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Lefschetz operators and the existence of
projective equations

By

Takeshi USA

§ 0 .  Introduction

To clarify our position, let us consider a n  arithmetically normal embedding
j: X c-  PN (C )=P of a projective manifold X . In  [U - 2], we introduced a  map

L F T : H1(X, NI/p0 121I x(*)),1
-
1 ° (X , 121Pix (* ))  ' which brought us a foundation, or

the Main Theorem in studying the embedding j  from the viewpoint of the normal
bundle. Nevertheless, it still remains difficult to see geometric phenomena relative
to arithmetically normal embeddings and their normal bundles. It may be one
reason of the difficulty that the  map -aL F , has something hard to control though it
has fine properties.

This article aims to provide us with one of the tools instead of the m ap LF T ,

namely, a  Lefschetz operator acting on the cohomologies 2.c01■1\x' ,p(*)) (cf.
(2.2) Corollary). As a consequence, it enables us to see directly the existence of a
projective equation corresponding to a special direct summand of the normal bundle,
and also gives us a relative version of (3.7) Corollary of [U- 2] (cf. (3.1) Theorem).

The essential point of our argument is to overcome the difficulty of the existence
of non-vanishing obstruction spaces such as 1-11(P, S t ( A r l  i p ) ( * ) ) ( t  1).
For the sake of providing the Lefschetz operator with the power for breaking through
the  difficulty, an investigation will be done fo r  th e  difference p: ( —tiT LF T  d)—
(m a E N ): H °(X , n ip (m ))  D i d x ( m ) O N  x v 1p) of the two maps introduced by
[U- 2]. This map p  arised from the non-commutativity of the diagram(*) appeared
in [U- 2], or from the non-linearity o f our infinitesimal lifting problem. A s we
shall see in  (3.4) Corollary, it also measures the gap between X  and the ambient
space PN(C).

Throughout this paper, we still use the notation and the convention employed
in [U- 2]. Moreover, this time, we restrict ourselves to the case that the base field
k  is the complex number field C and X  is a non-singular projective variety, otherwise
mentioned explicitly.
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§1. Lefschetz operators

In this section, we shall study the elementary properties of a Lefschetz operator
acting on cohomology groups H q (X, 2 1 0 F ) for an  Ox -module F .  First we give
three definitions relating to Lefschetz operators.

(1.1) Definition. L et j: X  c-4 PN (C )=P be an embedding of a projective mani-
fold X , and co E 111(X, ‘23c) the Hodge-Kahler class induced by the embedding j.

For an O x -module F, the class co defines a Lefschetz operator:

L : H 7(X, 2 0F) --> Hq+1(X, ,r2V 0 F )  ( p ,  q U (O}),

*  co A sb

where co A q5 is defined as follows.

Cech tensoring
111(X, 123 ) 0 c ,  11(X , 140F) --> Hq + 1 (X, S2 1±0123‘ 0 F )

(co, 0) *  co00

wedge product
 H q + i (X,123(+1 0 F )

Ui
. >  co A  0

(ii) In the situation above, let us consider the following three exact sequences of  0
modules.

(1.1.1)(1.1.1) asQ frse
0 —> I 1112 --> 0 ••• (SQ)

a CB I3CB
0 —> P -- >  - - >  / 2 /P  - ->  0  • • •  (CB)

aNF — 1 CW1 161NF
--> 14 2 0 1 /1 2 -> 1112 0 D ipix 11120Dix --> O • • •  ( N F ) ,

where I: =I x  denotes the sheaf of ideals which defines j(X ) in P, and D ipl x =D ip 0 0 x .
Then we get four maps c3sQ , r, a " ,  and 19 N p as follows.

3  se: 11 °  (X , 1 /1 2
 (ni)) —> 111(P, 12 077»

I3 cB ,c1
r: (P, ( m ) ) 111(X, 12 1 12 (m))

H i (X , S 2
 ( 1 /1 2 )  (m)) 111 (X, 11 12 0111 2 (m))

77

where the map jz is induced by the multiplication, and the m ap 77 is given by sending
vOw  to (1/2)(v® w+ w0v) for local sections v and w of 1/ 12.
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a N F : Hi (X, 1112 01112 (m))---o Hi (X, II12 0 21pix(111))

N F : 111 (X, P r®  D IPIX (M )) 111 (X, 1112 0 21x(m))

(iii) Moreover, an exact commutative diagram of O x -modules:

0 0

(1.1.2) O x   O x

13- 4 ALS

0 —> 1112E D  0 x (—l) es — 0  11 0

 

aEÎ

 

0 — >/// 2 1 2 1 .plx

d , f
0

  

is obtained after putting an O x -module II to be the cokernel of the map a E •

The relation between the Ox -module II and Lefschetz operators is given by the
following lemma.

