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Pluricanonical divisors of elliptic fiber spaces
By
Yoshio FunmMoto

Introduction.

By an elliptic fiber space f: V— W, we mean that f is a proper surjective mor-
phism of a compact complex manifold ¥ to a compact complex manifold W, where
each fiber is connected and the general fibers are smooth elliptic curves. In parti-
cular, when V is a surface and W is a curve, we say that V is an elliptic surface over
w.

By an n-dimensional elliptic fiber space V'— W with £(})=n—1, we mean that
the image of a rational map @, is (n— 1)-dimensional for sufficiently large
m. In this case if an m-th pluricanonical mapping @,k 1: V=@ g, (V) is
bimeromorphic to the original elliptic fiber space, we say that @, gives the litaka
fibration.

Iitaka [6] showed that for any elliptic surface f: S—C with £(S)=1, the m-th
pluricanonical mapping @, gives the unique structure of the elliptic surface
f: S—>C if m>86. Moreover he showed that 86 is the best possible number. On
the other hand, Katsura and Ueno [7] showed that if S is an algebraic elliptic
surface defined over an algebraically closed field & of characteristic p=>0 with
£(S)=1, then @, gives the unique structure of the elliptic surface for every
m>14.

One of the main purpose of this paper is to obtain the bound of the litaka
fibration of an elliptic threefold when the Kodaira dimension of the base space is
greater than or equal to 1.

We prove the following.

Main theorem A. If f: X—S is an elliptic threefold with x(X)=2 and
£(S)>1, then @, gives the litaka fibration for all even integer m=>16.

The main difficulty is that if f: X—7Y is an elliptic fiber space, fu(mKy)y) is
not necessarily invertible for a positive integer m, as was remarked by Fujita [5]. So
we take a suitable bimeromorphic model f: X— Y of f and express an holo-
morphic section of mKz,7 by means of the modular form of weight m on the upper
half plane. (cf. [5] [14]) Then if the Kodaira dimension of the base space is equal to or
more than one, we can apply the results about pluricanonical mappings of surfaces.

Though we have not completely proved the counterpart of Jitaka’s theorem for
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elliptic threefolds, we conjecture that such a theorem holds and 5420 is the best
best possibl number. In [4], the author constructed series of examples of elliptic
fiber spaces, which gives an evidence for the existence of such bounds. Our result
is the following.

Main theorem B. Let {a,},_, .. be a sequence of natural numbers defined by
a, =2, G =aa,-a,+1.
And let {b,},_, ... be a sequence of natural numbers defined by
b, = (n+1) (a,s—1+2.

Then for every positive integer n, there exists an elliptic fiber space X *+P— P" over

P" which satisfies the following conditions.

(1) &(X®P)=p,

(2) b, is the best possible number of the litaka fibering of X®*V, that is,
dim |mKy | =0 if m=b,—1, and the m-th pluricanonical mapping @, | gives
the Iitaka fibering for all m>b,.

Moreover, XY is not in the class C in the sense of Fujiki [1]. (That is, X +D

cannot be bimeromorphic to any compact Kdihler manifold.)

Examples. Now, we write down the first few terms of {a,} and {b,}.

n 1 2 3 4 5 6

a, 2 3 7 43 1807 | 3263443

b, 86 5420 | 13053770 | ~10¥| ~10%| ~10%

(1) b,=86. This is the well-known result of the elliptic surface. An elliptic
surface f: S— P! over P! with three multiple fibers of multiplicity 2, 3, 7 and
with constant moduli has the property that dim|85K| =O0.

(2) b,=5420. There exists an elliptic threefold f: X— P? over P? with constant
moduli which has multiple fibers of multiplicity 2, 3, 7, 43 along the four lines
on P?in a general position. X has the property that dim|5419K, | =0.

To prove Theorem B, we need to study multiple fibers of elliptic fiber spaces and
generalize the notion of a logarithmic transformation defined by Kodaira. Our
construction is as follows.

Let H;(1<i<n+2) be (n+2) hyperplanes on P" which are in general position.
Let (a,, a;, ***, a,4,) be (n42)-tuple of positive integers defined as in theorem B.
Then X@*P— P" is an elliptic fiber space over P" which has multiple fibers of
multiplicity a; along each H;(1<i<n-+2). Note that there exists no finite abelian
covering of P" which branches along H;’s (1 <i<n-2) with the ramification index
a; respectively.

We prove Theorem B in two different methods. One way is to use generalized



Elliptic fiber spaces 663

logarithmic transformations along the divisors which have only normal crossings
and another way is to construct X®**P as a submanifold of a Hopf manifold,
which was suggested by M. Kato. The latter proof is much simpler than the
former, while the former is applicable to many other situations. (cf. §5).

On the other hand, if we consider only algebraic elliptic fiber spaces, the best
possible number of the litaka fibration seems to be much smaller than that of the
analytic case. One of the main reason is that the multiplicities of the multiple
fibers of an algebraic elliptic fiber space with constant moduli should satisfy certain
numerical conditions, as was shown by Katsura and Ueno [7]. Moreover, there
is a deep connection with the theory of branched coverings of complex manifolds
which was developed by Namba.

In [13], Namba obtained the necessary and sufficient conditions for the ex-
istence of finite abelian coverings of P". It is almost equivalent to the one ob-
tained by Katsura and Ueno [7]. Combining these two results, we see that an
algebraic elliptic fiber space over P" with constant moduli which has multiple fibers
along hyperplanes can be constructed globally by taking finite abelian coverings of
P

Our result is the following.

Theorem C. Let {d,},_,, .. be a sequence of natural numbers defined as follows:
d,=2(n*+4-3n+3).
Then for every positive integer n, there exists an algebraic elliptic fiber space Z #+°—
P" over P" which satisfies the following conditions.
(1) »(Z®*P)=n.
(2) d, is the best possible number of the litaka fibration of Z™*V, that is,
dim|mK,| =0 if m=d,—1, and the m-th pluricanonical mapping @ |,k | gives the
Iitaka fibration for all m>d,.

Examples. We write down the first few terms of {d,}.

n 1 2 3 4 5 6

d, 14 26 42 62 86 114

Finally, let us explain briefly the contents of our paper.

In §1. we shall review the canonical bundle formula of elliptic fiber spaces
due to T. Fuyjita [5]. In §2, we shall consider pluricanonical mappings of elliptic
threefolds when the Kodaira dimension of the base space is greater than or equal to 0.
In §3, we shall consider the structure of algebraic elliptic fiber spaces with constant
moduli. In §4, we shall prove Main theorem B. In §5, we shall consider generaliz-
ed logarithmic transformations along the divisors which have only normal crossings
and reprove Theorem B in a different way. In §6, as an application of Theorem
5.1, we shall construct examples of elliptic fiber spaces with £=0.

The author wishes to express his sincere thanks to Professor K. Ueno for useful
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advices and to Professor M. Kato, who suggested to me another proof of Theorem B.

Notation and convention. If X is a compact complex manifold, we use the
following notation.
£(X): the Kodaira dimension of X
K : the canonical bundle of X
P, (X)=dim¢ H°(X, O(mKy))
h*(X)=dimg HY(X, 2%)
q(X)=dims; H(X, Oy)
e,=exp 2z\/—1/m)
dOy: the subsheaf of 2% whose elements are d-closed.
For an integer s, [n] denotes the greatest integer that does not exceed n.

§1. Preliminaries.

By an elliptic fiber space f: V—W, we mean that f is a proper surjective
morphism of a complex manifold ¥ to a complex manifold W, where each fiber is
connected and the general fibers are non-singular elliptic curves.

Put SY:={we W |f is not smooth over f~(w)} and let F be an irreducible
component of >) with dim F=dim W—1. For a general point x of F, there exists a
curve Z in W passing through x such that Z meets F transversally and f~Y(Z) is
a non-singular elliptic surface over Z.

Furthermore we assume that f~\(Z)—Z is relatively minimal. Then f~%Z) has
a singular fiber at x and the type of the singular fiber in Kodaira [12] is indepen-
dent of the choice of Z and x. Hence we can define it to be the type of the singular
fibers of falong F. 1In particular, if f~1(Z) has multiple fibers of multiplicity » at x,
we say that V has multiple fibers of multiplicity m along F.

Now, for each type of singular fibers we can define a number «; as follows.

Type ml, I¥ ] 1 I* 111 I* Iv Iv*

a | 1—m™ | 12 } 16 | 5/6 | 1/4 | 3/4 | 13 2/3‘

For an elliptic threefold, the following theorem is fundamental.

Theorem 1.1. (Ueno [14], Corollary (1.10)). Let f: V—W be an elliptic three-
fold. Then there exists a bimeromorphically equivalent model f /N of f which
satisfies the following conditions.

(*) Let F be an irreducible component of the discriminant locus 3 of f with
dim F=dimW—1. Fora general point x of F, there exists an analytic arc Z
in W meeting F transversally and passing through x such that the elliptic sur-
face f ~YZ)—Z is relatively minimal.

Thanks to Theorem 1.1, our definition of the type of the singular fibers are well-
defined.
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Now, we recall the canonical bundle formula due to T. Fujita [5].

