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The decomposition of the spaces of cusp forms
of half-integral weight and trace formula
of Hecke operators

By

Masaru UEDA

Introduction.

Let & be a positive integer and N a positive integer divisible by 4. For
an even character X modulo N, we denote by S(k+1/2, N, X) the space of cusp
forms with weight k+1/2, level N and character %. Suppose k=2. For a
primitive form F of S(2k, N/2, X?), we define a subspace S(k+1/2, N, X; F) by:

1 . P H2) —
S(etd, m s F)= S(e+g. N.1)275 £1TGH=iuip)s|

for all prime numbers pt N

Here, we denote by "Iv'(pz) the Hecke operator on S(k+1/2, N, X) and {lp(p)} is
the system of eigen values of F with respect to the Hecke operator T(p) on
S(2k, N/2,%*). Then, the following decomposition is well-known :

1
2 ’

1
(1) S(k+ N, X):@S(k-}—?, N, X; F),

where the direct sum is extended over all primitive forms of S(2k, N/2, X?)(cf.
[Sh 1] Lemma 7). Note that we can also obtain a similar decomposition for
the case k=1 after slight modifications. Then, from the decomposition (1), we
can expect that there exist some relations between traces of T(pz) and traces
of T(p).

Our main purpose in this paper is to study relations between these two
traces for several cases. In [N], S. Niwa already took up this problem for the
case of a cubic-free level N and the trivial character X,. He calculated the trace
of the Hecke operator T'(n?) on S(k+1/2, N, X,) for all natural numbers n with
(n, N)=1 and compared them with the traces of the Hecke operator 7T(n) on
S(@2k, N/2,X,). Then, he found that these two traces have a simple relation.
For example, if N/4 is square-free, these two traces coincide.

We shall generalize these results in §1 and §3. In §1, we shall explicitly
calculate the trace of the Hecke operator on S(k+1/2, N, X) under the assump-

tion: X*=1, and in § 3, we shall prove a relation between these traces.
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Next, suppose that N=4M with (M, 2)=1 and X¥*=1. Then, in [K], W.
Kohnen defined a canonical subspace S(k+1/2, N, X)x of S(k+1/2, N, X) and
some Hecke operators on that subspace (cf. §0 (d)). Moreover, when M is
square-free, he calculated the traces of those operators and found that those
traces coincide with the traces of the Hecke operators on S22k, M, X,), where
X, is the trivial character.

We shall also generalize these results in §2 and §3. In §2, we shall ex-
plicitly calculate those traces for any odd integer M and prove a relation be-
tween traces in §3. Moreover, in §4, we shall give some examples of the
explicit decomposition of S(k+1/2, N, )k, which is the same type as the de-
composition (1).

The author wishes to express his hearty thanks to Professor H. Saito and
Professor S. Niwa for their kind advices and warm encouragement.

§0. Preliminaries.

(a) General notations.

Let % denote a positive integer. If zeC and x=C, we put z*=exp(x-log(z))
with log(z)=log(|z|)++/—1arg(z), arg(z) being determined by —r<arg(z)<n.
Also, we put e(z)=exp(2r+v/—1z).

Let  be the complex upper half plane. For a complex-valued function f(z)

on 9, a=(:l s)eGL?_t(R), r=<Z} z)el’o(zl) and z& 9, we define functions J(a, 2),

i) and fIlalu@ on  by: Jia, d=czt+d, i =(T0) (2 )wat o

x
and f|[a].(2)=(deta)*’*J(a, 2) % f(az).

For a natural number n, we denote by ¢(n) the cardinality of (Z/nZ)".
Put h(—n)= the class number of proper ideal classes of the order with dis-
criminant —n in the imaginary quadratic number field Q(+/—n), w(—n)=a
half of the cardinality of the unit group of the above order and h'(—n)=
h(—n)/w(—n).

For a real number x, [x] means the greatest integer m with x=m. When

n=II ¢* is the decomposition to prime numbers ¢ of a natural number n, we put
qin

u
— v+l __ — [ v__ —_
au(m= I {g"=D~(7 )a—Dj /a1,

For a finite-dimensional vector space V over C and a linear operator T on
V, trace(T|V) denotes the trace of T on V.

(b) Modular forms of integral weight.

Let N be a positive integer. By S(2k, N), we denote the space of all
holomorphic cusp forms of weight 2k with the trivial character on the group
I'=I"«(N).
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Let acGLE(R). If I" and a '"a are commensurable, we define a linear
operator [['al'],, on S(2k, N) by: fl[FaF]2k=(deta)k"2f|[a,-]2k, where a;

runs over a system of representatives for I'\I'al .

For a natural number n with (n, N)=1, we put Ty, x»(n)= > [F(a O)F] ,
ad=n 0 d 2k

where the sum is extended over all pairs of integers (a, d) such that a, d>0,
ald, ad=n.

(¢) Modular forms of half-integral weight.
Let N be a positive integer divisible by 4 and X an even character modulo
N such that ¥*=1. Put pg=ordy(N), M=2"#N and I'=I"(N). Then, there is

a square-free odd positive divisor M, of M such that X:( M") or (%)

(the Kronecker symbol).
Let G(k+1/2) be the group consisting of pairs (a, ¢), where a:(: S)E

GL%(R) and ¢ is a holomorphic function on  satisfying ¢(z)=t(det a)~*/*-'/* (a,
2)¥*1% with teC and |t|=1. The group law is defined by : (a, ¢(2))-(8, ¢(z)=
(aB, ¢(Bz){(2)). For a complex-valued function f on $ and (@, P)=G(k+1/2),
we define a function f|(a, ¢) on § by: fl(a, )2)=¢(2)"! f(az).

By 4d=A4«(N, Y)=4y(N, X).+1/, we denote the subgroup of G(k+1/2) consist-

ing of all pairs (7, ¢), where <;l 2>=rer and ¢(z)=X(d)j(y, 2)***'. We denote

by G(k+1/2, N, X) (resp. S(k+1/2, N, X)) the space of integral (resp. cusp) forms
of weight k£+41/2 with the character X on the group I', namely, the space of all
the complex-valued holomorphic function f on § which satisfies f|é=f for all
ée4 and which is holomorphic (resp. is holomorphic and vanish) at all cusps
of I'. In particular, we write S(k+1/2, N)=S(k+1/2, N, X) if X is the trivial
character.

Now, for »=0 or 1, we denote by @*(N, X) the set of all pairs (¢, t), where
¢ is a primitive character modulo » with ¢(—1)=(—1)" and ¢ is a positive integer,
which satisfy the following two conditions:

0.1). 4t*| N.
0.2). X:(M)¢ as a character modulo N.

Then, we consider the theta series of the following type: h*(¢; 2)=
(1/2)mZe}Z¢(m)m”e(m22), where ze€ and v=0 or 1.

For the case v=0, we know that {A%¢; t2)|(¢p, HEL'(N, X)} is a C-basis
of the space G(1/2, N, X) (cf. [S-S]). For the case v=1, let U(N, X) be the
subspace of S(3/2, N, X) generated by {h'(¢; t2)|(¢, HER'(N, 1)} over C. By
V(N, X), we denote the orthogonal complement of U(N, X) in S(3/2, N, X) with
respect to the Petersson inner product.
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Let £€G(k+1/2). If 4 and &7 !'4¢ are commensurable, we define a linear
operator [4647,412 on G(k+1/2, N, X) and S(k+1/2, N, X) by: fI[44]ss1/0=
> flp, where 5 runs over a system of representatives for A\4é4. Then, for
7

a natural number n with (n, N)=1, we put

~
T gsrre. v, (0%

___nk-a/zadzj"a[d«gz d(D’ (d/a)kn/z)A]“m,

where the sum is extended over all pairs of integers (a, d) such that a, d>0,
ald and ad=n.

For k=1, from [Sh 2] Theorem 1.7, it follows that h'(¢; tz) with (¢, t)e
%N, X) is an eigen function of the Hecke operators 7~‘3/2, ~.2(p% for all prime
numbers pf N. Hence, we see that U(N, X) and V(N, X) are invariant under
the action of the Hecke operators T‘s,z,N,x(nz) for all natural numbers n with
(n, N)=1 (cf. [Sh 1] Lemma 5).

U(N, X) corresponds to the space of the Eisenstein series through the
Shimura correspondence and only the elements of V(N, X) correspond to the
cusp forms (cf. [St]). Hence, when k=1, we shall be dealing with V(N, X) in
place of S(3/2, N, X) and consider only the traces of T/, ~.2(n% on V(N, X).

(d) The Kohnen subspace.

Suppose that N=4M and M is an odd natural number. Then, X:( M°>

—1
A ) Then, the

for some positive divisor M, of M (cf. §0 (¢)). Put sz(
Kohnen subspace S(k+1/2, N, X)x is defined as follows:

1 ©
S{k+5, N, 2)2f(2)= X a(n)e(nz);
s(w%, N, X) ={ (kg N.1)2/@= Z atnetrns }
X a(n)=0 for e(—1)*n=2, 3(mod4)

In particular, we write S(k+1/2, N)x=S(k+1/2, N, X)x if X is the trivial
character.

Put §=tunn=((§ ) " e@k+1)/8) €G(k+7) and Q=Quivew.=
[4€47+1/5. Then, Q becomes a hermitian operator on S(k+1/2, N, X). Moreover,
from [K] Proposition 1, we know that S(k+41/2, N, X)x is the a-eigen subspace
of S(k+1/2, N, X) with respect to the operator @, where a=(—1)I*+D/212,/ 5 ¢,

For k=1, from the definitions of S(3/2, N, X)x and U(N, X), it is easily
shown that S(3/2, N, X)x contains U(N, X). Then, we denote by V(N, X)x the
orthogonal complement of U(N, X) in S(3/2, N, X)x with respect to the Petersson
inner product.

From [K] §3 and §4, we know that S(k+1/2, N, X)x (resp. V(N, k) is
invariant under the action of the Hecke operators T, 4172, v, 2(n2) (resp. Tora v, 2(n)
for all natural numbers n with (n, N)=1. Hence, we can consider the traces
of those Hecke operators on S(k+1/2, N, X)x and V(N, X)k.
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§1. The trace formula for the Hecke operator of half-integral weight.

Throughout this section, we shall use the same notations and assumptions
as in §0 (a) and (e).

Now, we shall give an explanation of the Shimura’s trace formula (cf. [Sh 3]).

We take v=(a, h)eG(k+1/2) with acSL,(R) which satisfies the following
conditions :

(1.L1) I'=T'«N) and a'I'a are commensurable.
(1.2) We define a proper lifting L by:

L=, 1y, )Gkt ), y=(* D)l and 2. Then, Liaya=
tL(p)et for all yel'Na'la.

For this 7, from [Sh 2] Proposition 1.1, we have the bijection: Ial >
ray— L)t L(y.)edcd, where d=4y(N, X)4+1/2 and 7., y.€I'. Moreover, 4 and
v7'4r are commensurable. In the following, we denote by S*=(8, h(B; 2)) the
image of fel'al’ with respect to the above bijection.

Next, we put t'=(a !, h(a™'2)J(a™!, 2)?). Then, 7’ also satisfies the condi-

tions (1.1) and (1.2) with respect to a proper lifting L’: F37=<Z 3)—»

(1, (d)j(y, 2)*%%). Hence, 4’=4\(N, X)3/5-, and z/-'4’t’ are also commensurable.
From [Sh 3] Theorem 4.5 and the assumption: X*=1, we have the following
trace formula:

(1.3) trace([drd]kﬂ/ZIS(k—!——;—, N, x))

—trace([d’r’A’]a,z_,, | G(%—k, N, x))

= 2 JO).
cedclal’ Iy

Here, the notations are as follows:
Let @(I"al’) denote the subset of I'al’ consisting of: all scalar elements, all
elliptic elements, all hyperbolic elements whose upper fixed points (cf. [Sh 3]
§3.6) are cusps of I" and all parabolic elements whose fixed points are cusps
of I'. We call two elements 8 and A’ in @(I'al") equivalent if: When B and
B’ are scalars or elliptic or hyperbolic, y8y'=8’ for some y=I'; When # and
B’ are parabolic, yB'r'€Z(B)B for some yeI', where Z (B)={rsl |yf=pr}.
We denote by @(I'al’/I") the set of all equivalence classes in @("al’) with
respect to the above equivalence relation. For each C€®("al’/I"), we pick
any B from C. Then, the complex number J(C) is given as follows:

(1) If g*=(=x1, n), J(O)=1/8)2k—1)n~"|T'v(4): I'y(N)|.

(ii) When B is elliptic, let z,&$ be the fixed point of f,
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_ 20 2y -1 _ 7 0 _ .
a=("] 1) a ﬁa——(o 1), N=h(B; z.)
and

aP)=#{rellrzo=2}.

Then, J(C)={a(B)p(1—2")}"".

(iii) When B is hyperbolic, let z,Q\U{co} be the upper fixed point of S.
Take an element p*=(p, ¢)=G(k+1/2) such that p&SL,(R) and that p(c0)=2z,.
Then, we put

opror=((% %) m) and JO=-/2ipa-29)".

(iv) When f is parabolic, let z,&Q\U{co} be the fixed point of 8 and ¢ an
element of I" which generates {yel |yzo=2z,}/{%1}. Take an element p*=
(0, ©)=G(k+1/2) such that p&SL(R) and that p(cc)=z, and that p~'cp=

11 . » 11 .

i—(o 1). We lw;nte o* L(o)p*—(i(o 1), e(5)) with 0<d=<1 and
p*“ﬁ*p*=(i(0 1), 77) with xeR. Then, for Bl (resp. B«l’), we put
J(C)=n"e(0x)(1/2—0) (resp. n 'e(0x)(1—e(x))™).

