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Gevrey-hypoelliptic operators which
are not C*-hypoelliptic

By

Takashi OKAJI

1. Introduction

The purpose of this paper is to show that the hypoellipticity in the Gevrey
class is compatible with the non-hypoellipticity in C= class. For a subset @ of
R", we denote the Gevrey class with index s by 7(w). We call the operator P
y*-hypoelliptic {resp. C=-hypoelliptic} at the point x if there is some neighborhood
o of x such that if u=&’(w) and for any &' Cw, Pueyi(w’) {resp. C=(w’)}, then
usyi(w’) {resp. C()}.

Let 2 be a subset of R™ 2 a real analytic conic submanifold of
codimension 2 of T*(2) and p a point on 2. We define M2, p) to be the
class of germs of homogeneous analytic symbols p(x, §)y'-ST%, at p which
has the property that in some conic neighborhood I of p, p(x, §)=0 exactly
on Y and for some z€C, zp=a-+ib, where a, b are real-valued, dsa#0 in I"
and H{b=0 on XNI" if j<k but HE+0 in I'. Here H,=23X0a/0&;0/0x,—
0a/3x,0/0¢,, We denote H,g by {f, g}. ’

We consider a classical analytic pseudo-differential operator P with symbol

p(x, E)N;g Ppm-j(x, & and suppose that

1) pnlx, £)=0 exactly on X,

2) for each peX there is some conic neighborhood of p in which pa(x, &)
=¢%x, &) where g M7'* X, p), and

3) phix, £)#0 on .

Then, we have

Theorem 1. Under the assumption 1)-3), P is y-hypoelliptic in 2 if 2<s<4.
Moreover, if for some p&ZX, 2(glph(p)ER-, then P is not C=-hypoelliptic at
n(p), where z(q)=1{q, {g, §}}, and = is a projection on the base space.

Theorem 2. Let k be a positive even integer, ¢ a non-zero complex number
and P=(D,+ixtD,)*+cD,, where D;=—id/0x;. Then, P is y*-hypoelliptic at
the origin for 1<s<2k/(k—1) but P is not C=-hypoelliptic at the origin.

We shall prove these results by constructing a parametrix which is viewed
as vector-valued pseudo-differential operator of infinite order in the Gevrey class.
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2. Gevrey pseudo-differential operators of infinite order

In [6], some c¢lass of Gevrey pseudo-differential operators of infinite order
has been already introduced. In this section, we introduce another class of
them. Our class is a generalization of the class of analytic pseudo-differential
operators of finite order given by G. Métivier.

Let £ be an open set of R™ and s, p, § be real numbers such that s=1,0
<p=Zl and 0<<1. We shall denote by 7y°-Sx(2) the space of all functions
plx, &)e C=(2XR™) satisfying the following condition: for every compact set
Kc @, there exist constants C and R, and for every ¢>0, there exists a con-
stant C, such that

10208p(x, )| S C.C'*+P(| B1°/1EDP P11l + e ** = &]%) “'exp(e|§]"%)

for every «, 8, and x K, §éeR" with R|B|*<Z|£].
Replacing exp(e|&]'/%) by |&|™ in the above definition, we obtain y*-SZ(£),
the class of Gevrey pseudo-differential operators of finite order.

For pey:-Si(£2), the operator Op(p) {or p(x, D)}, with kernel Sexp{i(x—y, &}

X p(x, &)dé is well defined and maps 73(2) in 7%(£2) and 7*/(2) in 7{'(2), where
() and 7§'(2) are the duals of y%(2) and 7§(2), respectively, and dé=
(2r)~"dé.

For the conic sets 2XI'C2XR", we also define y:-Sp(2XI") by an obvi-
ous way: replacing £€R™ by &é=I’. We often call p a symbol of type (p, 0)
when there is no ambiguity.

Now, we introduce the formal symbol: let g; be a sequence of non-negative
real number such that for some x>0, %‘,exp(—xp,)<+oo. We shall say Y'p;(x, &)

a formal symbol if the following condition is satisfied : for every compact subset
KcQ, there exist constants C and R and for every ¢>0, there exists a con-
stant C. such that

10302 ,(x, &) S C.C'*+P(Cpy)ri| € ~#i(1BI°/ 1€ )P P!
X(lal*+a|*-2]¢]%)' exp(e|£]'*)

for all j, a, B, x€K, §€R™ with R(|B|+u;+1D=1€].

