J. Math. Kyoto Univ. (JMKYAZ)
28-3 (1988) 557-577

Some limit theorems of almost periodic function
systems under the relative measure

By

Katusi FUKUYAMA

0. Introduction.

Kac-Steinhaus [6] obtained the following central limit theorem.

Theorem A. If a real sequence {A;} is algebraically independent,

limpR{ \/ 2\/2 cosljx<a} \/2 g" e-Srrde for all a=R'.

n—00

Here pr denotes the relative measure: yR(E)—hm—y(Ef\[ T, T]) when-
ever the limit exists, where g is the Lebesgue measure. ’I‘heorem A implies,
in particular, the relative measures of sets of the form {x Vi 2 a;cos A x<a}

exists if {4;} is algebraically independent. Note that the family of sets whose
relative measures is well defined does not constitute a finite field and the relative
measure itself does not satisfy the countable additivity. So the space (R, uz)
is not a probability space in the usual sense. But the central limit theorem
holds for (/2 cos;x} on (R, ug) as Kac-Steinhaus assert.

This theorem was extended to the case of weighted sums in the following
theorem due to Salem-Zygmund [15] which is a famous paper on the lacunary
trigonometric series.

Theorem B. If a real sequence {2;} is algebraically independent and if a
real sequence {a;} satisfies
0.1) a,=0(A,) and A,1oo, where Ai=al+ .-+ +a3,
then
lim g { ;L ﬁ} a;v' 2 cos 4, r<a}
R YA, &

n—co

“ L -g2p 1

\/2 S d&, for all a=R'.
The purpose of this paper is to obtain more general limit theorem, for
example, the law of large numbers (LLN), functional central limit theorem
(FCLT) and the law of the iterated logarithm (LIL) for {+/2 cosi;x} under
#r  For this purpose we use the idea of Salem-Zygmund (Lemma 1) and
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construct a probability space and random variables whose laws are the same
as those of almost periodic functions under pr. Of course, a well-known
construction of such a probability space is to use the Bohr compactification of
R which is a compact Abelian group and the Haar probability measure on this
group. Here we give a much simpler construction in section 2: we construct
a probability measure P on the product space RZ where B is the set of all
almost periodic functions, such that whose finite coodinate variables (§,,, -+, &,,)
(fi, =+, fr=B) have the same joint law as f,, ---, fn, under pr. So if we want
to study about {+2 cosi;x} under pr, we can apply usual probabilistic methods
for random variables {{vcos 1,2} ON (RE, P).

The first aim is to weaken the condition on {4;}. We introduce a weaker
condition than algebraic independence which we call the signed sum codition
(“SS-condition”, Definition 1). We prove in Lemma 2 that {£vs cos zj,} is i.i.d.
if any only if {4;} is algebraically independent, and that {&v3 cos 2;z} IS @ equi-
normed multiplicative system (EMS) in the sense of Definition 2 if and only if
{4;} satisfies the SS-condition. EMS is a type of multiplicative system (MS)
which belongs to a category of weakly dependent random variables.

Next we prove the law of large number (LLN). We know that LLN holds
for i.i.d. and MS. The results are translated for {+/2 cosi;x} under Ur tO
obtain LLN in a weak form (Theorem 1).

The third attempt is to prove the functional central limit theorem (FCLT).
FCLT was first proved for i.i.d. by Donsker and was extended by Prohorov
to the case of independent random variables satisfying the Lindeberg condition.
FCLT of Donsker type for MS was studied by Kéno [7]. Here we prove FCLT
of Prohorov type for EMS (Theorem 2,3). Now we translate these results into
a theorem for {+/2 cosd;x} under pz (Theorem 4) and, from this, we derive
other limit theorems (Theorem 5,6).

Finally we prove the law of the iterated logarithms (LIL). LIL was studied
by Kolmogorov for independent random variables and, for MS, by Hungarian
school. Using these theorems we can derive a weak form of LIL under gg.
We also prove here the functional law of the iterated logarithms (i.e. Strassen
type theorem) for EMS.

The author would like to express his heartly thanks to Prof. S. Watanabe
for his helpful comments and to Prof. N. Kéno for his valuables suggestions
and guidances during the preparation of this paper.

1. Preliminary.
First we define the “SS-condition”.
Definition 1. We say that {A;} satisfies the signed sum condition (SS

condition), if
reN, ;<. <n, implies =2, + - =1, #0.
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Next we introduce several classes of multiplicative systems (1), (2) and (4)
are due to Alexits [1]). These notions will play an important role in this
paper.