Theorem 1.2. (7. Fujita[5]). Let f: V—W be an elliptic threefold such that the
J-invariant J: W—P" is holomorphic. Let m be a positive integer such that k=12m

is divisible by the multiplicities of all the components D; of the discriminant locus >}
of f. Then

0P =fHPQJI*Op(m) @Oy ka; D)) @Oy E—X]

for some effective divisor E, X on V such that
1) codim f(X)>2.
2) f:Oy=f+Oy(mE) for any positive integer m.

§2. Pluricanonical mappings of elliptic threefolds.

In this section, we consider pluricanonical mappings of elliptic threefolds only
when the Kodaira dimension of the base space is greater than or equal to 1.

Proposition 2.1. (cf. Fujita [5], Ueno [14]). Let f: V—W be an elliptic three-
fold. Assume that the discriminant locus >3 of f are divisors with only normal
crossings and the condition (*) in Theorem 1.1 is satisfied. Then for an arbitrary
even positive integer m>2, we have: mK,~=f*(mKy,+I')+E—G for some effective
divisor ' on W and E, G on V such that
(1) f+Ou(E)=0Op
(2) codim f(G)=2.

(3) Let D; be an irreducible component of >} with dim D;=dim W—1. Then we
have I'=3] [ma;D;+(pV,+qV,), where Vs are effective divisors on W such

that 37, ~J*Opx(1) and 27,~J*Op:(1) and p, q are positive integers such that
m=4p-+-64.

Remark 2.2. If V—W is an elliptic bundle over a Zariski open set of W and
has only multiple singular fibers, the above result holds for a/l positive integer m.

Proof. We follow the idea of Fujita [5] and Ueno [14]. Let T: W°=W\>)—
H={r&C|Im(r)>0} be the period mapping associated to a holomorphic 1-form.
T gives a single-valued holomorphic mapping 7' W°—H on the universal covering
We of W°. Let @:a(W°)—SL(2, Z) be a monodromy representation. z,(#°) can
be considered as a covering transformation group of W° and we have

T(rx) = O()T(x) forevery rex(W°).
The semi-direct product G==,(W°)[XZ?acts on W°X C in a canonical way such
that the quotient space M=W°xC | is non-singular and f°=f|y-: f " (W°)—>W°
can be obtained from M — W° by repatching a fiber coordinate. (cf. [15])

1
Now, let Gy2)= 3¥ o

(resp. Gy(2)) is the modular form of weight 4 (resp. 6) on the upper half plane with

be the Eisenstein series of index k. Then Gy(z)
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respect to SL(2, Z) and has a zero of order 1 at z=exp(2z\/—1/3). (resp.
z=+/—1.) And the elliptic modular function j(z) can be written as

j@) = 1728g34, 4=g3—27g%, g,=60G, and g, = 140G,.

Given an arbitrary even positive integer m>2, there exist positive integers p, g such
that m=4p4-6q and F(z)=G3(z)G4(z) is the modular form of weight m on the
upper half plane with respect to SL(2, Z).

Then for any @ H°(W, K"), put E=F(T(w))f *oQ(d{)", where ¢ is the fiber
coordinate of f°: ¥V°— W° & is =, (W°%-invariant and gives an element of
He(V°, K§%). Set 31°={x& 31| is non-singular at x and there exists a curve Z
in W passing through x and meeting 3] transversally such that an elliptic surface
f"Z)—Z is non-singular.}. Put W' =W°U3°. Clearly we have codim
(W\W")>2.

By Ueno [14], Theorem (2.3), 5§ can be extended holomorphically to an element
of I'(f~Y(W’), K$™). And by writing down the zeros of £ explicitly, we have the
following isomorphism on W’:

S KP") > K§"QO0T), I = '_Z=}l[ma;]D.-+(PVl+qu) ,

(**)

where 7 (i=1, 2) are effective divisors on W such that 37,~J*Opy(1) and 27,~
J*Op1(1) and p and q are positive integers such that m=4p+-6q.

Since codim (W\W')>2, the above isomorphism can be extended to a homo-
morphism on W.
Let E be an effective divisor on V such that

K9"QOy(—E) = {Image (f*f4K$" — K$")}"" .
Then f*f K§"— f*(K$"QOy(I')) induces an injective homomorphism K$"®
Oy(—E)—>f*K$"Q Oy(I")). Therefore we have K$" Q Oy(E—G)=f*(K¥" Q
Ow(I")) for an effective divisor G on V and this implies the claim. And (1) and (2)
is clear from our construction. q.ed.

Proof of remark 2.2. In this case, we can show (**) directly without using the
modular forms, so our proof works for all positive integer m.

Proposition 2.3. Let f: X—Y be an elliptic threefold. Then we have P,(X)>
P,(Y) for an arbitrary positive even positive integer m=>2, except the case where
X is bimeromorphic to an elliptic threefold which is a fiber bundle with the struc-
ture group L2, Z|3, Z|4 or Z|6 over a Zariski open set of the base space.

Proof. By Hironaka’s flattening theorem and resolution of singularities, we
have the following commutative diagram.

u v
V— M — X

bl

T— S —Y
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1) ¥, T and S are non-singular.

2) u,v, ¢ and = are bimeromorphic morphism and g is flat.

3) The J-invariant J: T— P! is a morphism.

4) The discriminant locus 33=37 D; of 4 are divisors with normal crossings.

Furthermore we may assume that the condition (*) in Theorem 1.1 is satisfied for
h:V—-T.

Then it follows from Proposition 2.1 that for an arbitrary even positive integer
m, we have mK,~h*(mK,+I')4+E—G for some effective divisor I" on T and E, G
on V. Since g is flat, G is (vou)-exceptional. Therefore we have an isomorphism
H(V, O(mKy))=H°(V, O(mKy+G))
=H°(T, O(mK+1T).
This implie sthat P,(X)>P,(Y) for any even positive integer m>2.

Remark 2.4. If f: X—7Y is an elliptic threefold with constant moduli which
has only multiple singular fibers, we have P,(X)>P,(Y) for every positive integer
m.

Proposition 2.5 (The canonical bundle formula of elliptic threefolds). Let f:
V—W be an elliptic threefold over an algebraic surface W. Assume that the discri-
minant locus 33 of f are divisors with only normal crossings and the condition (¥) in
theorem 1.1 is satisfied. Then the canonical bundle of V can be written as follows:

Ky =f*(Ky+L)+M—G

where 1) L is a line bundle on W.
2) M is an effective divisor on V such that

M= m"—_lD,-)-l—El—Ez ,
Q ¢ m;

where V has multiple fibers of multiplicity m; along the irreducible
component D; of 3} and E; is an effective divisor on V such that
f(supp (E))) is a point.

3) G is an effective divisor on V such that f(G) is a point.

Proof. Since fyKy,y is coherent, it follows from Serre’s theorem that there
exists a very ample divisor H on W such that H°(W,fyKy,,(H))=0. Hence if
we put H=f*H, we have H°(V, Ky;u(H))#0 and the complete linear system
| Ky w(H)| contains an effective divisor F= 31 F;.

J

Let C be ageneral hyperplane section of W and put V(C):=f"(C). Then
V(C) is a non-singular elliptic surface over C and is relatively minimal. Clearly we
have Ky ly) = Kyyee Hence by the canonical bundle formula of elliptic
surfaces (cf. [12]), each f(F;) is a curve or a point. The same argument as in
Kodaira [12], Theorem (12.1) can be applied to our situation and we can easily see
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that there exists a line bundle L on W such that f4Ky;=O(L) except a finite number
of points on W.

By Krull’s theorem, we can extend this to a homomorphism fKy,;—O(L) on
W. Let M be an effective divisor on V such that

KV/W®OV(_M) = {Image (f*/xKyw — Kym)t"™.

Then the homomorphism f*fKy,p—> f*O(L) induces an injective homomorphism
Ky jw @0y (—M)— f*O(L). Hence there exists an effective divisor G on ¥ such that

K, =f*Ky+L)+M—G .

Again by the canonical bundle formula of Kodaira, M can be expressed as

M~f*(3 ﬁ:lD,-) , in codimension one on W.
Q Tom;

Therefore by applying the same argument as above, we obtain (2). q.e.d.

Proposition 2.6. Let f: X—Y be an elliptic threefold over an algebraic surface
Y and assume that £(X)=2. Then there exists a positive integer m, (which may
depend on X) such that the pluricanonical mapping @ .x | gives the litaka fibration
for all m>mj,.

Proof. By Hironaka’s flattening theorem and Theorem 1.1, we may assume
that f: X — Y satisfies the same conditions as in the proof of proposition 2.3. Since
£(X)=2, there exist positive numbers @, # and positive integers p,, d such that the
following inequalities hold for any integer p> p,: ap® < h°(X, pdK;) < Bp* and
D)y Eives the Iitaka fibration for all p >p,. By Proposition 2.5, we have
Ky~ f*Ky+L)+M—G,

M~fH(S m_"m_—lp,.)+El—Ez, and codim f(supp (E;))>2, codim f(supp (G))>2.
Q i i

Fix a positive integer r such that 1<r<d and for any positive integer p, put
a:=pd—r. Then we have

H(X, aK)=HC(X, XKy + D+ 5[ =] by

~H°(Y, a(Ky+L)+ z[w] D)

(X, @ tr)K)=H(Y, @+1) K+ Dt 5[ @00 D]p)

Since [(a-lr-r) (m,-—l)]_[a(m,-—1)]S(a—|—r) (m,-—l)_(a(m,-— 1)~1)<r+1 ’

m; m; m; m;

we have the following inclusions.
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H°(X, aKy) 2H (Y, (a+r) (Ky+L)+ > [%_’”—U] D,

—r(Ky+-L)—r Z D).

