$ for $|\xi| < j^s$, $\chi_j^{\rho}(\xi) = 1$ for $|\xi| > 2j^s$, and for some costant C

$$|\partial^{\alpha} \chi_{j}^{\rho}(\boldsymbol{\xi})| \leq C^{|\alpha|} (|\alpha|^{s}/|\boldsymbol{\xi}|)^{\rho+\alpha+s} (1/j^{s-1})^{|\alpha|}$$

for any j, α, ξ , with $|\alpha|^{s} \leq |\xi|$. By the similar way to lemma 3.1 in [4], we have

Lemma. Given two cone $\Gamma_1 \Subset \Gamma_2 \subset \mathbb{R}^n$ and $\rho \Subset [0, 1)$, there exist $g \in C^{\infty}(\mathbb{R}^n)$ and a constant C such that $g(\xi) = 0$ for $\xi \Subset \Gamma_2$ or for $|\xi| < 1$, $g(\xi) = 1$ for $\xi \Subset \Gamma_1$ with $|\xi| > 2$ and for any α , ξ with $|\alpha|^s \le |\xi|$, $|\partial^{\alpha}g(\xi)| \le C^{|\alpha|+1}(|\alpha|^s/|\xi|)^{\rho|\alpha|}$.

We state the results on the calculus in this class.

Proposition 2.1. Let Σp_i be a formal symbol. Set

$$p(x, \xi) = \sum_{j} \chi^{0}_{[\mu_{j}]+1}(\xi/\lambda) p_{j}(x, \xi)$$

where $[\mu]$ denotes the greatest integer less than μ . Then, for a sufficiently large λ , $p(x, \xi)$ belongs to γ^s - $S^{\infty}_{\rho\delta}(\Omega)$. Moreover p is uniquely determined up to the equivalence.

Here we call p a realization of Σp_j .

Proposition 2.2. If $p(x, \xi) \sim 0$, then for any $u \in \mathcal{E}'(\Omega)$, $p(x, D)u \in \gamma^{s}(\Omega)$.

Proposition 2.3. Let $p \in \gamma^s - S_{\rho\delta}^{\infty}(\Omega)$. Then for $u \in \mathcal{E}'(\Omega)$, $WF_s(p(x, D)u) \subset WF_s(u)$. Furthermore if Γ is an open cone in \mathbb{R}^n and if $p \sim 0$ in $\omega \times \Gamma$ then for any $u \in \mathcal{E}'(\omega)$, $WF_s(p(x, D)u) \cap \omega \times \Gamma = \emptyset$.

Proposition 2.4. Let $a \in \gamma^s \cdot S^{\infty}_{\rho^{\sigma}}(\Omega)$, $b \in \gamma^s \cdot S^{\infty}_{\rho o}(\Omega)$. If $\rho' > \delta$, the symbol $c(x, \xi) \sim \sum (1/\alpha !) \partial_{\xi}^{\alpha} a(x, \xi) D_{x}^{\alpha} b(x, \xi)$ is a formal symbol in $\gamma^s \cdot S^{\infty}_{\rho \circ \delta}(\Omega)$ for $\rho'' = \min(\rho', \rho)$. Moreover for any $\phi \in C^{\infty}_{0}(\omega)$ such that $\phi = 1$ in a neighborhood of $\overline{\omega}_{1} \subset \omega$, and for any realization c of the formal symbol, we have $op(c) \sim op(a)\phi op(b)$ on ω_{1} .

Here, the operator $A \sim 0$ on ω_1 means that for any $u \in \mathcal{E}'(\omega)$, $Au \in \gamma^s(\omega_1)$.

Proposition 2.5. Let Σa_j and Σb_j be formal symbols in $\omega \times \Gamma$ respectively in $\gamma^s \cdot S^{\infty}_{\rho^i \delta}$ and in $\gamma^s \cdot S^{\infty}_{\rho \delta}$. Define

$$c_{j,k,\alpha}(x,\xi) = (1/\alpha!)(\partial_{\xi}^{\gamma}a_{j})(x,\xi)(D_{x}^{\alpha}b_{k})(x,\xi).$$

Then if $\rho' > \delta$, $c_{j,k,\alpha}$ is a formal symbol of type (ρ'', δ) with $\rho'' = \min(\rho', \rho)$. Furthermore, for any realization a, b, c of these symbols, for any $\phi \in C_0^{\infty}(\omega), \phi = 1$ in a neighborhood of $\bar{x} \in \omega$, and for any $g(\xi)$ with support in Γ given by lemma with parameter $\rho_1, \delta < \rho_1 < 1$ and such that $g(\xi) = 1$ for $|\xi| > 2$, in a conic neighborhood of $\xi \in \Gamma$, we have

$$op(gc)\sim op(ga)\phi op(gb)$$
 at $(\bar{x}, \bar{\xi})$.