Our purpose in this section is to prove the following proposition.

Proposition 1. (1) Suppose k=2. For all natural numbers n with (n, N)
=1, we have:

trace(Fsau, w1 n)IS(k+ 3, N, 1)) =T+ T(D)+T@+T(h).
(2) Let n be the same as in (1). Then, we have:
trace(Tsa, v, 2 (WD VN, )=T(s)+T(p)+T()+T(h)+T(d).

Here, the terms T(s), T(p), T(e), T(h) and T(d) are given by the formulas (1.6),
(1.9), (1.10), (1.11) and (1.12) in the following calculations.

Proof. For a simplicity, we use the following notations:
We put
-1
[=I'(N), 4=4(N, Do, aw)=("y )
and
1
. —_ k _
(b m)=(a(n), n +”2)EG(k+2).
For a prime number p,
vp=vy, if p is odd;
ord,(N)=p,=0=
o, if p=2.

By X,, we denote the p-component of the character X for any prime number
pIN and, by f(X,), the conducter of X,. Put
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1, if n is square;

do(v/ )= {

0, otherwise;

1, if p=2;
0,=
0, otherwise.

and

For a natural number n, let n=n2n,, where n, is a positive integer and n, is a
square-free positive integer.

Now, we shall firstly calculate the trace of the operator [dc(k; n)4d] by
using the Shimura’s trace formula (1.3). Secondly, by summing up them, we
shall obtain the trace of T',iis v.2(n?) on S(k+1/2, N, ) and V(N, X).

Let §(n), p(n), (n) and ﬁ(n) be the contribution from the scalar, parabolic,
elliptic and hyperbolic equivalence classes in @=@["a(n)I"/I") respectively.
Moreover, if k=2, G(3/2—k, N, X)={0}. Hence, the contribution from the trace
on G(3/2—*%k, N, X) occurs only when £=1. Then, we put

d(n)=trace([d'’(n)4' 11,2l G(1/2, N, %))
—trace([dz(1; n)4]s2|UN, X)),
where
T'(n)Z(a(fl)", n_llz) al’ld A’:A()(N, X)l/Z-

By using these notation, we can write

trace([dr(k; n)A]IS(k—i—%, N, X))

=3(m)+p(n)+e(n)+h(n) if k=2,
and

trace([dz(1; n)4]|V(N, X))
=3(n)+p(n)+e(n)+h(n)+d(n).

Now, before calculating the each term, we give some remarks.

Remark (1.4). If an equivalence class C€® is not scalar, we can choose

a fi’) from C such that (z, ¢)=1 and that ¢=0 (cf. [N]

Remark 1). Put f'=nf=(’ g)er(é 22)1“, then, there exist u, v and weZ

an element f=n"!

(1) (:lz>0'2 wlth alzc —uv>el" and ag——-((l) ul})e]’. There-

fore, from ¢=0 (mod N),
B*=L(e)(k; n)L(a,)

=(a1, X(w)j(ay, 2)***r(k; n)os, jlo,, 2)**+)

=8, 1(21) (L) 18, .

such that ﬂ'=al<



512 Masaru Ueda

Remark (1.5). Suppose that 8 is parabolic or hyperbolic. Then, B has a
fixed point & which is the cusp of I'. Since ¢=+0, we know r#o0. Let p=
(’1‘ "Il)est(m and p*=(p, J(p, 2)**'*)eG(k+1/2). Then, by calculating
with attention to the signature of the branch, we have

o* 1 B*p*=(p, J(p™, Z)k+l/2)(ﬁ, X(a)(%l>—k_1/2(%>](ﬁ, Z)k+1/2)
X(p, j(P, Z)k+1/2)

:(( (;1 J/;>, ( ziigi )x(a)<%l)—k_”2(%>lk“’z),

where A=(a—ck)/n, y=(—a+d—c+2ck)/n and sgn(x)=1, —1 according to x=
0, x<0.
Now, we shall begin the calculation of the each term.

1. The calculation of 3(n).
Obviously, I'a(n)I" contains a scalar element if and only if n=1. In that
case, since (£1)*=(=x1, 1), we have

{ 28 2E—-1DMII (p+1)/p, if n=1;
3(n)= i
0, otherwise.

Therefore, the contribution to the trace of 7~“k+,,2, v.z(n?) on S(k+1/2, N, %) and
V(N, X) is:

(1.6) T(S):nk_3/20<a2| as(n/a?

=0(+/n )n* 122k — 1M I (p+1)/p.
DY

2. The calculation of A(n).
Now, all I'-equivalence classes for the cusps of I" are represented by the
number ¢!, where ¢ runs over the set:

{t:Cl';Vp”>0; 0=e=¢,<¥ and { runs over a system of repre-}
— yal
sentatives, which is prime to N, for (Z/]';vpm“““'”‘e’Z)x.

Dl

10

). Then, the stabilizer of ¢! in I'/{+1} is genrated by

=L 1) DA

where u is the least natural number such that u*=0(mod N), namely, u=

H]:,pg‘“. Here, the meaning of the symbol H‘; is as follows:
b4l Dil
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For any complex number a(p), we put

{ a(p), if the prime number p satisfies the condition 2¢<P;
a'(p)=

1, otherwise.
Then, we define TI’a(p)=IT a’(p).
PIN DIN

Let us write out all parabolic equivalence classes in @=0"a(n)I'/I"). Let
B, B: be two parabolic elements in @(I"a(n)I"). Then, from the definition of
the equivalence relation, it is easily seen that, if 8 and f, are equivalent, the
fixed point of B must be ['-equivalent to the fixed point of B;. Hence, we may
assume that the unique fixed point of B is ¢' with teS. Then, we have

n T
A;‘,BA;:in“(O ) for some non-zero real number z. Hence,
n

N G

02)[,:{ MZ(Z)B(;Z j ; ¢=0(mod N), (a, N)=1}’

Since F(l
0 (a, b, ¢, d)=1, ad—bc=nt

we see that B’EF((I)

case, ¢ becomes a multiple of u. Put x=v/u and B’(t, x)=<

7?2)1* if and only if #z=0(mod N) and (n, )=1. In that
n—itxu XU )

—t*xu n+ixu

Suppose that such elements p’(f, x,) and B’(¢, x,) are equivalent. Then,
from the definition of the equivalence relation, there exist 7, and 7, in the
stabilizer of ¢! in I'/{=1} such that y7'r,B8'(t, x.)7:=pB’(t, x,). Since that sta-
bilizer is generated by ¢, we can write y,==+¢% and y,==+¢° with «a, b=Z.
Hence,

n X.u

B, xz)=Ac(0 " )AZ‘=rIIrz,B’(t, X071

R Y et YT

Therefore, we have x,=x,+bn.

From the above results, a system of representatives of all parabolic equi-
valence classes in @ is formed by the matrices B(¢, x)=n"'§(¢, x), where t=
Cp]l'%] p¢ runs over the set S and x runsover a system of representativatives for

(Z/nZ)* which satisfies the condition x#0. Here, by the suitable choice of the
representative, we may assume that 4|x and that (¢, n)=1.
Now, we shall determine the number J(8)=J(C) for the equivalence class
u(_)llz)eSLz(R), then, wea
1 x/n)
o 17
Next, we take a lift p*eG(k+1/2) of p, then, we must determine the

172
C containing the matrix S=g(t, x). Let p:AL<u0
have p'lap:<(l) i) Since B=1+4(x/n)e—1), we have p“/3,0=<
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numbers & and 7 such that p*"L(a)p*=(((1) 1) e() with 0<3<1 and that

p*~1B*p* ((1 x/ln)’ 1;). From an elementary calculation, it is easily shown that
0 and % are invariant when we replace p* by (( 11 - ) (z+1)"+”2>. More-
over, if we write f=n" (f 5), from the definitions of the letters, we have

¢+#0 and (a, ¢)=1, and then, t-'=(a—d)/2c and a—ct '=(a+d)/2=n. Therefore,
by using the Remarks (1.4) and (1.5), we obtain:

nZX(a)(:—l)—k_llz( ) X(n—txu)( ey )_k_l”( ;_zzt);l; )

From tu={ ] p™*¢- and 4|x, we have txu= O(modSH p). Hence,

PIN

(n——tiu ):(_71) and (n_—tzt)iz; ):(_n )( i);zu) (—) —)
Moreover, from §0 (¢), we have a square-free positive divisor M, of M such

that X= ( ) (—) - Hence, we have X(n—txu)=X(n). Thus, we obtain

nZX(n)(_’—ll)—kH“ ﬂ_)

n

In a similar way, we have

k-1/2 —-ut

e(d)= x(1+“t)(1+ D ()= x<1+”"‘)(1+1t) Hm(ﬁ)

=t(1-+un)( I;it ) 1 l—it-)ut ).

From these results, the value of d is calculated as follows:
Case (i) (u=2).

1, if e,#1;
o= 1

a2~ (G IL(5) it e=L.

Case (ii) (p=3).

1/2, if f(X,)|4 and e,=1;
_11, if f)=8 and e,#2;
1/2, if f(X,)=8 and e,=2.

[1, if fO)|4 and e,#1;

Case (ii) (p=4).
1, if f)14;
0=11, if f(X,)=8 and e,#2;
172, if f(X)=8 and e,=2.
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Case (iv) (u=5).
o=1.

Now, we can determine J(B). Obviously, I" contains 8=, x) if and only
if n=1. In that case, we have 5=1. Also, from the assumption 4|x, we have
e(0x)=1. Therefore, we obtain:

1/2)—o, if n=1;

Ul )={ x<n)(ini)k’”z(% e(dx/n)1—e(x/n)", if n>1.

Before calculating p(n), we prepair the following two lemmas.

Lemma (1.7). We have the following equalities.

(1) 5 IL(LY 11 ptpmncer-oy= 11 (prrm(Z) pro-vim),

n n

osep;,,ppm PIM
pl
(2) 05e§5pp yﬂ;(%)vﬂgo(pmin(e.v—e)):pll—;{(p[,,/z]_l_(_—})_n)vpt(y_l)/”) .

M

Proof. 1t follows from some elementary calculations.

Lemma (1.8). We have the following equalities.

D3 (3)eda/nxi—eta/m)

aE(ZInZ)*

{—(1/2)5o(x/7)g0(n), if n=1(mod4);
~—=nh'(—n), if n=3(mod4).

da |
(2 ) aE(Z;nz)X(T)e(za/n)(l—'e(4a/n))

_ 0, if n=1(mod4);
_{ ((%)—1)¢—nh'<—n), if n=3(mod4).

4a .
(3) ae(Z%zmX<—n_)e(a/n)(1_e(4a/n))

{(1/2)\/n_h’(—4n), if n=1(mod4);
- (1/2)(1—(%))\/—71}2’(—71), if n=3(modd).

Here, the above sum > is extended over a system of representatives for
aE(Z/nZ)

(Z/nZ). We shortly write >3 for this sum.

Proof. Since e(a/n)(1—e(a/n)) =—(1/2)+(~/—1/2)cot(za/n), we have

%‘,(ilni)e@a/n)u—e(4a/n))-l=§:(%)e(a/n)(1—e(a/n))-l
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=—(W/DD()+HV=TDZ(~)cot(za/n).

Obviously, the first term is equal to —(1/2)do(+/7 )p(n). If n=1(mod4), the
second term is equal to zero. If n=3(mod4), we have

%}(%) cot(;ra/n):(Zn/rr)L(l, (;»:2\/71_11’(— n).

Thus, we obtain the equality (1). We can also apply the similar procedure for
the cases of the equalities (2) and (3).

Now, we return to the calculation of p(n).

First, we suppose n=1 and shall calculate (1) for the Cases (i )-(iv).
Case (1) (u=2).

In this case, we have:

—1/2, if ezstl

oG (S0 it est.
Hence, p(1)= 13 +p, with plz—(l/Z)X#{ﬁ(t, x)| S>t such that e,#1} and f,=
((—1)* /4)( )21 1‘['(:> )v, where the sum 3, is extended over all the

matrices ﬁ(t, x) such that e,=1. By using the Lemma (1.7), we have
Pr=— TI (p©/214 ptev-1r21) gand
PIM

](.@)={

f)z—(( 1)"/4)( )¢(2m1n(12 Dy N H,( pl) (H mince, v— e))

05eps»p PIM M
M

=((—1)* /4)( ) (p[v/2:|+( ; )p[(u—l)m).

Case (ii) (p=3).
In a similar way as in the calculation of p, of the case (i), we have:

P(1)y=—(3/2) II (pt/214 pte-nre1y
pIM

Case (iii) (p=4).
In a similar way as in the case (ii), we have:

” {—(1/2)pgv<pm+pf“-”ﬂJ), it S04
L —2gr et prevm), i ft)=8.
»i

Case (iv) (u=5).
In a similar way as in the case (ii), we have:

ﬁ(l):‘—(1/2)]]1}\,(1)[5/2]_*_1)[(;_1)/2]) .

Next, we suppose n>1. In the following, since 4|x, we write x=4x,.
Then,
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4x°u

JE=rm( )" (FE) edawo m(1—e(hra/m)
Now, we shall calculate p(n) for the Cases (i )-(iv).