Let H be a very ample line bundle on Y such that H:=r(Ky+L)+r > D;+H is
also very ample. Then we have H°(Y, O(I'—H))< H°(X, aKy), where we put
r=(a+r)(Ky+L)+ 3 [("_‘“___’)(__”’i—l)]pl. )

There is an exact sequence
0— H°(Y, O(I'—H)) — H(Y. O(I")) = H°(H, O®0Oz) — ,

where H also denotes a general member of the complete linear system |H|. Since
H°(X, O(I")) = H°(X, (a+r)Ky) = H°(X, pdKy), we have ap’< dim H°(Y, O(I")<
Bp® forall p>p..

On the other hand, there is a positive integer 7 such that dim H°(H, O(I")®
Og)<rp by the consideration of the dimension.

Therefore there exists a positive integer k(r) such that for all p>k(r), we have
H°(Y, O(I' —H))#+0 and hence H°(X, aKy)+0, where a=pd—r. Since
H°(X, (k(r)d—r)Kx)=0 for 0<<r<'d, we have

H(X, pdKy) — H°(X, (p+k(r))d—r)Ky) .

So if we put my:= Max {(py+ k(r))d—r}, @, yigives the litaka fibration for
0L
all m>m,. << q.e.d

Theorem 2.7. Let f: X—S be an elliptic threefold over a surface S. Assume
that (X)=2 and S is a surface of general type. Then the pluricanonical mapping
O\ i 51 associated to the complete linear system |mKy| gives the litaka fibration for
all even positive integer m>6.

Remark 2.8. If X is an elliptic threefold with constant moduli which has only
multiple singular fibers, the theorem holds for all m>5.

Proof of 2.7. Let M—S be a flattening of fand let —T be a non-singular
model of M. We may assume that V'—T satisfies the same conditions as in the
proof of Proposition 2.3.

Then it follows from Proposition 2.1 that for an even positive integer m>2, we
have mKy,~ f*(mK,+I')+E—G for some effective divisor I" on T and E, G on V.
By the same reason as in the proof of Proposition 2.3, we have an isomorphism
H°(V, O(mKy))=H (T, O(mK,+1TI)).

If Y'is a minimal surface of general type, then the pluricanoical mapping @, |
gives a birational morphism for all m>5.

Therefore @,k ;| gives the litaka fibration for all even integer m>6.
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Theorem 2.9. Let T be a simple abelian surface and let - X—T be an elliptic
threefold over T with constant moduli which has only multiple singular fibers. Assume
that x(X)=2. Then we have P,(X)>1 for all m>10.

Proof. From Remark 2.4, we have P (X)=1 and P,(X)>P,(Y) for all m>2.
So we may assume that K, is effective. Take a sufficiently fine open covering
{U,}, of X and K} is locally defined by ¢»=0. Then we can take a double cover-
ing X of X defined by X= L){ {¢i=+%}, where {¢,} is a fiber coordinate of the

~ ~ -~ T
canonical bundle K. Take the normalization X* of X. Clearly X*—X is a two-
sheeted unramified covering of X. Take the Stein factorization of X *—T.

~ T

X*¥— X
|l
T ——>T

From our construction, it is clear that 77— T is a double covering of T ramified
only along f(supp (Ky)) and T is irreducible. By taking a suitable bimeromorphic
model of ¥*— T, we may assume that T is non-singular. Because 7T is a simple
abelian surface, T is a surface of general type. Clearly we have £(X*)>r(X)=2.
Therefore it follows from Proposition 2.3 that the pluricanonical mapping @,z 3+
gives the litaka fibration for all m>S5. In particular we have P,(X*)>4 for all
m2=5.

Now, z: X*—X is an unramified double covering of X with the Galois group
G. Let L be the line bundle associated to the non-trivial character on G. Then
we have L=, and 7, Oz=0;POx(L).

Note that 7. (O(mKz.))=0O(mK)POmK,+L).
By considering the Leray’s spectral sequence, we have

H°(X*, O(mKz)) = H°(X, OmK,))DH(X, O(mKy+L)) .

Thus for all m>35, we have h°(X, O(mKy))=>2 or h°(X, O(mKy+L))>2. Noting
that L2~=O, and K is effective, we have P,(X)>2 for all m>10. q.e.d.

Proposition 2.10. Let f: X—S be an elliptic threefold over an elliptic surface
¢: S—C such that £(X)=2 and x(S)=1. Let >1CS be a discriminant locus of f.
Then S is algebraic and there exists an irreducible component D, of > with ¢(Dy)=C.

Proof. By taking a suitable bimeromorphic model of f: X— S, we may assume
that
1) >3 have only normal crossings.
2) The J-invariant J: S— P! is holomorphic.

By the canonical bundle formula of Fujita [5], we have

*) Kg =M KEQT*Op(m)@Os(Z kuy Y)@Ox(V—W)  where
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1) codim f(W)=>2.

2) f4Ox(pV)=0s for all p>1,

and k=12m is a positive integer which is a multiple of all the multiplicities of the
irreducible component of >3.

Let #: S—S’ be a contraction of exceptional curves of the first kind in fibers.
Then ¢': $’—C is relatively minimal and we have

Ky =¢"*(Kc—f)+ E (m;—DI[E], ¢"*[p;] = [m;E]]
and
Ks :ﬂ*Ks'_l_ 2 ej s

where e; is an exceptional curve.
Moreover we may assume that k=12 m is divisible by all m;’s. Then we have

K =% (Ko=) + 22 m—1P)+k Se; . (x8)
From (%) and (), if we put g=g¢o f, we have

K§ =g*(k(Ko—/)+ 3 = (m—DP)@ST*Opm)@Olk S e}
QOsl ; kuy YNQOx(V—W).

Hence, if there exists no irreducible component of >3 which is mapped surjectively
onto C by ¢, we have #(X)<1 and this is a contradiction. g.e.d.

Theorem 2.11. Let f: X—Y be an elliptic threefold over Y. Assume that
£(X)=2 and (Y)=1. Then the pluricanonical mapping @, gives the litaka
fibration for all even integer m>16.

Remark 2.12. If X is an elliptic threefold with constant moduli which has
only multiple singular fibers, the theorem holds for all m>15.

Proof. We use the same notation as in Proposition 2.1. By Hironaka’s flat-

tening theorem and resolution of singularities, we may assume that

1) The discriminant locus D== 3} D; are divisors which have only normal cross-
ings. '

2) The J-invariant J: Y— P! is a morphism.

3) The condition (*) in Theorem 1.1 is satisfied.

4) There is an isomorphism H°(X, O(mKy))=H °(Y, O(mK,+TI)) for an even
integer m>2, where I'= 37 [ma;]D;+(pV,+qV,).

Y has the structure of an elliptic surface ¢: Y— C and let #: Y— Y’ be the
contraction of the exceptional curves of the first kind in fibers. Then ¢': Y'—=C
is relatively minimal and we have
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Kyr=¢*(Kc—f)+ 2 (g;—DIE], ¢*[p]=Iq:E]
and
KY:#*KY’_l_ ; ei N

where e; is an exceptional curve. Hence we have

Ky =¢*(Kc—f)+ 2 (g:i—D[*E;]+ 2!} e;,
where
o*[p;] = [q:u*E}] .

By Proposition 2.10, ¢: Y—C is an algebraic elliptic surface and there exists
some irreducible component of the discriminant locus which is mapped surjectively
onto Cby ¢. Let D, D,, +++, D, (resp. D,.,, -+, D,) be horizontal with respect to
¢. (resp. be contained in fibers of ¢.)

By Katsura and Ueno [7], the pluricanonical mapping @, gives the unique

b4
structure of the elliptic surface for every m>14. If we put I'=O(mKy+ >} [me;]D;)
i=1

there is an injection H°(Y, O(I"))H°(X, O(mKy)). Hence it suffices to show that
O seperates points on the general fiber fof @: Y—C. Since I'- f>0, the restric-
tion O(I"QO, is very ample for every m>14.

So it suffices to show that the restriction map

R: H(Y, O(IM)— H°(f, O(I®O0y) is surjective for every m>14.

We have the following exact sequence:

0= HY, O(I'—f)) = H(Y, O(I")) = H°(f, ONQO,)
— HY(Y, O(I'—f)) = H(Y, O(I')) > 0.

We will show that H'(Y, O(I'—f))=0. We need the following lemma.

Lemma 2.13 (Kodaira). Let V be a Kihler surface and let C be a curve composed
of m connected components on V. Then the integer k=h"(Ky+C)—m-+1 is equal
to the number of lineary independent holomorphic 1-forms on V which vanishes on C.

We have  H'(Y, O —f)) = HX(Y, Ky+(n—DKy—f)+ 33 [ma]Dy).

From Katsura and Ueno [7], we have dim|(m—1)Ky,—f| >0 for all m>15.
And there is no holomorphic 1-form on Y which vanishes on some D(1<i<p),
since D; is a horizontal component of ¢: Y—C. Hence Lemma 2.13 implies the
claim.