Here, the operator $A \sim 0$ at $(\bar{x}, \bar{\xi})$ means that for any $u \in \mathcal{E}'(\omega)$, $WF_s(Au) \cap \omega \times \Gamma = \emptyset$ for some conic neighborhood $\omega \times \Gamma$ of $(\bar{x}, \bar{\xi})$.

These results are proved by the analogous arguments as [4]. The most different point is in the presence of the factor $\exp(\varepsilon |\xi|^{1/s})$. Roughly speaking, the arguments consist of two type: One is about the equivalence relations. It is easily seen that $p\sim0$ implies $|p| \leq C \exp(-\varepsilon_0 |\xi|^{1/s})$ with some $\varepsilon_0 > 0$ and C. Another type of arguments is to show the pseudo-local property. Since $\exp(\varepsilon |\xi|^{1/s}) = \sum_{k\geq0} (\varepsilon |\xi|^{1/s})^k / k!$, we need to proceed the integration by part in more times as k is large. But the careful treatment in this process gives us the above results.

3. Gevrey hypoellipticity

If $p \in M_k^m(\Sigma, \rho)$, p is microlocally equivalent to Mizohata operator. ([7]). Considering a canonical transformation and a elliptic Fourier integral operator, we may assume that in a conic neighborhood $\omega \times \Gamma$ of $\rho = (0, \xi_n)$,

$$p_m(x, \xi) = c_{m-2}(\xi_1 + i x_1^k \xi_n)^2$$

where $c_{m-2} \neq 0$ in $\omega \times \Gamma$. Dividing *p* by the elliptic factor and using Weierstrass' preparation theorem we have

$$p(x, \xi) = (\xi_1 + ix_1^k \xi_n)^2 + a_0(x, \xi')(\xi_1 + ix_1^k \xi_n) + a_1(x, \xi') + \sum_{j=0}^{\infty} a_j(x, \xi')$$

where $a_j(x, \xi')$ are the classical analytic symbol in some neighborhood of ρ of order j and $\xi' = (\xi_2, \dots, \xi_n)$. By the assumption that $p_{m-1}^s \neq 0$ on Σ , we have

 $a_1(x, \xi') \neq 0$ for $(x, \xi') \in \omega \times \Gamma$ (if necessary, shrinking $\omega \times \Gamma$).

This enables us to factorize p as follows:

$$p(x, \xi) \sim p_1(x, \xi) \circ p_2(x, \xi),$$

$$p_l(x, \xi) \sim \xi_1 + i x_1^k \xi_n + \sum_{j=-1}^{\infty} b_{l, -j}(x, \xi')$$

where \circ denotes the composition and $b_{l,-j}$ satisfies that for some constants C_{\bullet}

and C,

$$(3.1) \quad |\partial_x^\beta \partial_\xi^\alpha b_{l,-j}(x,\xi)| \leq C_0 C^{|\alpha+\beta|+j} (j^2/|\xi|)^{j/2} \beta! (|\alpha|/|\xi|)^{|\alpha|} \quad \text{for any } \alpha, \beta, j.$$

Therefore, to prove a half of theorem 1, it suffices to show that $p_l(x, D)$ is γ^s -hypoelliptic at ρ . From now on, we drop the index l and denote $\partial_x^\beta \partial_\xi^\alpha \rho$ by $p(\mathfrak{g})$.

Theorem 3.1. Let $p(x, \xi) \sim \xi_1 + i x_1^k \xi_n + \sum_{j=-1}^{\infty} b_{-j}(x, \xi')$, where b_{-j} satisfies (3.1). Then, if k=2, p(x, D) is γ^s -hypoelliptic at ρ with $2 \leq s < 4$.

Proof. By considering the adjoint of p, it suffices to construct the right parametrix of p(x, D). Let $\omega = [-2T, 2T] \times \omega', T > 0$ and we seek this parametrix in the following form: denoting x_1 by t and x' by x,

(3.2)
$$Ku = \int e^{ix\xi} \int_{T_0}^t K(t, t', x, \xi) \hat{u}(t', \xi) dt d\xi,$$

where we take $T_0 = -T$ if $\xi_n < 0$ and $T^0 = T$ if $\xi_n > 0$, and \hat{u} stands for the Fourier transform in x.