Case (1) (u=2).
In this case, we have p(n)=p,+p, with

131=X(n)(—1>k_”2 S > 2(4’;"“)e(4xo/n)(1—e(4x.,/n)>-l

n

oS (Z/n2) < 05epsTy
DPIN, eg#1
and
~ —1\k-1re dxou
prmtn(5) ()
n roE(Z/n2) * 0Sepsly n

PIN,e2=1

Xe((2—(—=1D*xo/n)1—e(dxo/n))™",

where <—1>a:(—1)k(’71) H(_Tl)y‘

From the Lemmas (1.7) and (1.8), It follows that:

. —o(v/ 1 )p(n) IT (pT/214-pte-v/2),if n=1(mod4);
pl:{ pIM ;D

n

Similarly, we have:

[ (142 KT R (=) T (5252 () pe=2)
b= if n=1(mod4);
2 _ v
[ (042 (1= (2T B (= I (perm+ (2] pre-or,
if n=3(mod4).
Here, we used the identity :
eBxo/n)(1—e(dxo/n)) '=—e(—xo/n)(1—e(—4xo/n))™".
We note that these expressions also fit for the case n=1.
Case (ii) (p=3).

In a similar way as in the Case (i), from the Lemmas (1.7) and (L.8),
obtain the following results:

—(3/2)50(\/71_)90(71)?1}1(1)"’”-I—P“"‘”’”) ,
if f(X»)|4 and n=l1(mod4);

n

b(n)= if f(t)]4 and n=3(mod4);

3(—=D*A(m)v/n h'(— n)pl}{(pf”/zl-}-( P )”pt(»-wm),

517

2(—1)*A(n)/m h'(— n)pl}{(p“’”—i—(—)vﬁ“”‘"/2]), if n=3(mod4).
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—(3/2)50(«/?1_)(;7(n)pI}{(P[”’“+P“”'”m)»
if f(X;)=8 and n=1(mod4);
2 _ v
=DMt/ (= m T e (2) pre-vimy,

n
if f(X)=8 and n=3(mod4).

We note that these expressions also fit for the case n=1.

Case (iii) (p=4).
In a similar way as in the Case (i), from the Lemmas (1.7) and (1.8), we
obtain the following results:

—(1/2)50(«/n—)so(n)pfl%(ﬁ“’“+;D“;‘”’”) ,

if f()|4 and n=1(mod4);

(=T (=) TT (P[;/2]+(£)gpt<ﬂ-n/2]),

n
if f(Xy)|4 and n=3(mod4);
—250(\/71_%0(”)1’1]1{(1)“’2]-1-P[(”‘”’”),

if f(,)=8 and n=1(mod4);
2(—1)k(1+(%)>X(71)¢Fh’(— n)p]g{(ptvlzl_;.(p)”p[(v—l)/ﬁ:),

n
if f(X,)=8 and n=3(mod4).

p(n)=

We note that these expressions also fit for the case n=1.

Case (iv) (u=5).
In a similar way as in the Case (i), from the Lemmas (1.7) and (1.8), we
obtain the following results:
—(1/2)0o(v/ 7 Yp(n) EV(P[;’23+P[‘:"”2]) )
Y4
if n=1(mod4);

pm= (—1>kx<n>¢ﬁh'<—n>}.1v(l’”’”+(p);P‘“"”’”)’

n

\ if n=3(mod4).
We note that these expressions also fit for the case n=1.

Finally, we must calculate the contribution to the trace of T4tz n,x(n%) on
S(k+1/2, N, X) and V(N, X). But, that is easy calculation if we use the identity :
2\ —
0<uEInoago(n/a )=n.
The results are as follows:
(1.9) For n=1(mod4),
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Pr=—(1/ 208/ T (P14 pi=218)
PIM

2, if p=2;
3, if p=3;
4, if p=4 and f(X)=8;
QIO if y>5 oy p=4 and f(X)|4;
and
_1 —Nn\v
—_ —_—1\* - = k-1 v/2 - v-1)/2
pe= 012 JHmm = I () pte )
X 3 h'(—4n/a?).
0<aing

For n=3 (mod4),

T(p):(_l)kx(n>nk—1pll-£l<p[y/2]_l_(%)Vp[(v—l)/z])o Enoh/(_n/az)

<ai

wa(-(2)), if r=2;

3, if p=3 and [f)|4;
y 3(%) if p=3 and f(l)=8;

2(1+(%)), if p=4 and fQ)=8;
2

n

2tem4 Foten-nm if p=5, or p=4 and f(X,)|4.
]

3. The calculation of &(n).

Let C be an elliptic equivalence class in ®. Take ﬂzn“(f 5>€C such

that (a, ¢)=1 and that ¢=0.
Since N is divisible by 4, I" has no elliptic point. Therefore, by using the
Remarks (1.4) and (1.5), we have

JB)=JC)y=1/2X(BL(B)**(1=L(B* with X(ﬂ)=x(a)(%)
and
—1
a

:(__a_l)'”z(zx/ﬁ )1V aFd+sgn(c)vatd—2n).

wp=(=)"J8, z

Here, z,= 9 is the fixed point of 8.

_01 (1)) and I'*=71"Ul'w and W(ﬁ):]Zr,(ﬁ): ZI‘(,B)|, where

Zp«{B) (resp. Zp(B)) is the centralizer of 8 in I'* (resp. I'). We note that, in

We put w=(
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the elliptic case, the equivalence relation is the usual I'-conjugacy relation and
that any element of I'* acts on I'a(n)]” by means of the inner automorphism.
Then, it is easy to see j(wﬁw)z_j—(m and, from the definition of j(f), we have
J(—=B)=J(B). Therefore, we have &(n)=3,J(8)=2J(wpw)=1/2)Z.(J(B)+
JwBw)=Zu(J(B)+J(wBw)W(B)™*, where B8 in the sum 23, (resp. 2J;) runs over
all representatives for the elliptic I” (resp. I *)-conjugacy classes in @. Moreover,

since n[a’z(f 2>EF<(1) 7?2>F, we have ¢=0(mod4) and a=d==+1(mod4).
Hence, B is not [™*-conjugate to —fB. Therefore, we have &(n)=23,(J(B)+

JwBwHW(B)™!, where B in the sum 3J; runs over all representatives for the
elliptic I™-conjugacy classes in @ which is congruent to (é T) modulo 4.
Thus, by using: [{(B8)|=1, we obtain:
En)=ZXBEBW B
ER)=EB) 1 =Lpr* - Hpr—=Lp™.

Now, we shall give all representatives for the elliptic /™*-conjugacy classes

Here,

in @ which is congruent to <(1) 1) modulo 4, by using the method in [H] (or

[D-M] chapter 6).

Let t be an integer such that |¢{|<2n and that {=2 (mod4). We write t*—
4n®*=m?u, where m is a positive integer and u is a fundamental discriminant,
namely, the discriminant of some imaginary quadratic field. Then, let f be a
positive integer such that f|m and that (f, n)=1, and let & be a representative
for (Z/pl}vp”/’Z ) which satisfies the conditions :

(&, Nn)=1, é=1(mod4) and F,(&)=0 (mod Nf?)
with
o=pp=ord,(f) and F(X)=X*—tX+n".

We put

S(E)—{ the prime divisor p of N such that $*—4n?=0 (mod pZPH)}
= and that Ft(E)EO (n]od p5+2p+1)

and let S be a subset of S(&).
For these ¢, f, & and S, we define the matrix ¢=¢(t, f, §, S) by:

_( ¢ ~f ngp-;ua(am;l)
FFAO TP RS 1 1§ '
zZ Z .
Moreover, we put R:(NZ Z)’ U=IIR®:Zy)" XGLIR), Qule]=Qle]&lu

and A=RNQ[¢], where ¢ runs over all prime numbers. Then, we have the
bijections :
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IMUQuLeT NG LAQ)/QLeT =Q4Le1"/{( QL] NUQLe]"}
= the proper ideal class group of the order A

(cf. [H] or [D-M] Chapter 6). Hence, we can choose a system {0} of repre-
sentatives for I"\UQ[¢]1*NGLAQ)/Q[¢]* as follows:
For the double coset corresponding to the principal proper ideal class with

the above bijection, we take 5=((1) (1)

proper ideal class contains a prime ideal P of A such that (P, nIN(*—4n%)=1
and that # A/P is a prime number p. Then, there exist the elements vEQ[¢]*
and u€U such that P=/v and that wwveGL,(Q). If necessary, by multipling

). In the other case, the corresponding

some element of [I' from the left, we can see that uv=(§ ?) or (é ;}) with

0<j<p. Then, we take d=uw.
Now, when ¢, f, & S and J vary under the above conditions, the matrix
B=n"'0pd""' forms a complete system of representatives for the elliptic /™*-

(1) I) modulo 4.

conjugacy classes in @ which is congruent to (
. b . ..
We write the above ﬁ:n“(f d>' Then, by using tne above conditions

and the inequality: F,(&)>0, we have (a, ¢)=1 and ¢>0. Hence, we have
LR)=@2V n) {(Vt+2n++/t—2n). Therefore, {(B) and Z(B) depend only on ¢,
and so we write {(8)=(, and 5F(B8)=5..

Next, since Zp(B)=04%6"', we have W(B)=w((t*—4n*)f~*) and, by using
the same method as in [N] p. 196, we have

x<n—16¢5-»:=X<¢>(t4;?n ) for o=(] ?) or é ;>'

Therefore, we obtain:

2m)=DE Ju(—~4nf ) NP

A
. 1, if 0—(0 1),
X
] <t+2n> ” 5:(1) 0) or 1 j)
p /7 01 0 p/°
Since <t+2n> can be considered as the genus character on the proper ideal

class group of A(cf. [N] p. 196-197), the last sum is equal to the class number
h((t*—4n*f~?) or zero, according as t+2n is square or not.

Thus, we may assume that t+2n=s® with s>0. Then, *—4n®*=s*s*—4n)
and {,=2+/n ) (s+(s?—4n)/?). By using: |{,| =1, we have &,=—n"*+3257!x (s,
n), where m,(s, n) is defined as follows: Let x and y are the solutions of
X?*—sX+4+n=0. Then, we define

Te(s, n)=(x**"1— ) (x—y)".
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Finally, we discuss

spro=gop() B (L1E0k).

§/pes &

Since (f, t—2n, t+2n) divides some power of 2, we have the following decom-

position:  f=2°2f, f,, (fif2, 2)=1, £i>0, f2>0, fils, (fi, s>—4n)=1, f}I(s*—4n)

and (f,, s)=1. From £=1 (mod4) and the reciprocity law, (ﬁ)z(f_) @=1, 2).
3 fi

Put #'=t/2. Since 0=F,(&)=(&—1')*(mod f2f%), we have &=t'(mod f,f,). Hence,
($)=(7)=(G)=(7) ana aiso ()=(7)=(7)="-

Therefore, (%)=(-§—)P2(iz%4ﬁ>
Next, by using the same argument in [N] p. 198, we can prove that
(Lgs).ll):l for peS and that (§)=(%) ( 282 dn ) for any odd prime p

&S. Therefore,

pe(p) 3 a(E)
=<“;ﬁ‘”>; @), m,0+())
=(s - )ZX@(E) pl(1+aga(5))
=(sfl )2&@( )M@ﬁﬁxﬁ( =)
).

Here, for any prime number p|N and a representative % of (Z/p***Z) such
that F,()=0 (mod p°*+?¢), we define

X L1148, 2

) {1, it s%(s—4n)=0(mod p***!) and F(5)=0(mod p +?r+!);
()=

0, otherwise.

The quantity xp(s)(1+5,,(s)(
( )“(1+5z<5)( ))) depends only on & modulo p*** (resp. & modulo 2#+°),

Therefore, we have:

)) for any prime number p|M (resp. X,(&)

s?—4n
D)= (

7 ) exs, ).

Here, we define

)) it piM;

2s?—4
S (1485 ( =

exls, = N 2\
sr(y) (1+a(5) ) i p=2;
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where the above sum 3], runs over all representatives 5 of (Z/p***Z) such
that Fy()=0 (mod p**?¢) and besides that p=1(mod4) in the case p=2.
Combining all the above results, we obtain:

en)=—n ks r (s, n)%}h'(sz(sz—éln)f'z)( 52;471

Here, the integer s runs over all even integers such that 0<s<2+/7, then, we

can write s’—4n=m?u with m,>0. Put #,=ord,(sm,) for any prime number

pIN and s’'=s I;Vp'“dp‘”. Similarly, for f,, f, and m,, we define the number
44l

)ILests, 1.

fi, fi and m]. Moreover, we decompose s’=r(s")u(s’) and m;=r(m)u(m;) such
that (r(s’), s’, m{)=(@(my), s’, m)=1 and that u(s’) and u(m;) divide some power
of (s’, m}).

Under these notations, we easily see that f| runs over the set A,={Z>f];
0<filr(s’) and (f{, u)=1} and that f; runs over the set A,={Z>f;; 0<
filr(mi)}. Moreover, we introduce the following notations:

u .
1—(—)pt if O,#pp;
dp(epy Pp)z{ (p> ' ?
1, if O,=p,.
U\Pp .
) —) 5, if pIM and pls;
np(ap)zpﬁ plr=ercy(s, [)d (05, Pp)x{ (‘D)
p—O

1, otherwise.

Here, we remark that the last sum depends only on &,.
Now, observing that c,(s, f) depends only on p,=ord,(f) when we fix s,
we have

st—4n

Zf‘,hr(sz(sz_4n)f—2)<_fl_)pll‘gvc,,(s, f)
= e, SO OR I p e s i/ fif )

OSpps P
PIN

><( 32;1471 ),HVCP(S’ f

=wouHuem), L (1=(2)a™) @)

u

XE(D( 7 )(r(S')/f;)q‘(,(I;I)/fg)(l—(%)q—l>

xEOC@mD/ T (1=(E)e).

qlrmp /sy q

Here, the notations are as follows: f{(resp. f;) in the sum 3 (resp. 3)®)
runs over the set A, (resp. A,) and ¢ denotes a prime number.