Hence for every even integer m>16, @), | gives the Iitaka fibration. q.e.d.

§1. The structure of algebraic elliptic fiber spaces.

In this section, we shall consider an algebraic elliptic fiber space with constant
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moduli which has only multiple singular fibers. There is great difference between
algebraic elliptic fiber spaces and analytic elliptic fiber spaces. Katsura and Ueno
[7] showed that the multiplicities of the multiple fibers of an algebraic elliptic surface
satisfy certain numerical conditions.

On the other hand, there is a deep connection between algebraic elliptic fiber
spaces and the theory of branched coverings of complex manifolds developed by
Namba [13].

First, we quote the following important theorems.

Theorem 3.1 (Katsura and Ueno [7]). Letf: S—P"! be an algebraic elliptic su-
':face Of type (ml’ my, *--, m}\)'

(%) Let m be the least common multiple of m,, m,, +++, my.

For a prime number q, let a be the maximal integer such that q* divides m. Then
there exists at least two indices i and j such that q* divides both m; and m;. (We call
(*) condition (U). )

We need the following definition.

Definition 3.2 (c.f. Namba [13]). Let M (resp. X) be an n-dimensional complex
manifold. (resp. n-dimensional normal complex space.) A Galois covering f: X—M
which branches at the divisor D is said to be maximal if for any covering f': X'—=M
which branches at at most D, there is a morphism g of X onto X' such that

f=f"og.

Theorem 3.3 (Namba [13]). Let D;(1<j<2) be distinct irreducible hypersur-
Saces of degree d; of P". Let m;(1<j<2) be positive integers and put D=m,D;+
myD,+++-+mD,. Then there is a finite abelian covering of P" which branches at
D if and only if the following condition is satisfied.

Condition (N)
\%
m; divides< m_ m;

;. m)) (

.. , e, >
dl’ ml) (dj’ mj) (d}d mk)
Jor 1<j<2, where (d;, m;) denotes the greatest common divisor of d; and m; and
\"
Lay, a5, +++, a;, +++, a,) denotes the least common multiple of a,, a,, +++, a, except a;.
(If n=1, put d;=1 for all 1< j<2.)
Moreover, if n2>2 and D;'s (1< j<2) are smooth and crossing normally, such

a finite abelian covering x: P">P" is maximal and the Galois group G, is
isomorphic to Zy,+Zr,+---+Zr,, where dir\+-dyr,+++-+d\ra=0 and m;r;=0
for 1<j<a.

Combining these two results, we obtain the following proposition.

Proposition 3.4. Let f: S—P' be an elliptic surface with constant moduli
which has only multiple singular fibers. Put
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S = Ly (my, a))Ly, (my, @) -+ Lp\(my, @) (P'XE).

(Here we use the notation of Kodaira [11].)  Then the following conditions are equi-
valent.

(1) S is projective.

(2) S is Kdhler.

A

3 Xa=0.

i=1

(4) There exists a finite abelian covering n: C— P of P' which branches at
A

D= X\ m;p;. Let G be the Galois group of = and let X be the normalization of
i=1

the pull-back S ;(1 C—C. Then we have X=(P'X E)", where n HYC, O(E)) is of

finite order, and the quotient space X/G is isomorphic to S. (Here E denotes a smooth
elliptic curve.)

Proof. (1)(2) follows from Kodaira [11].
(1)e>(3) follows from Katsura and Ueno [7]; appendix.
(4)—(1) is clear, so we prove that (3) implies (4).
As is shown in Katsura and Ueno [7], (3) implies condition (U) in Theorem 3.1.
On the other hand, one can see easily that condition (U) is equivalent to the
following condition,

\%
(*) mjdivides {my, «oo, my, o, m> for 1<j<2.
Therefore if we put d;=1 for all jin Theorem 3.3, there exists a finite abelian cover-

A
ing which branches at D= 37 m; p; and the claim follows. q.e.d.
i=1

Remark 3.5. Theorem 3.1 and Proposition 3.4 are still true if we replace P!
by any compact smooth curve C. Here we give another proof.

Proof. Put S=L,(m,, a,)-++L,,(m,, a) (CXE) and let m be the least common
multiple of m;’s. (1<i<2). The multiplication map m: E—E induces a finite
surjective morphism ¢: S—Y, where Y—C is an elliptic bundle over C. Hence
S is Kdhler if and only if Y is Kéhler. If we express Y as Y=(CXE)",

A
7€ HY(C, O(E)), we can easily see that the Chern class of 7 is c(9)=m 3] a;.
g i=1
By Kodaira [11], Y is K&hler if and only if ¢(7)=0. Hence the claim follows.

Now, we give a generalization of Proposition 3.4.

Theorem 3.6. Let H; (1<j<2) be distinct hyperplanes of P" (n>2) which
are crossing normally and let f: X—P" (n>2) be an elliptic fiber space over P" with
constant moduli which has multiple fibers of multiplicity m; along each H; (1<j<2)

A
and is a principal fiber bundle over P"\ U H; with the structure group E, where E is
j=1

a smooth elliptic curve. Then the following conditions are equivalent.
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(1) X is Moishezon.

(2) X s in the class C.

(3) «X)=1, where t(X) denotes the Albanese dimension of X.

(4) There exists a finite abelian covering =n: Y— P" of P" which branches at

A

D=3 m;H;. LetG be the Galois group of n: Y—>P". Then the pull-back
i=

X§ Y—Y of = is bimeromorphic to YXE and the quotient space Y X E|G is

bimeromorphic to X.

Proof. (1)e>(2) is well-known. (c.f. Fujiki [1])
-4

Take (n—1) general hyperplane sections of P" and restrict the elliptic fiber
space f: X—P" over the intersection of them. Then we get an elliptic surface S
over P! of type (m,, m,, --+,m,). Because X is in the class C, S is also in the class
C, so is Kéhler. Therefore by Theorem 3.1, (m,, m,, -+, m,) satisfies condition (U).

The same arguments as in Proposition 3.4 can be applied to our situation, so
A

there exists a finite abelian covering z: Y—P" of P" which branches at D=} m;H;
=t

and the pull-back X X Y— Y is bimeromorphic to (¥YX E)"— Y, where 7€
Pn
HYY,O(E)) is of finite order. There exists an é&tale cover Z— Y such that
(YX E)"X Z is isomorphic to ZX E. Since z: Y—P" (n>2) is a maximal covering,
b g b g

we have Z~=Y and #=0 in HX(Y, O(E)). So the claim follows.

(4)—(3) is trivial.

(3)—(1) Since 1(X)=1, Alb(X) is a smooth elliptic curve and a,: X—Alb(X)
(the Albanese map of X) is surjective and has connected fibers. Then the
morphism @=(f, ay): X—P?x Alb (X) is surjective, hence X is Moishezon. q.e.d.

§4. Proof of main theorem B.

The following proposition is due to M. Kato.

Proposition 4.1 (M. Kato). For an arbitrary integer 2>2, let (m,, my,, +++, m,)
be a A-tuple of positive integers with m;>2 for all i, and assume that any two of
them are relatively prime.—(x) Then there exists an elliptic fiber space f: X —P*™!
over P ! with constant moduli which satisfies the following conditions.

(1) X has multiple fibers of multiplicity m; along {{;=0} for each i, and is trivial
over P\ ~CJ1 {¢;=0}, where ({,: &,: +++: {,) is the homogeneous coordinate of P ™',

2) F:X—P*! isflat.

Remark 4.2. X is not in the class C in the sense of Fujiki [1]. That is, X
cannot be bimeromorphic to any compact Kahler manifold. (c.f. §3).
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Remark 4.1. X is a Hopf manifold. Conversely, any elliptic fiber space which
satisfies (1) and (2) is a submanifold of a Hopf manifold.

Proof. Let us consider an analytic automorphism of C*\ {0} defined by

g: CN\{0} ——> C\{0}
U] w

(Zl’ A Zi’ AR ZA) and (pMIml zla ‘”a p"’/m’. Z,', "'3 p’”/"‘)‘ zx) 9

where we fix a constant p€C (0<|p|<1) and put m=mm,--m, Put X=
CM\{0}/<g>. The automorphism g acts on C*\{0} freely and properly discon-
tinuously, hence X is smooth. There is a natural holomorphic map

fi X —— P!
w U]

(2y, 25, =+, 2y) —> (2112 2320 +o0 1 20)

where by (z,, z,, +:+, z,) we denote the point of X corresponding to a point
(Zv Zg **% ZA)ECA\{O}

Because any two of m;’s are relatively prime, the morphism f gives an algebraic
reduction of X and each fiber of f is connected. Thus X is an elliptic fiber space
over P*1 which satisfies the desired properties. q.e.d.

Proof of remark 4.3. Assume that an elliptic fiber space f: X—P*"! satisfies
the conditions (1) and (2). Because any two of m;’s are relatively prime, it follows
from Katsura and Ueno [7]; appendix that X is not in the class C and h°(X, d©,)=0.
(cf. theorem 3.5) First, we show that H{(X, C)5 HX, O4)=C. Since R 0=
Opr-1, it follows easily from the Leray spectral sequence that g(X)=1. By the exact
sequence 0—C— O;—d0Oy— 0, we have 0— H°(X, dOy)— H'(X, C)—H'(X, Oy),
and b (X)<1. And by Leray’s spectral sequence

E$¢ = HNPY', R'f,C) = H*™(X, C),
we have an exact sequence
0— HY(X, C)— H°(X, R'f,C) — HYP*", C).