Hereafter, we assume $\xi_n < 0$. In the contrary case, we can prove the result in a similar way. Let $K(t, t', x, \xi) \sim \Sigma K_j(t, t', x, \xi)$, where K_j is a formal symbol in $\gamma^s - S_{\rho\sigma}^{\infty}$ uniformly in t, t'. Then $p(t, x, D_t, D_x)K \sim Id$ implies

> $(D_t + (1/\alpha !) p^{(\alpha)}(t, x, \xi) D_x) K(t, t', x, \xi) \sim 0$ K(t, t, x, \xi)=1.

In view of this, we define

$$K_{0}(t, t', x, \xi) = \exp\left[-\int_{t'}^{t} \{s^{2} |\xi_{n}| + ib_{1}(s, x, \xi) + ib_{0}(s, x, \xi)\} ds\right],$$

$$K_{j}(t, t', x, \xi) = \sum_{l=0}^{j-1} \int_{t'}^{t} K_{0}(t, s, x, \xi) \mathcal{P}_{l}(s, x, \xi, D_{x}) K_{j-l-1}(s, t', x, \xi) ds$$

where

and

$$i\mathcal{P}_{l}(s, x, \xi, D_{x}) = \sum_{\substack{|\alpha|+j=0\\j\neq 0}} \alpha !^{-1} b_{-j}^{(\alpha)}(s, x, \xi) D_{x}^{\alpha} + \delta_{1,l} \ is^{2} D_{x} + \sum_{|\alpha|=l+1} \alpha !^{-1} b_{0}^{(\alpha)}(s, x, \xi) D_{x}^{\alpha}.$$

Here, $\delta_{1,l}$ is a Kronecker's delta.

Set $\Lambda = \int_{\iota'}^{\iota} s^2 |\xi_n| ds$ and $Q = \Lambda + \Lambda^{1/3} |\xi_n|^{1/6}$. Then we see that for some constant C,

$$|\Lambda_{\{\beta\}}^{(\alpha)}| \leq C^{|\alpha+\beta|+1} \alpha ! \beta ! Q |\xi|^{-|\alpha|} \quad \text{for any} \quad \alpha, \beta,$$

since $A \ge \lambda |t-t'|^{s} |\xi_{n}|$ for some $\lambda > 0$. This inequality and the formula for the derivatives of a composition of functions (Faa di Bruno) give us: For some constants C and C'

Takashi Ōkaji

$$|K_{0(\beta)}^{(\alpha)}(t, t', x, \xi)| \leq C^{|\alpha+\beta|+1} \sum_{\mathcal{M}} (\alpha+\beta)! / (i_1! \cdots i_k!) Q^{|I|} |\xi|^{-|\alpha|} \times \exp(C' |t-t'| |\xi_n|^{1/2} - \Lambda/2)$$

where $\mathcal{M} = \left\{ \sum_{j=1}^{k} j_j \gamma_j = \alpha + \beta, \ \gamma_j \neq 0, \ \gamma_j \in \mathbb{N}^n, \ i_j \in \mathbb{N} \right\}$ and $I = (i_1, \dots, i_k)$. It is easily seen that for some constant A, we have

and $\begin{aligned} Q^{|I|} |\xi_n|^{-|\alpha+\beta|/6} &\leq A^{|I|} \Lambda^{|I|-|\alpha+\beta|/6} \quad \text{if} \quad |I| \geq |\alpha+\beta|/6 \\ &\leq A^{|I|} \quad \text{if} \quad |I| < |\alpha+\beta|/6. \end{aligned}$

Hence, using the inequalities: $y^N e^{-y} \leq N!$ for all y > 0 and for some constant B,

$$\sum_{\mathcal{M}} I!/(i_1!\cdots i_k!) \leq B^{|\alpha+\beta|},$$

we obtain the estimate for K_0 .

Proposition 3.2. $\theta \equiv \omega' \times \Gamma$ be a conic subset. Then, there exist constant C_j (j=1, 2, 3) and R such that

$$|K_{0(\beta)}^{(\alpha)}(t, t', x, \xi)| \leq C_{1}^{|\alpha+\beta|+1} |\alpha|^{|\alpha|} |\xi|^{-\rho+\alpha|} (|\beta|+|\beta||\xi|^{1-\rho})^{|\beta|} \\ \times \exp(-C_{2}A + C_{3}|t-t'||\xi|^{1/2})$$

for $t \ge t'$, $(x, \xi) \in \theta$, any α , β , with $R |\alpha| \le |\xi|$. Here $\rho = 5/6$.

As for the estimate for K_j , we have

Proposition 3.3. There exist constant C_0 , C, C' and R such that

$$K_{j(\beta)}^{(\alpha)}(t, t', x, \xi) \leq C_0 C^{|\alpha+\beta|+j}(|\alpha|^2/|\xi|)^{-\rho+\alpha+}(|\beta|^2+|\beta|^{2\rho}|\xi|^{1-\rho})^{|\beta|} \times (j^2/|\xi|)^{j/2} \exp\left(-\frac{1}{2}C_2\Lambda + C'|\xi|^{1/4}\right)$$

for $t \ge t'$, $(x, \xi) \in \theta$, any α , β with $R(|\alpha|+j+1)^2 \le |\xi|$.