From an elementary calculation, we see that the part of the sum 3 is
equal to r(s’) and the part of the sum 3® is equal to a,(r(m))(cf. §0 (a)).
Moreover, observing that g¢|u(s))u(m;) if and only if ¢|(s’, m;) and that
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s u(s)r(s”)=TI p~°"9r®, we have:
PIN

én)y=— n"’”’z;zk(s, nh' (wu(mi)a,(r(my))

qu(s m1)< ( >q-1> p—ordpmn (0;;)}

Therefore, the contribution to the trace of T i1/ v.2(n%) on S(E+1/2, N, X)
and V(N, X) is as follows:

T(e)=n*"2%?% >3 aé(n/a?
0<aing

=—o<§|}n ga“‘zm(s, n/a®)h'(w)u(m))a,(r(m;))

g U
X, I (= (5)a ) L pmorts oy 0,1,
Here, s, u, m,, etc. are defined in the same way as above, when we replace n
with n/a

Now, we put §=as, m,=am,, ¥=ax and j=ay. Then, we have that ¥ and
§ are the solutions of X*—§X+n=0 and that $*—4n=smiu. Since (¢, N)=1,
ord,(§m,)=0,. Hence,

T(e)=—o<§n02“”7rk(§, mh' w11 {70 9D (0 ) ulm)a,(r(m)

qu(gm’,)(l_(%)q-j

=— W, (3, 7z)h’(u)p1}v{P‘°“’P‘3’np(0p)}

X 3 wmay (7’(7711)) H (1 ( )(1'1>

0<al §, ng

~

Here, § in the sum 3 (resp. 2*?) runs over all even integers such that
24/7 >5>0 and that al§ (resp. 2+/n >5>0).

We observe that an integer a divides the odd part of (§, s#,) if and only
if a|(§, ny). Hence, from an elementary calculation, we have

, U\ - I
> u(mpa,r(my)) 11 <1—(—)q ')Zau(1n1H pordptiny

0<ali(§, ng) qI¢s’, my) q PIN
Therefore, rewriting the notations: 3—s, #,—t, etc., we obtain the following
formula :

(L10)  T(e)=—2mu(s, mA'(wault) IT {p=or 45 n,(0,)} .
Y4l

Here, s in the sum 33 runs over all even integers such that 24/n >s>0. The
other notations are as follows: Let x and y be the solutions of X*—sX+n=0.
Then, my(s, n)=(x2*"'— ¥ x—y)'. Put s*—4dn=t*u with a positive integer t
and a fundamental discriminant u. Put toztpll}lp“"‘dp“’ and 0=0,=ordy(st) for
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any prime divisor p of N. The constant n,(0,) is defined in the same way as in
the above calculation. Finally, we remark that the explicit determination of the
constant np(60,) needs an elementary but very long calculation. So, we omit it.
For the explicit value of the constant n,(0,), see the Appendix 1.

4. The calculation of ﬁ(n).
Let C be a hyperbolic equivalence class in @. Take ﬁzn“(? S)EC such

that (a, ¢)=1 and that ¢#0. Let & be the upper fixed point of 8 which is a
cusp of I" and A(B)=(a—ck)/n. Since k=(2c¢) {a—d—sgn(a+d)(a+d)*—4n?)''?},
we have: sgn(A(B))=sgn(a+d) and

AB)=@2n)'{a+d+sgn(a+d)(a+d)*—4n®)'1?}.

Moreover, by using the Remarks (1.4) and (1.5), we have

JBI= =172 BN Yy gy =LY (L) -y

Hence, we have J(—p)=J(B) and J(wBw)= (—)sgn(a+d)j(,8) where w=

(o )

Let I'* and W(B) be the same as in the elliptic case. Then, we have
E)=0J ()= J(w Bw)=(1/2)Su(J(B)+ Jw Bw) =(1/2)So( J(B)+ J(w fw))=(1/2)
ST BT (— B+ J(wBw) + J(—wpw)) = Su( J(B)+ J(wBuw)) =23 J(B)+ J(w fw))
W(B) =4, J(BW(B)™!, where B in X, runs over all representatives for the
hyperbolic ['-conjugacy classes in @, 8 in 3, runs over those such that

(:})sgn(a—l—d):l, B in 3; runs over those such that a+d>0 and that a=

1 (mod4), and B in the 3J, runs over those for the hyperbolic I™*-conjugacy
classes in @ such that a+d>0 and that a=1 (mod4).
Thus, we obtain:

Rm)=—2S0EW B ABy A=) with UB=Ua)().

Let ¢ be an integer such that t=2(mod4) and that ¢>2n and that *—4n? is
square. Then, we write t*—4n*=m? with m>0. For these ¢ and m, let f, & S
and ¢ be the same as in the elliptic case. But, for simplifying the calculation,
we assume the additional condition: £&=+#1.

Next, let A=Q[p]NR with RZ(NZZ g

{(H(A@ZZ,,)XXR[go]‘)Q[go]"} is isomorphic to the proper ideal class group of

). Then, we know that Q [¢]"/

the order A. Then, for the principal proper ideal class, we set ¢ ((1) (1)) In

the other case, any proper ideal class contains a prime ideal P such that #/4/P
is a prime number p and that (p, nN(*—4n*)=1. So, there exist veQ,[¢]*

and u<eU such that Av=P and that GLZ(Q)Euv:((]; 2) or (é 1])) with 07
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<p. Then, we set d=uv. Here, U is the same as in the elliptic case.
When these ¢, f, & S and {4} vary under the above conditions, the matrix

n"5<p5‘1=n“(g 2) forms a complete system of all representatives for the

hyperbolic I"'*-conjugacy classes in @, such that a+d >0 and that a=1(mod4).
Therefore, we have

E(n):—2%‘,;%}%%)((71"‘5905“)W(n“5g05")“2(go)‘k“’2(1—2(¢)‘2)“ .

Moreover, in the same way as in the elliptic case, we may assume that t+42n
is square. Then, we write t+2n=s* with s>0. Hence, we have:

ﬁ<n>=—;;;g:z(go)-*‘-”2<1—z<go>-2>-‘go<m/f>x<<p>
=TSy =) (st =4 B T ea(s, ),

where x and y are the solutions of X?*—sX+n=0 such that x>y, and the
constant c,(s, f) are the same as in the elliptic case.

We can deduce the contribution to the trace of T 4s1/ v, 2(n?) on S(k+1/2,
N, %) and V(N,X) by using the same method as in the elliptic case. The
results is as follows:
(L1D) T(h)=n*=" 33 Oaﬁ(n/az)

<aln

==2P((s—1)/2)** " TT mp(6,),
PIN

where s in the sum 3™ runs over all even integers such that s>2+/n and that
s?—4n is square. The other notations are as follows: Let t=(s*—4n)'"* and
0=0,=ord,(st) for any prime divisor p of N. The explicit value of the constant
mp(0p) is given by the Appendix 2.

5. The calculation of d(n).

_ 0 —1 — 140 /7T 5\1/2 ”__ E

Put fx=(y o) ex =B, N'(= v =12 & G(1/2) and 4"=As( N, 1( ))m.
Then, from [Sh 2] Proposition 1.4, we know that 7y induces an isomorphism
between G(1/2, N, %) and G(1/2, N, x(ﬂ)), and 3 4"cy=4". Hence,

i d"t(0; n)d"ty=4"t3c(0; nyeyd'=4't'(n)4’.

If we write 477(0; n)A”=ng”€i (disjoint union), we have 4't/(n)4d’'=

LtjA’z-I‘V‘éiz-N. Therefore, as an operator on G(1/2, N, X), we have:
it [4770; n) A" )yt =04"7"(n)4" 112

and
trace([4't’(n)4’]1G(1/2, N, X))

=trace([A”r(O VAl G(l /2, N, x(ﬁ)))
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From [Sh 2] Theorem 1.7, it follows that, for (¢, HEQ"(N, x(ﬁ)), h(¢; tz)

is an eigen function of T‘I,Q,N,x(ﬁ)(pz) for any prime number p}t N and that
the eigen value is ¢(p)(1+p~).
Let n=1I p°. Then, we know the following equalities as operators:
pIn

(05 wa1=[2((5 D), n)ar)

=II"|[n[A”(((1) pg,), p’“)_/l”], and for t=2,

(G 2 #7)e]
oG ) WG 2 o]

{ pP+p, if t=2;
- ” 1 0 - ” B .
pz[A <<0 p2.--4)’ p( 2)/2>A :Ir if r=3;
(cf. [N] Introduction).
.. . N
From these results, we obtain inductively that, for (¢, t)E.Q°(N, X(——)),
h%(¢; tz) has the eigen value ¢(n)+/n IT(p"+p7') with respect to the operator
pin

[4"z0; n)d”].
We can also discuss the case of U(N, X) in a similar way and obtain that,
for (¢, HERQYN, X), h'(¢; tz) has the eigen value ¢(n)a/n IL(p™+p7") with
pin

respect to the operator [4z(1; n)4], where nzynp’. Moreover, {h°(¢; t2) (¢, 1)
e@(N, x(ﬁ))} and {h'(¢; 12)(g, € Q'N, D)} are C-basis of G(1/2, N, x(ﬁ))
and U(N, X) respectively (cf. §0, (¢)).

From the above results, we have

N e T c-1
An={Seao(X(=); ¢)pm—Tuast; PP}y Lp+p.
Here, n=TI p°. For v=0 or 1, ¢ in the sum X, runs over all primitive cha-
pin

racters with ¢(—1)=(—1)" and a,(X; ¢) is the number of all positive integers
¢t which satisfy the conditions (0.1) and (0.2) (cf. § 0 (¢)) with respect to ¥ and ¢.

From the equality: a,X; gb):ao(X(E);gb), it follows that d{(n)=
SkaXkX; gb)gb(—n)\/n_z}l'[n(p’+p"1), where ¢ in the sum X* runs over all pri-

mitive characters and a*(X; ¢) is the number of all positive integers ¢ which
satisfy the conditions (0.1) and (0.2) (cf. §0 (¢)) with respect to X and ¢.
The contribution to the trace of Ts »,2(n?) on V(N, %) is as follows:

(1.12) T(d)=n“”20<2nac7(n/a2)
=n"12 N aS*a*(X; gb)gb(—n/az)(n/az)”zm(ﬂ 2)(1>"+1)"")

0Lalng n/a
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=3*a*@; dp(—n) 3 TI  (p7+p -

0<aling pi(n/a?)

=3Fa*(X; PP(=m L™ =1)/(p—1).

Here, n=11p7 and let >* and a*(X; ¢) be the same as above.
pin

Now, the proof of the Proposition 1 is completed.

§2. The trace formula for the Hecke operator on the Kohnen subspace.

Throughout this section, we shall use the same notations and assumptions
as in §0 (a) and (d), and moreover, we suppose that n is any positive integer
such that (n, N)=I1.

Our purpose in this section is to calculate the trace of the Hecke operator
Tesrin v, 2(n®) on S(k+1/2, N, 0)x and V(N, Dx.

Let Pr=Prisie v 1=(a—B)"(Qr+1/2.n.x—B) be the orthogonal projection
from S(k+1/2, N, X) onto S(k+1/2, N, X)k. (cf. [K]) Then, we have:

S(k+ %’ N, x)x)

=trace(ﬁ+,,z,N,x<n2)Pr\s(1e+%, N, x))

(2.1) trace<7~"k+1/2,lv,x(7lz)

=(v/ 2 /B)(— ke trace(Tk+,,2,N,z(n2)Q’S(k+%, N, 7))

+1/3)trace( Fvurn v 1m0 | 5, N, 7)),

where Q=0Qr+1/2 v.¢. (cf. [K])
For a simplicity, we write I'=1"y(N), 4=4«(N, X)s+1/» and n=nin, with a
positive integer n, and a positive square-free integer n,. Then, we have:

@.2) Trsrrawa(n)Q=n*"" 5 a[dr(k;n/a*)4]Q,

where 7(k; n) is the same as in § 1. Hence, from the results of §1, it is suffi-
cient to calculate the trace of the operator [dz(k; n)4]Q for our purpose.

We can prove the following lemma by modifying the proof of the Lemma 1
inT[K] §4.

Lemma (2.3). We have, as elements of the abstract Hecke algebra,

A( (l) :2) nk+1/2)A~A§k+l/2,s,{]:A((é 4];12>’ 5k“/ze((Zk-I—l)/8)nk+”2>d,

for any positive integer n with (n, N)=1.

From this lemma, we have:

(2.4) [dz(k; m)d1Q=c"*"1e(—(2k+1)/8)[dro(k; n)4],
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n! (4n)“>
0 n /°

Let L be the same proper lifting as in the condition (1.2) of §1. Then, it
is easily shown that r,(k; n) satisfies the conditions (1.1) and (1.2) with respect
to L. Hence, we have the bijection: Iao(n)l 20 a¢n)o,—L(c,)to(k; n)L(c,)
€dry(k; n)d, and denote by B* the image of Bl ay(n)I .