Since R'fxC =5 C? and b,(P*')=1, we have b,(X)>1. Therefore we have b,(X)=1,
and H\(X, C)3 HY(X, Ox) = C.

Now, we follow the arguments of Kato [9]. By the same method as in [9],
Lemma 19, 20, we can show that f*: H3(P*!, C)— H%X, C) is a zero mapping
and f*Opr-1(1) € Pic(X) is a flat line bundle. Then from Kato’s theorem [9],
X is a submanifold of a Hopf manifold. q.e.d.

Remark 4.4. If m;s do not satisfy (%), the fiber of f is not connected.
To prove Theorem B, we need the following lemma.
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Lemma 4.5. Let {a},_, , .. be a sequence of natural numbers defined as follows.
a, =2, 0y, = a,a, - a,+1.
And let {b,},_,,.. be a sequence of natural numbers defined as follows.
= (n+1) @u,—D+2.
Then for every positive integer n, we have
— k(- 1)+ 2["(" )]>0 for all kb,

and

—kr+1+ 5 [He=D D=0 i k=b,—1.

(Here [ ] denotes the Gauss symbol.)
Proof. First, we need the following sublemma.

Sublemma 4.6.
1

alaz'..ap

14
2_1__=
a;

i=1

(It is easy to prove by induction on p, so we omit the proof.) Now, we follow the
method of Iitaka [6]. Because

[k(a,-—l)]zk(d;—l)_ai—l - (k_l)a;_——l ,

al' ai al' al'
)
i=1 (. ’

we have
n+2

b ["(" 1)] >k-1 5%t (k—1)<n+2

i=1

3

By Sublemma 4.6, we have the following inequality.

™) g[k("a' 1)]>(k D(n+1+

a4y an+2)

So it suffices to determine the smallest integer m, such that we have
) (k—l)(n—l—l—i—;) Sk(n+1)  for all k>m,.
a,a, Ay y

The inequality (**) holds if and only if
k>(n+1) (alaz°"an+2)+l = (n+1) (an+a_ l)+l = bn—l .

Therefore if k>b,, we have —k(n+1)+ 2 [k(a 1)] ~0.
a;

Next, we consider the case when k=b,—1. If we put A=a,a, ++a,., we have
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k=(n+1)A41. Then for 1<i<n-+2, we have
[k(a;—l)] _ [((n+1)A-I-1) (d:—l)]

a; a;

~ [@+D L @-n+2!]

i i

- (n+1):;(a,-—1),

since A (1<i<n+2) is a positive integer. So we have the following equality.

| ["(" )] = (D43 a;—1

a; a;

— D A(n+2- H L)

=1 g

= (DA (o414

'M+

1

= (n+1)(A(n+1)+1)
= (n+Dk. g.e.d.

Now, we are ready to prove Theorem B.

Proof of Theorem B. Let {a,},-,,.. and {b,},.,,.. be sequences of natural
numbers defined as in Lemma 4.5. Take (a,, a,, -+, @,4,), a (n+2)—tuple of posi-
tive integers. From the construction of {a,},_,, .., any two of a,’s are relatively
prime. Therefore it follows from proposition (4.1) that there exists an elliptic fiber
space Z—>P**! over P**! which satisfies the following conditions.

(1) Z has multiple fibers of multiplicity a; along {{;=0} for each i (1<i<n+2).

(Here (£,: £, +++: {,4p) denotes the homogeneous coordinate of P**1)

(2) Z s trivial over P"“\”[tjz{(,:o},
i=1

(3) Z->P*1isflat.

Now, take a generic hyperplane section H of P"*! and restrict the elliptic fiber
space Z—>P" over H. Put X**Y:=Z|,. By Bertini’s theorem X **? is smooth
and X **P— H (==P") is an elliptic fiber space over P" which satisfies the following

conditions.
(1) X®*V has multiple fibers of multiplicity @; along each H; (1<i<n+2), where
H;s are (n+2) hyperplanes on P" which are in a general position.

2) f:X ®**D—P" s trivial over P" \ U H,.
3) [f: XD P s flat,
The canonical bundle of X #*V is as follows.

Kycnin = f* (0,,”(_”_ )+ g i

1 H,-)
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Because

>0

' nt2 g
—tn+ el o
=1 a; A1y Ay
from Sublemma 4.6, we have x(X **P)=np,
And for any positive integer m, we have

|mK yinen| = f "‘(O,;.n(—m(k+1))+'é2 [m(a‘—_l)]H;) + (fixed components) ,
i=1 a;
where [ ] denotes the Gauss symbol.
So we have dim|mKyt+n| >0 (resp. =0) if and only if m satisfies the the
following inequality. (resp. equality.)
* Ko m(ai_l) _
*) —mn+1)+ gl E— >0 (resp. = 0.)

Therefore from Lemma 4.5, we have

dim|mKyt+n|=0 ifm=>5b,—1
and
dim|mKy+n| >0 for all m>b, .

Thus f: X *+*P— P" has the desired properties. q.ed.

Remark 4.7. There exists no finite abelian covering of P" which branches along
each H; (1<i<n+2) with the ramification index a;. This follows from a theorem
of Namba [13]. (See §3. Theorem 3.3.)

Remark 4.8. For any positive integer n, X®*V is not in the class C in the
sense of Fujiki [1].

Proof. Take (n—1) general hyperplane sections of P" and let C be the inter-
section of them. Then f~}(C)—C(ZPY) is an elliptic surface by Bertini’s theorem
and is of type (a,, a,, **+, a,4,). Because any two of a,’s are relatively prime, it
follows from Katsura and Ueno [7]; appendix that f~(C) is non-Kihler. There
fore, X*P is not in the class C. (See §3, Theorem (3.1).)

Remark 4.9. In the above examples, X **? is a submanifold of a Hopf mani-
fold. However, using the result of §5, we can construct another example of X **?,
which cannot be bimeromorphic to any subvariety of a Hopf manifold. (c.f. [10])

Remark 4.10. Let f: X—P" be an elliptic fiber space over P" and assume
that f is flat. Then b, is the best possible number of the litaka fibration for all
such X.

Now we prove theorem C.

Proof of theorem C. 1In n=1, theorem 2 follows from Katsura and Ueno [7].
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So we may assume that n>1.
Let Hs (1<i<n+2) be (n+2) hyperplanes on P" which are in a general
position. Next, put (@, dy, ***; Gpiys i) =(2, 2(n4-1), +++, 2(n+1) ).
n+1

Clearly it satisfies condition (N) in Theorem 3.3. Therefore, there exists a finite
abelian covering =: P"—P" of P" which branches at D=2H,+2(n+1)H,~++--+
2(n+1)H,.,. And the Galois group G is isomorphic to Zr,+Zr,++++ 271,y
where

7’1+7‘z+“°+7'.+1+7’,.+z =0

( 2r,=0
2+2) r, =0

oooooooooooo

2n+2)7r442=0.
Clearly G is isomorphic to Z/2Z/2(n+2)D---DZ/[2(n--2).

n
Fix an elliptic curve E with the period (1, r), Im(z)>0, a torsion point acE
of order 2 and a torsion point b€ E of order 2(n+2) such that as=(n+2)b. The

group G acts on P" X E as follows.

ri: (@ KD P (12, [C+a))

Tit (25 [c]) L (Tizs [C+b]) (ZSlSn+l) .
Note that P* is smooth.

The action is properly discontinuous but not free, so the quotient space
P"x E/G has singularities. Take a G-equivariant resolution Z®*? of it. Then by
a natural holomorphic mapping f: Z*+*P—P" Z®*Y is an algebraic elliptic fiber
space over P" which has multiple fibers of multiplicity a; along each H,.
(1<i<n+2).

The canonical bundle of Z®*? is as follows.

zZow :f*(apn<—n—1)+ St

1 H;)

>0, we have x(Z®**Y)=p. And for

positive integer k, we have
* k(a;—1) —l)
kK gt | = f*( Opn(—k (n+1))+ 2 H,; )+(fixed components) ,
a;
where [ ] denotes the Gauss symbol. Therefore we have dim|kK t+n|>0

(resp. = 0) if and only if k satisfies the following inequality. (resp. equality.)

*) —k(n+1)+z:( “D>0  (resp. =0)
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By the same method as in Lemma 4.5, we have

n+2

Szl E ) = w0 (i),

So it suffices to estimate m, such that

(k—l)(n—l- + )>k(n+l) forall k>m,.  ——(**)

2(n +2)

The inequality (**) holds if and only if k>2(n?+3n+3). By a direct calcula-
tion, we see that if k=2n*4-6n+5, we have

—kr+1)+ 3 [Me=D]

ai
k(2n+3)] [k]
= —k(n+1 1 [___ L3
(n+1D+(n+1) 212) 3
| 2n?+4-6n+5
— Q@ 46n+5) (nt1 1[225 4 ][ ]
(2n*+6n+5) (n+1)+(n+1)| 2n°+5n+ 2 D) + >
=0.
Therefore d,=2(n*-+3n+3) is the best possible number of the litaka fibration of
Z (D q.e.d.