Proof. By Leibniz'rule, we see that

$$\begin{aligned} (\alpha+\beta)!^{-1}K_{j(\beta)}^{(\alpha)}(t,t',x,\xi) &= \sum_{l=0}^{j-1} \sum_{l=0}^{l} \int_{t'}^{t} \prod_{k=1}^{3} (\alpha_{k}!\beta_{k}!)^{-1}K_{0(\beta_{1})}^{(\alpha_{1})}(t,s,x,\xi) \\ &\times \mathcal{P}_{l(\beta_{2})}^{(\alpha_{2})}(s,t',x,\xi,D_{x})K_{j-l-1(\beta_{3})}^{(\alpha_{3})}(s,t',x,\xi)ds, \end{aligned}$$

where the sum is taken over all α_j , β_j such that $\sum \alpha_j = \alpha$ and $\sum \beta_j = \beta$. Since

$$\int_{t'}^{t} s^2 |\xi_n| \exp\left(-\frac{1}{2}C_2 \Lambda(t, s)\right) ds \leq 4/C_2,$$

the induction on j shows us that there exist constants C_0 , C and R such that

$$|K_{j(\beta)}^{(o)}(t, t', x, \xi)| \leq C_0 C^{1\alpha+\beta+j}(|\alpha+\beta|+j)! |\xi|^{-\rho+\alpha+-j/2} \times (1+|\xi|^{1-\rho})^{1\beta} (\Lambda^{1/3}|\xi|^{-1/6}+1)^j$$

316

$$\times \exp\left(-\frac{1}{2}C_2\Lambda(t,t')+C_3|t-t'||\xi|^{1/2}\right)$$

for $t \ge t'$, $(x, \xi) \in \theta$, any α, β, j with $R(|\alpha|+j+1)^2 \le |\xi|$. The result follows from this since there exist constants C'' and R' such that

$$\begin{split} \Lambda^{N/3} |\xi|^{-N/6} e^{-C_2 \Lambda/2} &\leq C''^N \quad \text{if} \quad |\xi| \geq Rj^2 , \\ \Lambda(t, t') - c |t - t'| |\xi|^{1/2} \geq \{ (\lambda |t - t'| |\xi|^{1/4})^3 - c |t - t'| |\xi|^{1/4} \} |\xi|^{1/4} . \end{split}$$

Therefore, K_j is the formal symbol in $\gamma^s \cdot S_{5/6, 1/6}^{\infty}(\omega \times \Gamma)$ if $2 \le s < 4$. Let $K(t, t', x, \xi)$ be a realization of this symbol. Then we have $p(x, D)K \sim Id$ at ρ . Similarly, we can also construct the left parametrix of p(x, D): $Lp(x, D) \sim Id$ at ρ . Then $L \sim K$ at ρ . Now take $\chi \in op(\gamma^s \cdot S_{10}^{\circ}(\mathbb{R}^n))$, properly supported such that $\chi \sim Id$ in a conic neighborhood of ρ and $WF_s(\chi)$ is in a small conic neighborhood of ρ . Then, it is easily seen that $(t, \tau, x, \xi, t', \tau', x', \xi') \in WF_s'(\chi K \chi)$ if $(x, \xi) \neq (x'\xi')$. Since either $(t, \tau) \neq (0, 0)$ or $(t', \tau') \neq (0, 0)$ if $(t, \tau) \neq (t', \tau')$, the ellipticity of ρ at $(t, \tau) \neq (0, 0)$ implies that if $(t, \tau) \neq (t', \tau')$

$$(t, \tau, x, \xi, t', \tau', x', \xi') \in WF_s'(\chi K \chi).$$

Therefore, we conclude that

and

 $WF_{s}'(\chi K\chi) \subset \text{the diagonal of } T^{*}(\omega) \setminus 0.$

Here, WF'_s stands for the analogy of WF' in the space $\gamma_0^{(s)'}(\mathbf{R}^n)$. This is welldefined in virtue of the kernel theorem ([3]). Q.E.D. of theorem 1.

Next, we consider the operator in theorem 2.