Now, we shall calculate the trace of the operator [dre(k; n)4] by using
the Shimura’s trace formula (1.3) in §1. Since I'ay(n)I" has no scalar element,
the contribution to the trace from the scalar elements is zero. Let Ho(n), &,(n)
and A4(n) be the contribution to the trace from the parabolic, elliptic and
hyperbolic equivalence classes in @=@ay(n)I"/I") respectively. Moreover,
when £2=1, we put

do(m)y=trace([4'ty(n)4' 11121 G(1/2, N, )—trace([dro(1; n)41s/2] UN, 1)),

where G(k+1/2)S7q(k; n)=(as(n), n**'?) with ao(n)=(

where 7o(n)=(ao(n)™!, n=Y%) and 4'=4y«(N, X)1/,.
By using these notations, we can write

trace([dey(l; A1 S(ko+ 5, N, 2))=Fulm)+a(m+ho(n),
if k=2, and
trace( [4ea(1; 4] |V(N, D)= Po(m)+2m)+hum)+dum),
Before calculating the each term, we give some remarks.

Remark (2.5). We have

41 M(%)>(] 3); ad—bc=16n*, ¢=0 (mod 16M),
F(o ant)T'=

(cf. [K] §4 Lemma 2).

a=d=0 (mod4), (a, M)=1 and (a, b, ¢, d)=1.

Remark (2.6). Let /3:(4;1)-1(2’ (Ii))EI"ao(n)['. If (b, d)=1, then, we have:
- sgn(d) \(dy—Ly-kzreNe @ e i
5*_(‘3, (m)(?x 5 ) (b)( i, )((cz+dj)\24n) ) where M, is the
square-free positive divisor of M such that X:(—”), and sgn(x)=1 or —1,
according as x=0 or x<<0. We can prove this assertion by slightly modifying
the proof of [K] §4 Lemma 3.

¢ s)eMz(Z). Put

t=a+d and f=(a—d, b, c¢). Then, t and f (and also the signature of ¢ if A
is elliptic) are invariant under the SL,(Z)-cojugation. Moreover, every elliptic

Remark (2.7). For an elliptic or hyperbolic matrix A:(

or hyperbolic ['-conjugacy class in [I'a(n)I" contains an element (4n)“(j 2)

with d>0, (b, d)=1and (b/f, (t*—64n?)/f*)=1, where t=a+d and f=(a—d, b, c)
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(cf. [K] §4 Lemma 4).

Remark (2.8). Let A:(z z)EMZ(Z) be an elliptic or hyperbolic matrix

such that ad—bc=16n? t=a+d=0 (mod4) and (a, b, ¢, d)=1 and that f=
(a—d, b, ¢) is an odd integer. For this A, we define a set D(A) by: D(A)=
{SL(Z)2>B | 4n)*B'AB&layn)l"}. Then, I' operates on D(A) by multi-
plication from the right and we have: #D(A)/I'= 1’{{6,,(1‘, f), where

Pl

PP+, if p=v;

Ep(t; f):{ .
PPX#Z/p*Z)>x | x*—(t/4)x+n*=0 (mod p**r)} if p<y;

with y=y,=ord,(M) and p=p,=ord,(f). The proof of this assertion will be
given at the Appendix 3.
Now, we return to the calculation of the each term.

1. The calculation of f(n).
By using the Remark (2.5) and the same argument as in §1, we can write
out all parabolic equivalence classes in @. The result is as follows: Put

t=4§p]'£{pe>0; 0<e=e¢p<ord,(M)=v=y, and
|

S={ € runs over a system of representatives, such
that (, N)=1, for (Z/ HMP'“*““'"“'”Z)‘
Dl

dn—txu  xu )
—t*xu  4n+txu/’

where the symbol I’ means the same as in § 1. Then, a system of representa-
PIM

tives of all parabolic equivalence classes in @ is formed by the matrices 5(t, x),

where t=4{ II p°® runs over the set S and x runs over a system of representa-
yav. s

tives for (Z/4nZ)*. Here, by the suitable choice of the representative, we may
assume that x>0.

Now, we shall determine the number j(B)=J(C) for the equivalence class
C containing the matrix f=j(t, x). The stabilizer of ¢-!, which is the fixed

point of , in I'/{1} is generated by o=(""% | ¥ ). Put 4=(} ]) and

For t=4( I p°cS, we write u=[['p*"** and j(t, x)=(4n)"
M PIM

w2

p:A‘(O u(')"z)’ Then, we have p“ap=((1) i) and, since B=14(x/4n)(c—1),
o (1 x/4n
L ‘B'o—<0 1 ) ulr? 0
Let p*=(A., j(A4,, 2)***)
o=t a9
tu=0 (mod IT p), we have:
PIM

0¥ 1L(0) p* =0+ N AL, (A (g ) 1A, (A, 2

(6 )

) 2), u"””'”“), then, since t=0 (mod 4) and
u-Y
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Moreover, we note that (xu, 4n+txu)=(xu, 4n)=1. Hence, by using the Remark
(2.6), we have

(o, (N )G ™ e anr o) i o (¢ 1),

Here, we used the assumption x>0. Therefore, we have

p*_]ﬁ*”*:((l x/4n) (Gu )(A/Io)(xu) N ”2)

Finally, since a,(n)el”, we have always Se&I’. Thus, we obtain
TO=(E) ) G) ™ et a1 —eCaramy

Since e(x/4n)(1—e(x/4n))'=—1/2)+(~/—1/2) cot (xx/4n), we have p,(n)=
Pi(n)+Pa(n) with

pw=—w2(3), 3, 35 Ys(E) ()™

pIM
and
Fum=(v=1/2(57 g (5 )( Y ot (wx/dn),
p\M
Put

A=2 ( )( oy )k“/z and Bo=2 ——)( ) ercot (mx/4n),

where x in the sum 3}, runs over any system of all representatives for (Z/4nZ)*.
Then, we have:
k+1/2}

Ao—(1/2)2 {( )( )“”2 (en )
BTG

=W/2R(5) ()~ DV D= +e(— DV =D/2(S) 2(%)

=+ e(= D =D (S )y mep(n)

where d¢(+/7n) is the same as in §1. Similarly, by using the Dirichlet’s class
number formula, we have:

—1 \k+1/2

B=2S{(E) (= )“”2cot(zrx/4n)+( )=

:(1/2)§(%)C0t(nx/4n){ _x%ymm_e( -1 >k+1l2}

— XU

cot(— 7rx/4n)}
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—=(1/2) %}(%)cot(ﬂx/lln)(;—:)(l—e(—l)’*\/——l)
=2(1—s(—1)w:1>(—7€)ﬁ h'(—4n).

Hence, by using the Lemma (1.7) in §1,
ﬁx(n)=—((1+5(—1)"\/——1)/2)50(\/7)?)(71)pl}l(ﬁt”m—l-P[‘”'”’2])

and

Pulm=(v=Te(= D)V 7 (A I (p°r () o).

n
M,
Therefore, in the same way as in §1, we have:
2.9) n*= 3 apy(n/a?)
o<aing
=—((1+e(—1)*/—=1)/2)d(~/ n)n*-172 H{(P“’”-I—P“”"””)
p
n - v —ny v-1
+/=Te(= DR )nt T2 () peom)
X 3 h'(—4n/a?).

0<alng
2. The calculation of &,(n).
Let C be an elliptic equivalence class in @. By using the Remark (2.7),
we can take ﬁ———(4n)“<zl g)EC with d=0, (b, d)=1 and (b/f, (t*—64n?)/f?) =1,

where t=a+d and f=(a—d, b, ¢). We note that |¢|<8n because C is elliptic.
From the Remark (2.6), we have: J(8)=J(C)=1/2X(B)X(B)2**1—-L(B) )"

witn 0= GGG e co=(5H) " i

(%1)—1/2(4\/31_)"(\/t+8n—I-sgn(c)\/t—Sn). Here, z,€ 9 is the fixed point of 8.

Put w:(_(l) (1)) Then, since wﬂw:(4n)"<fl_c_5>, we have X(wpBw)=¢eX(B),

Lwpw)=—+=1LP)"  and  J(wBuw)=((e(—=D*v=1)/2UBX(B**(1—L(B)) "

Hence,

2o(n)=22J(B)=22:(J(B)+ ] (wBw))
=1/2)ZX(BICB) ! —e(—D*V =1L )R =L(B ™™,

where 8 in 35; runs over all representatives for the elliptic /™-conjugacy classes
in @ and B in 3, runs over those such that ¢>0.

Put A)=(i+8n++1t—8n)/2 and p@)=(A(E) 2%+ —A{) 2**+1)(At)—AF)~", then
A==+ =141 and p(—)=(—1*@AO**+ 42D+ )A@)+AT)". Then, for B
in >3,, we have C(ﬂ):(—lew(%/n—)“Z(t). Hence, from [{(B)|=1, we can

rewrite &,(n) as follows:
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sm=2tnormap(5H) " - Ty
N e e G VORES
=znrern () (e VIS ) po 8y
+ 04 (SH) (1= DI (S)) - 8y
=2tnr (5 )+ e(— DA = Dp(EE+8m)

D (S e(— DA D) p(— 0 —8m) 7}

Moreover, by using the correspondence: f——wpw, we have

S ) B~ 1Nt—8m) =V =TS U5 ) pONE+8m) 2.

Therefore,

2m) =20t (L e(— DAy D) Sasgn (@) o) (5) PO+ B) .

Now, we shall give a system of all representatives for the elliptic ‘I'-
conjugacy classes in @, such that ¢>0.

Let ¢ be an integer such that |¢|<8n and that t=0 (mod4). Then, we
write *—64n*=m*u with a fundamental discriminant » and a positive integer
m. Let f be a positive integer such that f?|(t*—64n?) and that (f, 2n)=1.
We put

wmz)s(8 L) atd=t (a—d b, 0=F, ]
B, f)= j
(a, b, ¢, d)=1, ad—bc=16n% ¢>0

and, for A= B(, f), we define a set D(A) in the same way as in the Remark
(2.8). Then, SL,(Z) operates on B(#, f) by means of the inner automorphism
in GLy(R). By Z(A)=Zs1,z(A), we denote the centralizer of A in SLy(Z).
Then, Z(A) operates on D(A) by multiplication from the left.

Take a representative A of a SL,(Z)-conjugacy class in B(t, f), and, for
such A, take a representative B of Z(A)\D(A)/I'. Then, when ¢, f, A and B

vary under the above conditions, the matrix (411)“B“AB=(4n)“(g 2) forms a

complete system of all representatives for the elliptic /'-conjugacy classes in
@, such that ¢>0. Here, by the suitable choice of the representative, we may
assume that d>0, (b, d)=1 and (b/f, (*—64n%)/f?)=1 (cf. Remark (2.7)).

Thus, we have:

2u(m)=2n (L e(— 1)V =)D+ 8m) 33 %(MLXE)
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Since (f, t+8n, t—8n)=(M,, t+8n, t—8n)=1, we can decompose f=F,f,
and My=MM, with 0<f,, 0<f,, fi1(t+8n), f31(t—8n), (f1, t—8n)=(f,, t+8n)
=1, 0<M,, 0<M,, M,|(t+8n) and (M,, t+8n)=1. In the same way as in [K]
p. 52, we have

(£)=<(t+8n)/f%)( t—8n )(t+8n>

b b/ f fi fe
and
(=GR )
Hence,
5o(n>:2”n'=+1/2<1+e(—1)kv:T>§1P(t)(t+8n)-”2(%2—n)<i%)
—8 8 8 2
S(HEEERE),

Therefore, from the same arguement in [K] p. 53, we may assume that ¢+8n
is a square integer, and then, by using the Remark (2.8), we have:

(t+8n)/f1

)= (=641 fYHZCANDCAYT)

23(
=h'((t*—64n*)/ DT Ep(2, f).
M
We can write t4+8n=4s® with s>0. Then, we have {*—64n*=16s%s*—4n),
A)=s+(s*—4n)""* and p(t)=—4" n-2**z,(s, n), where =,.(s, n) is the same as

in §1.
Thus, we obtain:

s*—4n )

2u(m)=—((L+e(~ 1"V =D)/2n~ 55y (s, m)( =

x 3 (S s s — ) fuf) ) TLE s —Bn, ffo
1. J2 fl pIM ? R
where s runs over all integers such that 0<s<2+/n, f, runs over a set
{Z=f,>0; (f,, 2n)=1, fi|s} and f, runs over a set {Z>f,>0; (f,, 2n)=1,
f3l(s’—4n)}.
In the same way as in §1 (elliptic case), we rewrite the above formula as
follows:

2u(m)=—((1+e(— v/ =D/ Sy, n)h’(u)<4—2(%)>

)<2°"d2(’"'1> ’ “ ’ 1— ﬁ -1
u(mi)a (r(m;))ql(sl,"lmi) (q)q )

X IT{p™29rn,(6,)},

M

where s’—4n=miu with m,>0, 0,=ord,(sm,), s'=sIIp °9® and m=
P r DIN
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mlpli';vp‘“dp("’l), u(m}) and r(m!) are the same as in §1 (elliptic case), the

constant n,(f,) is given by the table (case (1)-(3)) in the Appendix 1.
Moreover, in the same way as in §1, we obtain:

(2.10) nk-%% 33 ady(n/a®)
<alng

=—((1+e(—1)*V=1)/2) T 1,3, n)h'(u)(4—2(—g—>)2°'d2“7‘1)

Xay(my T p=0rdp o) IT {p=or4r®n (0 ,)}
PIN PIM

where § in the sum 39 runs over all integers such that 0<3§<2+/n, $?—4n=
miu with a fundamental discriminant u and a positive integer m,, 0,=ordy(§7m,).
Also m,(5, n) and n,(8,) are the same as above.

3. The calculation of A.(n).

Let C be a hyperbolic equivalence class in @ and w:(_(l) 2) From the

definition of J(C), we have J(C)=J(—C). Hence, Ro(n)=3 J(C)=32u(J(C)+
J(—=CN=232, J(C)=2u(J(C)+J(wCw)), where C in 33, runs over all hyperbolic
I-conjugacy classes in @ and C in 3, runs over those such that a4-d>0.