ESMS

N

EMS SMS

NS
MS
Diagram 1.

Definition 2.
Let {&;} be a sequence of random variables.
(1) {&;} is called a multiplicative system (MS) if

E¢,, - §,,)=0  for any n, <. <n,.
(2) {&;} is called a strongly multiplicative system (SMS) if
B 639=0

for any n,< -+ <n, and a;{l1, 2} but at least one of «; is 1.
(3) MS {¢&;} is called a equinormed multiplicative system (EMS) if

E¢:;, - 62 )=1 for any m,<--<n.,.

(4) SMS {&;} is called a equinormed strongly multiplicative system (ESMS)
if
E¢:, - §2)=1 for any m <. <n.,.

Implications among these are shown in the diagram 1.
Finally we give the following definition.

Definition 3. We first define a probability measure Pr on R' as follows.
For a measurable set FE,

Pr(E)=——p(EN[~T, TD).

Next we define the upper relative measure fi(F) and the lower relative measure
ER(E) for a mesurable set E by

ﬁR(E)=linT1_sup Pr(E) and ;_zR(E)zlir;linf Pr(E).

,uR(E)zﬁR(E)zgR(E) if the upper and lower relative measure coincide.
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2. Main results.

Next lerﬁma is essentially due to Salem-Zygmund [15].

Lemma 1. Let fi, -, fn be almost periodic functions. We define a mapping
(fl) “.yfn) f7’0m Rl to Rn by

TS O IO AR

Then there exists a probability measure Py, .. ;. on R™ such that

n

(2.1) P}Jl’m'fn) —> Pfl""'fn as T—’OO,

where P{v2f2 {s q image measure of Pr by (f1, -, fn).
We consider the following family of probability measures. '

{le,...,jn}neN, fl""'anB'

Since this family satisfies the Kolmogorov’s consistency condition, we can apply
the Kolmogorov’s extention theorem to obtain a probability measure P on RE
such that

P:?}.m'fn:le,"'.f nEN’ fb ey anB-

n

Now we define coodinate variables. Let f be an almost periodic function and
we write &; as an f-th coodinate of the space (R%, P). &, is a random variable
on (R?, P) and n-dimensional distribution P®/1*/» of n random variables
&y, -, &s, coincides with Py .. . for every nEN and f, ---, f[rE€B and
furthermore, it holds '

n

2.2) Pl s Piieiin(Tooo)  for neN, fi, -, f2EB.

From this we can say that the law of the almost periodic function undes gp is
roughly equal to the law of the coodinate variable of the probability 'space
(R®, P).

Lemma 2, ,

(1) {&vzcos 2;c} is i.i.d. if and only if {;} is algebraically independent.

(2) {8vzcosa;z} is uniformly bounded EMS if and only if {2;} satisfy the
SS-condition.

(3) For all 2R and ac[—+2,V/ 2],

P{€vscos1,:<at=p{x€[0, 1]; v 2 cos2rx<a}.
A weak LLN for {+/2 cos2;x} is stated as follows.

Theorem 1. Let {A;} be algebraically independent or satisfy the SS-condition.
Let {a;} be a real seaquence such that

B,=a,+ - +a, T oo (n—>o0), an=0(B,).
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Then

lim,uR Ea,«/Z oS A;x

P B, &

gs}=’0 for alZ e>0.

Next two theorems are FCLT for EMS. Denote by C the space of all
continuous functions on [0, 1] ‘with sup norm and ¢[C] is its topological o-field.
Denote by D the space of all discontinuous functions of the first..kind with
Skorohod metric and, o[ D] is its topological o-field. (Cf. Biliingsle_y 3D

Theorem 2. Let {£;} be a uniformily bounded EMS and {‘a;f}' ‘be a real
sequence such that (0.1) holds. Put S;=a&:+ - +a6;. We define a C-valued
random variable X , by '

2 ' g 2
A; ): S and is linear in [ 43 A ]

2.3) X"(A?, A, Az’ Az

Then we have
o 9D
X,— W (n—x).

where W' is the Wiener measure on C. Here 9D denotes the convergence in dis-
tribution, i.e. the law P*r of X, converges weakly to W.