Next, we introduce the equivalence relation: let X'p;, Y'q; be formal symbols.
We say these two symbols be equivalent, (¥p;~23gq;) if for every compact set
K8 there exist constants C and R and for every &>0 there exists a constant
C. such that

Iaiaéjg(p,-(x, 8)—q,(x, IS C.C'+B (Cpy) N |&| 1N
X(1BI/1ENP B+ | " =P | &]9) “ exp(e| £]'%)
for all N, a, 8, x€K, EER™ with R(|8|+uy+1)=<|E].
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For a conic neighborhood wX 1" of p {resp. a neighborhood @ of =x}, we
consider the equivalence relation Xp;~2Xg; at p {resp. at x}: replacing 2XR"
by wXx I {resp. X R"} in the above definition.

Now, we introduce the auxiliary functions: it is well known that if 2,E%2,
are two open sets, one can find a sequence of functions ¥y C3(2,) and a
constant C such that ¥y=1 on 2, and for any N, a, |a|SN

2.1 [0y <(ClalPNI-P)a!,

where p[0, 1) is a given parameter. Take ¥y=C37(R"™) satisfying (2.1) with
2,={1¢|=1} and 2,={|§|<2}. We define

X6)=1-F,4&/5°).
Then, X%&)=0 for |&| <%, X4(§)=1 for |£]>2;%, and for some costant C
[0 C ' (Ja|*/1&1)P 121/ jom )t
for any 7, a, &, with |a|*<|£|. By the similar way to lemma 3.1 in [4], we

have

Lemma. Given two cone I'EI,CR" and p<[0, 1), there exist g C(R™)
and a constant C such that g(&)=0 for é&ly or for |£|<1, g&)=1 for ¢TI,
with |&1>2 and for any a, & with |a|*Z €|, |0°g@|SC'*"*(lal®/1§])7'%'.

We state the results on the calculus in this class.

Proposition 2.1. Let Xp; be a formal symbol. Set
p(x, $)=§ X 141§/ D) D %, §)

where [p] denotes the greatest integer less than p. Then, for a sufficiently large
A, p(x, §) belongs to y*-Sy(2). Moreover p is uniquely determined up to the
equivalence.

Here we call p a realization of Xp;.
Proposition 2.2. If p(x, £)~0, then for any us&’(Q), p(x, Dyusyi(Q).

Proposition 2.3. Let psy-Si(2). Then for us&’(2), WFE(p(x, D)u)C
WF(u). Furthermore if I' is an opon cone in R™ and if p~0 in wXI then for
any ue&’(w), WF(p(x, D)u)NoXT'=0Q.

Proposition 2.4. Let acy’-Sps), ber-Sp(2). If p’>d, the symbol
c(x, E)~D(1/aoga(x, &)Dib(x, &) is a formal symbol in ys-Sps(2) for p’"=
min(p’, p). Moreover for any ¢=C%(w) such that ¢=1 in a neighborhood of
@, Cw, and for any realization ¢ of the formal symbol, we have op(c)~op(a)pop(b)
on .

Here, the operator A~0 on @, means that for any us&’'(w), Ausyi(w,).
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Proposition 2.5. Let Ya; and 3b; be formal symbols in @ X I respectively in
r*-Sps and in y°-Sg.  Define

Cioralx, §)=1/a!)0¢a;)x, EXD3b,)(x, §).

Then if p'>0, ¢ r.o is a formal symbol of type (p”, ) with p”=min(p’, p).
Furthermore, for any realization a, b, ¢ of these symbols, for any ¢=Ci(w), ¢=1
in a neighborhood of T€w, and for any g(&) with support in I' given by lemma
with parameter p,, 6<p,<1 and such that g(&)=1 for |£|>2, in a conic neigh-
borhood of E€I’, we have

op(ge)~op(ga)pop(gb) at (%, &).
Here, the operator A~0 at (%, &) means that for any usé&’(w), WF(AuwN
oXI'=@ for some conic neighborhood wXxI of (%, £).

These results are proved by the analogous arguments as [4]. The most
different point is in the presence of the factor exp(e|&]'/*). Roughly speaking,
the arguments consist of two type: One is about the equivalence relations. It
is easily seen that p~0 implies |p|<Cexp(—e,|&|'/*) with some & >0 and C.
Another type of arguments is to show the pseudo-local property. Since
exp(e|$|"“)=k§(slél”‘)"/k!, we need to proceed the integration by part in

more times as k is large. But the careful treatment in this process gives us
the above results.