For C in 3J,, we can take ,B=(4n)"(;l Z)EC with d>0, (b, d)=1 and

b/f, (t*—64n?)/fH)=1, where t=a+d and f=(a—d, b, ¢) (cf. Remark (2.7)).
Then, from the Remark (2.6), we have:

1B=1©=-a2(S) (L)) " o rra—xp

with
(8 An) Y a—cz,), if zo#o0;
(ﬁ)_{ d/4n, if zy=o0;

where z, is the upper fixed point of 8 which isa cusp of I" (cf. Remarks (1.4)
and (1.5)). Hence,

J(B)+ ] wpw)

/(D)) ) (SH) () )

— d a
—_ 1Nk LAY o _ o
= (U e(= 1=/ () (57 )AB) A=Ay
Let ¢ be an integer such that t=0 (mod4) and that t>8n and that t*—64n®
is square. Then, we write t*—64n*=m? with m>0. Let f be a positive integer
such that f|m and that (f, 2n)=1. We put
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[ Mz)=(° b

(a, b, ¢, d)=1, ad—bc=16n*

and, for A€ B,(t, f), let D(A) and Z(A) be the same as in the elliptic case.
Then, SL.(Z) operates on B,(¢, f) by means of the inner automorphism and a
system of all representatives of the SL,(Z)-conjugacy classes in B,(t, f) is
given by

)JI

0

0se<<y—y/, v+yv'=t, f=(v—v', 1)

MZ(Z)B( z), w' =16n% 0<y’ <y,

X, fl=

(cf. [K] p.b5). For A= X(t, f), take a representative B of Z(AN\D(A)/I.

4
When ¢, f, A:(g Z) and B vary under the above conditions, the matrix

(4n)*B'AB =(4n)'1(f 3) forms a complete system of all representatives for

the hyperbolic I"-conjugacy classes in @, such that a+d>0. Here, by the
suitable choice of the representative B, we may assume that d>0, (b, d)=1
and (b/f, (1*—64n?)/f*)=1 with t=a+d and f=(a—d, b, ¢) (cf. Remark (2.7)).

From an elementary calculation, we get l<(4n)“B"(g Z)B):u/4n:
(v'/4n)~'. Hence, we have:

In the same way as in the elliptic case, we may assume that {+8n is
square. Since *—64n*=(t+8n)(t—8n) is also square, we can write t+8n=4s®
and t—8n=4r* with s>0 and »>0. Since v=0+({*—64n%"?)/2 and v'=
(t—(t*—64n2)'?)/2, we have v—y'=4sr and V''2=((t+8n)"/*—(t—8n)"*)/2=5s5—7r.
Therefore, in the same way as in the elliptic case, we obtain:

o=~ (e~ ) VD)D) o SR RS (S

a
M,

ho(m)y=—(1+e(—D*v/=T)/2)n "+
><zs}((s—r)/Z)”_‘(sr)";go(4sr/f)pI|£15,,(4sz—8n, ),

where s in 3}, runs over all integers such that s>2+/n and that s*—4n is
square, *=(s>—4n)"/? and f runs over all positive divisors of 4sr such that
(f, 2n)=1.

Finally, by applying the same argument as in §1 (hyperbolic case), we can
deduce the following result from the above formula of ho(n):
(2.11) nt= S aho(n/a?)

oLalng

=—(l+e(=D*v -1 D" ((3_7’)/2)”_17)];;177119(029) :
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where s in 3™ runs over all integers such that s>2+/n and that s>—4n is square,
r=(s?—4n)'?, ,=ord,(sr) and the constant my(0,) is given by the table (case (1))
in the Appendix 2.

Remark. Any integer s which satisfies the above conditions is always
even. Hence, we may consider only the even integer s.

4. The calculation of d,(n).
We have

[A’Té(n)d’llzz[d/((énz —411)’ n-I/Z)A/]HZ

4G ")) @ D e

as operators on G(1/2, N, X) (cf. Lemma (2.3)). Then, from the proof of [K]

§2 Proposition 1 and the fact that {h%¢; t2)|(¢p, HER(N, X)} is a C-basis of
. 4 —1 ,

G(1/2, N, X) (cf. §1), it follows that the operator [A ((O 4), l)A ]”2 acts on

G(1/2, N, %) as the multiplication by 2(1—e+/—1). Similarly, from the Lemma

(2.3) and the fact: U(N, X)&5(3/2, N, X)x, we have, as operators on U(N, X),

Ldeu(t; Wdln=20—ev=D4((; ). )], .
Therefore, we get:

(2.12) do(n)=2(1—e~/—1)d(n), where d(n) is the same as in §1.

Thus, the calculation of the trace of the operator [dry(k; n)d]ie1e 1S
completed.

Now, we have from the formulas (2.1), (2.2) and (2.4):

trace(7~'k+uz. v, 2(n?) ‘ S(/€ +—;'r N, X)K)

—((1—e(—1)*/=1)/6)n*** 31 atrace ([Az'o(/e s n/a)d] } S(Ie—i—%, N, x))

o<l ng
+(1/3)trace<7~“k+l,2,1v,x(rﬂ)lS(k-}—%, N, x))

Hence, by combining the above formulas (2.9)-(2.12) with the results of §1, we
obtain the following proposition.

Proposition 2. (1) Suppose k=2. For all natural numbers n with (n, N)=1,
we have :

trace(Parn . 2(n)| S(k+ 5, N, 1) )=T@+T(0)+T@+T(h).

(2) Let n be the same as in (1). Then, we have:
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trace (Ts/o, v, 1 (0D V(N, D)) =T(s)+T(p)+T(e)+T(h)+T(d).

Here, the term T(d) is the same as in the Proposition 1 (or the formula (1.12))
and the terms T(s), T(p), T(e) and T(h) are given by the following formulas
(2.13), (2.14), (2.15) and (2.16) respectively :

For any prime divisor p of M, let yv=v,=ord,(M). Let 6,+/n), m.(s, n),
ne and n, be the same as in the statement of the Proposition 1.

(2.13) T(S)=((2k—1)/12)50(\/7)71”"MPI}[(;D-H)/P-
(2.14) For n=1 (mod4),
T(D)=—(1/203(v/n In* =4/ I (p/94 prcr)

He(=DH/2) (g )nt I+ (S) prer)
><0<§‘_,|n h'(—4n/a?).

For n=3 (mod4),
T<p>=<e<—1)k/z>(3_(%))( LM

% H(p[y/zj_l_(—Tn)vP[(»-n/zJ) S h'(—n/ad).

pM <alng

(2.15) T(e)=— O 1,(s, n)h'(u)au(tl)plgl{p‘“dv‘”npwp)},

where s in the sum 239 runs over all integers such that 0<s<2+/n. The other

notations are as follows: Write s*—4n=t*u with a positive integer t and a funda-

mental discriminant u. Put tlztﬂup“”dﬂ‘” and G,=ordy(st). The constant
pi

np(0p) is given by the table (case (1)-case (3)) in the Appendix 1.
(2.16) T(h)=—2”"((3—1)/2)”"pI:IMmp(ﬂp),

where s in the sum 3™ runs over all even integers such that s>2+/n and that
s?—4n is square. The other notations are as follows: Put t=(s*—4n)''? and
0=0,=ordy(st). The constant my(f,) is given by the table (case (1)) in the
Appendix 2.

§3. The relations.
Let N be a positive integer. Then, from [H], we have:
trace (Top, »(n)|SQk, N)=To(s)+To(p)+Toole)+Tole)+To(h)+Tyd)

for all positive integers n with (n, 2N)=1. Here, the each term is given by
the following formulas (3.1)-(3.6): We use the following notations. For prime
numbers p, we write
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Vp=v, if pis odd;
o, it p=2.

Let d4(+/n ) be the same as in §1 and M the odd part of N. We decompose
n=n}n, with a positive integer n, and a square-free positive integer n,.

ordp(N)zﬁ,,:ﬁ:{

3.1 To(8)=((2k—l)/l2)50(\/77)n"“Nﬂv(z‘&l)/l)-

3.2) To(p)z—(1/2)50(x/77)n”“’Zﬂv(p[”“+i)“f“’/”).
3.3) For n=1 (mod4),

(=D /24~ 1T (14+(

P )>o<§n0h/(—4n/a2), if p<l;

Tole)=
0, if pu=2.

For n=3 (mod4),

Tu(@=(=D*/2m* I (1+(57)), 2, h(—n/a)xC,

with
2 e
3—(5), if p=0;
2
5—(—), it p=1;
sz (n> #
6, if p=2;
2 .
4(1+(;)), if p=3.
(3.4) Tole)=— 2§ m4(s, n)h’(u)au(to)pllIN 1o, 5(00, ),

where s in the sum 3}§® runs over all integers such that 24/ >s>0 and be-
sides that s is even if g=1. The other notations are as follows: Let m(s, n)
be the same as in §1. s®*—4n=¢*u with a positive integer t and a fundamental
discrimenant u. Put 6,=86, ,=ord,(f) and to—tH p~°*p¢®  The constant
7o,p(00, ») 1S given by the table in the Appendix 4.

3.5) To(h)=-— Eé’”((s—t)/Z)”"IHVmo.p(ﬁo. »)

where s in the sum 3{* runs over all even integers such that s>2+4/n and
that s*—4n is square, and put t=(s*—4n)"/* and 6,=46, ,=ord,(t) and, for any
prime number p|N,

p[3/21+p[(t~1)/21’ if 002[(,3_,_1)/2];

Mo, p(B0, p)=
PP g po0, if 0,<[(F—1)/2].
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(3.6) To(d)=5(k)pl‘_ln(l>"“—1)/(13—1)

with n=pH p° and d(k)=1 or 0, according as k=1 or not.
In

Now, let N, be a positive divisor of N such that (N, N/N;)=1 and that
N,#1. Take any element y(N,)ESL,(Z) which satisfies the conditions:

(2 —(1)) (mod Ny);

T(No) =
l(é (1)) (mod N/Ny).

Put WND=1(N) ()
of I'=I(N) and that [W(N,)],. induces a C-linear automorphism of order 2
on S22k, N).

In [Y], M. Yamauchi explicitly calculated the trace of the operator
[W(N)12xT2r v(n) with (n, N)=1 acting on S(2k, N). But, his formula con-
tains several errors in the hyperbolic and parabolic cases. Therefore, though
we need only the trace formula of the operator [W(Ny)1s:T 2. v(n) with (n, 2N)
=1, we shall give the corrected version of the Yamauchi’s formula in all cases.

). Then, it is well-known that W(N,) is a normalizer

For all positive integers n with (n, N)=1, we have:
trace (W(No)Jss T, w(n)| SRk, N)=T:(p)+T1o(e)+T1(e)+ T (R)+T1(d).

Here, the each term is given by the following formulas (3.7)-(3.11):
Let ¥, v, , do(+/n ) and m.(s, n) be the same as in the trace formula of
T2r, v(n).

X)) T\(p)=—(1/2)8:0s(v/n Yn*~1  T] [(pErB A preThia)

PICN/N

with d,=1 or 0, according as N,=4 or not.

(3.8) Write —4nN,=t*u with a positive integer ¢ and a fundamental discrimin-
ant u. Then, we have:

If ord,(N/Ny)=0, or ordy,(N/N,)=1 and nN,=1 (mod4),

Tu@=(~D/ant 1 {120 2, WtnNa).

1NN Q) p 0<a

p:odd (a,Ng=
If ordoy(N/Ny)=2 and nNy=1 (mod4), T,,(e)=0.
If ordy(N/Nop)=1 and nN,=3 (mod4),

Tute)=(—Dr/2m 1 frp(—22)
P50 4
X 3 h'(—nNy/a*)XCj}
tei A

with
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niN,
ng 6, if Ol’dg(N/No)=2;

4(1+( ni[o)) if ordy(N/Ny)=3.

Js—( 2 ) if ordy(N/No=1;

(3.9) Tie)=—N," " *ZOmu(s, nN)h'(tu)ar,(to)

pl(HNo)no' p(eo. p)’
where s in the sum 3{ runs over all integers such that 24/nN,>s>0 and that
s=0 (mod N,) and besides that s is even if N/N,is even. The other notations
are as follows: s’—4nN,=t*u with a fundamental discriminant » and a positive
integer t. Put 6,=80, ,=ord,({), t,.=t 1'%1)’“"1’”’ and t,= II p°"4»®. The
Dl

PN,
constant 1, (8, ) is given by the table in the Appendix 4.

(3.10) T\(h)=—08(v/No ) T ((s—=1)/2)** " p(+/ Ny t)t1

};[N )mo,p((?o,p),

PICN/Ng

where s in the sum 3 runs over all integers such that s>2+/n and that
s=0 (mod /N, ) and that s>—4n is square. Put t=(s?—4n)/?, 0,=8,, ,=ord,(f)

and #,= I}V pordrt®  The constant m,, (8, ) is given by the same table as in
DPiNg

the hyperbolic case of the trace formula of T, y(n).

(3.11) Ty(d)=06(k) IL (p™'—1)/(p—1)

with n=T1I p* and d(k)=1 or 0, according as £=1 or not.
pin

From these trace formulas and the results of the previous sections, we
can deduce relations between those traces.