(1.2) Lemma. Let j: X  P N ( C ) = P  be an embedding of a projective manifold
X, and F an O x -module. T he ex act sequence:

LS LS
0 —> 21x 0 E — * 1 1 0 E - - * F - - ) .  • • •  (LS)

defined by the diagram (1.1.2) with tensoring F induces a map:

(5 Ls : H°(X , F)—o H i  (X, S23c 0 F ) .

Then, on H °(X , F), the Lefschetz operator L coincides with aLS up to multiplying by
a non-zero constant.

P ro o f  This can be proved even by a  dierct computation. For simplicity,
however, we shall proceed as follows. Let us consider the commutative diagram:

a F  N fl E
0 --> ED p ( - 1 )  e  - - o  0  F --o 0

S= 0

,p N
169 x( - 1) es -- o  O x  --> 0
S.= 0

0 ---> 23( n > Ox 0  .
a

L S fiLS

Taking their cohomology groups, we have:
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E
0 "-= e  (0 p(-1)) e,—> H ° (0 )  H 1 (2,) —> e H 1(0 p(-1)) e. = 0

H° (0 x ) —> 111(2 1p1x )

H ° (0 x ) --> (D i
x ) .

Ls

Because dim 111(P, 1210=1, {SE MI forms a C-basis of IP (P, 121p). Hence, the class
SE  (1) coincides with the Hodge-Kahler class c 1(0p(1)) up to multiplying by a non-
zero constant. Since 8, s(1) is the image of S E ( l ) ,  the c lass  L s (1) is equal to the
Hodge-Kahler class co — j*c,(0 1,(1)) induced by the embedding j  through multiplica-
tion by a suitable non-zero constant. After tensored by F, for an arbitrary global
section a G H °(X, F), we get a commutative diagram:

a LS fi LSn o x  o
I, Oa 0a 0a

—?-123( 0 E -- ).  HOF— ) F --> 0 .
aLS fiLS

Hence, we obtain:
6 Ls

H°(X, Ox ) 111(X, D I)

o Oo
H ° (X , F ) -->  1 1 1 (X, D IX® F) .

LS

Thus, aLs(c)----aLsc000 --(non-zero constant) L(a). Q.E.D.

(1.3) Remark. (i) In this paper, there is no effect of multiplication by a
non-zero constant on the proofs below. Hence, on H °(X, F), we shall identify the
Lefschetz operator L with the connecting homomorphism LE in the sequel.
(ii) The exact sequence (LS ): 0---> S23c —> x —> 0 induces an exact sequence of
Ox -modules (p -LS): 0—> 2 1, --> AP IT— > 0 by taking the p-th exterior product
of H .  After tensoring F, and taking their cohomology groups, we get

g p -L S
••• — > H P

-
1( X , A P T1Ø F) HP-1(X, DIX- 1 0 F )

-(1
p-LS clp- LS

H P (X, 2 )1 0 F )

Then, i3p _L s  also coincides with the Lefschetz operator L on HP'(X, 2 11- 1 0 F ).

§ 2 .  The relation among ( - 5LFT•dr), (m 5 E N ) ,  and L

In  [U-2], we introduced three maps H°(X, 2 1plx (m))—>H1(X, NI/1p®
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H° (X, D'pix(m)),t2J x (m )),  4 : H°
 (X , N x a n d  T 3 E N : H ° (X , N l i p(m))—

H 1(X, Arli pOLPpl x (m)) fo r  a  given embedding j: X c-- , P N (C )=P  of a projective
manifold X .  These maps were defined by the  following exact sequences o f Op-
modules, respectively.

L F T LFT
(2.0.1) 0 — > N vx p  0 2 1x(m) —> 2 (m )®  O/1 2 -->  D iplx(m) — > 0 • (LFT)

o D'xon)---> o
zeEN N f i EN

0  — 4 • s  11.®  DPI AM)N p ( m —l) e, N 0 • • •  (EN) ,

where N I 1p =1/12 and the last sequence (EN ) is obtained by the Euler sequence of
In with tensoring N ) / (m).

The precise relation among ( - 3
 LFT. d ), and the Lefschetz operator L

is given by the theorem below with using the notation of (1.1) Definition.

(2.1) Theorem. Let j :  X c ,  PN (C )=P  be an embedding of a projective manifold
X .  Then, as m aps from  H °(X, Nlip(m)) to  111(X, A r I c / p O p i p i x ( m ) ) ,  the  following
relation holds.