3. Gevrey hypoellipticity

If peMPZ, p), p is microlocally equivalent to Mizohata operator. ([7]).
Considering a canonical transformation and a elliptic Fourier integral operator,
we may assume that in a conic neighborhood wXxI" of p=(0, &,),

Pm(x, E)=cCm-2(&:F+1x%6,)7,

where ¢n-,%0 in wXxI'. Dividing p by the elliptic factor and using Weierstrass’
preparation theorem we have

plx, §)=+ixi€a)+aolx, §)E+ixién)+ailx, 5')+j:20 afx, &)

where a;(x, &) are the classical analytic symbol in some neighborhood of p of
order ;j and &'=(&, ---, &,). By the assumption that p%,_,%0 on X, we have

a,(x, &)=0 for (x, &)ewx I (if necessary, shrinking wXxI").
This enables us to factorize p as follows:
p(x, E)~pi(x, &) palx, &),
pile, O~Eitixitnt B biix, &)

where - denotes the composition and b,,-; satisfies that for some constants C,
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and C,
B.1) 10802b,, - j(x, §)| S CoCro+B1+5(52/ 1€ Y* B (| /1€1)'*" for any a, B, j.

Therefore, to prove a half of theorem 1, it suffices to show that p,(x, D) is
7°-hypoelliptic at p. From now on, we drop the index / and denote 923gp by
8.

Theorem 3.1. Let p(x, $)~51+ix’f$,,+f}lb_,~(x, &), where b_; satisfies (3.1).
=
Then, if k=2, p(x, D) is y*-hypoelliptic at p with 2=<s<A4.

Proof. By considering the adjoint of p, it suffices to construct the right
parametrix of p(x, D). Let w=[—2T, 2T]Xw’, T>0 and we seek this parame-
trix in the follwing form: denoting x, by ¢ and x” by x,

3.2) Ku =Seizfg; K, ', x, &alt’, &)dtde,

where we take T,=—T if £,<0 and T°=T if £,>0, and 4 stands for the
Fourier transform in x.

Hereafter, we assume &,<0. In the contrary case, we can prove the result
in a similar way. Let K(¢, t/, x, &) ~2 K ¢, ¥/, x, §), where K; is a formal symbol
in y°-Sg uniformly in ¢, ¢’. Then p(t, x, D,, D;)K~Id implies

(Di+1/a)p (¢, x, E)D)K(L, t/, x, £)~0
and
K, t, x, &)=1.

In view of this, we define

Kt ¢, x, ©=exp| =[| 1521621 +ibi(s, 2, O+ibu(s, x, O)ds]

j-1rt
K](ty t/y X, &): 2 St'KO(t’ S, X, E)E-Pl(sy X, Ey DI)Kj—l'-l(s’ t” X, E)ds

=0

where
iP(s, x, &, Dx):l HE, oa!"bi‘}’(s, x, §)Dg+0,,, is*D,
j#b

lagt“oz!“bsa’(s, x, &)Dg.
Here, d,,, is a Kronecker’s delta.
Set A=Sf'sglén[ds and Q=A+A'*|£,]|"¢. Then we see that for some con-
stant C,
[ A IS Crardisig1B1Q|&] ! for any a, 8,
since A=A|t—1'|%|&,| for some A>0. This inequality and the formula for the

derivatives of a composition of functions (Faa di Bruno) give us: For some
constants C and C’
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| K@yt t/, x, f)l§C|a+5l+l§(a+ﬁ)!/(il!'"ik DQ'EIe
l
xexp(C'[t—t"| |§,1'2—A/2)
where th:{jZ:}lj,»rj=a+/3, 7;%0, r;EN™, z',EN} and [=(,, -+, ;).
It is easily seen that for some constant A, we have
QlIl |enI—|a+ﬂ|/c§A|1|A|11-|a+ﬁ|/c if |[| > Ia+ﬁ|/6
<A if |I|<|a+4pB|/6.

and

Hence, using the inequalities: yYe ¥<N! for all y>0 and for some constant B,

SIYG i DS Bt
M
we obtain the estimate for K.