Theorem. Let N be a positive integer such that 2<ord,(N)=p<4, and put
M=2-¢N. Let X be an even character modulo N such that X*=1 and suppose that
the conductor of X is divisible by 8 if u=4. Then, we have the following
relations (3.12)-(3.15):

(3.12) Suppose k=2, then, for all positive integers n with (n, N)=1, we have:

trace(ﬁmz,w,x(ng)IS(k+%, N, X))
=trace (T s, v/2(n)| Sk, N/2))
+3 A(n, Loytrace (W(Lo)1esTor,20-12,,(0)| Sk, 2871 Lo L))).

(3.13) Let k and n be the same as in (3.12) and suppose N=4M, then, we have:
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trace (?‘k+l/2, N, (n?)] S(k+%’ N, x)K)

=trace (T2, u(n)1S2k, M))
+3, A(n, Lo)tface([W(Lo)jszzk,LoLl(n)|5(213; L,Ly).

(3.14) Let n be the same as in (3.12), then, we have:
trace (Tasz, w2 (n®) | V(N, 1))
=trace (T, y12(n)|S(2, N/2))
+30 A(n, Lo)trace (W(Lo)JoT s ar-111,(m)1S(2, 2¢7 LoLy)).

(8.15) Let n be the same as in (3.12) and suppose N=4M, then, we have:

trace (Tose, v, 2 ()| VN, D))
=trace (T, »(n)|S2, M))
433, A(n, Lotrace ((W(Lo)1oT s, 1,,(n)[S(2, LoLy)).
Here, L, in the sum 3, runs over all square integers such that 1<L, M. Put
L=MTI p~°"s, The constant A(n, L) is defined as follows:

piLy

A(n, L= HIM” n; (ordy(Lo))/2) with

1, if a=0;
Xp s =1 1+(57), i 1=as[e-1/2];
Ap(—n), if v iseven and a=v/2;

where v=ord,(N) and X, is the p-component of X.

Proof. We can easily verify the following claimes (1)-(5):

(1) When n=1(mod4), the first term of T(p) is equal to the contribution
from the parts of To(p) and T(p) to the right-hand side of the above relations.
Also the second term of T(p) is equal to the contribution from the parts of
Too(e) and Tole) to the right-hand side of the above relations.

(2) When n=3(mod4), T(p) is equal to the contribution from the parts of
Tw(e) and T,o(e) to the right-hand side of the above relations.

(8) T(e) (resp. T'(h)) is equal to the contribution from the parts of T(e)
and T.(e) (resp. To(h) and T,(h)) to the right-hand side of the above relations.

(4) T(s) is equal to the contribution from the part of T(s) to the right-
hand side of the above relations.

(5) When k=1, T(d) is equal to the contribution from the parts of T(d)
and T.(d) to the right-hand side of the above relations.

From these claimes, we can easily deduce the assertions of the Theorem.
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Now, we introduce some notations for a statement of a corollary of the
Theorem. Let N be a positive integer and M=2°"9«"> N Then, let HM)

be a Hecke algebra over C generated by double cosets I'o(M )((1) 2)F°(M ) with
all natural numbers n such that (n, 2M)=1. Then, H(M) has a C-basis
consisting of elements ]"(,(M)(g S)FO(M), where a, d>0, a|d and (d, 2M)=1.

We can define a representation from H(M) to End¢(S(2k, N)) by HM)=
LML (M)—=[T(NYI'(N)]se. Similarly, we can define a representatiom

from H(M) to Ende(S(k+, N, X)) by:

H(M)EFO(M)(([)I ((i))PO(M) - > a(ad)k-alz[d((gzdg), (d/a)k+1/2)d]

where a, d>0, a|d, (d, 2M)=1 and A=4«(N, X)z+1/2 (cf. [N] Introduction). By
using these representations, we consider S(2%, N) and S<Ie+%, N, X) as HM)-

’
k+1/2

modules. Then, from [K] §3 and §4, we can see that the Kohnen subspace
S<k+—1—, N, %) is a H(M)-submodule of S(k+l, N, %). Similarly, V(N, %) and
2 K 2

V(N, X)x become H(M)-submodules of S(3/2, N, X).
Under these notations, we can easily deduce the following corollary from
the Theorem.

Corollary. Let notations and assumptions be the same as in the above The-
orem. Moreover, we suppose that M is square-free. Then, we have the following
isomorphisms between H(M )-modules :

For k=2, S(k+1/2, 4M, )k =S(2k, M),
S(k+1/2, 4M, 0)=S(2k, 2M),
S(k+1/2, 8M, X)=S(2k, 4M)

and
S(k+1/2, 16M, X)=S2k, 8M).
For k=1, S(3/2, 4M, \)g=V(A4M, X)x=S2, M),
S@3/2, 4M, X)=V{4M, X)=S(2, 2M),
S@3/2, 8M, X)=V(8M, X)=S(2, 4M)
and

S(3/2, 16M, X)=V(16M, X)=5(2, 8M).

§4. Applications.

By using the Theorem in § 3, we can give decompositions of H(M)-modules
S(k+1/2, N, %) and S(k+1/2, N, X)x. For a simplicity, we shall discuss only
the decomposition of S(k+1/2, 4p™, X)x, where k and m are some integers with
k=1 and m=0, and p is an odd prime number and X is an even character
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modulo 4p™, namely, x:(i) or (2)
Before a statement of results, we must introduce some notations. Let dy be
the twisting operator for the character ¢=<—5) (cf. [S-Y]). By S°2k, p™), we

denote a subspace of S(2k, p™) spaned by all newforms in SQ2k, p™).
For m=3, we define (cf. [S-Y]):

Si2k, pM={S"Q2k, p™>f; fIIWlee=f, f16,IW1ex=1104},
Si2k, p™)={S"2k, p™)=f; fIIWIx=F, F10,IW Jox=—/118,},
SigRk, p™)=A{S'Q2k, p™)3f; fIIWlee=—F, [104IW]es=/ 104},
Su2k, pM)={S'Ck, p™)2f; fIIWIs=—f, f104[W1s=—f1d4},

where W=W(»™) (cf. §3).

For m=2, let S™(2k, p*) be the orthogonal complement of S°(2%, p)|d,+
S°(2k, 1)|d, in S°(2k, p*) with respect to the Petersson inner product. Then,
we define (cf. [S-Y]):

512k, p*)=1{S"C2k, p*)2f; [IIWIw=/, f10,[Wex=11d4},
Su@k, p)=1{S"C2k, p)21; fIIW1as=f, f104[W lex=—7108,},
S1yQk, p)=1{S"C2k, p)=f; fIIWI0w=—F, f104[W1e=1104},
Su@k, p)={S"2k, p)of; fIIWlw=—f, f10,[Wlx=—f10;4},

where W=W(p?) (cf. §3).
Under these notations, we have the following decompositions as H(p™)-
modules.

Proposition 3. Suppose k=2. Then, we have the following decompositions
as H(p™)-modules:
(1) (m=0).

S(k+—;—, 1) =S(2k, 1)
(2) (m=1).
S(etg. 1), =5(k 43 4. (1),
~SU2k, p)B2S'(2k, 1).
@) (m=2 and x=(l)).

1
S(H?, 4pz)ng{sI(2le, PDS1(2k, p*)}

B(1+(5)) {52k, £)10,BS'2k, 13}
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@ (m=2 and x:(ﬂ)).

D25°(2k, p)P4S°(2k, 1) .

(et 477 (2)),

IR

(L+(F)) 1528, 1BSu, 2k, 1)

B(1—(5)) (S:(2k, pIBSa(2E, #7)

545

sk, p)Io,D(1+(5 p ))S“(Zk 1)|5,83S°2F, pIPAS 2k, 1).

(B5) (m=2a+3 with a=0).

S(k +'%, 4p2(l+8)

KzS(k

+%' 4, (£>)K

)
3—(2))a+2-0)S:(2k, p)
Ya+2—-b)S 2k, p*)
D) a+2-bSa2k, p™)
1

B(2+(5) Ja Sk, 213,
(

D 1—|-<_7))(2a+2)5"(2k, D13,

BBa+4)S(2k, p)DAa+6)S°2k, 1).

(6) (m=2a+4 with a=0 and X:(l))

S(k+%

. 4p2a+4)K

=2(S,2k, PDSH 2k, pHE)
DG Cat+1-20)5"2k, P

&8 {(3+(5)er2-tr+2}si2e, )
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+1

&@ {(3-(5)@r2-+2siee, 1
O (1+(5))@+2-051,2k, )
od (1—(_71))(a+2"—b)sm(2k, )
&{(1+(G)Katv+ati}ser, nid,

ea(l+( ))(2a+3)S°(2/e 113,
DBa+5)S°2k, p)D4a+8)S' 2k, 1).
) <m=2a+4 with a=0 and X=(£>>

S(k +—;—’ apter, (£)>A
=(1+(5)) 15128, P 0DSu (2, o)

< 1—(“71)) (Su(2k, p**+)DSa(2k, po+))

{( Ya-+2-b1+1+(F)}si2k, %)
(-G erz-n+1-(SH)}suc2t, )
) (1+(71))(a+3 b)Su 2k, P¥)
®E (1-(5)a+3-02e, 1
69{<1+(:—)>(a+1)+a+2}5°(2k, )16,

ea(l+( ))(2a+3)5°(2k 118,
BBa+6)S2k, p)BAa+8)S2k, 1).

Here, the coefficient in front of the H(p™)-modules S°(2k, p™) 0<n<m) etc. is the
multiplicity.

If we replace S(k+1/2, 4p™, X)x by V(4p™, X)x and put k=1 at the right-
hand side of the decompositions (1)-(7), we have the decomposition of the H(p™)-
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module V(4p™, X)k.
Remark. Let m be a positive integer and s an integer such that 0<s<m.
Then, for all positive integers n with (n, p)=1, T,;, ps(n) coinsides with Ty, pm(n)

as an operator on S(2k, p™). Therefore, we can naturally consider S(2k, p°)
and S°(2k, p%), etc. as H(p™)-modules.

Proof. The decomposition (1) and (2) are immediate conséquences of the
Corollary in §3. Hence, in the following, we assume that m>=1 and that the
letter n means any positive integer prime to 2p.

Firstly, we note that, when m is odd, by using the Theorem in §3,

trace(’f“:/z.wm.(l)(nz) ‘ S(k—!—%’ 4‘bm)x>

=traCe(Tk+1/2,4pm.(B)("Z)|S(k+'%’ 4pm’ (£>>K)

Since the operator Tk+1,2,4pm,z(n2) on S(k+1/2,4p™, X)x is hermitian with
respect to the Petersson inner product, we get, for any odd integer m=1,

S(k+—;—, 4p"‘)K§S(k+%, 4pm, (2))]{ as H(p™)-modules.

Next, from the definitions and [S-Y] Lemma 5.1, we can easily get the fol-
lowing identities: ‘

trace (T2, pm(n)| S(2k, p"‘))=a§=o(m+1—-a) trace (Tzp, pa(n)| S°(2k, p%))
and, for any integer =1,
trace (LW (p*)]2sT2x, p2e(n) | Sk, p**))

= 3 trace (Ta, pea(m) | S1(2k, P*IDS:(2k, 5°4)
— 3 trace (Tan, pealn) | S3,(2k, D*)DSa(2k, $°4)

+(—_p—l)trace (T2r, p(n) | S°(2k, p)10,DS(2k, 1)]dy)
+trace (T2, :(n)| S°(2k, 1)) .
Moreover, from the Proposition 1.1 (and §5) of [S-Y], we have:
S1(2k, p*)|0,=S1(2k, p**),
S1(2k, p**)|0y=Su 42k, p**),
Suy2k, p**)0y=S:1(2k, p**) and
Su(2k, p**)|0,=Su(2k, p*) for any integer a=1.

Now, for any integer t=1, we put
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S(k+-;—, 4p“)K)

—trace ¥y spse-sx(n)| Sk 35, 4971, 7))

A, =trace <Tk+1/2,4p25,(l)(n2>

and
S(etg 207, (2),)

—trace(YN‘k“/g,mu-l,x(nz)’S(k+%, 4p2e-t X) )

K

B,,=trace (Tk+l/2,4p2t,(£)(nz)

From the Theorem in § 3 and the above formulas, we have:
Ap=trace(T sz, poe(n) | SQk, p*)
+trace ([W(p*) ]z Tas, pou(n) | SCk, p*))
—trace (Tas, p2e-1(n) | Sk, p*1)

_—:Zaé}‘trace (Tar, poa(n) | S12k, p2YDS1(2k, p*%)
+b‘={“1 trace (Tzk,pﬂ)—l(ﬂ) | %2k, Z)Zb"))

-1 0 0
+(1+(?)) trace (Tos, pe(n) | S°2k, p)|0,DS 2k, 1)13,)
2 trace (Tap,a(n) | S°(2, 1)),
and
By =trace (T, p2e(n) | Sk, p*9)
(TR trace V(T Tan, ) | SC2E, p)
—trace (Tqs, p2e-1(n) | Sk, p2=1)

=(1H(5) B trace (Taw )| S1(2k, pOBS1, 2k, 1720
—I—(l—(—?l))agtl trace (Tes, p2a(n) | Su(2k, p**)DSu(2k, p**)

+b§tl‘, trace (Tax, pro-1(n) | S°2k, p?*°1)
+trace (T, po(n) | S2F, p)18,)

—1
+(1+(57)) trace (Tow. () | $°2k, DID)

+trace(T oy, p(n) | S°Q2E, P))
42 trace (Tos.1(n) | S°2k, 1)).