(2.1.1) ( - 4  LFT .  WI) - 1 1 1  EN -F2aN F• r • 6s Q 0

Hence, as maps from H °(X, N) i p(m)) to H 1(X , N l 1 p (m)023c ),

(2.1.2) m L  =  m •/3 NF•T:7EN  —  - - fiNF• f3 LFT • cit

P ro o f  Let us take a standard open affine covering 11— {U, I s=0, 1, •.•N } o f
PN (C )=P defined by a system of homogeneous coordinates as in  the proof of the
Main Theorem in [U -2]. Then, we choose a  sufficiently fine refinement 0 = {  V. I
aE AI of 11 and a refinement map u: A—>{0,1,••• N I  such that fo r  each aEA,
Va c  Ua (0, and we can find a  system of minimal generators (1751, ••• lia r }  of x
(r= N —dim(X), ha ; Er(va , 1 )) on the open affine set V , .  Now we take an arbitrary
global section a E H °(X , N  p (m )). The section a  is represented by a ech cocycle:

.fi(5)0 4 ,0 )}  E C M , Nlip(m))

where)", is an element of r(U„, I)  and i s denotes its equivalence class modulo P.
The cocycle condition of the éech cocycle is described as follows in terms of f f s l .

(2.1.3) f,—(Z,14)m •ft g „  i n  r (u n u  /)
(3 gs t E  (U, n U„ r))

By the choice of, we can find local sections p51 1 i E r  (v„ n Vb, Op) ( i , l= 1, •-•, r)
which satisfy the conditions:

(2.1.4)g 5 ( 5 ) ( 1 )  V 5 n Vb Pab ij h ai h aj

P ab ij  = P ab ji  •
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First we calculate n l • E N ( a )  as follows. (cf. [U- 2])

1-9- i lx ( a)  = -RV a, fu(3)0 4 7 0 1 eu(0))1 E C (Z , / Am — 1 ) es)s =0

T h en , a  • , iv(i) {(V0  n
 V i , ,  (

(3
y  iYik(c)).b)} eCAZ, N 1 (m—l) e,) ,s=0

where a y  denotes éech derivation, and

(a y i g ( b ) 0 z u m c b - ) 1 eu(b) -4(00 z .172 )
1 e u ( a )

with using (2.1.3) modulo 12,

=  (Z u (a )IZ mu(b )) •  fu (a )'® Z T(;)1 eu (b ) f u ( a ) 0 Z : ( 7 13)  e u(a)

=  (Z u(a )1Z u(b )) . / u (a )0 Z  Z u )

x {1/44 (o ) eu (b ) — (4 0 /Z, ( 0 )•1/4 „ ) eu (0 ) } .

The above are computed i n  r ( V  n Vb, ra 1p(n-1) e,). Then,

(EWA • av  q i k a p o b  (, I )  ï  641 ZY=  Zu(a), Zu(b), •  u(a) --E x ,Z Iu(b), Z u(a),

er (va n Vi,, N 'xiip (n )opip lx)

Thus we have

(2 .1 .5) m  E N (a)  = the class of

{(Va n V b, ni(Zu(a)1Zu(b)) • .7.(a) 0C IE x (Z u (b )1Z u (a ))0 Z  Z a ))) .

Hi(x, ATI/p(m)0 2 1p 1 x )  •

Next we shall calculate — 8„,•(-1,(a).

M a )  the class o f I (V a , (d E xf.(.))1x04701  H ° ( X ,  D ipix(m)).

7. 1F r • C o ) =  « V 0 , d E x  f u (a)O lla))1  C ° (Z , .9 1p(m)0 0 p112)

( a y  - 1  ,1( di(a))ab =  dE X  fu (b )O Z Z O — dEx i'u(a) 0  Z ( a )

with applying (2.1.3),

=  dE x { ( Z u(b)14 4 (a )) – m ( fu (a ) — gu (a )u (b )»  Z L n (b ) — d E X  fu (a) ®  4 7 (a)

=  dE x fu (a )®  Z  ( a )  —  dEX  gu(a)a(b)0 ZI7(a)
— 1 1 1 (Zu(b)/ Zu(a) r n –  1

(  fu (a )  g u (a )u (b ) )  d E X (Z u (b )1 Z u (a ) )0 Z 'un(b) — dEX 
.f

) 0 4 7 ( a )

— dEX gu( 0)a(b) 0 4 a ) — in (Z u (0 )1 Z u (b ))L (a ) dE x (Z u (b )1 Z u (a ))0 4 a )  •

The above are computed in  r  (V a n Vb, D ip(M )0 0  p11 2 ) .  Hence, the expression
(2.1.4) shows that

cji(60).b ( E Pab1j ki ha i) O l l a )=1
— m (Zu(0144(b)).f .(0) dEx(Z .(01Zu(a))0lla)

--- — 2 ±  p 0 111 ha i  dE x  h0 i ® Z um( 0 )