Proposition 3.2. 0&w’XI be a conic subset. Then, there exist constant
C; (j=1,2,3) and R such that

| K&y, ¢, x, O S Ciatbfrt| et [P ai(| B 4| Bl &1 -e) A
Xexp(—CoA+Cy|t—t'| |&]'?)
for t=t', (x, §)€0, any a, B, with Rla|<|§|. Here p=5/6.

As for the estimate for K;, we have

Proposition 3.3. There exist constant C,, C, C’ and R such that
| K@, 7, %, OIS CoCla+B+i(|a|®/ 1170 = (| 8124 BI*e &1 =0 )P
X(j*/181)7 exp(— 5 CodC'181')
for tzt', (x, §)€6, any a, B with R(la|+j+17< 1€l

Proof. By Leibniz’'rule, we see that

@+ B K, ¢, x, 0= S 2| @) K, s, x, 8

t' k=

X, (s, ', x, & DIKSS

(s, t/, x, &)ds,

11(,9)

where the sum is taken over all «;, 8; such that 3 a,=a and 3 ,;=8.
Since

t 1
[ stlgalexp(—5Cottt, 9))dss4/C,,
¢ 2
the induction on j shows us that there exist constants C,, C and R such that
K (t, ) x, )| S CoClo+B+i(Ja+ B+ 7)1 & -erar-ir
X (L4 |&11-P) B (A2 g| 04 1)



Gevrey-hypoelliptic operators 317

xexp(— g Colt, )+ Cilt—t'] 181'7)

for t=t’, (x, §)€6, any «, B, 7 with R(lal+j+1<|&]. The result follows
from this since there exist constants C” and R’ such that

AV gV IrgmCn OO i (€ 2R,
and

A, t)—clt—=t"| 1E1"P2{QAlt—t" [ |E]V) —clt—=t" [ |E]M4} 16114,

Therefore, K; is the formal symbol in 7°-S%, . @X ") if 2<s<4. Let
K, ', x, &) be a realization of this symbol. Then we have p(x, D)K~Id at p.
Similarly, we can also construct the left parametrix of p(x, D): Lp(x, D)~Id
at p. Then L~K at p. Now take X=op(y*-S}(R™)), properly supported such
that X~Id in a conic neighborhood of p and WFyX) is in a small conic neigh-
borhood of p. Then, it is easily seen that (t, 7, x, §,¢t/, ¢/, x’, )& WF/AKX)
if (x, &)=(x’¢’). Since either (¢, 7)x(0, 0) or (¢, /)= (0, 0) if (¢, 7)=(¢’, 7/), the
ellipticity of p at (¢, £)=(0, 0) implies that if (¢, 7)==, 7)

t,z,x, &, ¢, x, 8NVeEWF/XKYX).
Therefore, we conclude that
WF/(XKX)Cthe diagonal of T*(w)\O.

Here, WF; stands for the analogy of WF’ in the space y§®’(R™). This is well-
defined in virtue of the kernel theorem ([3]). Q.E.D. of theorem 1.

Next, we consider the operator in theorem 2.

Proof of theorem 2. In this case, we have the factorization of p: p~p,<p,,

pj(xr $)=51+ixf$2+bj(xh EZ) »

where b;ey'-SV/%(wxI'). We keep the same notation as before. Then, there
exist constants C,(j=1, 2, 3) and R such that

[Ké@, ¢, HISC (el /161) 01 exp(— Co A+ Cy [t—2"| [E]'?)
for t=t/, £,<0, any a with R|a|<|é|, where p=%+1/(k+1) and A:S:Is”lézlds.
This is easily verified because ?C and R,
(A AME+D g Ime) T [g] ==l exp(— /)
sC''aftti-ea

if Rlal<1&|. Therefore K, belongs to 7'-S,,i-,(@ XI") uniformly in t=¢t'.
This and the same argument as before give us the result. Q.E.D.

4. Non-C=-hypoellipticity

Let us consider the operator P with symbol
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plx, E)=c(x, H){g™x, &)+ X xi*Pp, (x, §)g (x, &)}

laj+jsm-1

where ¢(x, §)=& +ix%a(x, &), a, b,j, ¢ are the classical elliptic symbol in a conic
neighborhood of p=(0, §’) of order 1, |a|, 0, respectively, especially a is real-
valued and /(a, j) is a non-negative integer. Let

M={(a, /): |lal+j=m—1, la, ))<(k+D)|a|+5j—m}

o=mino(a, j), o(a, ))=(m—j—|al)/(km—kj—Ua, j)),
and A

Ho={(a, )EM: c=0(a, J)}.
For (v, n)eR®, we introduce the function
P*y, n; p)=n"+ %}y"“"’ba,j(p)ﬂ’-
Then we have

Theorem 4.1. Suppose Mx@ and for each y with ya(p)<O0, the equation

P#(y, n; p)=0 has a simple root n(y) such that Imxn(y)<0. Then P* is not
solvable at p.