From this expression of A, we have:
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trace (7{);-}-1/2,41;2,(1)("2)’5(‘& +%) 4p2)K)
=2trace (Tas, p2(n) | S12k, pYDS12F, )

_1 o o
+(1+(7)) trace (Tzx, p2(n) | S°(2k, P)6,DS°(2k, 1)16,)
+2trace (T, p(n) | S°(2k, D))
+4 trace (T, 1(n) | S°Q2Fk, 1)).

The decomposition (3) follows from this equality and we can prove the decom-
position (4) in a similar way.
When m=2a+3 with a=0, by using the Theorem in §3, we have:

trace (Tk+1/2,4p2a+3,1(n2)}S(/e-l—%, 4pra+s, X)K)
—trace ('T‘kn/z,.;pzaw,(i)(n?) \S(k—i—%, 4p2a+2)K)
s ()

+trace (’f‘kﬂ/g,wzan,x(nz) lS(k+%, 4pratt X)K)

—trace (T‘)H.l/g, 4p2a+2, (2)("2)

=trace (Ta. pea+s(n) | Sk, p22+%))
—2trace (T o, pea+e(n) | S2k, p2+%))
+trace (Tap, pea+1(n) | SQk, p22+Y)

=trace (Typ, p2a+s(n) | S°(2k, p2+%).

Hence, we get inductively:
1
trace (Tk+1,2_4pza+3,x(n2) }S(le-}-?, 4prets, X)K>
=trace (Tgk,p2a+3<n) | S°(2k, ﬁ2a+3))+A2a+2+Bza+z

1
“+trace (Tk+1/2.4p2a+1,x(n2) |S<k+—2—’ 4peett X)K)
= bé trace (T s, peo+s(n) | S°(2k, p**+))

a a 1
+ tgo Agprat E‘o Bjpio+trace (’?‘k+l/2.4p, 2(n?) ’S(k +7; 4p, X)K> .

From this equality and the above expressions of A,, and B,;, we immediately
obtain the decomposition (5).

Finally, by using the expressions of A,.+s and By..q With a=0, we can
deduce the decompositions (6) and (7) from the decomposition (5).
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In this Proposition 3, we note the following:
When m is zero or an odd positive integer, the H(p™)-module S°(2k, p™) occurs
with the multiplicity one in the decompositions of the H{p™)-modules S(k+1/2,
4p™ Vg (f £=2) and V(dp™, X)x (f k=1). Hence, a non-zero element f of
S(k+1/2, 4p™, X)g or V(4p™, X)x, which corresponds to a primitive form F in
S°(2k, p™), also becomes a common eigen form with respect to the n-th Hecke
operators for n=2 and p (cf. [K] Preliminaries (a) and § 3, as in the definitions
of the n-th Hecke operators for n=2 and p).

Let the Fourier expansion of f (resp. F) be as follows:

f:é}l a(n)e(nz)  (resp. F:né A(n)e(nz)) .

If u is a fundamental discriminant with e(—1)*u>0 (cf. §0 (d) for the defini-
tion of ¢), then, their Fourier expansions are related as follows:

L(s—k+1,2(2)) 5 allulnn-r=a(lu]) 3 Amyn~*

(cf. [K] §5 Theorem 2). Therefore, all primitive forms in S°(2%, p™) are cost-
ructed from some elements of S(k+4+1/2,4p™, X)x or V(dp™, X)x through the
Shimura (—Niwa—Kohnen) correspondence.

In fact, for more general situations, similar results can be proved by using
the Theorem in §3. However, we omit the details.

Appendix 1.

For a simplicity, we shortly write §=8,. Then, the constant n,(8,) is
given by the following table:

Case (1) (p|M and p|s).

P () P, 02 L6+1)/2];
np(ap):xp(_n)pax _n
(1+(T))p0, if 0<[(v—1)/2].
Case 2) (p|M, pts and plu).
{poHi(priraq pre-vrn—pr—p>=1} /(p—1), if 6=[v/2];
np(ep):{ .
0 if <[v/2].

’

CGSQ (3) (pl]\/{, p ,l/ N and p ,r u).
. v/2 v-1 2 v/2 -1
(,b_<__))(pt / J+p[( )/ ])(pa_p[ / ])(p__])

naB)= +pB (P (Y pem ), it 020+ 1/2];

(1+()s, it 0=[—1)/2].



Case (4) (p=2

ny(f,) =

Case (5) (p=2

ny(02) =

Case (6) (p=2

ny(6,) =

Case (7) (p=2

n6,) =

Cusp forms

and p=2).
20+1
3x29,
3x20+1—-12,
20+2—6,
29,

and p=3).
3x2%,
3x29,
9x29—24,

3x20+1—-12,

0 ’

and p=4).
3)(20+1 ,
20+2,
3X20+1 ,

0,
9x20+1—48,
3x20+2—48,
3x29+2—-24,
20+s_24 ,

0,

and p=2g-+1=5).

[ 1
20+8+1

20 +1
28041

0 ’

3X20+g+1_3><22e+1’

0,

20+8+2 3228,

0,
0,

of half-integral weight

u=1 (mod 8);

u=5 (mod 8) and s/2 is even;
©=5 (mod 8) and s/2 is odd;
u=0 (mod 4) and ¢ is even;

u=0 (mod4) and ¢ is odd.

u=1 (mod 8);

u=5 (mod 8) and s/2 is even;
©=5 (mod 8) and s/2 is odd;
u=0 (mod4) and ¢ is even;

u=0 (mod 4) and ¢ is odd.

u=1 (mod 8) and f(X,)|4;

u=1 (mod 8) and f(X,)=8;

u=5 (mod 8), s/2 is even and f(X,)|4;
u=5 (mod 8), s/2 is even and f(X,)=8;
u=5 (mod 8), s/2 is odd and f(X,)|4;
u=5 (mod8), s/2 is odd and f(X,)=8;
u=0 (mod4), t is even and f(X,)|4;
©=0 (mod4), t is even and f(X,)=8;
u=0 (mod4) and ¢ is odd.

if u=1 (mod8) and =g+1;

if u=1 (mod8) and 0=g;

if =5 (mod8) and s/2 is even;
if =5 (mod 8),
if u=5 (mod 8),
if =0 (mod4),
if u=0 (mod4),
if u=0 (mod4) and ¢ is odd.

s/2 is odd and =g+1;
s/2 is odd and 6=g;
tis even and f=g;

t is even and <g—1;

551
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Case (8) (p=2 and p=2g=6).

3x20+e-t if u=1 (mod8) and 6=g;

2201 if u=1 (mod8) and §<g—1;

3x20+8-11,(5), if u=5 (mod8), s/2 is even and 0=g;

0, if u=5 (mod8), s/2 is even and 0<g—1;
no(0y) = { 9x20+8-1—-3%2%¢  if y=5 (mod8), s/2 is odd and =g;

0, if u=5 (mod38), s/2 is odd and 0<g—1;

3x20+e—3x2%¢-t  if y=0 (mod4), ¢t is even and =g,

0, if u=0 (mod4), ¢ is even and <g—1;

0, if =0 (mod4) and ¢ is odd.

Appendix 2.

For a simplicity, we shortly write §=6,. Then, the constant m,(8,) is
given by the following table:

Case (1) (p|M).

prAI pte-nil o if 0 >[(v+1)/2];
m,,(ﬁ,,):{ )
2p? if 6Z[(v—1)/2].
Case (2) (p=2)
2, if p=2;
3, if p=3;
6, if p=4 and f(X,)|4;
ma(02)=
4, if p=4 and f(X,)=8;
P A if p=5 and 0=[(p+1)/2];
2041 if p=5 and 0<[(u—1)/2].

Appendix 3.

Let A, D(A) and I' be the same as in the Remark (2.8) of §2. We shall
calculate n(A)=#(D(A)/I).

For a representative x of (Z/MZ)* and a prime divisor p of M, we define
sets V(x), Vy(x) and V ,(x) as follows:

V(x)z{SLz(Z)aB; B'AB= 4x(—)|—4Mu :)(mod 16 M) for some uEZ}.

4x+4My

Vg(x):{SLZ(Z)BB;B“ABE A

*
*) (mod 16) for some yeZ}.
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V,,(x):{SLZ(Z)BB; B“‘ABE(gx :) (mod p“p)}

with yv,=ord,(M).
Then, I'=I"\(4M), I'y(4) and I'y(p*?) operate on the sets V(x), V,(x) and
Vo(x) respectively by multiplication from the right, and D(A)= \J V(x)

TECZIMZ)*
(disjoint union). Moreover, we can define an isomorphism ¢ from {V,(x)/I,(4)}
XTIV o(x)/T(p"?)} to V(x)/I" as follows:
DM

Take any element (B,, (Bp)pin) of Vo(x)X ITV,(x). Then, there exists an ele-
M

ment B of SLy(Z) such that B=B, (mod 16) and that B=B, (mod p*?) for all
prime divisors p of M. We define (Bl o(4), (Bpl"o(p*?))p 1 u))=BI".
Now, from the discussion in [K] §4 Appendix (proof of the Lemma 5), we
know #(V(x)/I"y(4))=1. Therefore, we obtain:
> # VW= 3= IT #(V 5(x)/To(p"?))
M2Z) M

¢7] TE(ZIMZ)* D

n(A)= ze

=1I > #(V ,(x)/To(p*P)) .
DIM xe(Z/p¥pZ)*
In order to calculate #(V ,(x)/I"o(p"?)), we note the following general facts:
Let L be a positive integer. We denote by C(L) a set consisting of all
elements of (Z/LZ)X(Z/LZ) whose order is exactly L. We define an equi-
valence relation ~ of C(L) as follows: For two elements (¢;, d.), (¢, ds) of
C(L), (1, di)~(Cs, d,) if and only if there exists m =(Z/LZ)* such that (¢, d,)

=(,, d;). Then, we have the bijection: SLQ(Z)/F.,(L)B(S S)FO(L)athe equi-

valence class containing (a mod L, bmod L)Y C(L)/~.
Now, we shall calculate #(V ,(x)/I"«(p"?)).

Let write A:(f Z) Then, for B:(;‘ u;)ESLz(Z), the condition B-'AB

E(gx :) (mod p*?) is equivalent to (a;4x d—b4x)( Z )E( g ) (mod p*?). By using

the elementary divisor theory, there exist U, and U,=SL,Z) such that

a—4x b\ g 0 — (a— — =
( ] d_4x>_U1(0 gz)Uz. Here, g, =(a—4x,b,c,d—4x) and gigo=

((a—4x)(d—4x)—bc)=((4x)*—4tx+16n?), where t=a+d, ad—bc=16n® from the
assumptions.

Put a=ord,(g,) and B=ord,(g.). Since p is odd, g.Z,=(a—d, b, ¢, t—8x)Z,.
Hence, a=min(p,, 75..), Where p,=ord,(f) with f=(a—d, b, ¢) and 7, .=
ord,(—8x).

Thus, we have:

C(p*?)/~>the equivalence class containing
#(V o(x)/T(p’?)) =#1 (u, v) modulo p*? such that
pfu=pPfr=0 (mod p'?)
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PP pPTY, if azv,;
={ p=, if B=v,>a;
0, if v1,>8.

Firstly, we assume pp,=v,. If 7, ,<v,, we have ord,((1*—64n%)/4)=22p,>
2tp, s =ord((4x—1/2)%). Hence, a+B=ord(4x—t/2)*—(*—64n*)/4)=2z,, .=
a+7t,, .. Therefore, if #(V,(x)/['(p*?))#0, then, we get 7, ,=v,, namely,
t=8x (mod p*?).

Thus,

Vo) T(p"P)=p"+p""

TECZ/Pp¥DPZ)
Next, we assume that v,>p,. If 7, ,<p,, we have: a=r,,, and

ord((4dx—1t/2))=2tp, ;<2pp,=ord,((t*—64n?)/4).
Hence,
a+pB=ord((4x—t/2)*—(t*—64n®)/4) =21, ,=2a<a+v,.

Therefore, if #(V o(x)/I"«(p*?))#0, we get 7, .=p,. Thus, we obtain:
> #(V o(x)/To(p77))

2E(Z/p¥pZH*

(Z/p*"*Z)>x; t=8x (mod p°?) and }

40
= px#{ x*—(t/4)x+n*=0 (mod p"?+°P)

Moreover, we can omit the assumption: t=8x (mod p”?) by using the assump-
tion: v,>p, and the fact: ord,((1*—64n%)/4)=2p,.

Appendix 4.

For a simplicity, we shortly write §,=@,,,. Then, the constant n,, ,(8,, )
is given by the following table:

Case (1) (pI!M and p|u).
{prori(ptiBipte DMy —pr—p*} [(p—1),  if Goz[v/2];
0, if 6,<[v/2].
Case (2) (pI|M and p ) u).

Mo, p(00. p):{

(p= () prrmtpre-Drmypto—ptm/(p—1)

mp@or=1  +pP(ptm(T) P, i G212

(1.*.(%))‘0200 , if 8,=[(v—1)/2].
Case (3) (p=2).



(D-M]
[H]
[K]

[N]
[Sh 1]

[Sh 2]
[Sh 3]
(s-S]

(St]
[s-Y]

(Yl
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200(2tmma 4 20k=0121) - if y=]1 (mod 8) and 6,=[(¢+1)/2];
220041 if u=1 (mod8) and 6,<[(pz—1)/2];
3X200(2Lr 121420k =012 3% 2

if =5 (mod 8) and 6,=[(z+1)/2];

10,2(00,2)= .
0, if =5 (mod8) and 6,<[(p—1)/2];
200+1(QLI21 4 2Lk =1/2])__ 3¢ Q-1 ,
if =0 (mod4) and 0,=>[(x—1)/2];
0, if u=0 (mod4) and 6,<[(z—1)/2].
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