Theorem 3. - Under - the condition of Theorem 2, we -dejine -a .D-valued
random variable Y, by '

A AL, )

. _ Sj
(2.4) | Yaty=—_— if tE[Az, Az

Then we have
9
Y, —W (n—c0) n D.
Using FCLT for EMS, we derive the following theorems.
Theorem 4. Denote A, and S, by

Az=a}+ - +a%  and S,=a;vV'2cosAx+ - +a,v 2 cosdpx

respectively. We define a C-valued random variable X, by (2.3) and a D-valued
random variables Y, by (2.4). Suppose {a;} satisfy (0.1) and {A;} satisfies the
SS-condition or the condition of algebraic independence. Then for A=a[C] such
that W(0A)=0, we have

lim fp{ X € A}=lim pp{ X € A} =W (A),

and for A€o[D] such that W(0A)=0, we have
" lim fia{ Ya€ A} =lim pa{ Yo A} =W(A).

.
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Theorem5.  Suppose {a;} satisfies (0.1).

tim praf—— Al maxS,.<_a} g ety

V2r

. 1 » (—1)*  —x*@h+1y
L‘ﬂ”R{A—"‘E‘Sﬁ"Sﬂga} 1“??&2k+1 exp(— g )

hold for all a>0 under the condition of algebraic independence. Under the SS-
condition the above formulas also true except at most countable values of a and if
& is replaced by fir or pr, then the above formulas hold for all a.

Theorem 6. Under the condition of algebraic independence and (0.1), we have

2 .
lxm,aR{ a2 52 a2<a}——arcsm\/a .

We should guess that, under the SS-condition, Theorem 5 holds without
exceptional values of a and also Theorem 6 holds. But we could not prove
these conjectures.

Next theorem is the functional law of the iterated logarithms (FLIL) for
EMS.

Theorem 7. Let {&;} be a uniformly bounded EMS and {a;} be a real
sequence such that

AZ
—? ves 2 2—of — 2 ___
(2.5) Al=ai+ - +aitoo and ai=o og log AZ )
Put X, as (2.3). Then we have
(1) {X./v2loglog A%} is relatively compact in C[0, 1] a.s. and

(2) P({The cluster of {X./~2loglog A2} in C[0, 11}CK)=1. Moreover if
we suppose

(2.6) Ai=al+ - +ailoo  and a,=o(AYP% for some 6>0,

then we have
() P({The cluster of {X./~2loglog Az} in C[0, 11}=K)=1, where K=

{x=C[0, 1]; x(0)=0, x is absolutely continuous and Xl %)zdtgl}.
o
We derive from this theorem a weak form of LIL for {+~/2 cos4;x} under
Ur-

Theorem 8. Under the condition (2.5),

o S; _
lim i e X oAy <L V0.

and under the condition (2.6),
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S; _
pefsup V3 AToglog A% >l-¢f=1  Ve>0,VneN,

where Sj(x)=a,v 2 cos ,x+ - +a;+/ 2 cos A;x.

3. Proof of Lemma 1 and 2.

Proof of Lemma 1. Since an almost periodic function is bounded, a range
of (fi, -+, fa) is compact. This compact set is a support of P¢1/» for all
T. Thus {P§+fa)} is tight. So, to prove the weak convergence, we only
have to show the pointwise convergence of the characteristic functions.

~

Prfuvdn (g, Tn):S exp(i zn}l ZjTj)P;-fl'"-fn)(dz)
=

Rd
Z%S:exp(i ]Z: fj(S)Tf)ds

Since the integrand of the last integral is an almost periodic function, by the
existence theorem of the mean value of the almost periodic function (Cf. Bohr.
[4]), this integral converges as T tends to infinity.

The proof of the lemma 2 is based on the idea of Kac-Steinhaus [6].

Proof of Lemma 2. Proof of 3). By (2.1), with at most countably many
exceptional values of a,

l_,jm PAT/Ecos xz[_\/j, a]___P:wgcos Zz[_v‘z_’ a]
holds. On the other hand,
lTimP¥§°°5"[—V?—, a]z}im%y([—ﬂ TIN{x; V2 cosixe[—+ 2, a]})

=p{x€[0, 1]; V2 cos2rxe[—V 2, al}.