Proof of theorem 2. In this case, we have the factorization of $p: p \sim p_1 \circ p_2$,

$$p_j(x, \xi) = \xi_1 + i x_1^k \xi_2 + b_j(x_1, \xi_2),$$

where $b_j \in \gamma^1 - S_{1,0}^1(\omega \times \Gamma)$. We keep the same notation as before. Then, there exist constants $C_j(j=1, 2, 3)$ and R such that

$$|K_0^{(\alpha)}(t, t', \xi)| \leq C_1^{|\alpha|+1} (|\alpha|/|\xi|)^{-\rho+\alpha} \exp(-C_2 \Lambda + C_3 |t-t'| |\xi|^{1/2})$$

for $t \ge t'$, $\xi_2 < 0$, any α with $R |\alpha| \le |\xi|$, where $\rho = \frac{1}{2} + 1/(k+1)$ and $\Lambda = \int_{t'}^{t} s^k |\xi_2| ds$. This is easily verified because ${}^{3}C$ and R,

$$(\Lambda + \Lambda^{1/(k+1)} |\xi|^{1-\rho})^{|I|} |\xi|^{-(1-\rho)+\alpha} \exp(-\Lambda)$$

\$\le C^{|I|} |\alpha|^{|I|-\rho|\alpha|}\$

if $R|\alpha| \leq |\xi|$. Therefore K_0 belongs to $\gamma^1 - S_{\rho, 1-\rho}(\omega' \times \Gamma)$ uniformly in $t \geq t'$. This and the same argument as before give us the result. Q.E.D.

4. Non- C^{∞} -hypoellipticity

Let us consider the operator P with symbol

Takashi Ōkaji

$$p(x, \xi) = c(x, \xi) \{ q^{m}(x, \xi) + \sum_{|\alpha| + j \le m-1} x_{1}^{i(\alpha, j)} b_{\alpha, j}(x, \xi') q^{j}(x, \xi) \}$$

where $q(x, \xi) = \xi_1 + i x_1^k a(x, \xi')$, $a, b_{\alpha j}$, c are the classical elliptic symbol in a conic neighborhood of $\rho = (0, \xi')$ of order 1, $|\alpha|$, 0, respectively, especially a is realvalued and $l(\alpha, j)$ is a non-negative integer. Let

$$\mathcal{M} = \{ (\alpha, j) : |\alpha| + j \leq m-1, l(\alpha, j) < (k+1)|\alpha| + j - m \}$$

$$\sigma = \min_{\mathcal{H}} \sigma(\alpha, j), \ \sigma(\alpha, j) = (m - j - |\alpha|)/(km - kj - l(\alpha, j)),$$

and

 $\mathcal{M}_0 = \{ (\alpha, j) \in \mathcal{M} : \sigma = \sigma(\alpha, j) \}.$

For $(y, \eta) \in \mathbb{R}^2$, we introduce the function

$$P^{*}(y, \eta; \rho) = \eta^{m} + \sum_{\mathcal{M}_{0}} y^{l(\alpha, j)} b_{\alpha, j}(\rho) \eta^{j}.$$

Then we have

Theorem 4.1. Suppose $\mathcal{M} \neq \emptyset$ and for each y with $ya(\rho) < 0$, the equation $P^*(y, \eta; \rho) = 0$ has a simple root $\eta(y)$ such that $\text{Im } \eta(y) < 0$. Then P^* is not solvable at ρ .

Here, the operator P is solvable at $\rho \in T^*(\Omega) \setminus 0$ iff there is an integer N such that for every $f \in H^{loc}_N(\Omega)$ we have

$$WF(Pu-f)
ightarrow
ho$$
 for some $u \in \mathcal{D}'(\Omega)$.

The results for non- C^{∞} -hypoellipticity in theorem 1 and 2 are the straight forward consequance of this theorem since the C^{∞} -hypoellipticity of P at the origin implies the solvability of P^* at every $\rho = (0, \xi), \xi \neq 0$.

Proof of theorem 4.1. We may assume that $c(x, \xi)=1$. Set $y_1=\lambda^{\sigma} x_1$, and $y'=\lambda x'$. Then,

$$P(\exp(iy\xi)v(x)) \sim \exp(iy\xi) \sum \alpha !^{-1} p^{(\alpha)}(\lambda^{-\sigma}y_1, \lambda^{-1}y', \lambda^{\sigma}\xi_1, \lambda\xi') D_x^{\alpha} v.$$

By considering Taylor expansion at x=0, this becomes

$$\begin{aligned} \exp(i\,y\xi)\lambda^{\sigma\,m} \{z^m + \sum_{\mathcal{M}_0} y_1^{l(\alpha,\,j)} b_{\alpha,\,j}(\rho)\lambda^{\delta(m-j)} z^j + \sum C_{\beta',\,j}(y,\,\xi') \\ \times \lambda^{\delta(m-j)-|\beta'|-\varepsilon(\beta',\,j)} z^j D_{y'}^{\beta'} \} v(y), \end{aligned}$$

where

$$z = \xi_1 + D_{y_1} + i y_1^k a(\rho) \lambda^{\delta}, \ \delta = \{ |\bar{\alpha}| (k+1) - m + \bar{j} - l(\bar{\alpha}, \ \bar{j}) \} / km - k\bar{j} - l(\bar{\alpha}, \ \bar{j}) \}$$

with $(\bar{\alpha}, \bar{j}) \in \mathcal{M}_0$, $c_{\beta,j}$ are smooth and $\varepsilon(\beta', j) \geq \varepsilon_0 > 0$.