— n i(Z u (a )1 Z u (b )) fu (a ) dE X (Z u (b )1 Z u (0 ))0 run(a ) •
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The above are computed in r (V a fl Vi,, N Ii ip(m)(:)2 ip lx ). That means

(2.1.6) LFT• C-11(c )

the class o f  {(Va n Vb, 2 '71 n h a d  h  101417r abij — ai v —EX — aj v --“!!(a)
i,j=1

H-111
(Z u (a )1Z u(b )) fu (a )(N E X ( Z u ( b ) 1 4 ( a ) ) 0 l l a ) ) 1

i n  H i (X , NY cip(m)0‘2 1Plx) •

Finally, we calculate a N F  • r • a sQ (a )  as follows.

(a" fi'Vo(aDab ,fu(b) O Z  um(b) — fu (a ) 0 Z um(a)

=  (Z u (a )1 Z u (b ) r ( fu (a ) — gu (a )u (b )) 0 Z ( b ) — f . ( a ) O l l a )

— guc0 )u (b )O Z (0 )

The above are calculated in  I ' ( V o n V b, I ( m ) ) .  Then, with using the expression
(2.1.4), we see that

1-1 - 1  •fici3• 6  sQ (a) =  the class of « V 0  fl v,  b, E P a b i . f . h a i O h a i e l l a
i . 1 =i

i n  111(X , S 2(N ' I F ) (m)) .

T s Q (a) -= the class o f  {(Va n vb, — E pobii haioha i oz z a))l

i n  111(X , A q i F O N  j
v
c i p(m)) .

Thus we obtain

(2.1.7) a „ • r • as Q ( 0 ) the class of « V 0  fl v. b , — E  P a b i jh 0 i0 d E X  ha j ® Z t7(a))}
=1

i n  H i (X, Aq/ AO® D iPi x) •

Hence, by (2.1.5), (2.1.6) and (2.1.7), we can show that

( (  8  LFT m 3E N + 2C E N F •r • a so (a) =_- 0
for an arbitrary section a G H ° (X , N l i p(m)), namely, (2.1.1). Then, it is easy to see
that

(2.1.8) m fiNF • k N  =  fiNF•8 LFT • •

On the other hand, we have the following diagram after tensoring (m )=N 1 i p (m)
to the diagram (1.1.2).

(2.1.9) o o

N v
i , (m) FO N v =  N v (m )01 ' Al'a N  

6 E N  1P l• fi EN

1

0 —> N v  (m )0 ‘2 1plx — ) .  8) N " (m- 1) e, --  N" (m) —). 0
,i• f iNr i

0 —> N v  (m )012 1
x  •— •— ). N  v  (m ) 0 1 1  - - - *  N v  (m) —.> 0

,i• a LS
0

167LS
o
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Taking their cohomology groups,

EN
H °(X, N" (m)) > (m)OD'plx)

H fi NF
11 ° (X , N s' (m)) N (m)0 .(2 1

x ) ,
L==à L s

which means L = f i N F • a E N .  Hence, by the formula (2.1.8), we obtain mL=m fl NF •

EN = -
 N F • L F T • CTI• Q.E.D.

Through (2.1) Theorem, we can understand the fundamental role of Lefschetz
operators in the study of arithmetically normal embeddings from the view point of
the (co-)normal bundles as follows.

(2.2) Corollary. Let j: X c-)PN (C )=P  be an arithmetically normal embedding
of  a projective manifold X  of positive dimension. A ssume that dime  Tm (L:
N  v ( 0 ) _ ..„ ( x  N  v ( n

)
®  D ix ,

)) s .  Then, we can find homogeneous polynomials F1, • ,
Fs in  degree m such that {F1, ••• , Fs}  is a sub-S.P.E of j (X )  in degree in (cf. [U- 21),
namely, there exists a  system  of  minimal generators f or the  homogeneous ideal of
j (X )  which has { F1, •••, F,)- as a part in  degree m .  Moreover, f or a section OE
H °(X ,N v (m))with L(0)* 0, we can f i n d  a homogeneous defining equation F of j(X ) in
degree m which satisfies L (P )= L (0 ), where P  denotes the equivalence class in the
space H°(X, N V  (m)) of the homogeneous polynomial F.

Pro o f . Let {G1, •••, G1} be an S.P.E. of j(X ) in degree m .  Then, as we saw in
(3.1) Corollary of [U-2], { L F T  C

-
4 (

6
1 ) )  • • •  L F T  4 ( 0 }  forms a  C-basis of Im( LFTa

d  H °(X, ( m ) ) - *H i (X , 2 1 p l x ( m ) ) ) .  Hence, by the formula (2.1.2), -(L(61),
•• • , L ( ) }  generates the vector space Im (L: H ° (X , N v (m)). - H i  (X , N v (m )0 S4) . II

§ 3 .  Applications

By (2.2) Corollary above, we can get a partial generalization of (3.7) Corollary
in [U-2] as follows.