Since the right-hand side is continuous in «, we can conclude that there is no
exceptional values of . Now we proceed to the proof of 1) and 2). We first
prove,

r T
(31) E(&vlz cosdy *°° Sv:'cos lnz)
< S 172 >
= SL/2Cry T n
p§o p%o ncm rnCpnz " 60. jZ—"l(zpj_ TiA;

where 0;,; is the Kronecker’s delta. By (2.2)

E(&vr'lg'cos 0 5:—3 cos X,,x)

=limeIl xﬁnP}-‘f‘n cos 1y, ,6v2 cos “’(a’x)
Too
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=lim—1—ST

T 2T T(\/7 cos Z,x)r.l (\/_2_1COSlnx)’"dx .

Expanding this formula by substituting cos x with (e**+e7**)/2 and calculating
the limitation, we get (3.1). Let {4;} be algebraically independent. Then,

Bo'j;{:l(zl?j_rjnj:5o'“’x‘71 50‘21,"_7"
holds and we get by (3.1)
E(E:/licos LI erv%ws lnl)zE(er/lf ¢cos hz) E(‘S:/"Ecos an)
(T’LEN, Vi, =0y rneN).

This implies that {£vzcos;z} is independent and 1) is proved. Now we assume
the SS-condition. Let ;= ---7r,=1 in (3.1). The summation in the Kronecker’s
delta is :

12:1(217;“1)2; (,D;:O, 1, j:]_’ )

and by the SS-condition on {4;}, this summation never vanish. Thus we can
conclude that

E(EVE cos Ay "7 Evfcos Xn.r):O .

Let ;= -+ r,=2 in (3.1). Summation is
22 (=04 (=0, 1,2, j=1, ---, n).

By the SS-condition this summation equals to 0 if and only if

pi=1, j=1, -, n.
This proves

E(E?Ecos PET Egicos X,,.r)zl-

Thus the assertion of 2) is also proved.

4. Proof of Theorem 2, 3 and 7.

In the proof of Theorem 2, we use following inequalities. (Cf. Azuma [2],
Révész [13] and Takahashi [16].)

Theorem C. (Azuma’s inequality and Révész-Takahashi’s inequality.) Let
{€.} be a uniformly bounded (|£,|<K) MS and {a.} be a real sequence. Put
Ai=al+ - +a and S,=a.&5+ - +a.&,. Then Azuma’s inequality

1 2 2
Eexp {iS.h<exp(5 #A1K?)

holds and this implies Révész-Takahashi’s inequality
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4.1) P(|S:|=ZyKA;V/2)<2e 7" Vy=0, VieN.

Proof of Theorem 2.

[Part 1. Weak convergence of finite dimensional distributions] We use
the next theorem due to D.L. McLeish [9].

Theorem D. Let {C..;; 1=j<k.} be a given triangular array of random
variables and put T,,='sl;[ (144t8,. ;). Suppose for all real t,
JSkn

(a) E(T, —1, (b) {T.} is uniformly integrable,

y/ P
() 2Ci;,—>1 and (d) max|{, ;| —>0.
Jjskq jsknq
Then we have

D
28— NQO, 1) (n—oo).

Jjskq

Now we put k,=n and Cn,j:fl—isj. Then we have,
— t2K2/2 K
E(Ty)=1, |T,|<e™¥% and maXICn.jléA—msaXIajl —>0.
n J3n

Thus we only have to check (¢). Making use of (0.1) and the orthogonality of
{€%—1}, we have

e &1 L0 (nsoo),
Thus (c) is proved. Now we have proved the Il-dimensional CLT. And we
can prove the multi-dimensional one using Cramér-Wold theorem (Cf. Billingsley
[3] Th 7.7). Thus we have proved the weak convergence of finite dimensional
distributions.

[Part 2. Tightness]

We prove here

4.2) P{I X, (1)— X (s)| ;z}gesexp(— (>0).

22
6K2|t—s|>
It is standard that (4.2) implies the tightness of {X,} (Cf. Billingsley [3]). Let
t>s and

s€(Ai/ AL, Al AR], te(A3/ AL, Aln/AR].
Then

An ¢ A} 1
X.()—X.(s)= Qe ( A;;l _S)§i+1+7n‘(ai+2€i+2+ e 4aj€y)

+ :,1:1 (t——%)&ﬂ .
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Now we put p, g, r=0 by

Abiy 1 A}

p= Y —s, q=A—%(A§—A%+1), r=t— v

It is obvious that p+qg+r=i—s. Let >0, then

A, V2
P{I X.)—X.(s)|=} <P {l(l' lplémlzm}
Vg 2
+P { [@isobivat - +a’&"|—«/1) +\/6]i +\/r}