Remark 4.11. Note that in this case, the exceptional divisors disappear in
Ky, (c.f. [3]).

§5. Generalized logarithmic transformations.

In this section, we shall study generalized logarithmic transformations along
the divisors which have only normal crossings. First, we state our main theorem in
this section.

Theorem 5.1. For an arbitrary integer A>2, let (m,, m,, -*-, m,) be 2-tuple of
positive integers with m;>2 for all i, and assume that any two of them are relatively
prime. Let Y be an n-dimensional compact complex manifold and let D;’s
(1<i<2) be smooth divisors on Y which have only normal crossings. Assume
that |D;| is fixed component free and base point free and dim|D;| >0 for all i.
Then there exists an elliptic fiber space f: X— Y over Y with constant moduli which
satisfies the following conditions.

(1) X has multiple fibers of multiplicity m; along D; for each i.

A
2 X| " U b, = (Y\ U D)) x E, where E is a smooth elliptic curve with the period
iz i=1

(1, z), Im (=) >0.
(3) For an arbitrary integer m, fi(x,/8™) is invertible.

Remark 5.2. If Y is isomorphic to P”, the above theorem holds automatically.
Hence, thanks to (3), we can construct another example of X *+? in theorem B.
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To prove Theorem 5.1, we need the following propositions.

Proposition 5.3.  For an arbitrary integer 2>2, let (m,, my, ++-, m,) be a A-tuple
of positive integers with m; >2 for all i, and assume that any two of them are relatively
prime. Let D;={z;€C; |z;|<e} (1<i<A) be A discs. Then there exists an
elliptic  fiber space X, over D, X D,X +«- X D, which satisfies the following conditions.
1) XolDfxD;“x ---xD,i‘:Dik X D¥ x +-+ X D¥ X E, where E is a smooth elliptic curve

with the period (1, t), Im (z) >0.

(2) X, has multiple fibers of multiplicity m; along {z;=0} for each i.
Moreover, f: Xy>D,X D,X +++ X D, is flat.

Proof‘. Let .D,' = {t,EC; It;|<el/mi}’—> D,' = {Z,EC; |Z,'| <€}
w U
t," t,m’

be an m;-sheedted cyclic covering of D;. (1<i<2) Then by the assumption,

D:= D,x D,x ++*Xx Dy = D;X DX ++XD, =:D
U] U}
(tv tza °ty t)‘)H (t{"‘, té”z, °tey t)’\”)‘)

is an m,m,---my-sheeted cyclic covering of D, and we have
Gal (D/D) 5 Z|mDZ[m,D---DZ[m, .
Now, let us consider an analytic automorphism of DX E defined by

g: DX DyX+++ X DyXxE— DX DyX++ X D,XE
U U
(tp toy =ooy Ins [(]) L (emltla emztz’ H) em)\t)\ ’

mmye--hy,

where e, is a primitive m;-th root of unity. Put X,:= DX E[(g>. The auto-
morphism g acts on Dx E freely and properly discontinuously, hence X, is smooth.
There is a natural holomorphic map f: X, —> D; X D,X +-+ X D,
U] U]

(ty by oo 1 [CD) o (1, 1572, o0, 1Y)
where bym we denote the point of X, corresponding to a point
(t;, g »++, 1y [()E DX E. By this morphism, X, is an elliptic fiber space over D.
Clearly X, has multiple fibers of multiplicity m; along each {z;=0}. There is an
isomorphism

A: Xo| prs pt .o x py 5 DEXDEX - X D¥XE
0] U]
(tp 12: R t}\s [c)] L (tl,."a tg’z, ey t)’\n)‘) 5

A a;
(6= 55 S tog (D),
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where @; (1<i<2)EZ are defined as follows. By the assumption, there exists
a;EZ such that

\Y%
*) ammy--mye--m; =1 mod m; for each i.
Take such a;’s and fix them. q.e.d.

Proposition 5.4. Let C;(1<i<2) be a smooth curve and take one point P; on
C; for each i. For an arbitrary integer 2>2, let (m,, m,, +--, m,) be a A-tuple of
integers with m;>2 for all i, and assume that any two of them are relatively prime.
Then there exists an elliptic fiber space X over C,X C,X +++ X C, which satisfies the
Sfollowing conditions.
(1) X has multiple fibers of multiplicity m; along C;X CyX +++ X C;_; X {P;} X C;4, X
<.« X C, for eachi.
A
@ X|,» =TIl C¥XE, ehere C¥=C)\{P;} and E is a smooth elliptic curve with
mcy =i
i=1
the period (1, ), Im(z)>0.
A
(3) f: X—T1I G, is flat.
i=1

Moreover, X is not in the class C.

Proof. Let D; be a small neighborhood of P; in C; with a coordinate z; and

A
put C¥=C\{p;}. Then II C; can be covered by the following 2* open sets.
i=1

Uoo...o: - DIXDZX oo XDX
Ug..;: = Dy X DyX e+ X Dy_ X C¥
Up: = CEXCFX - X C¥
(There is a one to one correspondence between D; (resp. C¥) and O (resp. 1) and
by U,, we denote the open set corresponding to a=(a,, a,, **+, a,) EZP.
Step 1. By Proposition 5.3, there exists an elliptic fiber space X; over U,=
D, X D, X +++ X D, which satisfies the following conditions.
(1) X, has multiple fibers of multiplicity m; along {z;,=0}. (1<i<?)
2 x, = D¥x D¥ x -+ X D¥ X E, where E is a smooth elliptic curve
D¥ X D¥ X +++ X D¥
with the period (I, 7).
Step 2. Now, we shall express the elliptic fiber space X,— Uy., in another
form. (Here we use the same notation as in proposition (3.1).)
For any aZ$*, we denote it by a=(0, 0, -+, 0, 1, 0, =+, 1, 0, ++, 1, 0, +-+, 0),
< e <
that is the i,-th component is 1 for k=1, 2, +--, p and all the rest are 0. Put
{jpjz, sy jA—p}={lﬁ 2, -, l}\{ib Iy *22, [p}’ where IS]'1<.]'2<"'<J}‘_,S1. Then

A-p ~
we have U,— T D;, x II C%. Noting that Gal (D/D)=5Z/mDZ|m® HZ|m,,
w=1 V=1
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A
IT D; X E[<g™"x""ix-8) ~ A
we have X,== S . Put X{7:=1I D;x E[{g"n™iz"™ix_p>.
g™y =
Then X§* is an elliptic fiber space over H D; W X H D;,, which satisfies the following
conditions.
(1) X§* has multiple fibers of multiplicity m;, (1<v< p) along {z;, =0} (1<v<p)
respectively.
A-p _ »
@ XPh,. = I1D;,xII DY, XE
Dy | 11 D, s V=1
U] (V)]
(tla Iy o5 by [C]) (tfp tiz’ ot ti,\ » tt{” tlzz’ AR tsp",

[C 2 27[ \/—_ lOg (tn,)]),

where by (f, 1, -+, 1, [(]) we denote the point of X{” corresponding to a point
(tp tz’ MRS tA9 [(])EDXE.

A-p _ » A-p »
Let h,: II Dj,x II D;,— II D, x II Dy,
ey v=1 =gy v=1
U] (V)]

m .
(t).l, Lip oo 1,.)‘_” Zips o )|—-) ([ 11 th REPEN tj;_)‘;,,, Ziss Zigy **%s z‘.p)
be an m;m;,---mj, _ -sheeted cyclic covering of U;. Then we have

X hrvw,nvg —> B (U,NU)XE

(1) )
(tp Iy, o*5 s [C]) = (tjp tiz’ eee ti)\ » t;n:l, oty t;";,’
(€~ 3 g log ).

since z;, 0 (1<v<p) on U,N U,
By the above isomorphism, we have

m;om .m;
g itz il (til’ tfz’ "t ti)‘_,’ Zis Zigp **ts Zip [770])

mp M e Migee My __—.—.l
l_)(e’”}i ig :pt,-l, . em']; rj xpt,)‘_ s Zipy s Ziy [ 77,+mjm‘ . ]) s
1772 In-p

where we put [7;,,]=[C - é 2—”—;:7_———1 log (tiv)]. Therefore, there is an isomorphism
h7 (U, N Uo) ><E
gmamE

covering A, of :Ii[: D,-Mxvf[l C;,, and the group {g"4"™2"™») acts on h;%(U,) X E as

A-p
Xolv,av,=> h, can be naturally extended to a El mj,-sheeted cyclic

in the same way as above.
Its action is free and properly discontinuous, so the quotient space
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X, 1= h;}U,) x E/{g™™ "™y is smooth .
By a natural holomorphic mapping

¢a: Xa Ua
U] U]

(tl'l’ tiza A ti)\_,’ Zigs **y Ziys [ﬂa]) - (t;-”ljl, ot t";;{)_\;p, Zip "t Zl'p) )

X, is an elliptic fiber space over U,. By our construction, we have the following
commutative diagram.

Xolv,nv, = X
u,nt, -U,.

That is, X,— U, is a natural compactification of Xy|y_ny,—>U, N U

Step 3. We can show that the elliptic fiber spaces X,— U, constructed in step 2
(@eZP") can be glued together. For that purpose, it is sufficient to show the
Jfollowing claims.