(3.1) Theorem. L et X be a closed submaniofld of  a projective manifold W with
codimension r, and i: W c-PN (C )=P  an embedding which induces an arithmetically
normal embedding]: Xc--,PN(C)=P.

A ssume that X  is  of  positive dim ension. Then, the following three conditions are
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equivalent.
(i) The exact sequence of the normal bundles:

(3.1.1)O Nxilv N v p  N w ip  x

splits, an d  N v w --=--- Ox (mi)E 9•••eo x (n r) (o x (a): —i*or (0).
(ii) We can find hypersurfaces S i , •••, Sr  of degree m i , •••, m,. respectively which

satisfy the condition:

j (X ) = i(W ) f l S1 fl (- 1 S r  (transversal) .

(iii) There exist homogeneous polynomials F1, •••, F of  degree m i , •••, m, res-
pectively  such that the set-theoretic union of  any  S .P.E. of  i( W ) and {F1, Fr}
forms an S.P.E. of j(X ).

Pro o f . Obviously (iii) implies (ii), and (ii) does (i). First, we prove that (ii)
implies (iii). Let us denote i( W ) by W, and i( W )n s, n ••• n S k  by W k (k  =1. r).
Then, we see that every W k  is an integral scheme, which needs a little more than
the usual argument on regular sequences in a local ring. In fact, if W oo has a
component whose codimension in i( W ) is smaller than k (0), then, using the am-
pleness of So o , , ,  we can show that Wk(0)+ j  also has a component whose codimension
in i( W ) is smaller than k ( 0 ) ± 1 . Then, by an induction on k (0), this contradicts
the assumption on j ( X ) .  Hence, every W k  is an equidimensional locally complete
intersection subscheme of i( W ) .  By the similar argument, we see that every com-
ponent of W k includes j ( X ) .  Since W k has no embedded point, if Woo  has a nil-
potent element in somewhere, then Woo has a  nilpotent element at the generic
point of W ,=j(X ) . The facts that the codimension of W, in Woo equals r—k(0)
and W, is defined by r— k(0) elements in  Woo  imply that Wo o  is regular at the
generic point of W, (because W, is regular). Hence, for every k , W k  is a  reduced
irreducible Cohen-Macaulay scheme. Taking notice of the facts above and applying
the following lemma, we can show that the condition (iii) holds.

(3.2) Lemma. (M ori-Fujita) Let X  be an integral closed subscheme of PN(C)=
P, and S  a hypersurface of degree =d defined by a homogeneous polynomial F .  As-
sum e that D: =X  n s  (properly  intersecing) satisf ies the  arithmetic A -condition,
namely, the depth of the local ring at the vertex of  its affine cone is greater than or
equal to 2. Then X  also satisf ies the arithmetic D2-condition, and the set-theoretic
union of  any  S .P.E. of X  and { F}  is an S.P.E. of D.

Pro o f . It needs a little more than the usual argument on the depth of a local
ring. Let us consider the exact commutative diagram:

0 /91
—> 11°(O x(m — d)) —> 10 0  x(m)) —> H°(0  Dfrn» —»

(3.2.1)t  e't  e f

O Ir (O p (m  — d)) 10 0 p(m)) Ir (O s (m )) —" O,
a 1(31,
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where Pp is obviously surjective, and the surjectivity of /61 and e" are implied by
the assumption on D .  Since for every sufficiently small ni, e ' is surjective, we may
assume that e' is surjective as an induction hypothesis. Hence we see that e is
surjective, which means that X is also an arithmetically A-subscheme of P .  As for
an S.P.E. of X, first we consider the exact sequence:

ax Plx
0 H 1 (0 E (m—d)) Hi(OX(M)) 111(0,9 (m)) ,

where the injectivity of a 'x  is induced by the surjectivity of /91 in the diagram (3.2.1).
T hen , dim 111(0 2 c (m ) )  dim 111 (0 E  (m-1- d))_ dim H 1 (0 E (m±2d))<_ • •• . Thus, by
Serre's vanishing theorem, H i(O x (m)) is zero for any integer m .  Then, we consider
the following exact sequence induced by the Euler sequence.

1-671
0 —0 H°(D ip I A m »  ED I r(O x (

1f l - 1 )) I r ( O x ( m ) )
.y+,

—> 1-11(2 1p1x(m))—> ED H i (Ox(n2-1)) ------ 0

The surjectivity of the map n  implies

C  i f  m  = 0
(3.2.2) 111(21pix(m))-=

0o th e rw is e .