Therefore the same argument as in [5] enables us to show that for any M > 0 there exists the asymptotic solution $u_{\lambda}^{M}(x)$ of $Pu=0(\lambda^{-M})$ such that

$$u_{\lambda}^{M}(x) = \exp w(y, \lambda) \cdot \sum_{j=0}^{J(M)} \lambda^{-\nu_{j}} u_{j}(y), \quad \nu_{j} \to \infty \quad \text{as} \quad j \to \infty,$$

where u_i and w are C^{∞} -function in a open set Ω in \mathbb{R}^n , and

318

Im
$$w(y, \lambda) \ge (-h(y, \lambda) + |y'|^2)\lambda^{\delta}$$
, $|\operatorname{Re} w(y, \lambda) - y'\lambda\xi'| = 0(\lambda^{\delta})$

Here the smooth function h has a minimum at $y_1 = s(\lambda)$ which satisfies: $\lim_{\lambda \to \infty} s(\lambda) = s_0 \neq 0$, and $(s_0, 0) \in \Omega$.

Then by the standard argument, it is seen that for every C, N, ν , every neighborhood U of the origin and every properly supported pseudo-differential operator A with $WFA \Rightarrow \rho$ the following inequality

$$(4.1) \|v\|_{-N} \leq C \{ \|Pv\|_{\nu} + \|v\|_{-N-n} + \|Av\|_0 \}$$

does not hold for $v = \varphi_{\lambda} u_{\lambda}^{M} \in C_{0}^{\infty}(U)$ if λ and M are large enough. Here, $\phi_{\lambda} = \chi(\lambda^{\sigma} x_{1} - s(\lambda), \lambda x')$ with $\chi \in C_{0}^{\infty}(\mathbb{R}^{n})$ whose suport is sufficiently small and contains the origin. $\| \|_{\theta}$ stands for the Sobolev norm.

Therefore, by lemma 26.4.5 in [2], we conclude that P^* is not solvable at ρ .

Q. E. D.

5. Appendix

In this section, we shall give some remarks on the solvability for the operator L:

$$L = (D_1 + ix_2^k D_2)^2 + bx_1^l D_2$$

where, k and l are non-negative integers and $b \in C \setminus 0$.

In [8], the following result has been announced without proof:

Theorem. L^* is locally solvable at the origin if and only if k is even and $l \ge k-1$.

The proof of this result is given in [1], in more general form, k is odd. When k is even, one can find it in [5] except for the case that l is odd and b>0.

In this section, we shall give the proof for this exceptional case:

Theorem A.1. If k is even, l is odd and b>0, then L^* is not solvable at (0, 0, 0, 1).

Now, we consider the case that k is odd, in more detail. By the argument in [1], it is easily seen that L is not solvabe at (0, 0, 0, 1) if k is odd. We shall show the following result:

Theorem A.2. If k is odd, L is solvable at (0, 0, 0, -1) and, more precisely, L^* is hypoelliptic at (0, 0, 0, -1).

Proof of theorem A.1. For simplicity, we assume that b=1 and denote $\xi_2 = \lambda > 0$. Taking Fourier transformation in x_2 , we have

$$\hat{L} = (D_1 + i x_1^k \lambda)^2 + x_1^l \lambda.$$

We seek the solution u of the equation $\hat{L}u=0$ in the form:

$$u = \exp(x_1^{k+1}\lambda/(k+1) - x_2^2\lambda^{2\mu})v(x, \lambda)$$

Takashi Ōkaji

where μ is a small positive number determined later.

Let $\sigma = 1/(2k-l)$, $\delta = (k-1-l)/(2k-l)$, $t = x_1\lambda^{\sigma}$, and $y = x_2\lambda^{\mu}$. Then for a positive number $\mu < 1-2\delta$, there is $\nu > 0$ such that

$$\{-\partial_t^2 + t^l \lambda^{2\delta} + \lambda^{-\nu} F(t, y, \lambda, D_t, D_y)\} v(t, y, \lambda) = 0,$$

where F is the differential operator of order 2 with smooth coefficients and satisfies that $F(t, y, \lambda, \lambda^{\delta}, \lambda^{\mu})$ are bounded if (t, y) is bounded and λ tends to infinity.