Here, the operator P is solvable at peT*(2)\0 iff there is an integer N
such that for every feH'Y(L2) we have

WEPu—f)Bp for some us9'(Q).

The results for non-C=-hypoellipticity in theorem 1 and 2 are the straight
forward consequance of this theorem since the C=-hypoellipticity of P at the
origin implies the solvability of P* at every p=(0, &), £=0.

Proof of theorem 4.1. We may assume that c¢(x, &) =1. Set y,=21%x,, and
y'=2Ax’. Then,

P(exp(iyév(x)~exp(iy§)Za !~ p¢(A 7y, A7'y’, 27§, 46" )Dsv.
By considering Taylor expansion at x=0, this becomes
exp(iy§)2° ™ {z™+ %‘,yi“""’ba.j(p)l"‘""”z"-i-z Co. {5, 8)
Ho

X A0m-p =18 18 DZI DB (),
where

z=&+D, +iyta(p)2, d={|&|(k+1)—m+j—U&, D}/ Dem—kj—U&, }))

with (@, j)E M, cg,; are smooth and e(f’, j)=¢e,>0.
Therefore the same argument as in [5] enables us to show that for any
M >0 there exists the asymptotic solution u¥(x) of Pu=0(2"*) such that

JM)
uf(x)=expw(y, 2)- ]20 A7), vyyoeo as jooo,

where u; and w are C=-function in a open set £ in R*, and
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Imw(y, H=(—h(y, D+1y'1H2°, [Rew(y, A)—y'2&"|=0(2%

Here the smooth function A has a minimum at y,=s(2) which satisfies: ]}IE s(A)
=5,%0, and (s,, 0)=Q. '

Then by the standard argument, it is seen that for every C, N, v, every
neighborhood U of the origin and every properly supported pseudo-differential
operator A with WFA®»p the following inequality

4.1) lvl-v = C{IPoIL A1) - w-at 1 Avllo}

does not hold for v=¢,u¥<C5(U) if 2 and M are large enough. Here, ¢,=
X(A%x,—s(A), Ax’) with X CS(R™) whose suport is sufficiently small and contains
the origin. || ||, stands for the Sobolev norm.
Therefore, by lemma 26.4.5 in [2], we conclude that P* is not solvable at p.
Q.E.D.

5. Appendix

In this section, we shall give some remarks on the solvability for the
operator L:
L=(D|+ix§Dz)z+bx{D2

where, £ and / are non-negative integers and beC\0.
In [8], the following result has been announced without proof:

Theorem. L* is locally solvable at the origin if and only if k is even and
IZzk—1.

The proof of this result is given in [1], in more general form, & is odd.
When £ is even, one can find it in [6] except for the case that / is odd and

b>0.
In this section, we shall give the proof for this exceptional case:

Theorem A.l. If k is even, | is odd and b>0, then L* is not solvable at
0, 0,0, 1) ’

Now, we consider the case that % is odd, in more detail. By"the argument
in [1], it is easily seen that L is not solvabe at (0 0,0, 1) if £'is odd. We
shall show the following result: :

Theorem A.2. If k is odd, L is solvable at (0, 0, 0, —1) and, more precisely,
L* is hypoelliptic at (0, 0, 0, —1). ‘

Proof of theorem A.l. For simplicity, we assume that b=1 and denote
&=2>0. Taking Fourier transformation in x,, we have

L=(D,+ix*)*+x!2.
We seek the solution u of the equation Lu=0 in the form:

u=exp(x¥+'2/(k+1)— x32**)v(x, A)
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where g is a small positive number determined later.
Let o=1/2k—1), 0=(k—1—-1)/(2k—1), t=x,A°, and y=x,4*. Then for a
positive number p<1-—24, there is v>0 such that

{—0i+t'22+2F(t, y, 4, D, D)}ult, y, =0,

where F is the differential operator of order 2 with smooth coefficients and

satisfies that F(t, y, 4, 2°, 2*) are bounded if (¢, y) is bounded and 2 tends to
infinity.