Vr
+P{l JH|7’|EJ+1|2\/I) +'\/_+'\/7'}
By 4.1),

@i 2 L
=2exp(~ 7375 Kz(«/5+\/q—+«/r_)2)+2exl)( KT T T V)

,1+1 A
+2exp(— g4y, K*Np +Vg +r )2>

2
Making use of p< ‘j:l’;: and r< X;‘ ,
22
— < — — —
P{1X,(0—X () 22 Sbexp( g5 1 Ve TV )
By (WP ++g ++7 P<3(p+q+r) (4.2) is proved. O

Now we proceed to Theorem 3. Let 4 be the Prohorov metric on space D
and X,, Y, be defined as (2.3), (2.4). Then,

d(Xs, Ya)=sup| Xalt)— ¥a(®)]

1 n
maxlajE,-I.

<
= A, =1

Thus under the condition of Theorem 2 and 3,

d(X,, Y,)—>0 a.s. (n—oo0).

This proves that Theorem 3 can be derived from Theorem 2.

Remark. In the proof of Theorem 2 and 3, we use only the orthogonality
f {£2—1}, the uniform boundedness and the multiplicativity of {&;}.

In the proof of the first part of Theorem 7, we need the next theorem due
to Mdricz.

Theorem E. (Mdricz [10]). Let {{;} be a sequence of random variables and
put
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b+m

ECh=a3, S, m= 2 &, M, m=max|SOb, m)| and
b+m

g, m)=A g5.
Jj=b+1

Suppose

2

P{ISG, m)l%l}éCexp(——ﬁ)

Vi>0, Vb, meN.
Then for some constant C,

2
P{M®, m>gz}gc,exp(——2g(j—m)) Va>0.

Putting {;=a;&; and making use of this theorem, by (4.1) we have

4.3) P{ max gl}gc,exp(—ﬁ;_w).

p<jsg

j
2 ast;
i=p+1

Proof of Theorem 7 1).
Let a sequence {p(k)} satisfy AZcpy-1<O*<Aj}> then we have

sup | Xu(®)—Xu($)[ =0 sup [Xprs()—Xper($)l.

sup
P(r-1)sSnsSp(r) 1t-8isd

We denote A,(g, §) for ¢e>0 and >0 by

_ |Xp(r)(t)_Xp(r)(s)|
Are, 5)—{us—ls!1psa vloglog Acr) >e}

We prove here that

4.4) Ve>0, 30>0  such that ﬁ}lP(A,(e, 0))<oco.

Once it is proved, by the Ascoli-Arzela theorem, the relative compactness be-
comes clear. Now we prove (4.4). Taking n large enough and fix it. By
(2.5), for all >0 there exists a sequence of integer 0=¢(0)<qg(1)< --- <q(r)=n
such that

Atzz(i)

20=t;—t;i, =20 1=1, -, r, where ¢;= ye

This implies (Billingsley [3] p. 56 Cor),

P sup | Xa(0—X ()| Z0)S B P(| sup | Xo(8)=Xalti-)| ZF)

j=1 ti_1Ssstq

Er] P( max

j=1 q(j-1D<ksq(h

é 01‘5;"2%1‘111)

i=q(G-1+1
Making use of (4.3), we have

2.2
n?)
xp( 36K2(A§cj>—z4§<;‘-1>)>

.
=C,:Xe
=1
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1 Ul
§C‘5 exp( 72K*%0 >
Now we put p=e+/2loglog A%, we have

P(A,(e, 5))§-—%(r—1)—ﬂ/scx2a .

Taking 6 small enough we have iP(Ar(e, 9))<oo. Thus (4.4) is proved.

O
In the proof of the later part of Theorem 7, we use the following theorems.

Theorem F (Révész [13]). Let {&,} be a uniformly bounded MS and {b,}
be a real sequence satisfying

B,
Bn T [o0] and bn—O(m) .
Then we have
L b, —>0 as (n—oo).
Bn j=1

Theorem G (Kuelbs [8]). Assume that

P({X./~2loglog A2} is relatively compact in C[0, 1})=1

and, for all signed measure v with bounded variation on [0, 1],

S:X,,(t)du
i < =
P llrrILSquJP\/210glogA$,=K"‘ L.

Then we have
P({The cluster of {X./+v2loglog A%} in C[0, 1J}CK)=1.
Furthermore suppose that

| Xata
P llrgf;lp—m?gl—mzl(,l =1.