Tesoring an exact sequence: 0 --, . /x —>ID — > x ( - d ) - - > 0 to the Euler sequence, we
get an exact commutative diagram (for E N , see [U-2]):

(3.2.3) a
X D I9XD

M i x ( m ) )  —
, 1-11(1,9 0 D ip (m)) 111(21pix(m—d))

aE N ( ) t  E N ( D )
H V E (m)) — >  H V D (m)) — o  H 0 (0 E (m—d)) .

Since X and D satisfy the arithmetic A-condition, 6 „ (X )  and 8E N (D) are surjective.
Since each basis of 1m OM corresponds to an S.P.E. (cf. [U-2]), using (3.2.2) and
FE HVD(d)), we see that 19 xr) is surjective and the union of any S.P.E. -(G1 , •••, Gs)
of X and IF)- generates 1-1°(/D (*)). Let us show the minimality of {G„ •-• , G„ .
We may assume that deg G 1 deg G,S•• • <deg Ge(0)— ••• =deg Gi w=deg F<deg

••• S deg G ,.  I f 1G1 •••G„ Fl is not minimal, then there exist a n  integer
k ( t ( 0 ) )  and homogeneous polynomials H, H„ •••, Hk_i such that

/'" Gi H i + H . F ,  o r  H F  =  G k - 4É- 1Gk =  E H V x (* ) )  .
= =

By our assumption, F  is not contained in  H °(/ ,(* )).  Since M I E (* )) is a prime
ideal, H H ° ( 1 x ( * ) ) .  Hence, using deg H=deg Gk —deg F<deg Gle , we see that Gk
is represented by G1, •••, Gk _1, which contradicts the minimality of G5)-.

Now let us go back to our proof of (3.1) Theorem and show that (i) implies
(ii). We may assume ml =m 2 — ••• —m,(1)<mr(1)+1='•• =mr(2)<••• <mr(s-1)+1=•••
m, (, ) (r (s )= r ).  Then we shall consider the diagram:
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H
°
(0 x (m -m 1)) EB • • •  ED Hovmm-mrDEDH . (N ;,,(m ) x )

L L L
1-11(NYc (m)0,91.)= I-1 1(2 1

x (m -m i )) (134 • • • ED Hi(Qix (m-m,)) IL
= 1■11,p) e  1 1 1 ( 9 3cOnv/p(m)i x)

where, by the definition o f Lefschetz operators, the action of the operator L  on
kr(N x

v (m)) can be separated into each operation L  on its own direct summand of
N  1 (m ). In case of m  -m „ we choose r (1) sections al ,  '• • , ar(1) 1/°(N)(m)) such
that a1 -(0, •••, 0, 1, 0, • • •, 0, 0) (zero in the last column corresponds to the compo-

nent of H °(N 1,/p(m)1 x ). Obviously, L (a )  is not z e r o .  By (2.2) Corollary, we can
find homogeneous polynomials F i , • • • , Fr ( l ) E  H

°
(P, /x (M i ) )  such that L • (Pi ) =L(a i ),

where P i denotes the equivalence class in  H ° (X, N I(m ,)) of the section F .  S in ce
m -m 1 <0  for any r (1 )+ 1 , 1", is of the type (0, • ••, 0, 1, 0, •••, 0, *). Next, in

case of m = 1 1 ' 4 ( 1 ) + 1 9  
the same method brings us homogeneous polynomials F r (1)± 1 , •••,

F,.(2 ) such that P i ---(*•••*, 0, • ••, 0, 1, 0, • • • , 0, *) for any j  with r ( 1 ) +  1  j  r(2).
7-(1)

Using the arithmetic D2 -condition on j (X )  and F i , •••, Fr (1 ) ,  we may assume that
P1 =--(0, •••, 0 , 0 , ••• , 0 , 1 , 0 , •  •• , 0, *). By the same way, we can finally find homog-

Ri)
eneous polynomials F1, • • •, Fr  such that F1 =(0, • • •, 0, 1, 0, • • • , 0, *). Then, F 1=

•• • -F , = 0  defines a closed subscheme Y of i ( W ) .  By the choice of Fr•• Fr , Y  coin-
cides with j (X )  on each point of j ( X ) .  Thus, it is sufficient to show that Y is con-
nected even in the case that Y is not equidim ensional. We put T to be P N1(1) (C )x
•• x  P m ( r) (C ), where M ( k ) : = N + m k

 C ,  - 1 .  Then P m (h ) (C ) parametrizes the family
of hypersurfaces of degre=m k in  P N (C ) .  Then we define a closed set o f W x T
as follows.