From the asymptotic expansion theory of ordinary differential equations, it follows that there exist $V_{\pm}(t)$ such that for some constants c_{j}^{\pm} ,

$$(-\partial_t^2 + t^i) V_{\pm}(t) = 0,$$

$$V_{\pm}(t) \sim t^{-1/4} \exp\left(\pm \int_0^t s^{1/2} ds\right) \text{ as } t \to \infty,$$

$$\sim t^{-1/4} \left\{ c_1^{\pm} \exp\left(-\int_0^t s^{1/2} ds\right) + c_2^{\pm} \exp\left(\int_0^t s^{1/2} ds\right) \right\} \text{ as } t \to -\infty.$$

and

Set
$$v_{\pm}(t, \lambda) = V_{\pm}(t\lambda^{2\delta/(l+2)})$$
 and denote the Wronskian of $\{v_{+}(t, \lambda), v_{-}(t, \lambda)\}$ by W .
Then $W = C\lambda^{2\delta/(l+2)}$ with some nonzero constant C .

We define the operator K by

$$Kf = W^{-1}\left\{ \int_0^t v_-(t, \lambda)v_+(s, \lambda)f(s)ds + \int_t^1 v_+(t, \lambda)v_-(s, \lambda)f(s)ds \right\}.$$

Now, we define V_j by

$$V_0(t, \lambda) = v_-(t, \lambda)$$

and

$$V_{j}(t, y, \lambda) = -K\{\lambda^{-\nu}F(t, y, \lambda, D_{t}, D_{y})V_{j-1}(t, y, \lambda)\} \quad \text{if} \quad j > 0$$

Then, it is easily shown that

$$|\partial_t^m \partial_y^n V_j(t, y, \lambda)| \leq C_{m, n} \lambda^{-\nu j} \lambda^{\delta' m + \mu n} \exp(-2(l+2)^{-1} Y(t) t^{(l+2)/2} \lambda^{\delta}),$$

where $C_{m,n}$ is some constant, Y(t)=1 if t>0, Y(t)=0 if t<0 and $\delta'=2\delta/(l+2)$.

Set
$$u_M = \sum_{j=0}^{M} \lambda^{-\nu j} V_j(t, y, \lambda) \exp((k+1)^{-1} x_1^{k+1} \lambda - x_2^2 \lambda^{2\mu})$$
. Then we have
 $|\partial_{x_1}^m \partial_{x_2}^n u_M(x, \lambda)| \leq C_{m,n} \lambda^{(\sigma+\delta')m+2\mu n} \exp w(x_1 \lambda^{\sigma}, x_2 \lambda^{\delta}, \lambda)$
 $|\partial_{x_1}^m \partial_{x_2}^n \hat{L} u_M(x, \lambda)| \leq C_{m,n} \lambda^{(\sigma+\delta')m+2\mu n-M} \exp(x_1 \lambda^{\sigma}, x_2 \lambda^{\delta}, \lambda),$

where $w(t, y, \lambda) = (-2Y(t)(l+2)^{-1}t^{(l+2)/2} + (k+1)^{-1}t^{k+1})\lambda^{\delta} - y^{2}$. Here we note that $\sigma + \delta' + (l+2)^{-1} < 1$.

Let ω be a neighborhood of the origin in which $(l+2)^{-1} \times |t|^{(l+2)/2} \leq (k+1)|t|^{k+1}$ and take $\chi \in C_0^{\infty}(\omega)$ such that $\chi = 1$ near the origin. Put

$$U_{\lambda}^{M}(x) = \chi(\lambda^{\sigma} x_{1}, \lambda^{\mu} x_{2}) u_{M}(x, \lambda) e^{i x_{2} \lambda}$$

Then the standard argument shows that the Hörmander inequality (4.1) does not hold for $U_{\lambda}^{\mathcal{M}}$ as $\lambda \to \infty$, if N is taken large enough as compared with N and ν . Therefore we conclude that L^* is not solvable at (0, 0, 0, 1). Q.E.D.