Then we have

P({The bluster of {X./v2loglog A%} in C[0, 1]}=K)=1,
where

K?, o=E[(S:W(t/\ 0“)dv(t)>2]=S:S:t/\s/\0"dv(t)dv(s).

(W(t) denotes the standard Brownian motion.)
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Proof of Theorem 7 2) and 3).
Put N=|v|([0, 1),

2
0 for tefo, 2]
PO={ Az, A A, A
4 An (,  Aja j-1 J
2 (t Az ) for te[ Az AE,] and
1 otherwise

c}”’:S: @A)

We have

n n

1
a;c§™é;.
An = A &J

X.()= ; BME, and S:Xn(t)dv(t):

Weak convergence of X, implies

im E[(S;X,,(t/\ 0"‘)du(t))2] —E [(:B(t/\ 0")du(t))2] =K2,.

Thus we have
4.5) Llil;lo A2 Z}(a iciPP=K2,
Since |¢f®|<N, (4.5) and (2.5) implies
Mmy—pf— """ 2 — z o (10)\2
ac (x/loglogB ) where B2 E(a,c, 2.
This implies (Theorem F)

2 ;;(a cfPE—1D —> 0  a.s..

Thus by (4.5) we have

n

j—>K5,1 a.c..

Now we use the method due to Takahashi. (Takahashi [16]) Put 4,=

2
K;14v2loglog AZ. Making use of e’§(1+x)exp(—%—+|x|3) (x| £1), taking
large enough 7,

2 12 -
E[exp( AS®) c"’(”’ajsj ﬁ (2 {c (p(”’aj&']}z—(l-l—.? )__%)]

AP(r) j=1 2Ap(r) =
<eXp</zp(-r)K p¢ I (p(r))a [3—(142¢) K: 12'2121('0 )
p(r) Jj=1
2
<exp( Aper K “E—N® max |a;| —(1+2e )»_Jm_r)_)
P(r) JspCr 2
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=exp (loglog A%,,0(1)—(142¢)loglog Aj¢:»)
<K'r-c.

Since this is a term of convergent series, by the Beppo-Levi’s theorem we have

lim oo . — Xty 9Kz, )= —co.

Thus we have

1

S Xp(r)dV
lim sup—s———
oo - A2 log log Alz)(r)

A

K, . a.s.

For given n, take r as p(r—1)<n=p(r). Then
1 Xn(t) p(r)(t)
Sox/ZloglogAiy(dt) S«/ZloglogAp(,) w(dh)

Zgl Xn(t)—Xp(r)(t)
o ~/2loglog A2

v(dt)

! 1 :
+(\/210g log A2 +/2loglog Az(,,)SoX perov(dt).
This latter term clealy tends to 0 a.s. as n—oo.
| The former term|

_«/ZIOgIOIgAP(T 1)<AA,Z(T) So{ P(r)( p T)t) p(r)(t)}v(dt)’

(Ap(r) l)g p(,)v(dt)’).

The first part tends to 0 a.s. as € | 1 by equi-continuity and the second part
also tends to 0 a.s. clearly. Thus we have proved

1
X,dv
lim sup

0
e <
n-w" /2loglog A?,ZK” o as

Next we prove 3) under the condition (2.6) by the method of Révész [18].
First we put

LS (P(r+1))
= ]2=1 a;c; Ej-
Then
Z 1 A,
74;—'8 Xp(r+1)(t/\—L)dU(t) ,
pCr+1d pCr+1)

and we have

hm__]'_ 2 ((l cp(r+1))2_Kz

[indad Ap(r+1) j=
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Making use of this and calculating in the same way as before, we can prove

VA
limsu L <K,, a.s.
R0 p'\/ZA}Z)(th)lOglOgAzz)(rHl)_ f

Now we prove for any ¢>0,

p(n+1) p(n+1)
a;c5 g,

J=p(n)+1 K2 _Kz2 . H
(4.6) x/(Z—e)A;(,,mloglogAg(n+1,gvK"" Kz, i.o. a.s.