Claim A. For any a, b€ Z$ (a=+b), there is a following commutative
diagram:

X,
X lv,ov, = X, lv.nu,

where c=max (a, b) and < (resp. =) denotes an open immersion. (resp. an isomor-
phism.) (Here, for a=(ay, a,, **+, @), b=(b,, b,, +*+, b,) € Z$*, a>b means that
a;<b; for all i. and C=max (@, b) means that ¢;=max (a;, b;) for all i, where
C=(y ¢+ €2)))

Claim B. For any a, b€ Z$ such that a<<b, there is a following commutative
diagram. That is, X;— U, is the natural compactification of X, |y, qv,—> U,N U,.

Xa|U,,nU,, = X,
Uan Ub i Ub

It is easy to show that claim B implies claim 4, so we shall prove claim B.
For any a, b Z$* such that a<<b, put

a=1(0,++0,1,0,,1,0, 1,0, -, 0), 1 i, <i,<+++<i, <A

i i, iy
b—a=(0,++,0,1,0,+:,0,1,0,,0, 1,0, -, 0), 1 < j,<fp<o++<j,<A.
J J2 Js
Put {k,<k,<--<ky_p- b =11, 2, =+, 3\ {0, i, *=+, ,}\{jp, j,++*, j;}. Then we have

A-p-s s 2
Udn sz ]:[ Dkﬂxg D;!;X:!_;_[lci'i.

[t
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Now, let us recall the construction of X,. There is a following commutative
diagram:

AI,‘O l U0Uy = h;l(Ua N Uy X E/<gﬂl,~1m,~2...m‘.p>
E7Y(U,) X E[ g™z iz |

X,:

where

i,) = (0,1, oo, thf;_ﬁ;*,

m m;
tj ]1, aee, tj Js  Z;  eee, 2;
1 s 1

(tkp oo, fk'\_p_‘, tfx’ TN 3 Zips o0y

A-p-s s . .
isa JI my,-II mj -sheeted cyclic covering of Uy=D; X D, X +++ X D,.
v=1

Now, we shall express the elliptic fiber space X,— U, in another form. Because
any two of m;’s are relatively prime, there is an isomorphism

Y ~ za_l( Ua) X E/<g"'71""”i,"'l¢"""'k)\—p—;> .

a —> <gmil...m,.pm‘.l‘..mj:>

On the other hand, the quotient space A7}(U,) X E/{g™ix"™s"n"™-s-5> is an elliptic

fiber space over A;Ii- sf),mqu:[1 D,~w><k=1"[1 C*, which satisfies the following conditions.

(1) It has multiple fibers of multiplicity m;, along {z;, =0} (1<v<s).

) fI‘tllis trivial over A;i[:‘ﬁ,mxi[l D;F“X;.li C¥ and the trivialization is given as
ollows.

(tkl’ ) tk)‘_p_s’ Lips ooos bjy Zigs 0oy Zip EA)]
1\t oo  f tmf oo tmj V4 oo Z. —2 ﬁ—— 10 (t )
— \ brypr » k:\—p—s’ iy s bjg S “ips » “ipy 7a = 275\/-:i g iy

Therefore, there is an ispmorphism

A-p-s s »
II D, xII DY XII C¥ X E
X | ~ k=1 V=1 k=1
alUnUp —> <gmilmiz...m,-pmjlmjz...mh> >

since #;, 0 (1<v<s) on A7'(U, N Uj).

Here the group {g™a™iz"™i"i"iz"™is> acts as follows.

memoomom;
g sy (tkp oo, tk)‘_’_s’ zi‘s cey zi,a zils A Zil,s [Ea])

m: m. M. .. M ety M. .m.
— (e""’fi ’”,p 2 m]stkl, e, "’"'l; ’xp 7y “t")\ pes?
—p-s ~p-s

1
Zjy s 255 Zis % Ziys [6n+ )
1 s 1 ? mklmkg P mk)‘_p_’
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where we put [£,]= [77, 2 3 \/——— 108(’1,,)]

If we restrict the elliptic fiber space X,|y, qy,—> U, N U, over U,N U, N Uy, we
have

A=p-s s b
II D, x II Df,xII D¥,x E
X, | ~ #=t 0 v=t_ " k=1 7
alU,nUpnUy — <gm"l"'m"pmi;'"mi:> .

2 .
Here we have [E,]=[C -k2=1 27: log :,)— 2 3 \/ log (t,v)], since we

have [7,]= [( 22”\/ 108(1‘.,,)]

Therefore, we have the following commutative diagram.
Xolvenu, = Xalv,nu,
u,nyU, -UNU,.
Thus from the construction of X,—U, in step 2, there is an open immersion
Xolv,w, = X,
u,nl, =, for a<b,

and the claim B has been proved.

Step 4. By step 3, we can glue the elliptic fiber spaces X,—U, (a€Z%) to
obtain the elliptic fiber space X over C;x -+ X C,. Clearly X satisfies the desired
conditions (1) and (2). And X is not in the class C by the same reason as in
Remark 4.8. q.e.d.

Remark 5.5. The elliptic fiber space X, which we have just constructed,
depends on the choice of ¢;€Z (1<i<2) in step 1. Hence we write X as
X(a,, a,, «+, a,). (cf. Prop 5.6.)

Now, we are ready to prove our Main theorem 5.1.

Proof of Theorem 5.1.
Step 1. Take a linear pencil L; from |D;| for each i and consider a meromor-
phic map @,,: Y—P/;, associated with L;, where P{;’s (1<i<2) are 2 copies of
P, Let 4; be a smooth divisor on D; in a sufficiently general position such that
the following conditions are satisfied.
(1) 4;¢D; for all j(=i)and 4,;,.;,=4; N4;,N++N4;, are (n—2p)-dimensional
compact complex manifold.
(2) Leta;: Y,—Y be the blowing-up of Y with 4; center for each i. Then the

a;
composite map Y; — Y— P}, is a morphism.
Next, consider the fiber product
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T W=Y XY,XXY,=> Y.
b4 Y Y

Because the arrangements of 4;’s are sufficiently general, W is smooth and 7 is

a bimeromorphic morphism. Let D; (resp. E;) be the strict transform of D; (resp.
the total inverse image of 4;) for each i. Then W can be considered as a fiber space

fi: W—P{;, over P, where E; is a section and D; is a fiber of the fiber space
(1<i<2). By a suitable change of coordinates, we may assume that f}(D,;)= O,

A

where O is the origin of each Py;,. Let @: W— ][ P{; be a holomorphic map
i=1

defined by @ =(f,, f;, ***,fy). By the construction of W, we have 0~ @(W)N

{z;=0})=D,; for each i, where z; is the inhomogeneous coordinate of P,

Step 2. Because any two of m;’s are relatively prime it follows from Pro-

position 5.4 that there exists an elliptic fiber space h: Z— H P, over H P{;, which
satisfies the following conditions.
(1) Z has multiple ﬁbers of multiplicity m; along each {z;=0}.

(2) Z s trivial over H (P{»\{0}), where O denotes the origin of P};,.
(3) his flat.
Step 3. Next, consider the pull-back

Because D;’s have only normal crossings, X is smooth. By the composition of the

T
morphisms X _g) W—Y, f: =togis an elliptic fiber space over Y which satisfies the
following conditions.
(1) X has multiple fibers of multiplicity m; along each D; (1<i<2).

A
(2) Xis trivial over Y\ U D,.
i=1
Step 4. The canonical bundle of X is as follows.

Lp)+3

1
m; =1 m;

Ke 5 r4(
Q
So, for any positive integer m, we have

|mKy|=f *(mK +2 [m(_mm_ﬂ] )+(ﬁxed components)

1

+ (effective exceptional divisors),

where [n] denotes the greatest integer which does not exceed n.
Therefore fi(Kx/$™) is invertible for any positive integer m. q.e.d.

Remark S.6.
(1) If we blow up Y along the intersections of D;’s and perform logarithmic trans-
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formations along the strict transform of D;’s as in [3], f*(Kx,$™) is not neces-
sarily invertible for a positive integer m.
(2) If D;’s do not have normal crossings, f«(Kx,$™) is not necessarily invertible.
(3) If the arrangements of 4,’s in step 1 are not general, W in step 1 is not smooth.
So we have to resolve singularities and f*(Ky,$™) is not invertible.
In these cases, for calculation of dim|mKy|, we have to consider the base point
conditions.

Proposition 5.7. If there exist at least two indices i and j such that a;>0 and
@;<0, then X(a,, a, -, @) cannot be bimeromorphic to a subvariety of a Hopf
manifold.

To prove this proposition, we need the following lemma. Here, we use the

A
same notation as in Proposition 5.2. We define a line bundle z: L—]] C; as
i=1
follows.

A v
= QP?OC,’(aiml see Mo m)LPl') »

A
where p;: JI C;— C; is a projection.
i=1
Put p=exp(2z+/—17), where E is a smooth elliptic curve with the period

(1, 7), Im(z)>0. Consider a C*-bundle L*=LIL\{0-section} on ]_'[ C;. <p) acts
on each fiber of L*, so put Y(a,, «:+, @)= L*/<p>

Then the canonical projection z: L*— H C; induces a projection
i=1
A
h: Y(al’ (<7 ax) - H Cl'
i=1

A
and Y(e,, a,, +-+, @) has a structure of an elliptic bundle over ] C;.
i=1

Lemma 5.8. There exists a finite abelian covering ¢ from X(a,, a,, +:+, &) onto
Y(a,, a, -+, @) such that the following diagram commutes.