1(x, t(1), • • • , t(r)) E W x r x E S t (k ) (k  = 1 •••r))-C W xT

We give the reduced structure to  a ', and define f :  a.->•W and g: .Y'-->T to be the
restrictions of the first projection and the second projection of W x T , respectively.
Let us consider f :  a '- ›  W . F o r  every closed point x E  W , f '(x )  is isomorphic to
P m (1 ) ' ( C ) x  • •• x P m ( r) - I (C ), which means that dim f ' ( x )  is independent of x  and
f ' ( x )  is irreducible. Hence i s  an  integral scheme. Then we study the  mor-
phism g: - >  T  Since r is smaller than dim W, g is a dominant proper morphism.
If we generally take hypersurfaces S1, •••, Sr o f  degree m„ • • • , m,, respectively, then
wn s, n ••• n S r  is integral by Bertini's theorem. Hence, the function field of T
is algebraically closed in the function field of X . M oreover, T  is normal, which
implies g * 0 x = 0 ,„ .  Then g - 1 ( t )= i (W )n  s, n • • • n sr  is connected fo r  any t -
(t l , • • • , e T. Q.E.D.

(3 .3 )  Remark. (i) As for the condition (i) of (3.1) Theorem, we should make
a  remark that, even in the case of  r=1, th e  splitting of the sequence (3.1.1) is es-
sential. Roughly speaking, N x i w = 0 x (m ) does not always imply the ampleness of
X in  W.
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(ii) (3 .2 ) Lemma can be also shown by a  slight modification of Mori-Fujita's
argument in [F].

In the final place, we shall study the situation where —3 L IT  CTI coincides with
m -6 „  for any integer m.

(3.4) Corollary. Let j : PN (C )=P be an arithmetically normal embedding
of  a projective manifold X  of positive dimension. Take an integer in T h e n , th e
following three conditions are equivalent.

— 6 EET • di = m  aEN : InA r\x/(m)) —> 1 1 1 (N IO D 1Pix(m )) (V  m Z & nt_<m(0)) .

(ii) 19,9 Q : H °(P, lx (m))—> H °(X ,  N ( m ) )  is surjective (V mGZ & m S m (0 )) •
(iii) 111(P, 4 (m ))  = 0 (V  m G Z  & m(0)) .

M oreover, if  .1-11(X ,S 2(N D  (m ))=0  (V mEZ & m...<m (0)) o r ot„: 11 1(P, I1(m))—>
H i (P, Ii(m )) is surjective (V m G Z  & m  m (0 )) , then (i), (ii), and (iii) hold.

P ro o f  By the sequence (SQ) of (1.1.1), it is obvious that the conditions (ii)
and (iii) are equivalent. Assum e one of the three conditions: (a) the condition
(ii) above; (b) H i (X , ,V (N ) (m ))  = 0 (V  m GZ &  m <m (0)); (c) H l (P,11(m))— >
111(P, 11(m )) is surjective (V m G Z  & frr m (0 )) . Then the condition (i) holds by
(2.1) Theorem. Hence, we have only to show that (i) implies (ii). Let us suppose
that the condition (i) is  affirm ative. In case of m(0)._ 0, then M X , N I(m ))=0 ,
which means (ii) ho ld ing . To apply an inductive argument on m(0), we may as-
sume that m(0)>0 and the condition (ii) holds for m (0 )-1 . To simplify our nota-
tion, we shall denote the integer m(0) by m  in the sequel. Now we study the dia-
gram below, whose commutativity is guaranteed by the condition (i).

s=0 s =
H A I (n -1 ) )

0
e , - - -> e I-1° ( N ( tn - 1 ) )

flEN r„, ,8 EN dr

r,,_ 1  N

H°(I(m)) - - 4  inNI(M)) IX (M ))

i i i aE N r'„ I, In 8 EN8  LET

H i (I (0 0  D ip ) 111(N\j(M)0121PIX)

where is surjective by the induction hypothesis. Let us take an arbitrary sec-
tion E N I(m )). B y (2.3) Lemma o f  [U-2], w e can  find  sections F E
H

°
(P, /(m)) and a G M P, 2 (m )) such that

di  (0) = dr •r,.(F)-Fa I x  i n  1-1°(X , D x(m)) •

Then, the condition (i) shows that

kR(O — rJF ) )  =  — ( 1/m) 8 LFT — 1'0,(F)) = — (11m) 8  LEA°. x )  =  0.

B y th e  surjectivity o f  r„,_1 , we can find Go , •••, G N E  M P ,  I  AM —1)) such that

— r„,(F)=E r„,_ 1(0 0 Z i =r„,(E  G ,O Z i), which implies that q5 =r„,(F-FE  Gi ® Z i ).
1=0 =0 1=0

Thus we obtain the surjectivity of r„ as we required. Q.E.D.
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(3.5) Rem ark. For example, the condition (ii) of (3.4) Corollary is satisfied if
j (X )  is a  complete intersection.