These two formulas imply that for any >0,

p(n+1)

A a;c5 e 2 (VKL — K3 0)2—e)—V KL o(2+e))

x’\/A:J(nﬂ)lOg log A cn+n i.o. a.s.
For any 4>0,

V(K: . — K} 5)2—e)— VKL s@2+e)ZV(2—0) K.,

by taking @ large enough and ¢ small enough. Consequently we have

IX,,dv
lim sup

L]
- > .S.
P 3loglog Az= vt &S

The last part of Theorem 7 is proved. Now we prove (4.6). We introduce
the following notations.
p(n+1)

(ajc;p(nﬂ)))z
j=p(n)+1

2
n

1 p("zﬂ) (p(n+1))$
n Dn j=p(n)+1 7 ’

p(n+1d it a;cP Pt
<1+ €5 5;)

An—=—

J=pCmy+1 D,
1 p("zﬂ) (pCr+Ing N2
= ajc i
,Bn D% j=p(n)+l( A J

@On.n(s, )=E(€xp{isna+it Nn+m})
Fo,m(x, M)=P{02<%, Nusn<y}.
The next lemma which is the generalization of lemma 1 in [18] will be proved

later.

Lemma 3. Suppose that

IsI®+12]°

T =L (nzN,)

for some 56(0, %) where {>0 and neN are constants depending only on 0.
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Then we have

Is]®+]t]*+1
0115 .

sz-}-tz) <c

Sony m(s; t)_exp(._‘ 2

where C is a constant depending only on 6.

We can derive (4.6) by making use of Lemma 3 in the same way as Révész.
We state a summary of the method of Révész for convenience. Lemma 3
implies

4.7 Fo, m(x, y)—%g:glexp(— u’—2|- du dv‘<03n

for some constant ¢>0 and B>0. It is an application of the next theorem due
to Sadikova.

Theorem H (Sad:ikova [14]). Let F(x, y) and G(x, y) be two dimensional
distribution functions. Denote the corresponding characteristic functions by f(s, t)
and g(s, t). Suppose G has a bounded density function. Furthermore, set

Fls, H=f(s, )—f(s, 0)f(0, 1)
and

g(s, )y=g(s, )—g(s, 0)g(0, 1).
Then

r ‘ (s, D—8(s, 1) dsds
st -

. r
que [F(x, y)—G(x, y)|§clg-rg-r

CZS:I f(s, O)Zg(s, 0) lds

+C, S
for any T>0 where C,, C;, C; and C, are positive constants.

Now setting A,={9n.=+/(2—e¢)loglog D32}, (4.6) can be derived from (4.7)
by making use of the following extension of second Borel-Cantelli lemma.

Theorem I (Rény: [11]). Suppose that events A,, A,, -+ satisfy
P(AkﬂAj)
 P(4))

o é
21 P(A,)=c  and hmmf L

e

P(limsup 4,)=1.

||M§ 'WM=

Then we have

Now we only have to prove Lemma 3. We first recall a basic formula.
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2
etz=(1+zx)exp(——’;—+r(x>) and  |#(x)|<|x|* Vx.
Put
_ragw goaeh Mg
Rn(t)_j=p§)+1r(t D, ) '
Then we have

3 3
[t]°K Mﬁ” | @ cfpenin| 1
D% j=pciyer 7

[t|*K3N »pcat

Dn J=p(n)+1

O(A;(b;zﬂ))

[R.(D]=

IA

a;|

=|t|*K3N (by (2.6)).
Thus for large n,
1 K3N |t]®
NOIEYI1V: S = .
RSN s = o
Since
2Q2 t2 2+m
€xXp {ZS 77n+it7]n+m}:an(s)an+m(t)exp<_ip%&—+Rn(s)+Rn+ﬁ(t))’
we have
2 t2
©n, m(sy t)—exD(— > _zl- )‘
_ S*BE 1B n s 4
—IE[an(s)an+m(t)(exp{——2—+Rn(s)+Rn+m(t)}—exp{— 5 })]l

Making use of |a.(s)| Zexp(s*f2/2), we have

éEHeXP(Rn(s)+ Rusn(®)—exp( (Ba—1)+£(Brsm—1) )H

2
SE[lexp(Ru(8$)+ Rapsm(®)—11]

32(;871—1)+2tz(.8n+m_1) )H )

+E[11—(exp
K*N ., s .
If —gon (1t1*4+1s]<1, then | R,(s)+ R,+n()| £1. Making use of |e®—1|=Z2]| x|
(x£1), we have'
E[|exp(Ra($)+Rprm®))—111=2(Rp(8)+ Rosm(1))
2K*N
§W(|t|3+13|3)~
Theorem C implies that

VvV Z(K*+1)

P(1Ba—112 ") <2exp(~DiY).
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Using this estimate we have
_ Sz(ﬁn_1)+t2(,8n+m_]-)

E Hl exp( 2 )H
sBK2+1) | t(K®4+1)
V2D¥ T A 2D¥,
(S*+5(K?+1)

2

§|exp —-1‘

+21exp( )—1‘(exp(—Dﬁ.’s)+exp(—~D%’+”m)).