[
X(ay, ay, o+, @) —> Y(a, ay, -, a,)

f\/
e

¢ is a finite unramified covering on each fiber of f.

Proof. First, we show that for any ac Z$*, there exists a finite abelian cover-
ing ¢,: X,—U, X E such that the following diagram commutes.

g Xy,—> U, X E

N,

a

In fact, define ¢, (a€ Z$*) as follows.
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b0t X U,XE

)] )]
(1 1y, e 1, [ 4o (27, 1372, oo, 178, [y, - myC])
b X, U,XE for a=0

U] U]

Wy +=, Linepr Zi = Zip (1) (’;'”1}" T t;n){f;” Zips o0y Ziy [Mymy oo man,])
where az("" 1, oty 1’ °tt la “'),
iooh
{jl’jz’ '",jx-p} = {1, 2, R R}\{Ilv iz’ oty ip} ’
and [ﬂa] = [c 2 27(\/ log(tw)]

We can easily check that ¢,’s are compatible with the patching of X,’s
and U, XE’s and define a finite abelian covering ¢ from X(e,, a,, +:+, @,) onto
Y(a, a, -+, ;). l.e.d.

Lemma 5.9. If there exists at least two indices i and j such that a;>0 and
@;<0, then Y(e,, @, -+, @,) cannot be bimeromorphic to a subvariety of a Hopf
manifold.

Proof. We may assume that @,>0 and @,<<0. Take one point Q; on each C;
arbitrarily (3<i<2) and put V:=C;XC,XQyX X Q,. Then Z:=Y(a,, a,,--,
a,)|y—V is an elliptic bundle over ¥ and from the construction of Y(e,, a,, -*+, a,),
Z can be expressed as follows.

Z =3 L|y\{0-section/<{p), where L|, =5 (28 p¥Oc(a;my -+ ;n/,- «ee m;py)
i=1

Let D be a smooth curve on V. By a theorem (11.9) in Kodaira [11], the following
conditions are equivalent.

(1) The elliptic bundle Z|,— D has a multi-section.

(2) Z|, is algebraic.

(3) deg(L|p)=0.

Let r,, r, be a positive integer such that [r,P, X C,+r,C,X P,JEPic(V) is very
ample. In particulae, let D be a general member of |r,P,x C,+r,C,X P,|. Since
we have a,>0, @,<<0 and deg (L |,)=:r\a,mmy -+ my+r,a,m,mq+-+ m,, we can choose
r, and r, sufficiently positive such that deg(L|,)=0 and =(D)>1. Then from the
above remark, there exists a smooth curve of genus greater than 1 on Z|,. There-
fore, for any point y on Y(a,, @,, *-+, @,), there exists a smooth curve C of genus
greater than 1, which passes through y and dim A(C)=1. However, by Kato [8],
any irreducible curve in a Hopf manifold is a smooth elliptic curve. Therefore,
Y(a,, a,, +++, a,) can never be bimeromorphic to a subvariety of a Hopf manifold.

g.e.d.

Proof of Proposition 5.7. From Lemma 5.8 and 5.9, it follows that for any
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point x on X(a,, @, -, @,), there exists a smooth curve C of genus greater
than 1, which passes through x and dim f(C)=1. Then from Kato’s theorem [8],
X(a,, @,, +++, @) cannot be bimeromorphic to a subvariety of a Hopf manifold.

g.e.d.

Proposition 5.10. Let C; (1<i <) be a smooth curve and take one point P; on
each C;. For an arbitrary integer 2>2, let (m,, m,, +-+, m,) be a A-tuple of integers
with m;>2 for all i, and assum that except m,, any two of m; ’s (1<LigLi—-1) are

relatively prime. Then there exists an elliptic fiber space X over H C; which satisfies
the same conditions as in Proposition 5.4.

Proof. The idea is almost all the same as in Proposition 5.4. We use the
same notation as in 5.4, and we shall slightly modify the arguments in step 1.

A ~
Let us consider analytic automorphisms of [] D; X E defined by
i=1
1
g: (th Iy ooy biops Iy [c]) = (eml Iy oo eml_lth—l’ s [C_l_——_])
7/ KXL] mA 1

h: (tla °tts t)\—p b [c]) = (tZa 5 - -1 em)‘ [(‘i‘— ]

m,

The automorphism groups generated by g and # acts on DX E freely and properly
discontinuously, so the quotient space X, :=D X E/{g, k> is smooth. By a natural
holomorphic mapping

f: Xo—‘—‘) DlXD2X°"><DA: - D P’
U U
(11 By =oes By [CD) 1 (27, 1572, o0, 112)
X, is an elliptic fiber space over D. Clearly X, has multiple fibers of multiplicity
m; along each {z;=0}. There is an isomorphism

—~ * eee *
| D ><D*_,D X DF X+ X D¥XE
w U

(tl’ t2’ M) tM [(]) a4 (tinla tg'7’ ey t;‘}"

(-5 5o o =t w)]),

where @; (1<i<A—1)&Z are defined as follows. By the assumption, there exists
a;e Z such that

A\
(%) QM My oo My e 1y =1 mod m; for each i.

Take such e;’s and fix them.
From now on, we can apply the same arguments as in Step 2, 3, 4 in Proposition
5.4, so we omit the proof. q.e.d.



692 Yoshio Fujimoto

Remark 5.11. If we assume in the above proposition that except m, and m,_,,
any two of m;’s (1<i <2—2) are relatively prime, the same result holds. However,

A
in this case, the elliptic fiber space X—TII C; is not flat.
1=§

In fact, we can slightly modify the arguments in Step 1 in the proof of 3.2.

§ 6. Some examples.

If S is an analytic surface with £(S)=0, by the classification theory of surfaces
we have P,(S)=1 and 12 is the best possible number. Now we shall construct
similar examples for elliptic fiber spaces with x=0, as an application of Theorem
5.1. Our result is the following.

Example 6.1. Let {a,},_,,. be a sequence of positive integers defined as
follows. a@,=2, a,,,=a,a,--a,+1. And let {c,},_,,.. be a sequence of positive
integers defined as follows.

Cp=0pyp— 1.

Then for every positive integer n, there exists an elliptic fiber space Y **P— p*
over P" which satisfies the following conditions.
(1) &(Y®t9)=0.
(2) m=c, is the smallest integer such that P, (Y ®*P)=1.
Moreover Y ®*P is not in the class C.

Examples. We write down the first few terms of {a,} and {c,}.

n 1 2 3 4 5 6
a, 2 3 7 43 1807 3263443
Cy 6 42 1806 | 3263442 ~10% ~10%

To prove Example 6.1, we need the following lemma.

Lemma 6.2. Let {a,} and {c,} be sequences of positive integers defined as in
(6.1). Then for every positive integer k, we have

—kr+ 1)+ 3 [ KD ] [Ke—D] <o

i=1 a; Cn

and the equality holds if and only if c, divides k.
(The proof is the same as in 4.5, so we omit it.)

Proof of Example 6.1. Let H’s (1<i<n+2) be (n+2) hyperplanes on P"
which are in a general position. And let {a,},_,,.. and {c,},-,, .. be sequences
of positive integers defined as in Example 6.1. Take (a,, a,, **+, @,4,, C,), @ (n+2)-
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tuple of positive integers. From the construction of {a,}, any two of a,’s are
relatively prime. Hence it follows from Proposition 5.8 that there exists an elliptic
fiber space f: Y**P—P" over P" with constant moduli which has multiple fibers
of multiplicity a; (resp. c,) along each H; (1<i<n+1). (resp. along H,.,)

The canonical bundle of Y ®*? is as follows.

Ky<n+x)—f*<0pn( n—1)+2 lgyo—ly Y+ L E+ Eus.

Ch =1 g

And for every positive integer k, we have

kreurol =1 (Op(fort )+ 5[ K= [ [ Me=D ., )

n

~+(fixed components)-+(effective exceptional divisors).

So it follows from Lemma 6.2 that for every positive integer k, we have
P(Y®*D)< ] and the equality holds if and only if ¢, divides k. Thus Y ®*" has
the desired properties q.e.d.

Remark 6.3. There is no algebraic elliptic fiber space over P" with £=0 and
with constant moduli which has multiple fibers of multiplicity a; (resp. c¢,) along
each H; (1<i<n+1). (resp. H,,,)

Proof. If such an algebraic elliptic fiber space X—P" exists, it follows from
Theorem 3.5 that there exists a finite abelian covering P"—P" of P" which

branches at % a;H;+c,H,,, with the Galois group G Z/a,BZ/a,D --- DZ]/a,,
i=1

and X is bimeromorphic to the quotient space P"xE|G. By a direct calculation,
we see that f*(Ky,»®") is not invertible and #(X)=— oco. g.e.d.

Remark 6.4. We cannot apply Proposition 4.1 to our situation, since (a,, a,,
-, @,4,, C,) does not satisfy the assumption in Proposition 4.1).
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