As an application of (3.4) Corollary, we shall calculate h
°
(P, Op(2H)00p//1)

of a twisted cubic curve j : X =P i (C)c-> InC)=P, where O ( H )  denotes the tauto-
logical line bundle of P 3(C) (cf. (4.2) Example (XVII) of [U-2]).

(3.6) Example. First we raise four facts which are easy to see by direct cal-
culations of familiar exact sequences.

(I) H °(P, 0 p (2H)) H ° (P, 0  p (2 H )0  O / 1 ) .

(II) h°(P, 0 p(2H)) = 10.
(III) hi (P, 11(2H)) = 1 , 11 1(P, 11(2H)) g  111(P, .11(2H)) .

(IV) f f (P, Ix (2H)) = 3 , h°(X , A /1(2H)) = 4 .

Now our claim is:

Claim  f f (P, 0 p (2H)0 0 p 111)= 10.

By (I)  an d  (II) , it is equivalent to see that hi (P, 11(2H ))=0. Let us assume
111(P, 11(2M >  0. Then, (III) shows that a c E : H i (P, I(2H))--> H l (P, 11(2H)) is
surjective, or equivalently,

LFT . 2 i  5  E N :  H°(X, Ar1(2H))—> TP(X, ATIO 9 A x(2 H)) •

For m 51, 11V , A r1 (mH)) =O. Hence, putting m(0)=2 in  (i) of (3.4) Corollary,
we obtain that fl : H°(P, 11 (211))—>M X , N vx(2H)) is surjective. This contradicts
(IV).

§ 4 .  Problems

Based on the results above, we shall raise two problems as our working hypo-
theses in  studying the mutual relation between arithmetically normal embeddings
and their normal bundles.

(4.1) Problem. Let j : PN (C )=P be an  arithmetically normal embedding
of a projective manifold X  of positive dimension. Assume that the normal bundle
AT,u p  splits into a direct sum F ef7) Ox(m 1) e •••  (m in i ) ,  where Ox (m i )  denotes an
extendable line bundle. Do there exist hypersurfaces S 1, • ,  S t  of degree m l , • • • ,
respectively and a  closed subvariety W of P  which satisfy j (X )=  Wr) S1 fl • • • n s,
(transversal) ?

(4.2) Remark. By the result of (3.1) Theorem, the existence of W is almost
cruc ia l. If rank F=1 , then (4.1) Problem is slightly affirmative. (2.2) Corollary
and Lefschetz's theorem on Picard groups give the required result except the case
dim X =1  o r  S n • • •  n st  is not equidim ensional. In  c a s e  o f  d im  X = 1 and
s, n • • •  n 5t  is a smooth surface, this is shown by Harris and Hulek [H].
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To explain the next problem, we give three definitions.

(4.3) Definition. Let j: X e ->PN (C )=P be an embedding of a projective mani-
fold X.

(i) A closed subvariety W of P is called an intermediate ambient space (I.A .S.)
of j(X )  if W  includes j(X )  and is non-singular along j(X ).

(ii) Let F be a subbundle of the conormal bundle NX./p. We define a  closed
subscheme (X  IF) (1) of P  to be (I j(X )I ,  0 , ( ,) /F), where X(1):=( I j(X ) I , Op//i).
Then, we say that the subbundle F is relatively infinitesimally liftable (R.I.L.) if  F
(g_D ipl x ) can be lifted to a subbundle of D ip 0 (x1F)(1)•

(iii) Let F be a subbundle of the conormal bundle N)/f j p, and W  an I.A.S. of
1 (X ) . Then, it is said that W corresponds to F if  n i p®O x  coincides with F as a
subbundle of Ar \x/ i p .

Now the second our problem is stated as follows.

(4.4) Problem. Let j: X - c-> PN(C)=P be an arithmetically normal embedding
of a projective manifold X , and F a subbundle of the conormal bundle ATI1p with
the relatively infinitesimal liftability. Then, does there exist an 1.A.S. which cor-
responds to the subbundle  F?

(4.5) Remark. The converse of (4.4) Problem is affirm ative. In  fact, if
F - r v i pl x , then (X  I F)(1)-(X 1W )(1):-(11(X )1 ,0 ,11i f i v ) as a closed subscheme
of P .  On the other hand, we have an exact sequence of locally free sheaves (on a
neighborhood of j(X ) in  W ):0->  /s/,'1, /p - - -  lp O. Hence, O - N / 0

°(xIF)(1 ) - - -> D iPlwe 0 (x1F)(1) is a lifting of 0-> F - - >
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