From the asymptotic expansion theory of ordinary differential equations, it
follows that there exist V.(¢) such that for some constants cf,

(=0t +tHV.()=0,

t
V,_(t)~t“‘“exp(-i_-g s“zds> as t—oo,
[
and

~t"“{cf exp(—g:s”zds>+c§ exp(S:s’”ds)} as t——oo,

Set v.(t, )=V .(t2*%/¢'+») and denote the Wronskian of {v.(t, 2), v-(¢, 2)} by W.
Then W=C2a¥'¢+» with some nonzero constant C.
We define the operator K by

k=W v-t, Dwuts, D@ ds+{ it D5, Dfs)ds),
Now, we define V; by
Volt, H=v_(¢, A)
and
Vit,y, ) =—K{2"F(@, y, 4, D, D))V ;.\, y, A} if j>O0.
Then, it is easily shown that
10703V it, ¥, DS Cop 22720 ™0 exp(—2(042) Y ()12 122)
where Cn,, is some constant, Y (£)=1 if >0, Y (¢)=0 if t<0 and 6’=2d/({+2).
Set uM:’él'”’V,(t, y, Aexp((F+1)"'x4+12—x22%#). Then we have
10702, uu(x, D S Cm, n A0 ™ 20  exp w(x,2°, x,4°, )
10207, Luy(x, D) < Cp, f20+80m42nn-M exp(x 27, x,28, 2),

where w(t, y, )=(=2Y ()((+2) t+D2 4 (k4+1)-1t**H2°— 32, Here we note that
o+d0'+(+2)'<1.

Let w be a neighborhood of the origin in which ([+2)7' X [¢]|¢+272 < (k4-1)|¢] ¥+
and take Xe Cy(w) such that X=1 near the origin. Put

UM(x)=X(°x,, A x)uy(x, A)et=2t,

Then the standard argument shows that the Hé6rmander inequality (4.1) does
not hold for U¥ as A—oo, if N is taken large enough as compared with N and
v. Therefore we conclude that L* is not solvable at (0, 0, 0, 1). Q.E.D.
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Proof of theorem A.2. Considering the adjoint of L* we are going to con-
struct the right parametrix of L. This parametrix has the different form
dependent on arg b and /. We only consider the typical case. Let [ be even,

b=—1, and &=—7<0. Then it is easily seen that there exist the solutions
V., n) of

LV={—@.+t*n+t'n}V(t, n)=0
such that V.(t, p)~(typ'/+P) Vexpw.(t, n) as tp'/*P—>Fco, where
watt, P=—tt+p/ e+ D= e vde,

With the same o, d as before, let s=¢9°. Then
w.t, P=ials, P=(—s/k+ x| 7).

For each 4, this function @. has only one maximum at s=s, where s,>0 and
5s.<0. We define the operator E(t, ) by

t t
Bt pf=| et v, mierdr—{ e v, prenar
S+7 $-7
where e.(t, t', )=V.(¢, V', p)/WE, p), and W(t’, ») is the Wronskian of
{Vy, V_(=exp(—2t*+'y/(k+1)). Then, it is easily shown that

|oge.(t, t, n)l§Cw"’“exp{—2“S:'(r"ni(r‘n)‘”dr)}
if ¢/ is between s+%7 and t, where C, is some constant and

pe=min{1—2719, 27"+ 2 (k+1)"'(I+2)}.
Define the operator E by

Ef:Sei”z"'z'”’E(xl, gy f(x)dxdy

where g(n)e C(R"™), g(n)=1 if 5>2 and g(»)=0 if n<1. Then direct com-
putations show that

E*L*~]d and L*E*~Id4+R at (0,0,0, —x)

for some operator R with WF/(R)C{(0, x,, 0, &, x,, x,, &, &)}. Here, A~B at
p iff there exists a conic neighborhood 8 of p such that WF/(A— B)N\diag 0=@.

From this, we conclude that there exists a conic neighborhood @ of (0, 0,
0, —%) such that

WEuNOCWFL*un6 for any ueé&’

since L* is elliptic at (x, &) if (x,, &)%0.

For the other case of argb and /, there exist solutions V, of LV=0 such
that RelogV has only one maximum. So, by choosing appropriately the lower
bounds of the integral in the definition of E(z, %), the similar argument show
the hypoellipticity of L* at (0, 0, 0, —7). Q.E.D.
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