320

Proof of theorem A.2. Considering the adjoint of L^* we are going to construct the right parametrix of L. This parametrix has the different form dependent on arg b and l. We only consider the typical case. Let l be even, b=-1, and $\xi_2=-\eta<0$. Then it is easily seen that there exist the solutions $V_{\pm}(t, \eta)$ of

$$\hat{L}V = \{-(\partial_t + t^k \eta)^2 + t^l \eta\}V(t, \eta) = 0$$

such that $V_{\pm}(t, \eta) \sim (t\eta^{1/(l+1)})^{-1/4} \exp w_{\pm}(t, \eta)$ as $t\eta^{1/(l+1)} \to \mp \infty$, where

$$w_{\pm}(t, \eta) = -t^{k+1}\eta/(k+1) \pm \int_{0}^{t} |\tau^{l}\eta|^{1/2} d\tau.$$

With the same σ , δ as before, let $s=t\eta^{\sigma}$. Then

$$w_{\pm}(t, \eta) = \widetilde{w}_{\pm}(s, \eta) = \left(-s^{k+1}/(k+1)\pm \int_{0}^{s} \tau^{1/2} d\tau\right) \eta^{\delta}.$$

For each \pm , this function \tilde{w}_{\pm} has only one maximum at $s=s_{\pm}$ where $s_{\pm}>0$ and $s_{-}<0$. We define the operator $E(t, \eta)$ by

$$E(t, \eta)f = \int_{s_+\eta^-\sigma}^t e_+(t, t', \eta)f(t')dt' - \int_{s_-\eta^-\sigma}^t e_-(t, t', \eta)f(t')dt'$$

where $e_{\pm}(t, t', \eta) = V_{\pm}(t, \eta) V_{\mp}(t', \eta)/W(t', \eta)$, and $W(t', \eta)$ is the Wronskian of $\{V_+, V_-\}(=\exp(-2t^{k+1}\eta/(k+1)))$. Then, it is easily shown that

$$|\partial_{\eta}^{\alpha}e_{\pm}(t, t', \eta)| \leq C_{\alpha}\eta^{-\rho\alpha} \exp\left\{-2^{-1}\int_{t'}^{t} (\tau^{k}\eta \pm (\tau^{l}\eta)^{1/2}d\tau)\right\}$$

if t' is between $s \pm \eta^{-\sigma}$ and t, where C_{α} is some constant and

 $\rho = \min\{1 - 2^{-1}\delta, 2^{-1} + 2^{-1}(k+1)^{-1}(l+2)\}.$

Define the operator E by

$$Ef = \int e^{i(x_2 - x'_2, \eta)} E(x_1, \eta) g(\eta) f(x) dx d\eta$$

where $g(\eta) \in C^{\infty}(\mathbb{R}^n)$, $g(\eta)=1$ if $\eta > 2$ and $g(\eta)=0$ if $\eta < 1$. Then direct computations show that

$$E^*L^* \sim Id$$
 and $L^*E^* \sim Id + R$ at $(0, 0, 0, -\eta)$

for some operator R with $WF'(R) \subset \{(0, x_2, 0, \xi_2, x_1, x_2, \xi_1, \xi_2)\}$. Here, $A \sim B$ at ρ iff there exists a conic neighborhood θ of ρ such that $WF'(A-B) \cap \text{diag } \theta = \emptyset$.

From this, we conclude that there exists a conic neighborhood θ of $(0, 0, 0, -\eta)$ such that

$$WFu \cap \theta \subset WFL^*u \cap \theta$$
 for any $u \in \mathcal{E}'$

since L^* is elliptic at (x, ξ) if $(x_1, \xi_1) \neq 0$.

For the other case of arg b and l, there exist solutions V_{\pm} of LV=0 such that Relog V has only one maximum. So, by choosing appropriately the lower bounds of the integral in the definition of $E(t, \eta)$, the similar argument show the hypoellipticity of L^* at $(0, 0, 0, -\eta)$. Q. E. D.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- F. Cardoso and F. Treves, A necessary condition of local solvability for pseudo differential equations with double characteristics, Ann. Inst. Fourier, Grenoble, 24 (1974), 225-292.
- [2] L. Hörmander, The analysis of linear partial differential operators IV, Springer (1985).
- [3] H. Komatsu, Ultradistributions I, II, III, J. Fac. Univ. Tokyo, Sect. I. A. 20 (1973), 25-105, 24 (1977), 607-628, 29 (1982), 653-717.
- [4] G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. P. D. E. 6 (1981), 1-90.
- [5] T. Okaji, The local solvability of partial differential operator with multiple characteristics in two independent variables, J. Math. Kyoto Univ., 20 (1980), 125-140.
- [6] L. Rodino and L. Zanghirati, Pseudo-differential operators with multiple characteristics and Gevrey singularities, Comm. P. D. E., 11 (1986), 673-711.
- [7] M. Sato, T. Kawai and M. Kashiwara, Hyperfunctions and pseudodifferential equations, Lecture Note in Math. 587 (1973), 265-529.
- [8] F. Treves, On the local solvability of linear partial differential equations, Russian Math. Surveys, 29 (1974), 263-292.