There exists a constant £>0 and N, such that for n>N,

(K41 | K HD) _ st

VaDy TaDy, =g
Thus
2 2 3 3
|The former part| <261 <ap HIFHIIHL
On the other hand
(s"+)(KP+1) . D’
| The latter terml§4exp(—T — Dz ’3) VLR
Thus the proof is completed. O

5. Proof of Theorem 1, 4, 5, 6 and 8.
Proof of Theorem 1. Making use of (2.2), we have

n
2 ajNgcosdjz W

1 1
By =2 B— E‘/Z COszI
Ppri=t —> prri=t

(T—o)

Since (—oo, —e]\U[e, ) is a closed set, it holds that
ﬁk{x; l_Bl_ jZZ}l a,-\/fcosl,x‘_Z_e}

2 a;v' 2 cosd;x

2

Since {4;} satisfies the SS-condition, {£.3 cos 2 jI} is a uniformly bounded EMS.
By the weak law of the large number for orthogonal sequence we have

a3

n

ép{‘ Bln _lajsvfcosljz

. 1 =
hmP{ B < lajevicos 2z

n—00

= e} =0.
This completes the proof. O

Put S¥=a:£ 5 cos 2,2+ +* + @5 cos 2,z and define a C-valued random vari-
able X% and a D-valued random variable Y¥ as the same as (2.3) and using
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S¥ instead of S.,.

Proof of Theorem 4. Convergence in C and D are proved in the same
way. So we prove only the convergence in C. First we proved the following,
(5.1 ])7\.'/1 _— P\T, (T-->0)

A mapping from R to €' (o make a linear interpolation of the subsums of n
variables is a continuous mapping. So by (2.2), (5.1) is proved. By the The-
orem 2, we hahe

w

(5.2) PYn

> W (n—oo),
By (5.1) and (5.2) we have for A€o[C]

P»Y%(Ai)gmrnianMAf), W(AH<liminf PYr(AY).

By the definition of the lower relative measure,
liminf PF+(AY=up{ X, € A"} .
T oo =

Thus we have
W(AH<Zliminf pri X, E A Zlimint pp{ X, €A},

Tt —+oo n-oo =
Thinking about A¢, we have

W (A9 Zlimsup ap{X € A} =limsup gp{ X, € A}.

N -s00

If W(@A)=0, we have
lim pp{ X o€ A} =lim fip{ X n€E A} =W (A). 0O

n oo

Proof of Theorem 5. We prove only the part of maxS;. Rest is proved
in the same way. We denote by sup the mapping from C to R defined by
sup(x)=sup x(f), x€C (I=[0, 1]). Since sup is a cotinuous mapping, we have

tsr

w

(5'3) Parup Yy 5 psup X7 (T—»oo)
and
(5.4) Psueh o Jysep (n—o00).

Since W' has a continuous distribution, we have
(55) lim PsuP .\"§,[0' a):1”im Psup ‘YZEO, a]:W/'sup[O’ a] i
il -+00 00

And by (5.3)

(5.6) P X510, a')glix};g]wa*'n[O, )
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_S_lir;l sup Py® X2[0, a]< PP ¥2[0, a].

By (5.5) and (5.6) we can conclude the last part of the theorem. If
PP Xn{a}=0 (it is true except at most countably many exception a for all n),

lim Py»¥0[0, a]= P> ¥3[0, a].

So we have to prove that P="*¥%{@}=0 for all @ under the condition of alge-
braic independence.

P®¥ifa}=P{maxSf=a.} < 3 P{St=ad.}.
j=1 j=1

Thus we have to prove that S¥ has the continuous law, but it is clear because
this law is a convolution of continuous laws of & cos 2z O

In the proof of Theorem 6 we use the following Lemma.

Lemma 4 (Cf. Billingsley [3]). Let P be a probability measure on (D, a[ D))
and P"?' {0}=0 for p-a.e. t. Then

1) h: D-R:h(x)=p{ts[0, 1]; x@®)>0} is ¢[ D]/ B-measurable.

2) Discontinuity set of h is P-null set.

Proofs of Theorem 6 and 8 are obtained by the same method as others.
So we omit the details.
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